

Page 1 of 97

Verified code: 335441

Test Report

Report No.: E20220309137001-4

Customer: Lumi United Technology Co., Ltd.

Address: Room 801-804, Building 1, Chongwen Park, Nanshan iPark, No.3370, Liuxian Avenue,

Fuguang Community, Taoyuan Residential District, Nanshan District, Shenzhen, China

Sample Name: Curtain Driver E1

Sample Model: CM-M01

Receive Sample

Date:

Mar.11,2022

Test Date: Mar.12,2022 ~ Apr.29,2022

EN 55014-1:2017+A11:2020 Electromagnetic compatibility - Requirements

for house hold appliances, electric tools and similar apparatus - Part 1:

Emission

EN 55014-2:2015 Electromagnetic compatibility - Requirements for house

Reference hold appliances, electric tools and similar apparatus - Part 2:

Document: Immunity - Product family standard

EN 61000-3-3:2013 Electromagnetic compatibility (EMC) –Part 3-3: Limits–Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤16 A

per phase and not subject to conditional connection

Test Result: Pass

Prepared by: Young Zhao yun Reviewed by: Jiang Tow Approved by: Lion Liony

GUANGZHOU GRG METROLOGY & TEST CO., LTD

Issued Date: 2022-05-19

GUANGZHOU GRG METROLOGY & TEST CO., LTD.

Address: No.163, Pingyun Road, West of Huangpu Avenue, Guangzhou, Guangdong, China Tel: (+86) 400-602-0999 FAX: (+86) 020-38698685 Web: http://www.grgtest.com

Report No.: E20220309137001-4 Page 2 of 97

Statement

- 1. The report is invalid without "special seal for inspection and testing"; some copies are invalid; The report is invalid if it is altered or missing; The report is invalid without the signature of the person who prepared, reviewed and approved it.
- 2. The sample information is provided by the client and responsible for its authenticity; The content of the report is only valid for the samples sent this time.
- 3. When there are reports in both Chinese and English, the Chinese version will prevail when the language problems are inconsistent.
- 4. If there is any objection concerning the report, please inform us within 15 days from the date of receiving the report.
- 5. Without the agreement of the laboratory, the client is not authorized to use the test results for unapproved propaganda.

TABLE OF CONTENTS

L.	1E21	RESULT SUMMARY	o
2.	GEN	ERAL DESCRIPTION OF EUT	7
	2.1 AI	PPLICANT	7
		ANUFACTURER	
		ACTORY	
		ASIC DESCRIPTION OF EQUIPMENT UNDER TEST	
		EST MODE	
	2.6 LC	OCAL SUPPORTIVE INSTRUMENTS	8
		ONFIGURATION OF SYSTEM UNDER TEST	
3.	LAB	ORATORYAND ACCREDITATIONS	10
	3.1 L/	ABORATORY	10
		CCREDITATIONS	
		EASUREMENT UNCERTAINTY	
1.	LIST	OF USED TEST EQUIPMENT AT GRGT	11
5.		SSION TEST	
	5.1 CO	ONDUCTION EMISSION MEASUREMENT	13
	5.1.1	LIMITS	
	5.1.2	TEST PROCEDURE	
	5.1.3	TEST SETUP	14
	5.1.4	DATA SAMPLE	
	5.1.5	PHOTOGRAPH OF THE TEST ARRANGEMENT	
	5.1.6	TEST RESULTS	
		ADIATED EMISSION MEASUREMENT	
	5.2.1	LIMITS	
	5.2.2	TEST PROCEDURE	
	5.2.3	TEST SETUP	
	5.2.4	DATA SAMPLE	25
	5.2.5	PHOTOGRAPH OF THE TEST ARRANGEMENT	
	5.2.6	TEST RESULTSSTURBANCE POWER MEASUREMENT	
	5.3.1	LIMITS TEST PROCEDURE	
	5.3.2 5.3.3	TEST PROCEDURETEST SETUP	
	5.3.4	DATA SAMPLE	
	5.3.4	PHOTOGRAPH OF THE TEST ARRANGEMENT	
	5.3.6	TEST RESULTS	
		DLTAGE FLUCTUATION & FLICKER MEASUREMENT	
	5.4.1	LIMITS	
	5.4.2	TEST PROCEDURE	
	5.4.3	TEST SETUP	
	5.4.4		
	5.4.5	TEST RESULTS	
5.	IMM	UNITY TEST	54
		ENERAL DESCRIPTION	
		ENERAL PERFORMANCE CRITERIA DESCRIPTION	
	6.3 EI	ECTROSTATIC DISCHARGEIMMUNITY TEST	
	6.3.1	TEST SPECIFICATION	56
	6.3.2	TEST PROCEDURE	56
	6.3.3	TEST SETUP	
	6.3.4	PHOTOGRAPH OF THE TEST ARRANGEMENT	
	6.3.5	TEST RESULTS	59

6.4.1 TEST SPECIFICATION 6.4.2 TEST PROCEDURE 6.4.3 TEST SETUP 6.4.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.4.5 TEST RESULTS 6.5 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST 6.5.1 TEST SPECIFICATION 6.5.2 TEST PROCEDURE 6.5.3 TEST SETUP 6.5.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.5.5 TEST RESULTS 6.6 SURGE IMMUNITY TEST 6.6.1 TEST SPECIFICATION 6.6.2 TEST SPECIFICATION 6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS 6.8 POPENDIX A PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8 TEST RESULTS 6.8 POPENDIX A PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8 TEST RESULTS 6.8 POPENDIX A PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8 TEST RESULTS 6.8 POPENDIX A PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8 TEST RESULTS 6 TEST RESULTS	6	5.4 CO	NTINUOUS RF ELECTROMAGNETIC FIELD DISTURBANCES	61
6.4.3 TEST SETUP 6.4.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.4.5 TEST RESULTS 6.5 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST 6.5.1 TEST SPECIFICATION 6.5.2 TEST PROCEDURE 6.5.3 TEST SETUP 6.5.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.5.5 TEST RESULTS 6.6 SURGE IMMUNITY TEST 6.6.1 TEST SPECIFICATION 6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS		6.4.1	TEST SPECIFICATION	61
6.4.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.4.5 TEST RESULTS 6.5 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST 6.5.1 TEST SPECIFICATION. 6.5.2 TEST PROCEDURE 6.5.3 TEST SETUP. 6.5.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.5.5 TEST RESULTS 6.6 SURGE IMMUNITY TEST. 6.6.1 TEST SPECIFICATION. 6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP. 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION. 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP. 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION. 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP. 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS		6.4.2	TEST PROCEDURE	61
6.4.5 TEST RESULTS. 6.5 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST 6.5.1 TEST SPECIFICATION 6.5.2 TEST PROCEDURE 6.5.3 TEST SETUP. 6.5.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.5.5 TEST RESULTS. 6.6 SURGE IMMUNITY TEST. 6.6.1 TEST SPECIFICATION. 6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP. 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS. 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION. 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP. 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS. 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP. 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS.		6.4.3	TEST SETUP	62
6.5 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST 6.5.1 TEST SPECIFICATION 6.5.2 TEST PROCEDURE 6.5.3 TEST SETUP 6.5.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.5.5 TEST RESULTS 6.6 SURGE IMMUNITY TEST 6.6.1 TEST SPECIFICATION 6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS		6.4.4	PHOTOGRAPH OF THE TEST ARRANGEMENT	63
6.5.1 TEST SPECIFICATION 6.5.2 TEST PROCEDURE 6.5.3 TEST SETUP. 6.5.4 PHOTOGRAPH OF THE TEST ARRANGEMENT. 6.5.5 TEST RESULTS 6.6 SURGE IMMUNITY TEST 6.6.1 TEST SPECIFICATION 6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS				
6.5.2 TEST PROCEDURE 6.5.3 TEST SETUP. 6.5.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.5.5 TEST RESULTS. 6.6 SURGE IMMUNITY TEST. 6.6.1 TEST SPECIFICATION. 6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP. 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT. 6.6.5 TEST RESULTS. 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST. 6.7.1 TEST SPECIFICATION. 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP. 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT. 6.7.5 TEST RESULTS. 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION. 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP. 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS.	6	5.5 ELI	ECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	67
6.5.3 TEST SETUP		6.5.1	TEST SPECIFICATION	67
6.5.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.5.5 TEST RESULTS 6.6 SURGE IMMUNITY TEST 6.6.1 TEST SPECIFICATION 6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS		6.5.2	TEST PROCEDURE	67
6.5.5 TEST RESULTS. 6.6 SURGE IMMUNITY TEST. 6.6.1 TEST SPECIFICATION 6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT. 6.5 TEST RESULTS. 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST. 6.7.1 TEST SPECIFICATION 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS. 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST. 6.8.1 TEST SPECIFICATION 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS		6.5.3	TEST SETUP	67
6.6 SURGE IMMUNITY TEST. 6.6.1 TEST SPECIFICATION. 6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS. 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION. 6.7.2 TEST PROCEDURE. 6.7.3 TEST SETUP. 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT. 6.7.5 TEST RESULTS. 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION. 6.8.2 TEST PROCEDURE. 6.8.3 TEST SETUP. 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS.		6.5.4	PHOTOGRAPH OF THE TEST ARRANGEMENT	68
6.6.1 TEST SPECIFICATION 6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS.		6.5.5	TEST RESULTS	69
6.6.2 TEST PROCEDURE 6.6.3 TEST SETUP 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS. 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION. 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS. 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION. 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS.	6	6.6 SUI	RGE IMMUNITY TEST	70
6.6.3 TEST SETUP 6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION 6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS		6.6.1	TEST SPECIFICATION	70
6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.6.5 TEST RESULTS		6.6.2	TEST PROCEDURE	70
6.6.5 TEST RESULTS. 6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION. 6.7.2 TEST PROCEDURE. 6.7.3 TEST SETUP 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT. 6.7.5 TEST RESULTS. 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION. 6.8.2 TEST PROCEDURE. 6.8.3 TEST SETUP 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT. 6.8.5 TEST RESULTS.		6.6.3		
6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST 6.7.1 TEST SPECIFICATION		6.6.4		
6.7.1 TEST SPECIFICATION. 6.7.2 TEST PROCEDURE. 6.7.3 TEST SETUP. 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT. 6.7.5 TEST RESULTS. 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION. 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP. 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT. 6.8.5 TEST RESULTS.				
6.7.2 TEST PROCEDURE 6.7.3 TEST SETUP 6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS	6	5.7 CO		
6.7.3 TEST SETUP		6.7.1	TEST SPECIFICATION	73
6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.7.5 TEST RESULTS. 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION. 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP. 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS.		6.7.2	TEST PROCEDURE	73
6.7.5 TEST RESULTS. 6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION. 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP. 6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT 6.8.5 TEST RESULTS.		6.7.3		
6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST 6.8.1 TEST SPECIFICATION. 6.8.2 TEST PROCEDURE 6.8.3 TEST SETUP		6.7.4	PHOTOGRAPH OF THE TEST ARRANGEMENT	74
6.8.1 TEST SPECIFICATION		6.7.5	TEST RESULTS	75
6.8.2 TEST PROCEDURE	6	5.8 VO	LTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST	76
6.8.3 TEST SETUP		6.8.1	TEST SPECIFICATION	76
6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT		6.8.2	TEST PROCEDURE	76
6.8.5 TEST RESULTS		6.8.3		
		6.8.4		
ADDENINIV A. DUOTOCD ADU OF THE FIIT		6.8.5	TEST RESULTS	78
	ΔDI	PENDIX	A · PHOTOGR A PH OF THE FUT	79

----- The following blanks -----

Report No.: E20220309137001-4 Page 5 of 97

REPORT ISSUED HISTORY

Report Version	Report No.	Description	Compile Date
1.0	E20220309137001-4	Original Issue	2022/04/26

----- The following blanks -----

Report No.: E20220309137001-4 Page 6 of 97

1. TEST RESULT SUMMARY

Test Item	Test mode	Test Requirement	Test Method	Class / Severity	Test Result
Conduction Emission	Mode 1 Mode 2	EN 55014-1:2017+A11:2020	CISPR 14-1:2016	Meet standard limits	PASS
Radiated Emission	Mode 1 Mode 2 Mode 3	EN 55014-1:2017+A11:2020	CISPR 14-1:2016	Meet standard limits	PASS
Disturbance Power	Mode 1 Mode 2	EN 55014-1:2017+A11:2020	CISPR 14-1:2016	Meet standard limits	PASS
Harmonic Current	/	EN 61000-3-2:2019	EN 61000-3-2:2019	/	Note 1)
Voltage Fluctuation and Flicks	Mode 1 Mode 2	EN 61000-3-3:2013	EN 61000-3-3:2013	Dt,dc,dmax(4%),Pst	PASS
Electrostatic discharge	Mode 1 Mode 2 Mode 3	EN 55014-2:2015	IEC 61000-4-2:2008	Enclosure port: Contact Discharge: ±2,±4 kV; (Direct/Indirect) Air Discharge: ±2,±4,±8 kV (Direct); Performance Criterion B	PASS
Continuous RF electromagnetic field disturbances	Mode 1 Mode 2 Mode 3	EN 55014-2:2015	IEC 61000-4-3:2006+A 1:2007+A2:2010	80-1000MHz, 3V/m,80% AM(1kHz) performance criterion: A	PASS
Electrical fast transient/burst	Mode 1 Mode 2	EN 55014-2:2015	IEC 61000-4-4:2012	AC Input and output Power: ±1kV 5/50 Tr/Th ns 5kHz Performance Criterion B	PASS
Surge	Mode 1 Mode 2	EN 55014-2:2015	IEC 61000-4-5-2017	ACInput Port:1.2/50 (8/20) Tr/Th us line to line: ±1.0kV -270 °,+90 ° Performance Criterion B	PASS
Conducted radio frequency disturbances	Mode 1 Mode 2	EN 55014-2:2015	IEC 61000-4-6:2013	AC Input and output Power: 0.15MHz-80MHz 3V 80% AM(1kHz) Performance Criterion A	PASS
Voltage Dip & Voltage Interruptions	Mode 1 Mode 2	EN 55014-2:2015	IEC 61000-4-11:2004+ AMD1:2017	AC Input Port: 0%,0.5T Performance Criterion C 70%,25T for 50Hz Performance Criterion C 40%,10 T for 50Hz Performance Criterion C	PASS

Note ¹⁾:Not applicable, since The EUT with a rated power of less 75 W.

Report No.: E20220309137001-4 Page 7 of 97

2. GENERAL DESCRIPTION OF EUT

APPLICANT 2.1

Name: Lumi United Technology Co., Ltd.

Room 801-804, Building 1, Chongwen Park, Nanshan iPark, No.3370, Liuxian

Avenue, Fuguang Community, Taoyuan Residential District, Nanshan District, Address:

Shenzhen, China

2.2 **MANUFACTURER**

Name: Lumi United Technology Co., Ltd.

Room 801-804, Building 1, Chongwen Park, Nanshan iPark, No.3370, Liuxian

Avenue, Fuguang Community, Taoyuan Residential District, Nanshan District, Address:

Shenzhen, China

FACTORY 2.3

Name: SHENZHEN 3NORD DIGITAL TECHNOLOGY CO., LTD.

401, ZONE 101A, WORKSHOP 15, ZHONGFU ROAD, TANGXIAYONG

Address: COMMUNITY, YANLUO STREET, BAOAN DISTRICT, SHENZHEN CITY,

GUANGDONG PROVINCE, P.R.C.

