RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product : Mobile Phone

Trade Mark : Blackview

Model Name : A100

Family Model : N/A

Report No. : STR210425002002E

Prepared for

DOKE COMMUNICATION (HK) LIMITED RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

Page 2 of 55

Report No.: STR210425002002E

TEST RESULT CERTIFICATION

Applicant's name	: DOKE COMMUNICATION (HK) LIMITED	
Address	RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA	
Manufacturer's Name	: Shenzhen DOKE Electronic Co.,Ltd	
Address	Room 801, Building 3, 7th Industrial Zone, Yulv Community, Yutang Street, Guangming District, Shenzhen City, Guangdong Province, China	
Product description		
Product name	: Mobile Phone	
Trademark	: Blackview	
Model Name	: A100	

Family Model: N/A

Standards: ETSI EN 300 328 V2.2.2 (2019-07)

This device described above has been tested by Shenzhen NTEK, and the test results show that the equipment under test (EUT) is in compliance with the 2014/53/EU RED Directive Art.3.2 requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personnel only, and shall be noted in the revision of the document.

Date of Test
Date (s) of performance of tests:
Date of Issue:
Test Result:

Apr 26. 2021 ~ May 10, 2021 May 12, 2021 Pass

Testing Engineer

1) Ven bin

(Allen Liu)

Technical Manager

Sonchen

(Jason Chen)

Authorized Signatory:

(Alex Li)

	Table of Contents	Page
1 . GENERAL INFORMATI	ON A	6
1.1 GENERAL DESCRIPT	TION OF EUT	6
1.2 INFORMATION ABOL		7
1.3 TEST CONDITIONS A		12
1.4 DESCRIPTION OF TE	EST CONDITIONS	13
1.5 DESCRIPTION OF SU	JPPORT UNITS	14
1.6 EQUIPMENTS LIST F		15
2 . SUMMARY OF TEST R		16
2.1 TEST FACILITY	ESOEIS	17
2.2 MEASUREMENT UNC		× ¹⁷
3. TEST PROCEDURES A		18
		18
3.1.1 LIMITS OF EQU 3.1.2 TEST PROCEDU	IVALENT ISOTROPIC RADIATED POWER	18
3.1.3 TEST SETUP		18
3.1.4 TEST RESULTS		19
3.2 . PEAK POWER DEN	SITY	20
	ER SPECTRAL DENSITY	20
3.2.2 TEST PROCEDU	JRE	20
3.2.3 TEST SETUP 3.2.4 TEST RESULTS		20 21
3.3 . OCCUPIED CHANN		22
	UPIED CHANNEL BANDWIDTH	22
3.3.2 