BASIC DESCRIPTION OF EQUIPMENT UNDER TEST 2.4

Equipment: Curtain Driver E1

Model No.: CM-M01

Adding Models:

Trade Name: Aqara

Power Supply: 5V ____1.5A power from USB cable or DC 3.70V power from battery

Rechargeable Lithium-ion Battery

Product Model: DH0406CLM **Battery**

Nominal Voltage: 3.70Vdc, Rated Capacity: 6000mAh, Rated Energy: specification:

22.2Wh

Charging Voltage Limit: 4.20Vdc

Work Frequency: 2405MHz - 2475MHz

Modulation O-QPSK

Type:

Antenna Type: FPC antenna

Hardware

T0 Version:

Software

V0.0.0 2424

Version:

Sample submitting

■Provided by customer □Sampling

way:

Sample No: E20220309137001-0005(Motor1), E20220309137001-0007(Motor2) Report No.: E20220309137001-4 Page 8 of 97

Motor1:

Manufacturer: SHENZHEN WEIZHEN MOTOR DEVELOPMENT CO.,LTD.

Note1: Model: WRK-500CA-17280B

Technical data: DC9.0V,720mA Max.5500±10% rpm/min.

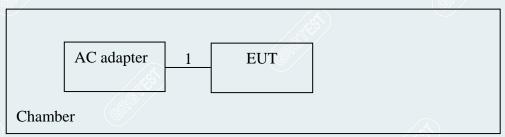
Motor2:

Manufacturer: Peak Industrial Ltd.
Note2: Madel: PD 500EV 17280

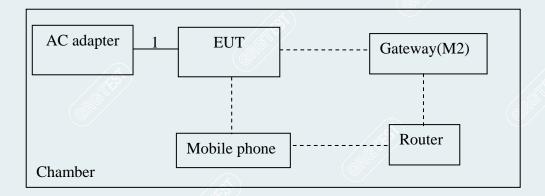
Model: PR-500EV-17280

Technical data: DC9.0V,500mA Max.5500 ± 10% rpm/min.

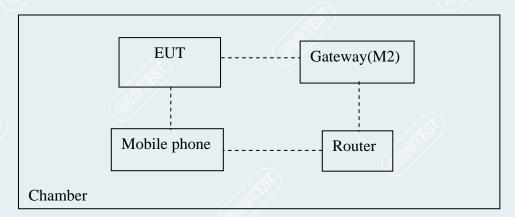
2.5 TEST MODE


\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Mode No.	Description of the modes
<u>(</u>)	1	Charging
	2	Charging+Zigbee communication+motor rotation
	3	Zigbee communication +motor rotation

2.6 LOCAL SUPPORTIVE INSTRUMENTS


Name o	of Equipment	Manufacturer	Model	Serial Numb	er Note
Gateway(M2) Lumi United Technology Co., Ltd. ZHWG12LN		ZHWG12LM	/	/	
AC adapter		Aohai	A70-050200U-EU1	. /	1
Mobile Phone		VIVO	VIVO Y79	1/2	
Router		TP-LINK	TL-WDR6500		/
Cable					
1	USB Cable	Aqara		/	Unshielded 0.83m

2.7 CONFIGURATION OF SYSTEM UNDER TEST


Mode 1

Report No.: E20220309137001-4 Page 9 of 97

Mode 3

----- The following blanks -----

Report No.: E20220309137001-4 Page 10 of 97

3. LABORATORYAND ACCREDITATIONS

3.1 LABORATORY

The tests & measurements refer to this report were performed by Shenzhen EMC Laboratory of Guangzhou GRG Metrology & Test Co,. Ltd.

Add.: No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua District

Shenzhen, 518110, People's Republic of China.

P.C.: 518000

Tel: 0755-61180008

Fax: 0755-61180008

3.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA A2LA(Certificate#:2861.01)

China CNAS(L0446)

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada ISED (Company Number: 24897, CAB identifier:CN0069)

USA FCC (Registration Number: 759402, Designation Number: CN1198)

Copies of granted accreditation certificates are available for downloading from our web site, http://www.grgtest.com

3.3 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Lot as specified in Clark 10-4-2.		
Measurement	Frequency	Uncertainty
	9kHz~150kHz	$2.2 \text{ dB}^{1)}$
Conduction Emission	$150 \mathrm{kHz} \sim 10 \mathrm{MHz}$	$2.8 \text{ dB}^{1)}$
/ <u>(</u> \$)	$10 \mathrm{MHz}{\sim}30 \mathrm{MHz}$	$2.8 \text{ dB}^{1)}$
	$30\text{MHz} \sim 200\text{MHz}(H)$	$4.3 \text{ dB}^{1)}$
Radiated Emission (3m)	200MHz~1000MHz(H)	$4.5 \text{ dB}^{1)}$
Radiated Emission (3m)	30MHz~200MHz(V)	$4.4 \text{ dB}^{1)}$
	200MHz~1000MHz(V)	$4.5 \text{ dB}^{1)}$
Disturbance Power	30MHz~300MHz	$4.0 \text{ dB}^{1)}$
Voltage Fluctuation and Flicks	(AS) 1	2)
Electrostatic discharge		2)
Electrical fast transient/burst		2)
Surge	/	2)
Conducted radio frequency disturbances	/	2)
Voltage Dip & Voltage Interruptions	/	2)

Note¹⁾: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

²⁾Tests have proved that, EMS test item equipment meet the requirements of the standard with a confidence level of not less than 95%.

Report No.: E20220309137001-4 Page 11 of 97

4. LIST OF USED TEST EQUIPMENT AT GRGT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Conduction Emission			-	
EZ-EMC	EZ	CCS-3A1-CE	/	/
EMI Receiver	R&S	ESCI	100783	2022-09-14
LISN(EUT)	R&S	ENV216	101543	2022-09-14
Radiated Emission (Belo	w 1GHz)			
Test S/W	EZ	CCS-03A1	1	/ (*)
Test Receiver	R&S	ESR7	102444	2022-09-22
Preamplifier	EMEC	EM330	9/	2023-03-05
Bi-log Antenna	Schwarzbeck	VULB9160	VULB9160-3401	2022-10-27
Radiated Emission (Abov	ve 1GHz)			
Test S/W	Tonscend	JS32-RE	/	1
Spectrum analyzer	Agilent	N9020B	MY57120179	2022-08-08
Preamplifier	Tonscend	TAP01018048	AP20E8060075	2022-05-09
Bi-log Antenna	Schwarzbeck	BBHA 9120D	02143	2022-10-22
Voltage Fluctuation and	Flicks			
Test S/W	1 (8)	CTS4	/	/
Power Source	SCHAFFNER	NSG1007	54789	2023-03-08
Harmonic & Flicker Tester	SCHAFFNER	CCN1000	72045	2022-09-24
Electrostatic discharge				
Dito ESD Simulator	EM Test	dito	V0809103493	2022-10-30
Radio-Frequency Electro	omagnetic Field			
Test S/W	Tonscend	JS35-RS	1	/ ©
Signal generator	R&S	SMA100A	100434	2022-09-04
Switch	TOYO	BS5000	P	/
Power Meter	Keysight	N1914A	MY57090009	2022-10-11
Power Probe	Keysight	E9301A	MY57060008	2022-09-04
Log-periodic broadband antenna	Schaffner	CBL6143	5082	2023-01-08
Dual directional Coupler	AR	DC 6180A	0328212	2022-09-22
Power Amplifier	SCHAFFNER	CBA9433	3007	2022-10-29
Microwave LogPer. Antenna	Schwarzbeck	STLP9149	9149-163	2022-09-18
Power Amplifier	Milmega	AS1860-50	1079232	2022-10-29

Report No.: E20220309137001-4 Page 12 of 97

		(a		
Power Amplifier	TESEQ	CBA 3G-050	T44161	2023-04-06
Dual directional Coupler	AR	DC 7144A	327057	2022-09-22
Electrical fast transient/b	ourst			
Test S/W	/	Win3025 Version 4.00	/	1
Fast Transients/Burst Generator	TESEQ	NSG 3025	26861	2022-09-04
Surge				
Surge simulator	3ctest	CWS 600G	ES0381813	2022-10-29
Lightning surge coupling decoupling network	3ctest	SPN 3618T	ES0941720	2022-11-05
Conducted radio frequen	cy disturbances			
Test S/W	Tonscend	JS35-CS	/	/
Conduction and radiation immunity testing system	TESEQ	NSG4070	25807	2023-04-06
Coupled decoupled network	Luthi	CDN801-M2	1897	2022-09-11
Voltage Dip & Voltage In	terruptions			
Test S/W	AMETEK	AC Source CIGuiSII-500lix	2.0.0.7-No v.2006	/
Power Source	SCHAFFNER	NSG1007	54789	2023-03-08
current switchgear	TESEQ	NSG2200-1	A17820	2022-09-24
Harmonic & Flicker Tester	SCHAFFNER	CCN1000	72045	2022-09-10

Note: The calibration interval of the above test instruments is 12 months.

Report No.: E20220309137001-4 Page 13 of 97

5. EMISSION TEST

5.1 CONDUCTION EMISSION MEASUREMENT

5.1.1 LIMITS

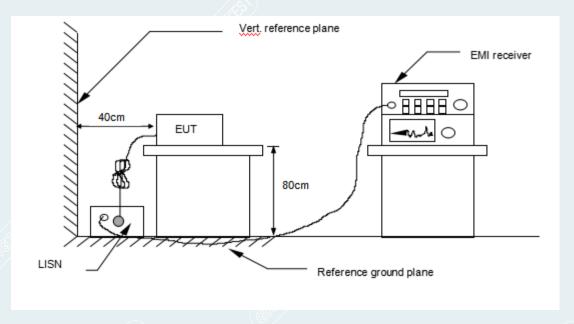
Frequency range	Limits (dBμV)				
(MHz)	Quasi-peak	Average			
0.15~0.50	66-56	59-46			
0.50~5	56	46			
5~30	60	50			

NOTE: (1) The lower limit shall apply at the transition frequencies.

- (2) The limit decreases in line with the logarithm of the frequency in the range of 150 kHz to 0.5MHz.
- (3) All emanations from a class B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

5.1.2 TEST PROCEDURE

Procedure of Preliminary Test


- The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per CISPR 14/EN 55014 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- All I/O cables were positioned to simulate typical actual usage as per CISPR 14/EN 55014.
- The test equipment EUT received AC230V/50Hz main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment power received from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in section 2.5 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in section 2.5 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- The test data of the worst-case condition(s) was recorded.

Report No.: E20220309137001-4 Page 14 of 97

5.1.3 TEST SETUP

5.1.4 DATA SAMPLE

Frequency (MHz)	Reading	_	n Factor	k Result	_	Limit	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
X.XXXX	24.60	10.97	19.90	44.50	30.87	56.00	46.00	-11.50	-15.13	Pass

Factor = Insertion loss of LISN + Cable Loss

Result = Quasi-peak Reading/ Average Reading + Factor

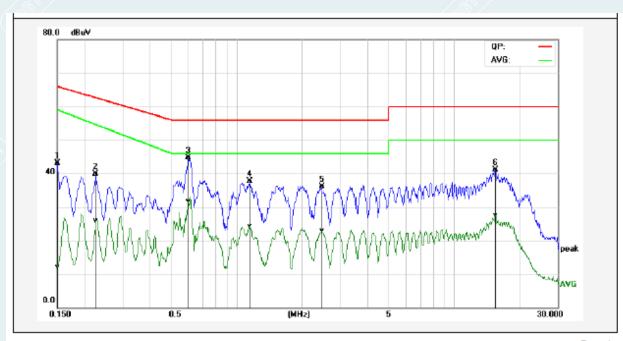
Limit = Limit stated in standard

Margin = Result (dBuV) – Limit (dBuV)

Report No.: E20220309137001-4 Page 15 of 97

5.1.5 PHOTOGRAPH OF THE TEST ARRANGEMENT

----- The following blanks -----

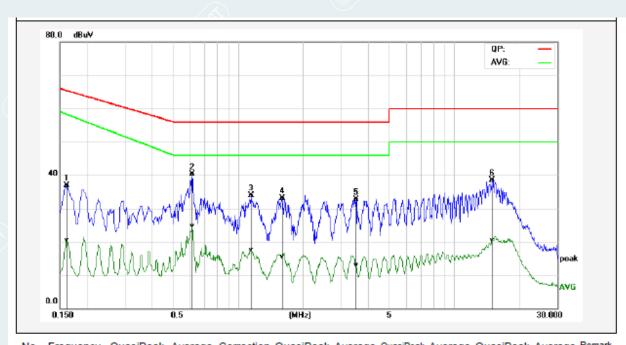

Report No.: E20220309137001-4 Page 16 of 97

5.1.6 TEST RESULTS

Motor 1:

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	22.5°C/49%RH/101kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-28	Sample No.	E20220309137001-0005

Line: L1

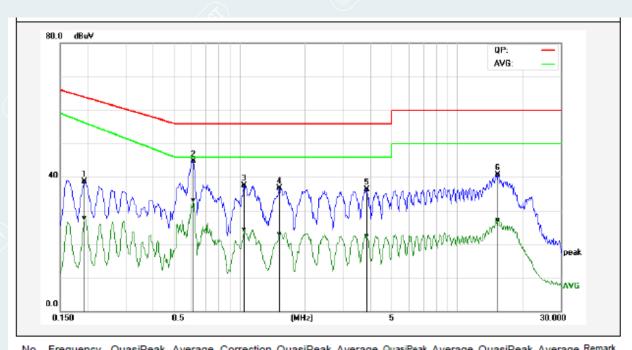


No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average		Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1500	33.48	2.49	9.53	43.01	12.02	65.99	59.00	-22.98	-46.98	Pass
2	0.2260	30.27	16.27	9.55	39.82	25.82	62.59	54.57	-22.77	-28.75	Pass
3*	0.6020	35.07	22.10	9.57	44.64	31.67	56.00	46.00	-11.36	-14.33	Pass
4	1.1539	28.11	14.68	9.59	37.70	24.27	56.00	46.00	-18.30	-21.73	Pass
5	2.4620	26.52	13.21	9.61	36.13	22.82	56.00	46.00	-19.87	-23.18	Pass
6	15.4940	31.26	17.69	9.85	41.11	27.54	60.00	50.00	-18.89	-22.46	Pass

Report No.: E20220309137001-4 Page 17 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	22.5°C/49%RH/101kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-28	Sample No.	E20220309137001-0005

Line: N

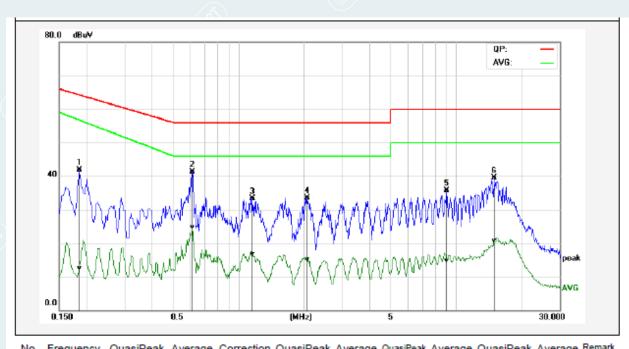


No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average		Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1620	27.40	11.03	9.52	36.92	20.55	65.36	58.17	-28.44	-37.62	Pass
2*	0.6140	30.63	15.00	9.68	40.31	24.68	56.00	46.00	-15.69	-21.32	Pass
3	1.1580	24.38	7.81	9.62	34.00	17.43	56.00	46.00	-22.00	-28.57	Pass
4	1.6100	23.46	5.89	9.62	33.08	15.51	56.00	46.00	-22.92	-30.49	Pass
5	3.5100	23.05	3.32	9.61	32.66	12.93	56.00	46.00	-23.34	-33.07	Pass
6	15.0500	28.63	10.66	9.89	38.52	20.55	60.00	50.00	-21.48	-29.45	Pass

Report No.: E20220309137001-4 Page 18 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	22.5°C/49%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-28	Sample No.	E20220309137001-0005

Line: L1

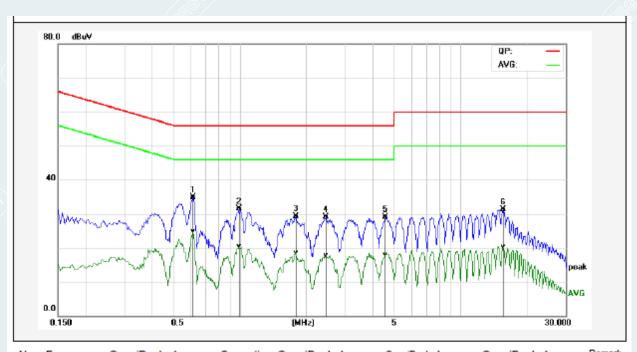


NO.	rrequency	QuasiPeak	Average	Correction	QuasiPeak	Average		Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1940	29.13	18.19	9.54	38.67	27.73	63.86	56.22	-25.19	-28.49	Pass
2*	0.6140	35.04	23.46	9.57	44.61	33.03	56.00	46.00	-11.39	-12.97	Pass
3	1.0540	27.92	14.74	9.59	37.51	24.33	56.00	46.00	-18.49	-21.67	Pass
4	1.5339	27.03	13.37	9.60	36.63	22.97	56.00	46.00	-19.37	-23.03	Pass
5	3.8620	26.70	12.63	9.65	36.35	22.28	56.00	46.00	-19.65	-23.72	Pass
6	15.4660	30.78	17.31	9.85	40.63	27.16	60.00	50.00	-19.37	-22.84	Pass

Report No.: E20220309137001-4 Page 19 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	22.5°C/49%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-28	Sample No.	E20220309137001-0005

Line: N

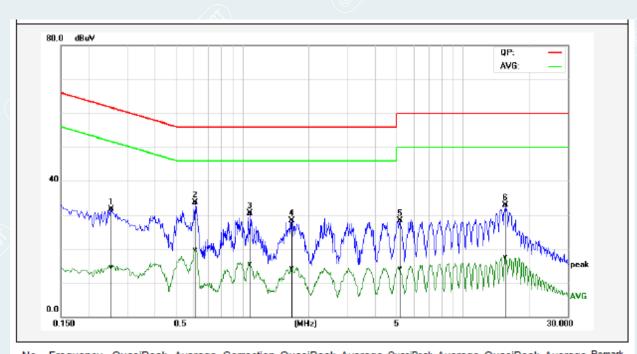

ricquency	Quasircak	Average	Conection	Quasireak	Average	Quasii ear	Average	Quasireak	Average	rocinican.
	reading	reading	factor	result	result	limit	limit	margin	margin	
(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
0.1860	32.33	2.96	9.55	41.88	12.51	64.21	56.68	-22.33	-44.17	Pass
0.6140	31.53	15.09	9.68	41.21	24.77	56.00	46.00	-14.79	-21.23	Pass
1.1620	23.70	7.04	9.62	33.32	16.66	56.00	46.00	-22.68	-29.34	Pass
2.0700	23.91	5.47	9.60	33.51	15.07	56.00	46.00	-22.49	-30.93	Pass
9.0700	25.95	4.94	9.78	35.73	14.72	60.00	50.00	-24.27	-35.28	Pass
15.0380	29.53	10.72	9.89	39.42	20.61	60.00	50.00	-20.58	-29.39	Pass
	(MHz) 0.1860 0.6140 1.1620 2.0700	reading (MHz) (dBuV) 0.1860 32.33 0.6140 31.53 1.1620 23.70 2.0700 23.91 0.0700 25.95	reading reading (MHz) (dBuV) (dBuV) 0.1860 32.33 2.96 0.6140 31.53 15.09 1.1620 23.70 7.04 2.0700 23.91 5.47 0.0700 25.95 4.94	reading reading factor (MHz) (dBuV) (dBuV) (dB) 0.1860 32.33 2.96 9.55 0.6140 31.53 15.09 9.68 1.1620 23.70 7.04 9.62 2.0700 23.91 5.47 9.60 9.0700 25.95 4.94 9.78	reading reading factor result (MHz) (dBuV) (dBuV) (dB) (dBuV) 0.1860 32.33 2.96 9.55 41.88 0.6140 31.53 15.09 9.68 41.21 1.1620 23.70 7.04 9.62 33.32 2.0700 23.91 5.47 9.60 33.51 9.0700 25.95 4.94 9.78 35.73	reading reading factor result result (MHz) (dBuV) (dBuV) (dB) (dBuV) (dBuV) 0.1860 32.33 2.96 9.55 41.88 12.51 0.6140 31.53 15.09 9.68 41.21 24.77 1.1620 23.70 7.04 9.62 33.32 16.66 2.0700 23.91 5.47 9.60 33.51 15.07 9.0700 25.95 4.94 9.78 35.73 14.72	reading reading factor result result limit (MHz) (dBuV) (dBuV)	reading reading factor result result limit limit (MHz) (dBuV) (dBuV)	reading reading factor result result limit limit margin (MHz) (dBuV) (dBuV)	(MHz) (dBuV) (dBuV) </td

Report No.: E20220309137001-4 Page 20 of 97

Motor 2:

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.5°C/42%RH/101kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-04-09	Sample No.	E20220309137001-0007

Line: L1

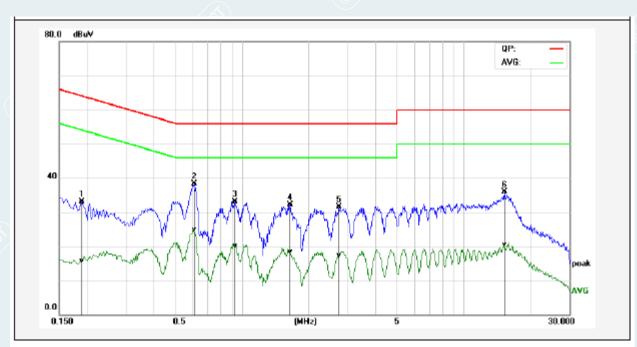


No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average		Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.6140	25.32	15.30	9.57	34.89	24.87	56.00	46.00	-21.11	-21.13	Pass
2	0.9900	21.99	10.90	9.59	31.58	20.49	56.00	46.00	-24.42	-25.51	Pass
3	1.7940	19.66	8.84	9.60	29.26	18.44	56.00	46.00	-26.74	-27.56	Pass
4	2.4539	19.41	8.14	9.61	29.02	17.75	56.00	46.00	-26.98	-28.25	Pass
5	4.5860	19.51	8.27	9.66	29.17	17.93	56.00	46.00	-26.83	-28.07	Pass
6	15.6780	21.45	10.39	9.85	31.30	20.24	60.00	50.00	-28.70	-29.76	Pass

Report No.: E20220309137001-4 Page 21 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.5°C/42%RH/101kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-04-09	Sample No.	E20220309137001-0007

Line: N

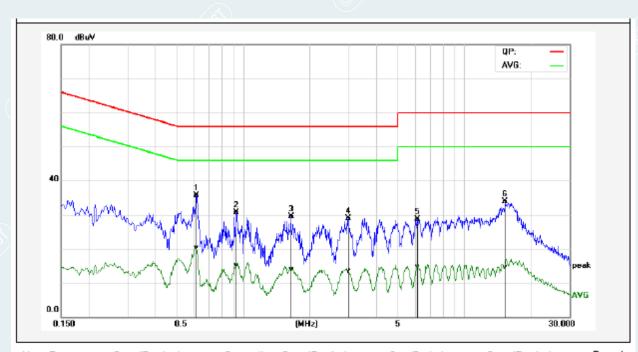


	No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average		Average	QuasiPeak	Average	Remark
١.			reading	reading	factor	result	result	limit	limit	margin	margin	
ľ		(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
	1	0.2540	22.06	4.86	9.59	31.65	14.45	61.62	51.63	-29.97	-37.18	Pass
	2*	0.6100	24.05	9.94	9.68	33.73	19.62	56.00	46.00	-22.27	-26.38	Pass
	3	1.0859	20.86	5.81	9.63	30.49	15.44	56.00	46.00	-25.51	-30.56	Pass
	4	1.6740	18.59	4.64	9.61	28.20	14.25	56.00	46.00	-27.80	-31.75	Pass
	5	5.2100	18.72	4.47	9.67	28.39	14.14	60.00	50.00	-31.61	-35.86	Pass
	6	15.6500	23.00	7.58	9.89	32.89	17.47	60.00	50.00	-27.11	-32.53	Pass

Report No.: E20220309137001-4 Page 22 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.5°C/42%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-04-09	Sample No.	E20220309137001-0007

Line: L1



No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBu∀)	(dBuV)	(dB)	(dB)	
1	0.1900	23.61	6.16	9.54	33.15	15.70	64.03	54.04	-30.88	-38.34	Pass
2*	0.6100	28.66	15.32	9.57	38.23	24.89	56.00	46.00	-17.77	-21.11	Pass
3	0.9300	23.48	10.55	9.59	33.07	20.14	56.00	46.00	-22.93	-25.86	Pass
4	1.6580	22.54	8.76	9.60	32.14	18.36	56.00	46.00	-23.86	-27.64	Pass
5	2.7460	21.90	7.69	9.61	31.51	17.30	56.00	46.00	-24.49	-28.70	Pass
6	15.3060	26.02	10.68	9.84	35.86	20.52	60.00	50.00	-24.14	-29.48	Pass

Report No.: E20220309137001-4 Page 23 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.5°C/42%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-04-09	Sample No.	E20220309137001-0007

Line: N

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average		Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.6140	26.05	10.72	9.68	35.73	20.40	56.00	46.00	-20.27	-25.60	Pass
2	0.9340	21.01	5.41	9.64	30.65	15.05	56.00	46.00	-25.35	-30.95	Pass
3	1.6460	19.94	4.21	9.61	29.55	13.82	56.00	46.00	-26.45	-32.18	Pass
4	2.9860	19.30	3.95	9.60	28.90	13.55	56.00	46.00	-27.10	-32.45	Pass
5	6.1820	19.08	4.92	9.70	28.78	14.62	60.00	50.00	-31.22	-35.38	Pass
6	15.3660	23.97	4.53	9.89	33.86	14.42	60.00	50.00	-26.14	-35.58	Pass

Report No.: E20220309137001-4 Page 24 of 97

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 LIMITS

Below 1GHz

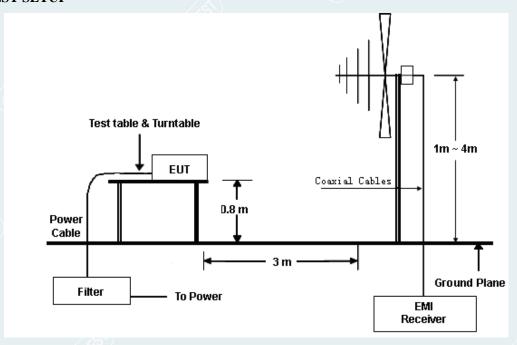
Eroguanov ranga	Limits (dBμV/m)
Frequency range (MHz)	Distance: 3m
(MIIIZ)	Quasi peak
30 ~ 230	40
230 ~ 1000	47

NOTE:(1) The lower limit shall apply at the transition frequencies.

(2) Emission level (dBuV/m) = 20 log Emission level (uV/m)

5.2.2 TEST PROCEDURE

Procedure of Preliminary Test


- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.1 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per CISPR 14/EN 55014.
- All I/O cables were positioned to simulate typical usage as per CISPR 14/EN 55014.
- The EUT received AC 230V/50Hz main power from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- Mains cables, telephone lines or other connections to auxiliary equipment located outside the test are shall drape to the floor, be fitted with ferrite clamps or ferrite tubes placed on the floor at the point where the cable reaches the floor and then routed to the place where they leave the turntable. No extension cords shall be used to mains receptacle.
- The antenna was placed at 10 meter away from the EUT as stated in CISPR 14/EN 55014. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in section 2.5 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in section 2.5 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst-case condition(s) was recorded.

Report No.: E20220309137001-4 Page 25 of 97

5.2.3 TEST SETUP

5.2.4 DATA SAMPLE

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
XXXX	63.53	-27.15	36.38	43.50	-7.12	QP

Frequency (MHz) = Emission frequency in MHz

Reading (dBuV) = Uncorrected Analyzer / Receiver reading

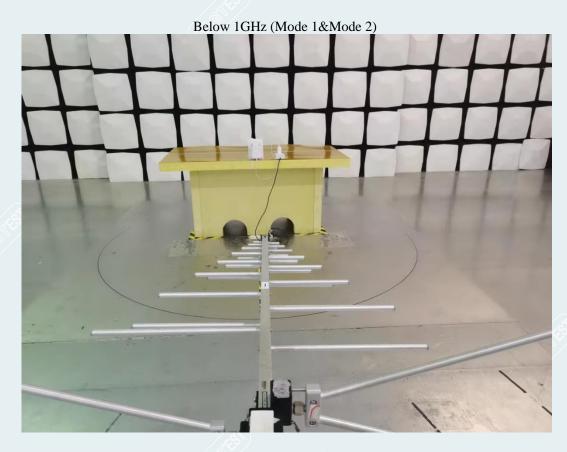
Correct Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain

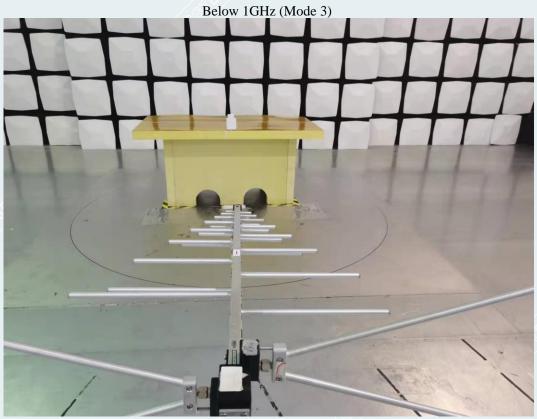
Result (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Result (dBuV/m) – Limit(dBuV/m)

QP = Quasi-peak Reading

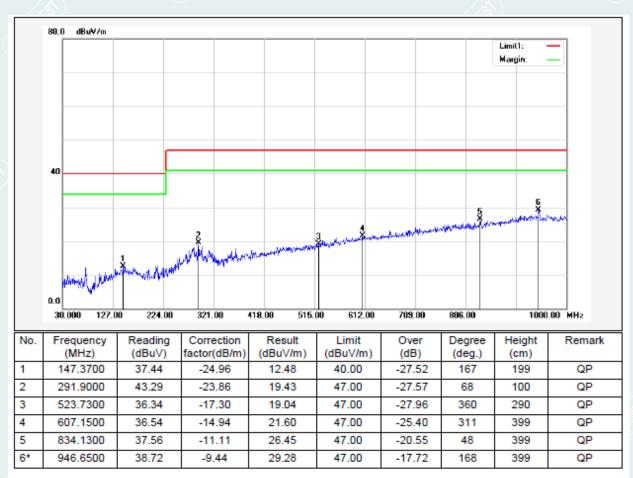

Calculation Formula


Margin (dB) = Result (dBuV/m) – Limits (dBuV/m)

Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)

Report No.: E20220309137001-4 Page 26 of 97

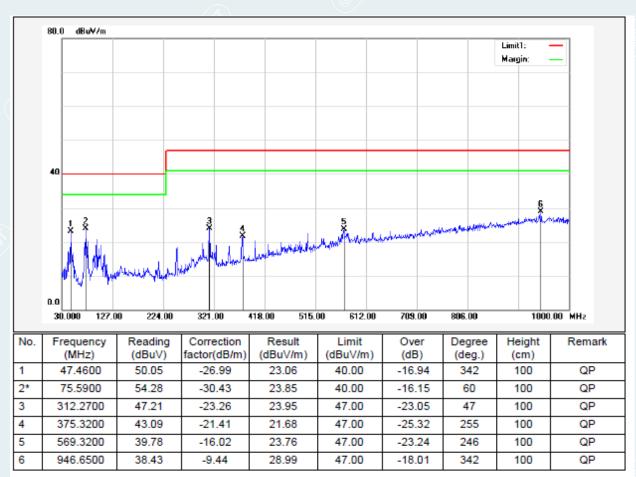
5.2.5 PHOTOGRAPH OF THE TEST ARRANGEMENT


Report No.: E20220309137001-4 Page 27 of 97

5.2.6 TEST RESULTS

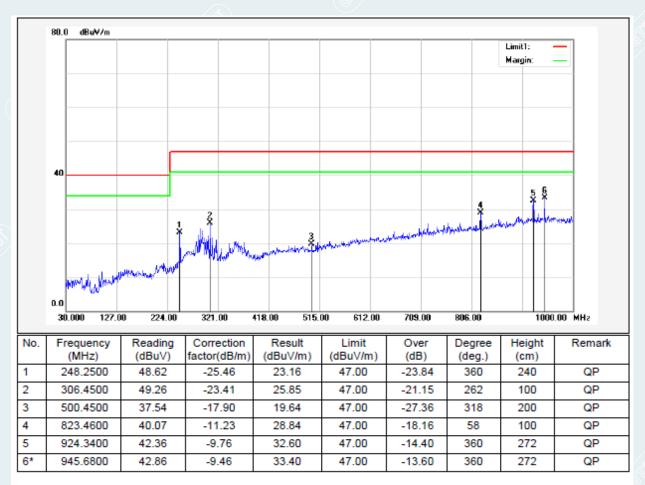
Motor 1:

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.1°C/48%RH/101.0kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Zeng Xianglong
Test Date	2022-03-31	Sample No.	E20220309137001-0005


Polarity: Horizontal

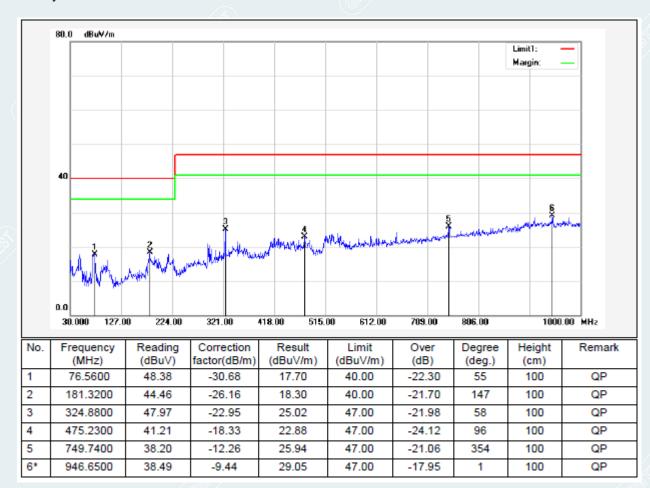
Report No.: E20220309137001-4 Page 28 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.1°C/48%RH/101.0kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Zeng Xianglong
Test Date	2022-03-31	Sample No.	E20220309137001-0005


Polarity: Vertical

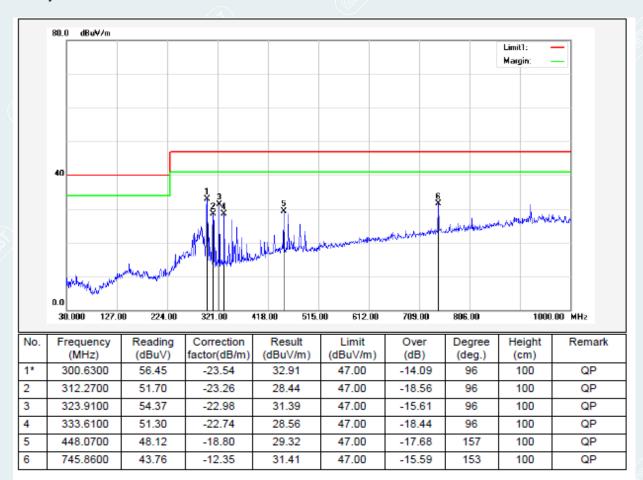
Report No.: E20220309137001-4 Page 29 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.1°C/48%RH/101.0kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Zeng Xianglong
Test Date	2022-03-31	Sample No.	E20220309137001-0005


Polarity: Horizontal

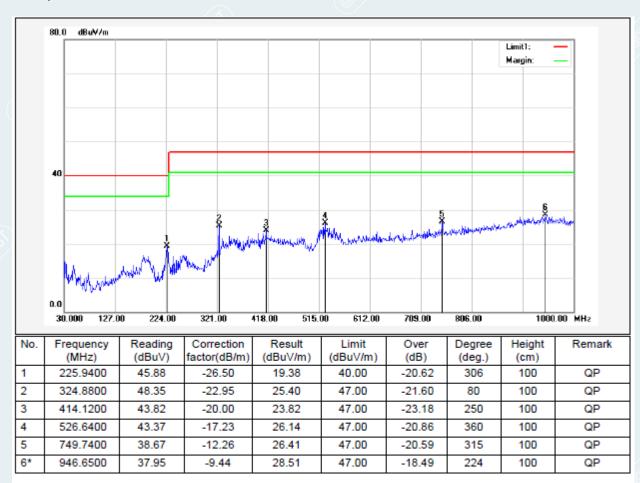
Report No.: E20220309137001-4 Page 30 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.1°C/48%RH/101.0kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Zeng Xianglong
Test Date	2022-03-31	Sample No.	E20220309137001-0005


Polarity:Vertical

Report No.: E20220309137001-4 Page 31 of 97

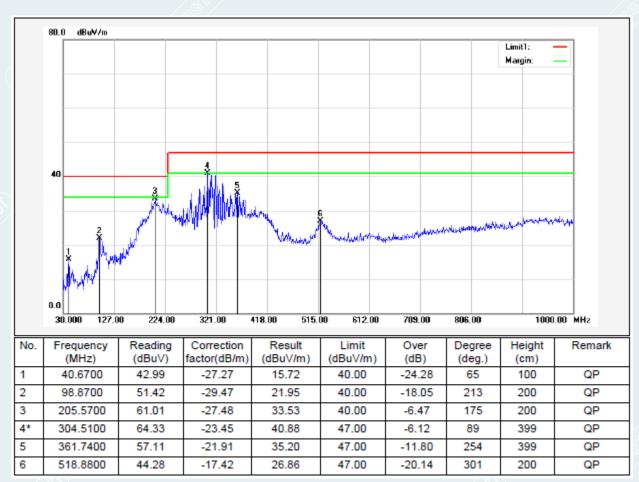
EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.1°C/48%RH/101.0kPa	Test Mode	Mode 3
Power supply	DC 3.7V	Tested By	Zeng Xianglong
Test Date	2022-03-31	Sample No.	E20220309137001-0005


Polarity: Horizontal

Report No.: E20220309137001-4 Page 32 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.1°C/48%RH/101.0kPa	Test Mode	Mode 3
Power supply	DC 3.7V	Tested By	Zeng Xianglong
Test Date	2022-03-31	Sample No.	E20220309137001-0005

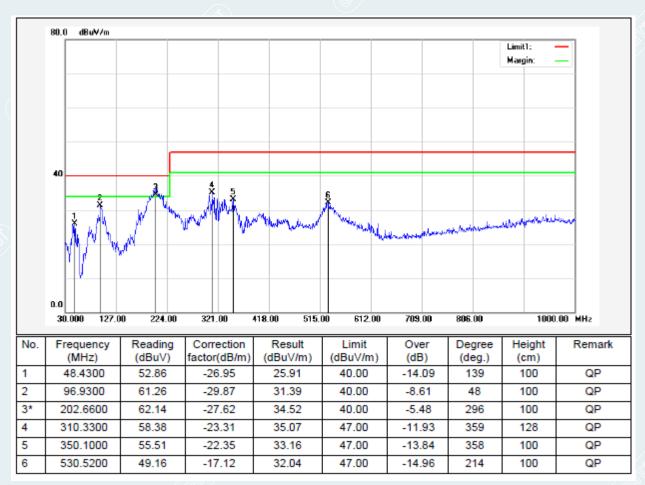
Polarity: Vertical



Report No.: E20220309137001-4 Page 33 of 97

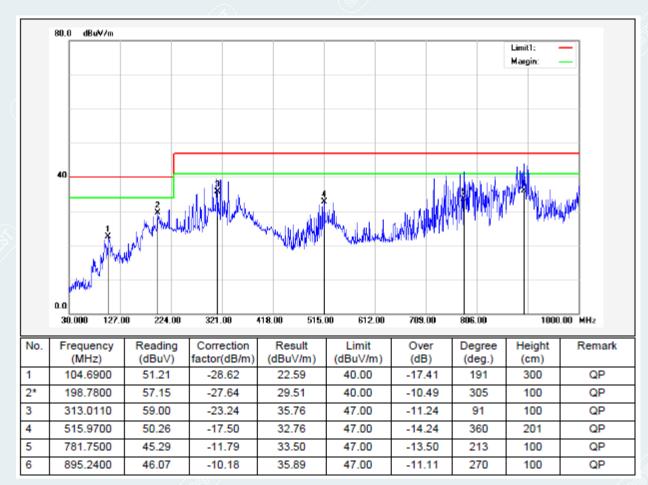
Motor 2

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.0°C/46%RH/101.0kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Wang Xinyuan
Test Date	2022-04-06	Sample No.	E20220309137001-0007


Polarity: Horizontal

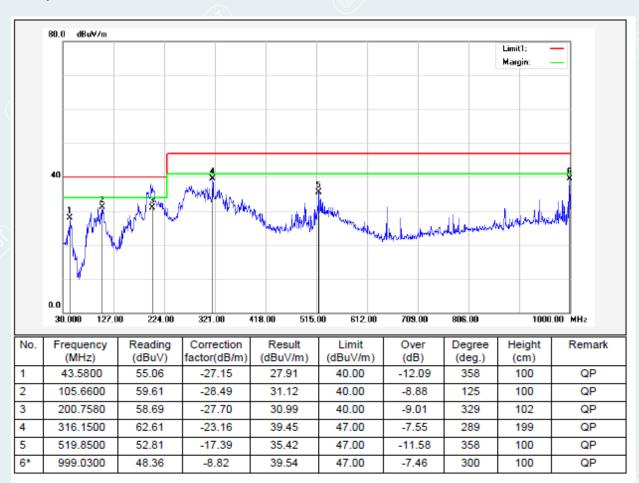
Report No.: E20220309137001-4 Page 34 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.0°C/46%RH/101.0kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Wang Xinyuan
Test Date	2022-04-06	Sample No.	E20220309137001-0007


Polarity: Vertical

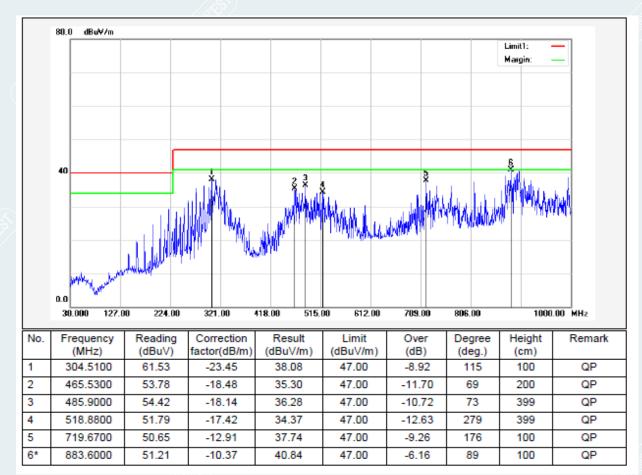
Report No.: E20220309137001-4 Page 35 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.0°C/46%RH/101.0kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Wang Xinyuan
Test Date	2022-04-06	Sample No.	E20220309137001-0007


Polarity: Horizontal

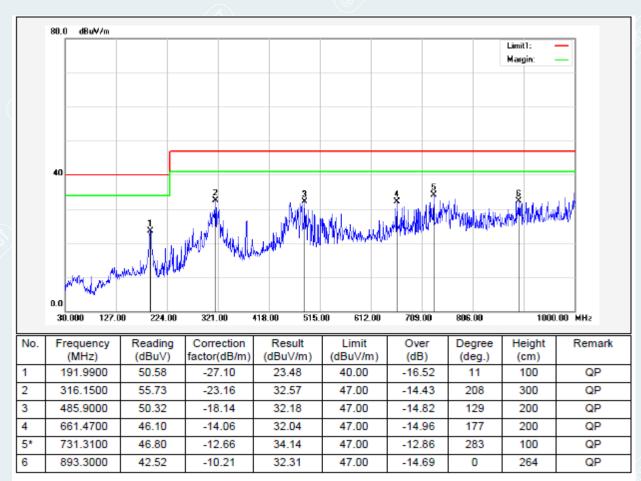
Report No.: E20220309137001-4 Page 36 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.0°C/46%RH/101.0kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Wang Xinyuan
Test Date	2022-04-06	Sample No.	E20220309137001-0007


Polarity:Vertical

Report No.: E20220309137001-4 Page 37 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.0°C/46%RH/101.0kPa	Test Mode	Mode 3
Power supply	DC 3.7V	Tested By	Wang Xinyuan
Test Date	2022-04-06	Sample No.	E20220309137001-0007


Polarity: Horizontal

Report No.: E20220309137001-4 Page 38 of 97

EUT Name	Curtain Driver E1	Model	CM-M01	
Environmental Conditions	24.0°C/46%RH/101.0kPa	Test Mode	Mode 3	
Power supply	DC 3.7V	Tested By	Wang Xinyuan	
Test Date	2022-04-06	Sample No.	E20220309137001-0007	

Polarity: Vertical

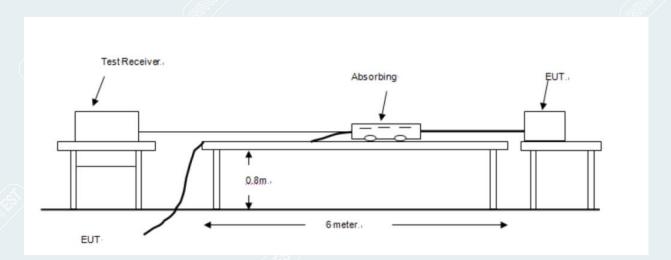
5.3 DISTURBANCE POWER MEASUREMENT

5.3.1 LIMITS

FREQUENCY	dB(pw)						
(MHz)	Quasi-peak	Average					
30 ~ 300	45 ~ 55 ¹⁾	35 ~ 45 ¹⁾					
200 ~ 300	Margin 0 ~ 10	(\$) -					
Note: 1) Increasing linearly with the frequency.							

5.3.2 TEST PROCEDURE

The appliance to be tested is placed on a non-metallic table at least 0.8 m from other metallic objects and the lead to be measured on is stretched in a straight line for a distance sufficient to accommodate the absorbing clamp, and to permit the necessary measuring adjustment of position for tuning. The clamp is placed around the lead so as to measure a quantity proportional to the disturbance power on the lead.


The absorbing clamp is positioned for maximum indication at each test frequency: the clamp shall be moved along the lead until the maximum value is found between a position adjacent to the appliance and a distance of about a half-wavelength from it.

The straight portion of the lead to be measured on should therefore be about 6 m long, this being equal to $\lambda \max/2 + 0.6$ m in order to allow at any time the positioning of the absorbing clamp and a possible second clamp for additional isolation. Pre-testing is carried out in all operating modes to find the worst mode for the every test terminal.

Test Modes: Auto Mode

The test mode(s) were scanned during the preliminary test. A test at about 160 kHz and at about 50 MHz shall be made over a range of 0.9 to 1.1 times the rated voltage in order to check whether the level of disturbance varies considerably with the supply voltage; in which case, the measurements are to be made at the voltage that causes maximum disturbance. After the preliminary scan, we found the test mode producing the highest emission level. The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

5.3.3 TEST SETUP

Report No.: E20220309137001-4 Page 40 of 97

5.3.4 DATA SAMPLE

Frequency (MHz)	Reading (dBpW)	Correct Factor (dB)	Result (dBpW)	Limit (dBpW)	Margin (dB)	Remark
XX.XXXX	35.54	4.56	40.10	55.00	-14.90	QP
XX.XXXX	29.66	4.56	34.22	45.00	-10.78	AVG

Frequency (MHz) = Emission frequency in MHz

 $Reading \ (dBpW) \hspace{1.5cm} = Uncorrected \ Analyzer \ / \ Receiver \ reading$

Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

Result (dBpW) = Reading (dBpW) + Corr. Factor (dB)

Limit (dBpW) = Limit stated in standard

Margin (dB) = Result (dBpW) – Limit(dBpW)

QP = Quasi-peak Reading AVG = Average Reading

Calculation Formula

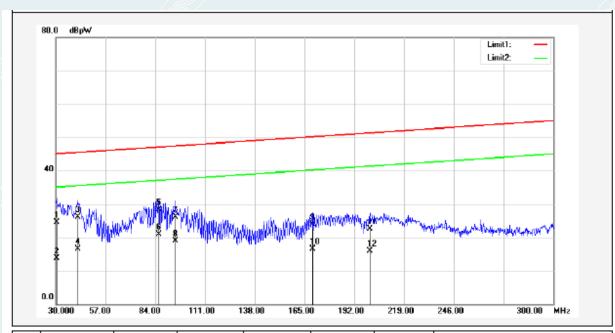
Margin (dB) = Result (dBpW) - Limits (dBpW)

Result (dBpW) = Reading (dBpW) + Correction Factor (dB)

Report No.: E20220309137001-4 Page 41 of 97

5.3.5 PHOTOGRAPH OF THE TEST ARRANGEMENT

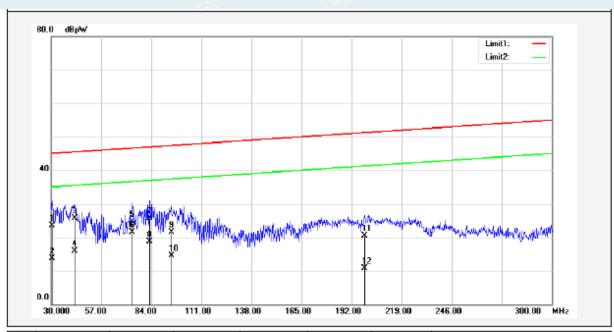
Mode 1&Mode 2


----- The following blanks -----

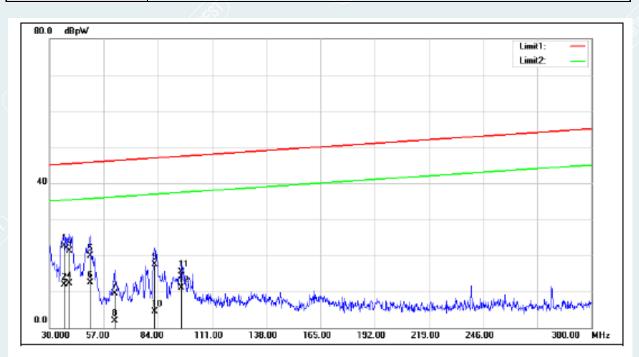
Report No.: E20220309137001-4 Page 42 of 97

5.3.6 TEST RESULTS

Motor 1:


EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	22.50℃/49%RH/101kPa	Test Mode	Mode 1
Power supply	supply AC230V/50Hz		Tang Shenghui
Test Date	2022-03-28	Sample No.	E20220309137001-0005
Port	Main port		

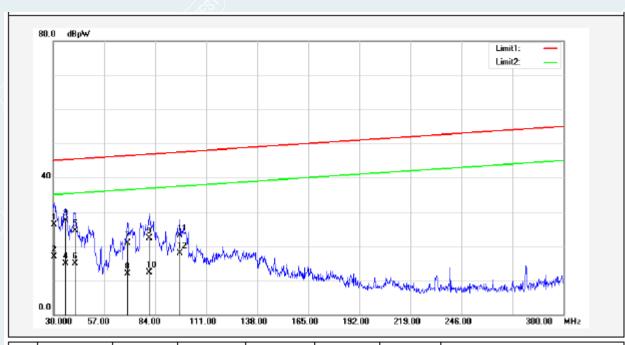
No.	Frequency (MHz)	Reading (dBpW)	Correction factor(dB)	Result (dBpW)	Limit (dBpW)	Over (dB)	Remark
1	30.5400	25.75	-1.15	24.60	45.02	-20.42	QP
2	30.5400	14.85	-1.15	13.70	35.02	-21.32	AVG
3	41.8800	29.10	-3.00	26.10	45.44	-19.34	QP
4	41.8800	19.60	-3.00	16.60	35.44	-18.84	AVG
5	85.8900	32.58	-4.18	28.40	47.07	-18.67	QP
6	85.8900	25.08	-4.18	20.90	37.07	-16.17	AVG
7	94.8000	30.97	-4.77	26.20	47.40	-21.20	QP
8	94.8000	23.77	-4.77	19.00	37.40	-18.40	AVG
9	169.3200	28.70	-4.80	23.90	50.16	-26.26	QP
10	169.3200	21.30	-4.80	16.50	40.16	-23.66	AVG
11	200.3700	27.98	-5.38	22.60	51.31	-28.71	QP
12	200.3700	21.28	-5.38	15.90	41.31	-25.41	AVG


Report No.: E20220309137001-4 Page 43 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	22.50°C/49%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-28	Sample No.	E20220309137001-0005
Port	Main port		

No.	Frequency (MHz)	Reading (dBpW)	Correction factor(dB)	Result (dBpW)	Limit (dBpW)	Over (dB)	Remark
1	30.5400	24.65	-1.15	23.50	45.02	-21.52	QP
2	30.5400	14.95	-1.15	13.80	35.02	-21.22	AVG
3	42.6900	28.75	-3.05	25.70	45.47	-19.77	QP
4	42.6900	19.05	-3.05	16.00	35.47	-19.47	AVG
5	73.7400	28.24	-3.54	24.70	46.62	-21.92	QP
6	73.7400	25.04	-3.54	21.50	36.62	-15.12	AVG
7	83.1900	29.50	-3.80	25.70	46.97	-21.27	QP
8	83.1900	22.50	-3.80	18.70	36.97	-18.27	AVG
9	94.8000	26.27	-4.77	21.50	47.40	-25.90	QP
10	94.8000	19.27	-4.77	14.50	37.40	-22.90	AVG
11	199.0200	25.98	-5.38	20.60	51.26	-30.66	QP
12	199.0200	16.08	-5.38	10.70	41.26	-30.56	AVG

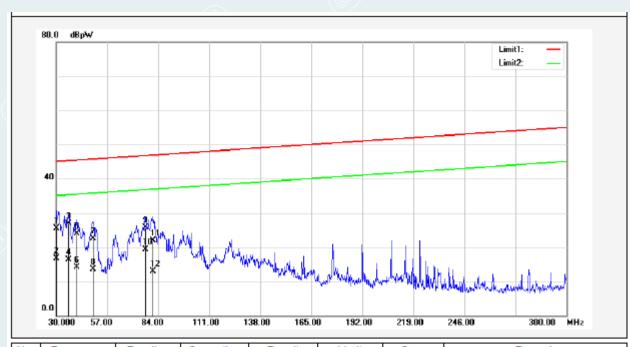
EUT Name	Curtain Driver E1	Model	CM-M01	
Environmental Conditions	22.50°C/49%RH/101kPa	Test Mode	Mode 2	
Power supply	supply AC230V/50Hz		Tang Shenghui	
Test Date	est Date 2022-03-28		E20220309137001-0005	
Port	USB Cable			


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBpW)	Factor(dB)	(dBpW)	(dBpW)	(dB)	
1*	37.2900	25.14	-2.34	22.80	45.27	-22.47	QP
2	37.2900	14.34	-2.34	12.00	35.27	-23.27	AVG
3	39.7200	24.39	-2.99	21.40	45.36	-23.96	QP
4	39.7200	15.29	-2.99	12.30	35.36	-23.06	AVG
5	50.2500	23.66	-3.76	19.90	45.75	-25.85	QP
6	50.2500	16.26	-3.76	12.50	35.75	-23.25	AVG
7	62.6700	13.38	-3.88	9.50	46.21	-36.71	QP
8	62.6700	5.88	-3.88	2.00	36.21	-34.21	AVG
9	82.3800	21.35	-3.75	17.60	46.94	-29.34	QP
10	82.3800	8.25	-3.75	4.50	36.94	-32.44	AVG
11	95.6100	20.12	-4.62	15.50	47.43	-31.93	QP
12	95.6100	15.72	-4.62	11.10	37.43	-26.33	AVG

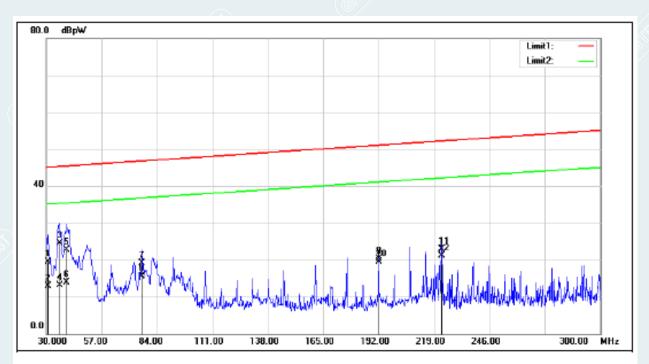
Note: Record the connection data for the worst mode in Mode1 and Mode2.

Report No.: E20220309137001-4 Page 45 of 97

Motor 2:


EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.60°C/53%RH/101kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-04-28	Sample No.	E20220309137001-0007
Port	Main port		

No.	Frequency (MHz)	Reading (dBpW)	Correction factor(dB)	Result (dBpW)	Limit (dBpW)	Over (dB)	Remark
1	30.5400	27.39	-0.99	26.40	45.02	-18.62	QP
2	30.5400	17.99	-0.99	17.00	35.02	-18.02	AVG
3	36.7500	29.70	-2.20	27.50	45.25	-17.75	QP
4	36.7500	17.20	-2.20	15.00	35.25	-20.25	AVG
5	41.6100	27.78	-3.18	24.60	45.43	-20.83	QP
6	41.6100	18.18	-3.18	15.00	35.43	-20.43	AVG
7	69.4200	24.76	-3.76	21.00	46.46	-25.46	QP
8	69.4200	15.66	-3.76	11.90	36.46	-24.56	AVG
9	81.0300	25.97	-3.57	22.40	46.89	-24.49	QP
10	81.0300	15.97	-3.57	12.40	36.89	-24.49	AVG
11	97.2300	27.71	-4.61	23.10	47.49	-24.39	QP
12	97.2300	22.51	-4.61	17.90	37.49	-19.59	AVG


Report No.: E20220309137001-4 Page 46 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.60°C/53%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-04-28	Sample No.	E20220309137001-0007
Port	Main port		

No.	Frequency (MHz)	Reading (dBpW)	Correction factor(dB)	Result (dBpW)	Limit (dBpW)	Over (dB)	Remark
1	30.0000	26.41	-0.91	25.50	45.00	-19.50	QP
2	30.0000	17.61	-0.91	16.70	35.00	-18.30	AVG
3	36.7500	29.10	-2.20	26.90	45.25	-18.35	QP
4	36.7500	18.50	-2.20	16.30	35.25	-18.95	AVG
5	41.0700	27.05	-3.15	23.90	45.41	-21.51	QP
6	41.0700	17.25	-3.15	14.10	35.41	-21.31	AVG
7	49.4400	26.31	-3.71	22.60	45.72	-23.12	QP
8	49.4400	17.21	-3.71	13.50	35.72	-22.22	AVG
9	77.2500	29.33	-3.53	25.80	46.75	-20.95	QP
10	77.2500	22.83	-3.53	19.30	36.75	-17.45	AVG
11	81.3000	25.61	-3.61	22.00	46.90	-24.90	QP
12	81.3000	16.51	-3.61	12.90	36.90	-24.00	AVG

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.60°C/53%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-04-28	Sample No.	E20220309137001-0007
Port	USB Cable		

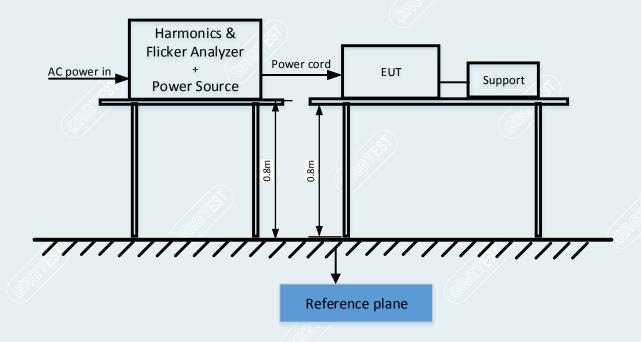
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBpW)	Factor(dB)	(dBpW)	(dBpW)	(dB)	
1	30.8100	20.54	-1.04	19.50	45.03	-25.53	QP
2	30.8100	14.04	-1.04	13.00	35.03	-22.03	AVG
3*	36.4800	26.63	-2.13	24.50	45.24	-20.74	QP
4	36.4800	15.23	-2.13	13.10	35.24	-22.14	AVG
5	39.9900	25.87	-3.07	22.80	45.37	-22.57	QP
6	39.9900	16.97	-3.07	13.90	35.37	-21.47	AVG
7	76.7100	22.76	-3.56	19.20	46.73	-27.53	QP
8	76.7100	19.16	-3.56	15.60	36.73	-21.13	AVG
9	192.0000	25.57	-5.27	20.30	51.00	-30.70	QP
10	192.0000	24.87	-5.27	19.60	41.00	-21.40	AVG
11	222.7800	28.50	-5.50	23.00	52.14	-29.14	QP
12	222.7800	26.70	-5.50	21.20	42.14	-20.94	AVG

Note: Record the connection data for the worst mode in Mode1 and Mode2.

Report No.: E20220309137001-4 Page 48 of 97

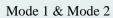
5.4 VOLTAGE FLUCTUATION & FLICKER MEASUREMENT

5.4.1 LIMITS


	Test Item	Limit	Remark
Test Item	P_{st}	1.0	P _{st} means short-term flicker indicator.
	P_{lt}	0.65	P _{lt} means long-term flicker indicator.
	T _{dt} (ms)	500	T_{dt} means maximum time that dt exceeds 3 %.
	d _{max} (%)	4%,6%,7%	d _{max} means maximum relative voltage change.
	dc (%)	3.3%	dc means relative steady-state voltage change

5.4.2 TEST PROCEDURE

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.


During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

5.4.3 TEST SETUP

Report No.: E20220309137001-4 Page 49 of 97

5.4.4 PHOTOGRAPH OF THE TEST ARRANGEMENT

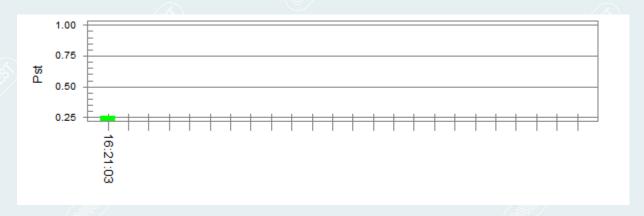
----- The following blanks -----

Report No.: E20220309137001-4 Page 50 of 97

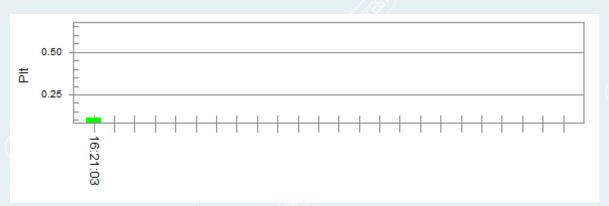
5.4.5 TEST RESULTS

Motor 1:

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	25.8°C/34%RH/101kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-04-01	Sample No.	E20220309137001-0005


Test category: All parameters (European limits)
Test date: 2022/4/1
Start time: 16:10:42
Test Margin: 100
End time: 16:21:10

Test duration (min): 10 Data file name: F-000163.cts_data


Test Result: Pass Status: Test Completed

Pst_i and limit line

European Limits

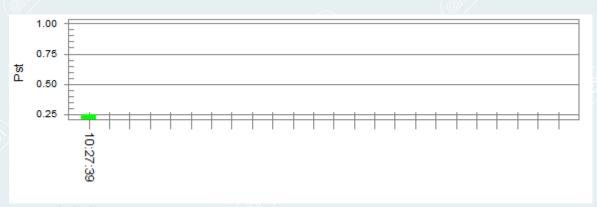
Plt and limit line

Parameter values recorded during the test:

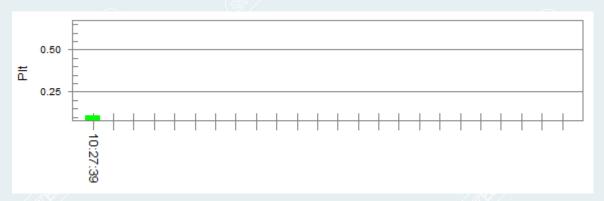
Vrms at the end of test (Volt): 230.05 Highest dt (%): Test limit (%):

500.0 **T-max (mS):** 0 **Test limit (mS):** Pass Test limit (%): Test limit (%): Highest dc (%): 0.00 3.30 **Pass Highest dmax (%):** 4.00 **Pass** 0.00 **Highest Pst (10 min. period): Test limit:** 1.000 0.259 **Pass Highest Plt (2 hr. period): Test limit:** 0.650 0.113 **Pass** Report No.: E20220309137001-4 Page 51 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	25.8°C/34%RH/101kPa	Test Mode 2	
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-30	Sample No.	E20220309137001-0005


Test category: All parameters (European limits)
Test date: 2022/3/30
Start time: 10:17:18
Test Margin: 100
End time: 10:27:45

Test duration (min): 10 Data file name: F-000161.cts_data


Test Result: Pass Status: Test Completed

Pst_i and limit line

European Limits

Plt and limit line

Parameter values recorded during the test:

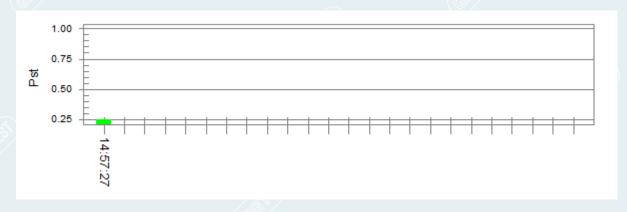
Vrms at the end of test (Volt):	230.07	
Highest dt (0/).		/ ,C,\ r

Highest dt (%):		Test limit (%):		
T-max (mS):	0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.248	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.108	Test limit:	0.650	Pass

Report No.: E20220309137001-4 Page 52 of 97

Motor 2:

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	25.8°C/34%RH/101kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-04-28	Sample No.	E20220309137001-0007


Test category: All parameters (European limits)
Test date: 2022/4/28
Start time: 14:47:06
Test Margin: 100
End time: 14:57:33

Test duration (min): 10 Data file name: F-000163.cts_data


Test Result: Pass Status: Test Completed

Pst_i and limit line

European Limits

Plt and limit line

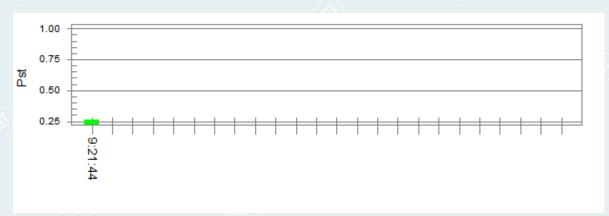
Parameter values recorded during the test:

Vrms at the end of test (Volt): 230.06

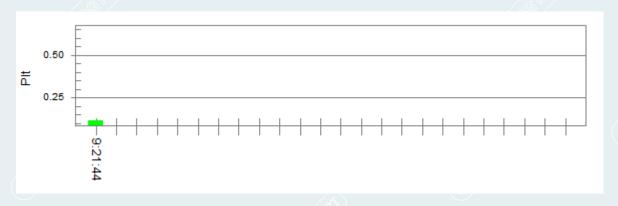
Highest dt (%):

T-max (mS): 0 **Test limit (mS):** 500.0 Pass Highest dc (%): 0.00 Test limit (%): 3.30 Pass **Highest dmax (%):** 0.00 Test limit (%): 4.00 Pass **Highest Pst (10 min. period):** 0.248 **Test limit:** 1.000 Pass **Highest Plt (2 hr. period):** 0.108 **Test limit:** 0.650 Pass Report No.: E20220309137001-4 Page 53 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	25.8°C/34%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-04-11	Sample No.	E20220309137001-0007


Test category: All parameters (European limits)
Test date: 2022/4/11
Start time: 9:11:23
Test Margin: 100
End time: 9:21:50

Test duration (min): 10 Data file name: F-000170.cts_data


Test Result: Pass Status: Test Completed

Pst_i and limit line

European Limits

Plt and limit line

Parameter values recorded during the test:

Vrms at the end of test (Volt): 230.00 Highest dt (%): Test limit (%):

T-max (mS): 0 Test limit (mS): 500.0 **Pass** Highest dc (%): 0.00 Test limit (%): 3.30 **Pass** Highest dmax (%): Test limit (%): 0.00 4.00 **Pass Highest Pst (10 min. period): Test limit:** 1.000 0.261 **Pass Highest Plt (2 hr. period):** 0.114 **Test limit:** 0.650 **Pass** Report No.: E20220309137001-4 Page 54 of 97

6. IMMUNITY TEST

6.1 GENERAL DESCRIPTION

	EN 55014-2:2015				
Test Method	Test Type	Minimum Requirement			
IEC 61000-4-2	Electrostatic discharge immunity test	Enclosure port: Contact Discharge: ±2, ±4 kV (Direct/Indirect) Air Discharge: ±2, ±4, ±8 kV (Direct); Performance Criterion B			
IEC 61000-4-3	Continuous RF electromagnetic field disturbances	Radio-Frequency Electromagnetic Field Susceptibility Test – RS: 80 ~1000 MHz, 3V/m, 80% AM(1kHz), Performance Criterion A			
IEC 61000-4-4	Electrical fast transient/burst immunity test	AC Input Power: ±1kV 5/50 Tr/Th ns 5kHz Performance Criterion B			
IEC 61000-4-5	Surge immunity test	AC Input Port:1.2/50 (8/20) Tr/Th us line to line: ±1.0kV 90°, -270° Performance Criterion B			
IEC 61000-4-6	Conducted radio frequency disturbances immunity test	AC Input Power: 0.15MHz-80MHz 3V 80%AM(1kHz) Performance Criterion A			
IEC 61000-4-11	Voltage Dip & Voltage Interruptions immunity test	AC Input Port: 0%,0.5T Performance Criterion C 70%,25T for 50Hz Performance Criterion C 40%,10 T for 50Hz Performance Criterion C			

----- The following blanks -----

Report No.: E20220309137001-4 Page 55 of 97

6.2 GENERAL PERFORMANCE CRITERIA DESCRIPTION

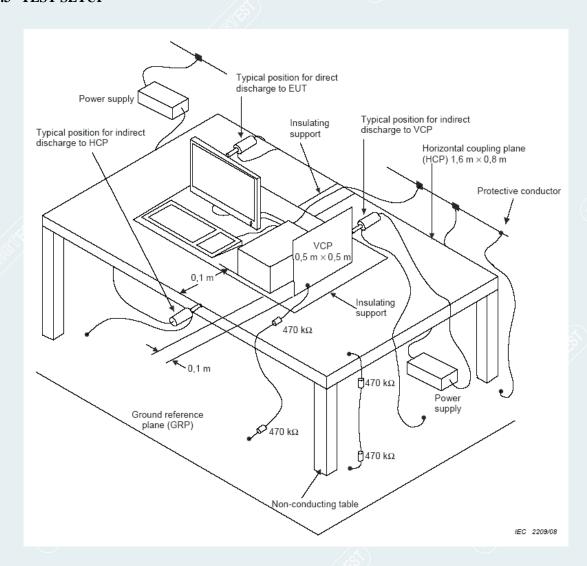
Criteria A	The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
Criteria B	The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however no change of actual operating state or stored data is allowed to persist after the test. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
Criteria C	Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

$^{\sim}$			
 The	following	blanks	

Report No.: E20220309137001-4 Page 56 of 97

6.3 ELECTROSTATIC DISCHARGEIMMUNITY TEST

6.3.1 TEST SPECIFICATION


Test Method	IEC 61000-4-2:2008	
Discharge Impedance	330 ohm / 150 pF	
Discharge Voltage	Enclosure port: Contact Discharge: ±2,±4kV (Direct/Indirect) Air Discharge: ±2,±4,±8kV (Direct);	
Polarity	Positive & Negative	
Number of Discharge	Minimum 10 times at each test point	/.
Discharge Mode	Single Discharge 1 second minimum	

6.3.2 TEST PROCEDURE

- a) The EUT was located 0.1 m minimum from all side of the HCP (dimensions 1.6m * 0.8m).
- b) The support units were located another table 30 cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- a) The time interval between two successive single discharges was at least 1 second.
- b) Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- c) Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- d) At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharge.
- e) At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m * 0.5m) was placed vertically to and 0.1 meters from the EUT.

Report No.: E20220309137001-4 Page 57 of 97

6.3.3 TEST SETUP

----- The following blanks -----

Report No.: E20220309137001-4 Page 58 of 97

6.3.4 PHOTOGRAPH OF THE TEST ARRANGEMENT

----- The following blanks -----

Report No.: E20220309137001-4 Page 59 of 97

6.3.5 TEST RESULTS

Motor 1:

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.7°C/47%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-30	Sample No.	E20220309137001-0005

Discharge point	Discharge voltage	C-Conduct A-Air	Required Performance	Actual performance	Result
Vertical coupling plane	±2, ±4kV	С	Criterion B	Criterion A ¹⁾	PASS
Horizontal coupling plane	±2,±4kV	C	Criterion B	Criterion A ¹⁾	PASS
Metal hanger	±2, ±4kV	C	Criterion B	Criterion A ¹⁾	PASS
Shell gaps	±2,±4,±8kV	A	Criterion B	Criterion A ¹⁾	PASS
Indicator light	±2,±4,±8kV	A	Criterion B	Criterion A ¹⁾	PASS
Shift knob	±2,±4,±8kV	A	Criterion B	Criterion A ¹⁾	PASS
Type-C input port	±2,±4,±8kV	A	Criterion B	Criterion A ¹⁾	PASS

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal, zigbee connection communication is normal.

Report No.: E20220309137001-4 Page 60 of 97

Motor 2:

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.7℃/47%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-30	Sample No.	E20220309137001-0007

Discharge point	Discharge voltage	C-Conduct A-Air	Required Performance	Actual performance	Result
Vertical coupling plane	±2, ±4kV	С	Criterion B	Criterion A ¹⁾	PASS
Horizontal coupling plane	±2, ±4kV	С	Criterion B	Criterion A ¹⁾	PASS
Metal hanger	±2, ±4kV	C	Criterion B	Criterion A ¹⁾	PASS
Shell gaps	±2,±4,±8kV	A	Criterion B	Criterion A ¹⁾	PASS
Indicator light	±2,±4,±8kV	A	Criterion B	Criterion A ¹⁾	PASS
Shift knob	±2,±4,±8kV	A	Criterion B	Criterion A ¹⁾	PASS
Type-C input port	±2,±4,±8kV	A	Criterion B	Criterion A ¹⁾	PASS

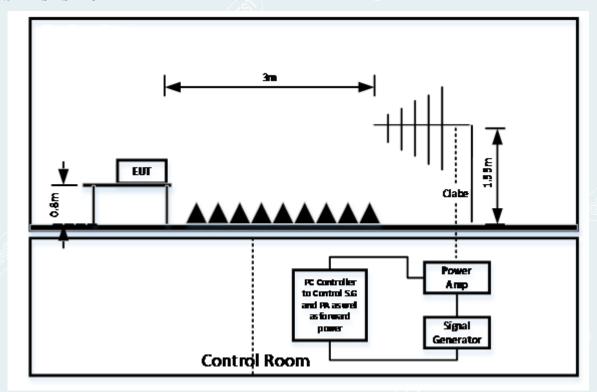
NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal, zigbee connection communication is normal.

Report No.: E20220309137001-4 Page 61 of 97

6.4 CONTINUOUS RF ELECTROMAGNETIC FIELD DISTURBANCES

6.4.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-3:2006+A1:2007+A2:2010
Frequency Range	80 MHz ~1000 MHz;
Field Strength	3V/m
Modulation	1kHz Sine Wave, 80%, AM Modulation
Frequency Step	1 % of preceding frequency value
Polarity of Antenna	Horizontal and Vertical
Test Distance:	3 m
Antenna Height:	1.55m


6.4.2 TEST PROCEDURE

- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b) The frequency range is swept from 80MHz to 1000MHz with the signal 80% amplitude modulated with a 1 kHz sine-wave. The rate of sweep did not exceed 1.5 x 10⁻³ decade/s, where the frequency range is swept incrementally; the step size was 1% of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

	The	following	blanks	
--	-----	-----------	--------	--

Report No.: E20220309137001-4 Page 62 of 97

6.4.3 TEST SETUP

NOTE:

(1) Table-top equipment

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

(2) Floor-standing equipment

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

Note: the EUT is a Table-top equipment.

Note: the EUT is a table-top equipment.

Report No.: E20220309137001-4 Page 63 of 97

6.4.4 PHOTOGRAPH OF THE TEST ARRANGEMENT

Report No.: E20220309137001-4 Page 64 of 97

6.4.5 TEST RESULTS

Motor 1:

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.5°C/45%RH/101kPa	Test Mode	Mode 1
Power supply	AC230V/50Hz	Tested By	Wang Xinyuan
Test Date	2022-03-30	Sample No.	E20220309137001-0005

Frequency (MHz)	Field strength (V/m)	EUT orientation	Antenna polarization	Required criterion	Actual performance	Result	
		Front	Н	Criterion A	Criterion A 1)	pass	
		FIOII	V	Criterion A	Criterion A 1)	pass	
		Loft	H	Criterion A	Criterion A 1)	pass	
90 1000	80~1000 3 <u>Righ</u> Rear	Leit	V	Criterion A	Criterion A 1)	pass	
80~1000		80~1000	Diaht	Н	Criterion A	Criterion A 1)	pass
		Kigiit	V	Criterion A	Criterion A 1)	pass	
		Door	Н	Criterion A	Criterion A 1)	pass	
		Kear	V	Criterion A	Criterion A 1)	pass	

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal,zigbee connection communication is normal.

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.5℃/45%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Wang Xinyuan
Test Date	2022-03-30	Sample No.	E20220309137001-0005

Frequency (MHz)	Field strength (V/m)	EUT orientation	Antenna polarization	Required criterion	Actual performance	Result
		Frant	Н	Criterion A	Criterion A 1)	pass
		Front	V	Criterion A	Criterion A 1)	pass
	3	Left	Н	Criterion A	Criterion A 1)	pass
80~1000			V	Criterion A	Criterion A 1)	pass
80~1000		Right	Н	Criterion A	Criterion A 1)	pass
			V	Criterion A	Criterion A 1)	pass
		Door	H	Criterion A	Criterion A 1)	pass
		Rear	V	Criterion A	Criterion A 1)	pass
1)						

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal, zigbee connection communication is normal.

Report No.: E20220309137001-4 Page 65 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.5℃/45%RH/101kPa	Test Mode	Mode 3
Power supply	DC 3.7V	Tested By	Wang Xinyuan
Test Date	2022-03-30	Sample No.	E20220309137001-0005

Frequency (MHz)	Field strength (V/m)	EUT orientation	Antenna polarization	Required criterion	Actual performance	Result
		Front	Н	Criterion A	Criterion A 1)	pass
			V	Criterion A	Criterion A 1)	pass
		Left	Н	Criterion A	Criterion A 1)	pass
80~1000	3		V	Criterion A	Criterion A 1)	pass
80~1000	3	Right	Н	Criterion A	Criterion A 1)	pass
			V	Criterion A	Criterion A 1)	pass
		Rear	H	Criterion A	Criterion A 1)	pass
			V	Criterion A	Criterion A 1)	pass

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal,zigbee connection communication is normal.

Motor 2:

EUT Name	Curtain Driver E1	Model	CM-M01	
Environmental Conditions	24.5℃/45%RH/101kPa	Test Mode	Mode 1	
Power supply	AC230V/50Hz	Tested By	Wang Xinyuan	
Test Date	2022-03-30	Sample No.	E20220309137001-0007	

Frequency (MHz)	Field strength (V/m)	EUT Antenna polarization		Required criterion	Actual performance	Result
		Event	Н	Criterion A	Criterion A 1)	pass
	/	Front	V	Criterion A	Criterion A 1)	pass
	3	Left	Н	Criterion A	Criterion A 1)	pass
80~1000			V	Criterion A	Criterion A 1)	pass
80~1000		Right	Н	Criterion A	Criterion A 1)	pass
			V	Criterion A	Criterion A 1)	pass
		Rear	Н	Criterion A	Criterion A 1)	pass
			V	Criterion A	Criterion A 1)	pass

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal,zigbee connection communication is normal.

Report No.: E20220309137001-4 Page 66 of 97

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.5°C/45%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Wang Xinyuan
Test Date	2022-03-30	Sample No.	E20220309137001-0007

Frequency (MHz)	Field strength (V/m)	EUT orientation	Antenna polarization	Required criterion	Actual performance	Result
		Front	Н	Criterion A	Criterion A 1)	pass
		Front	V	Criterion A	Criterion A 1)	pass
		3 Left Right	Н	Criterion A	Criterion A 1)	pass
80~1000			V	Criterion A	Criterion A 1)	pass
80~1000	3		Н	Criterion A	Criterion A 1)	pass
			V	Criterion A	Criterion A 1)	pass
		Rear	H	Criterion A	Criterion A 1)	pass
			V	Criterion A	Criterion A 1)	pass

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal, zigbee connection communication is normal.

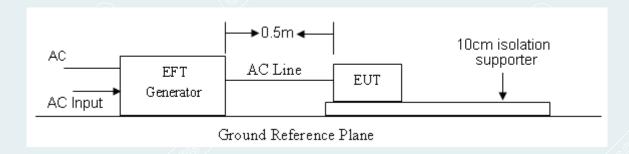
EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	24.5℃/45%RH/101kPa	Test Mode	Mode 3
Power supply	DC 3.7V	Tested By	Wang Xinyuan
Test Date	2022-03-30	Sample No.	E20220309137001-0007

Frequency (MHz)	Field strength (V/m)	EUT orientation	Antenna polarization	Required criterion	Actual performance	Result	
		Front	Н	Criterion A	Criterion A 1)	pass	
			V	Criterion A	Criterion A 1)	pass	
	3	Left	Н	Criterion A	Criterion A 1)	pass	
80~1000			V	Criterion A	Criterion A 1)	pass	
80~1000	3	Dialet	Н	Criterion A	Criterion A 1)	pass	
		Right	V	Criterion A	Criterion A 1)	pass	
<u>\$`</u> /		Rear	Н	Criterion A	Criterion A 1)	pass	
			V	Criterion A	Criterion A 1)	pass	
NOTE: 1)Refere tes	NOTE: 1) Refere test during the test and ofter test the EUT function is normal zighes connection						

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal,zigbee connection communication is normal.

Report No.: E20220309137001-4 Page 67 of 97

6.5 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST


6.5.1 TEST SPECIFICATION

		/ _^ \
Test Method	IEC 61000-4-4:2012	
Test Voltage	AC Input and output Power: ±1kV	
Polarity	Positive and Negative	
Impulse Frequency	5 kHz	
Impulse Wave-shape	5 ns/50ns for voltage	
Burst Duration	15 ms at 5kHz	
Burst Period	300 ms	
Test Duration	12 min	8

6.5.2 TEST PROCEDURE

- a) Both positive and negative polarity discharges were applied.
- b) The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 meter.
- c) The duration time of each test sequential was 2 minute.
- d) The transient/burst waveform was in accordance with IEC61000-4-4, 5/50ns.

6.5.3 TEST SETUP

Report No.: E20220309137001-4 Page 68 of 97

6.5.4 PHOTOGRAPH OF THE TEST ARRANGEMENT

----- The following blanks -----

Report No.: E20220309137001-4 Page 69 of 97

6.5.5 TEST RESULTS

Motor 1:

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.1°C/45%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-30	Sample No.	E20220309137001-0005

Test Point	Polarity	Test Level (kV)	Required Performance	Actual performance	Result
	+	1	Criterion B	Criterion A 1)	PASS
L	-	1	Criterion B	Criterion A 1)	PASS
N	+	1	Criterion B	Criterion A 1)	PASS
	-	1	Criterion B	Criterion A 1)	PASS
L-N	+	1	Criterion B	Criterion A 1)	PASS
		1	Criterion B	Criterion A 1)	PASS

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal, zigbee connection communication is normal.

Motor 2:

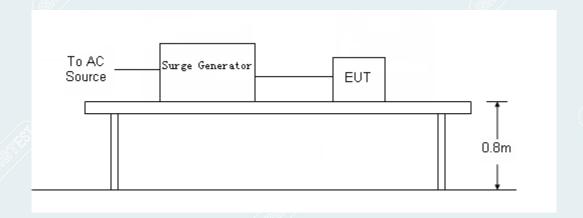
EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.1°C/45%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-30	Sample No.	E20220309137001-0007

Test Point	Polarity	Test Level (kV)	Required Performance	Actual performance	Result
L	+	1	Criterion B	Criterion A 1)	PASS
	(-8%/	1	Criterion B	Criterion A 1)	PASS (S)
N	+	1	Criterion B	Criterion A 1)	PASS
	-	1	Criterion B	Criterion A 1)	PASS
L-N	+	1	Criterion B	Criterion A 1)	PASS
	-	1	Criterion B	Criterion A 1)	PASS

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal,zigbee connection communication is normal.

Report No.: E20220309137001-4 Page 70 of 97

6.6 SURGE IMMUNITY TEST


6.6.1 TEST SPECIFICATION

Test Method	IEC 61000-4-5:2017	
Wave-Shape	Combination Wave AC Input Port: 1.2/50 µs Open Circuit Voltage 8/20 µs Short Circuit Current	
Test Voltage	AC Input Port: Line to line: 1kV	
Generator Source Impedance	AC Input Port: Line to line 20hm	
Polarity	Positive and Negative	
Phase Angle	90°, -270°	
Pulse Repetition Rate	1 minute	
Number of Tests	5 times for each phase angel	

6.6.2 TEST PROCEDURE

- a) Set up the EUT and test generator.
- b) Power Port for line to line coupling mode, provide a 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- c) Pulses shall be applied to the a.c. voltage wave as follows; five positive polarity pulses and five negative polarity pulses.
- d) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

6.6.3 TEST SETUP

Report No.: E20220309137001-4 Page 71 of 97

6.6.4 PHOTOGRAPH OF THE TEST ARRANGEMENT

----- The following blanks -----

Report No.: E20220309137001-4 Page 72 of 97

6.6.5 TEST RESULTS

Motor 1:

			/ ((;;)) /
EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.1°C/45%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-30	Sample No.	E20220309137001-0005

Test port	Polarity	Test Level	Phase	Required Performance	Actual performance	Result
L N	+	1kV	90°	Criterion B	Criterion A 1)	PASS
L-N	-	1kV	270°	Criterion B	Criterion A 1)	PASS

NOTE: 1) Before test, during the test, and after test, the EUT function is normal, zigbee connection communication is normal.

Motor 2:

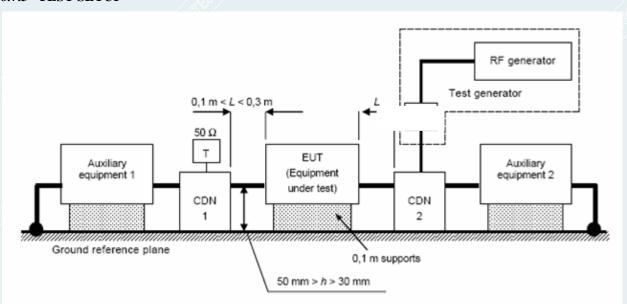
EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.1°C/45%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-30	Sample No.	E20220309137001-0007

Test port	Polarity	Test Level	Phase	Required Performance	Actual performance	Result
L-N	+	1kV	90°	Criterion B	Criterion A 1)	PASS
	-	1kV	270°	Criterion B	Criterion A 1)	PASS

NOTE: 1) Before test, during the test, and after test, the EUT function is normal, zigbee connection communication is normal.

Report No.: E20220309137001-4 Page 73 of 97

6.7 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST


6.7.1 TEST SPECIFICATION

Test Method	IEC 61000-4-6:2013			
Frequency Range	0.15MHz ~ 80MHz			
Field Strength	AC Input Power: 0.15MHz-80MHz 3V	<u>/&</u>	% /	
Modulation	1kHz ,80%AM			
Injection Method	AC Input Power:CDN			
Frequency Step	1%			
Dwell Time	1s		<u>(\$)</u>	(6)

6.7.2 TEST PROCEDURE

- a) Set up the EUT, CDN and test generators.
- b) Let the EUT work in test mode and measure it.
- c) The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- d) The disturbance signal described below is injected to EUT through CDN.
- e) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- The frequency range is using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1 kHz sine wave.
- g) The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- h) Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

6.7.3 TEST SETUP

Report No.: E20220309137001-4 Page 74 of 97

6.7.4 PHOTOGRAPH OF THE TEST ARRANGEMENT

----- The following blanks -----

Report No.: E20220309137001-4 Page 75 of 97

6.7.5 TEST RESULTS

Motor 1:

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.1°C/45%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-30	Sample No.	E20220309137001-0005

Test Po	orts	Frequency Band(MHz)	Field Strength (Vrms)	Injection Method	Required Performance	Actual performance	Result
Power 1	ort	0.15~80	3	CDN	Criterion A	Criterion A ¹⁾	Pass

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal, zigbee connection communication is normal.

Motor 2:

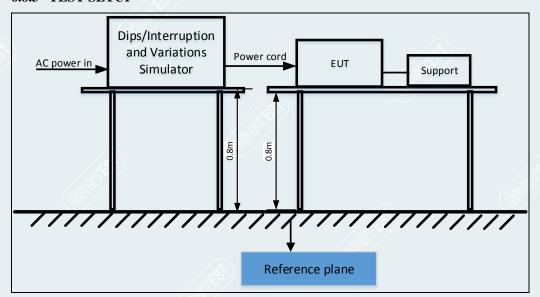
EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.1°C/45%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-30	Sample No.	E20220309137001-0007

Test Ports	Frequency Band(MHz)	Field Strength (Vrms)	Injection Method	Required Performance	Actual performance	Result
Power port	0.15~80	3	CDN	Criterion A	Criterion A ¹⁾	Pass

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal, zigbee connection communication is normal.

Report No.: E20220309137001-4 Page 76 of 97

6.8 VOLTAGE DIP & VOLTAGE INTERRUPTIONS IMMUNITY TEST


6.8.1 TEST SPECIFICATION

Test Method	IEC 61000-4-11:2004+AMD1:2017
Test duration time	0%,0.5T 70%,25T for 50Hz 40%,10 T for 50Hz
Interval between event	10s for each dips at each test angle
Phase Angle	0°,180°
Test cycle	3

6.8.2 TEST PROCEDURE

- a) The EUT and test generator.
- b) The interruptions is introduced at selected phase angles with specified duration.
- c) Record any degradation of performance.

6.8.3 TEST SETUP

Report No.: E20220309137001-4 Page 77 of 97

6.8.4 PHOTOGRAPH OF THE TEST ARRANGEMENT

----- The following blanks -----

Report No.: E20220309137001-4 Page 78 of 97

6.8.5 TEST RESULTS

Motor 1:

EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.1°C/45%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-30	Sample No.	E20220309137001-0005

Test level % U _T	Voltage Dips & Interruptions % U _T	Duration (Period)	Angle	Required Performance	Actual performance	Result
0	100	0.5	0°	В	$A^{1)}$	PASS
U	0 100	100 0.5	180°	В	$A^{1)}$	PASS
60	60 40	10	0 °	В	$A^{1)}$	PASS
00		10	180°	В	A ¹⁾	PASS
20	70	25	0°	В	A ¹⁾	PASS
30	70 25	180°	В	A ¹⁾	PASS	

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal, zigbee connection communication is normal.

Motor 2:

1 ((%))			1 ((%): /
EUT Name	Curtain Driver E1	Model	CM-M01
Environmental Conditions	23.1°C/45%RH/101kPa	Test Mode	Mode 2
Power supply	AC230V/50Hz	Tested By	Tang Shenghui
Test Date	2022-03-30	Sample No.	E20220309137001-0007

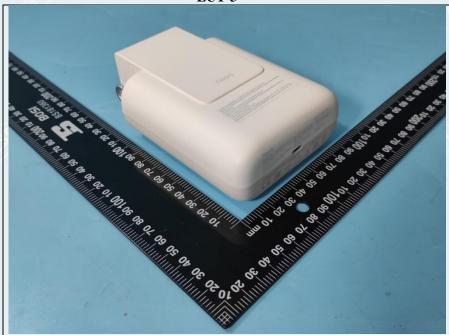
Test level % U _T	Voltage Dips & Interruptions % U _T	Duration (Period)	Angle	Required Performance	Actual performance	Result	
0	100	0.5	©0°	В	A ¹⁾	PASS	
U	0 100	100		180°	В	$A^{1)}$	PASS
60	40	10	0 °	В	A ¹⁾	PASS	
00	60 40	10	180°	В	A ¹⁾	PASS	
20	70	25	0 °	В	$A^{1)}$	PASS	
30	70 25	180°	В	$A^{1)}$	PASS		

NOTE: ¹⁾Before test, during the test, and after test, the EUT function is normal, zigbee connection communication is normal.

Report No.: E20220309137001-4 Page 79 of 97

APPENDIX A: PHOTOGRAPH OF THE EUT

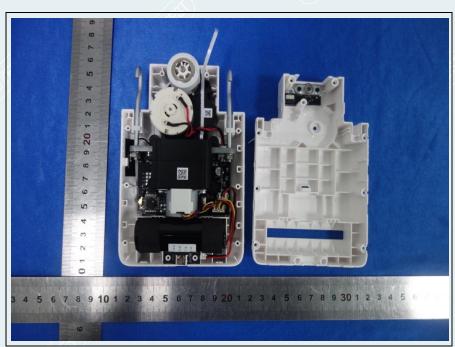
External Photos of EUT



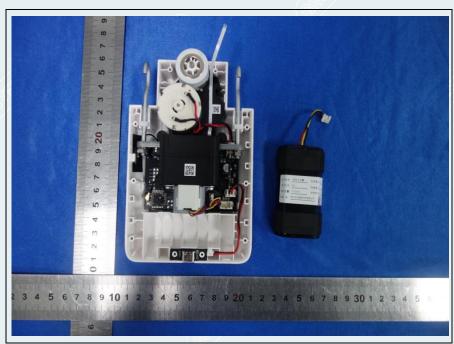
EUT-2

Report No.: E20220309137001-4 Page 80 of 97

EUT-3


EUT-4

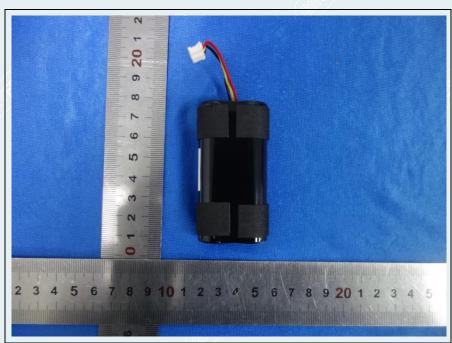
EUT-5


Internal Photos of EUT

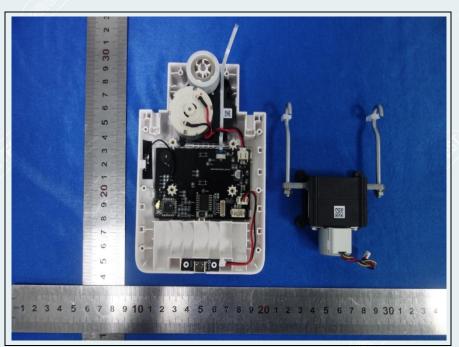
Motor 1:

EUT-1

Report No.: E20220309137001-4 Page 82 of 97

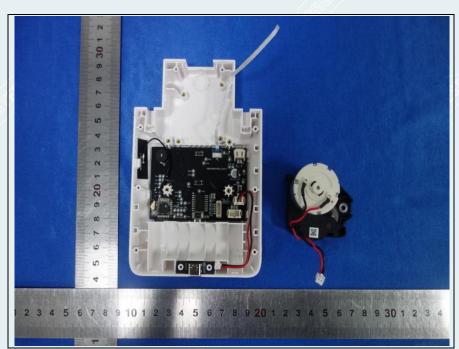


EUT-2



EUT-3

Report No.: E20220309137001-4 Page 83 of 97

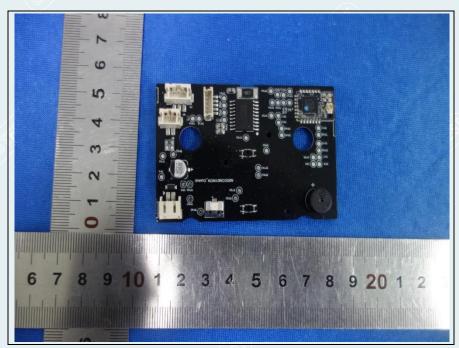


EUT-4

EUT-5

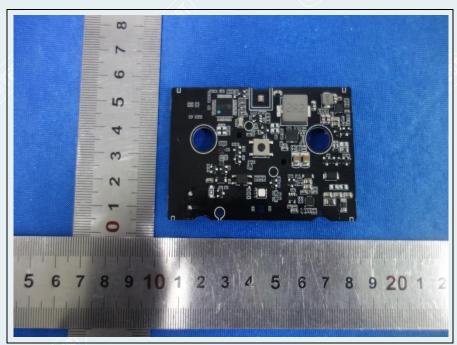
Report No.: E20220309137001-4 Page 84 of 97

EUT-6

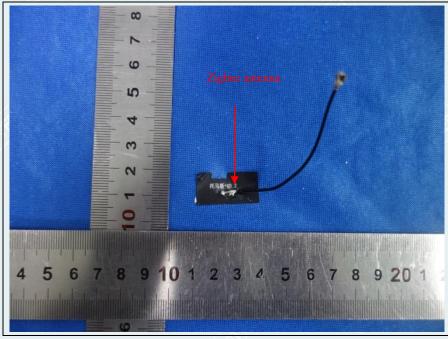


EUT-7

Report No.: E20220309137001-4 Page 85 of 97

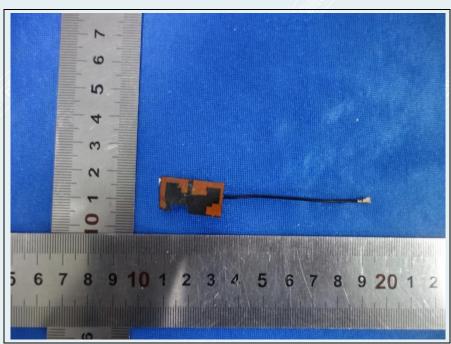


EUT-8



EUT-9

Report No.: E20220309137001-4 Page 86 of 97



EUT-10

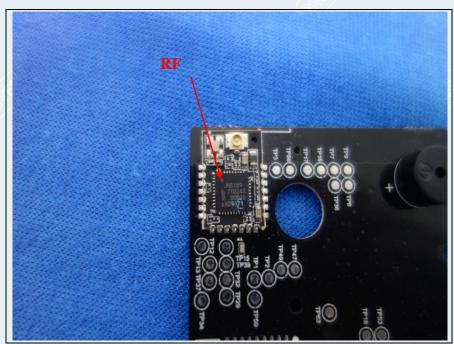
EUT-11

Report No.: E20220309137001-4 Page 87 of 97

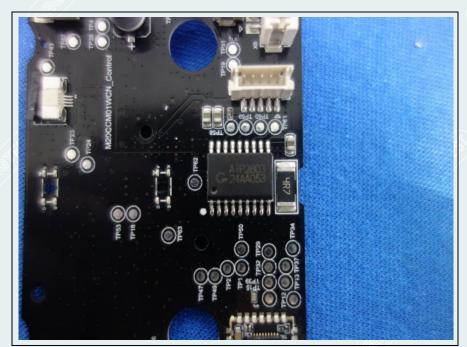
EUT-12

EUT-13

Report No.: E20220309137001-4 Page 88 of 97

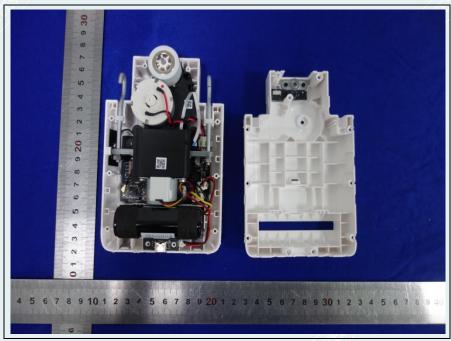


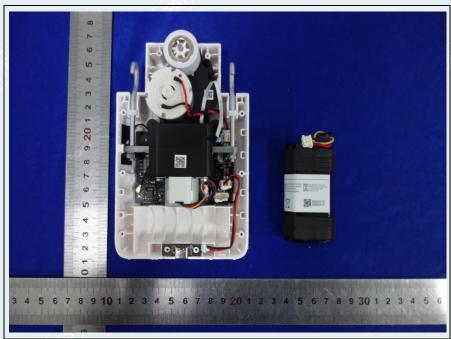
EUT-14



EUT-15

Report No.: E20220309137001-4 Page 89 of 97


EUT-16


EUT-17

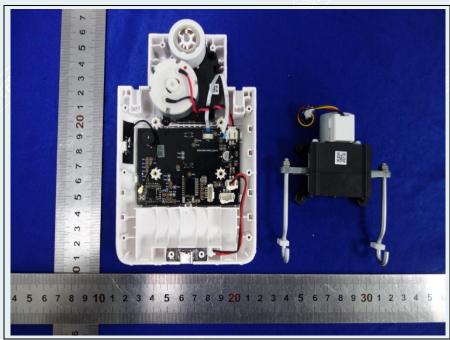
Internal Photos of EUT

Motor 2:

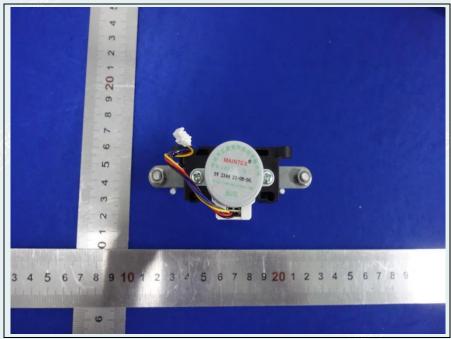
EUT-18

EUT-19

Report No.: E20220309137001-4 Page 91 of 97

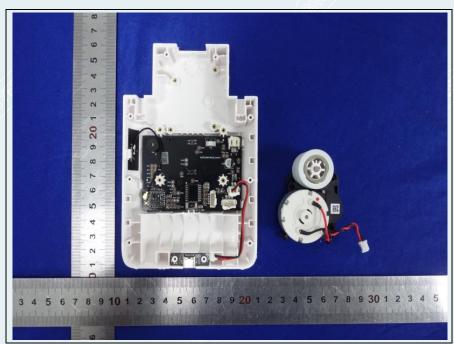


EUT-20

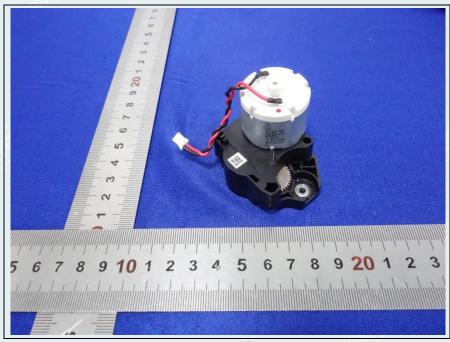


EUT-21

Report No.: E20220309137001-4 Page 92 of 97

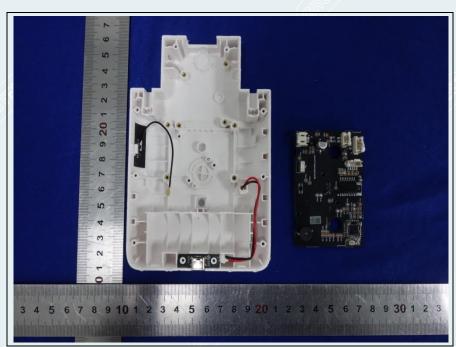


EUT-22

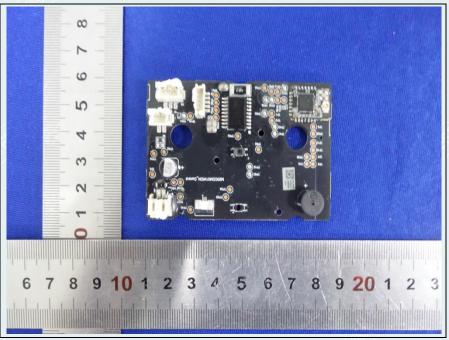


EUT-23

Report No.: E20220309137001-4 Page 93 of 97

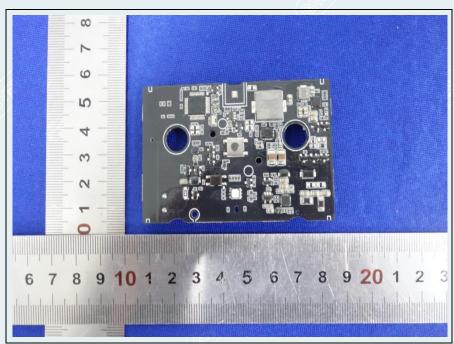


EUT-24

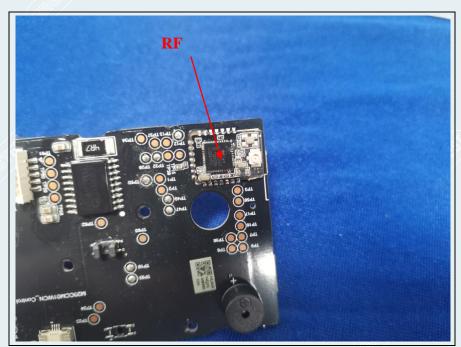


EUT-25

Report No.: E20220309137001-4 Page 94 of 97

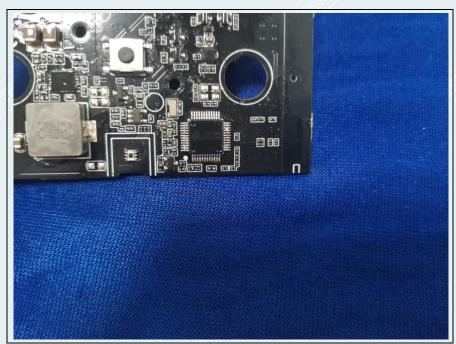


EUT-26



EUT-27

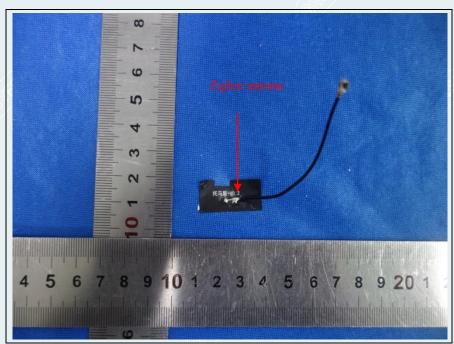
Report No.: E20220309137001-4 Page 95 of 97



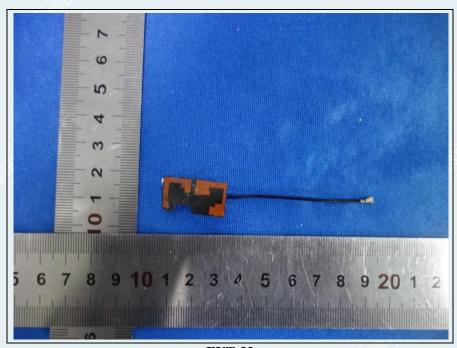
EUT-28

EUT-29

Report No.: E20220309137001-4 Page 96 of 97



EUT-30



EUT-31

Report No.: E20220309137001-4 Page 97 of 97

EUT-32

EUT-33

----- End of Report -----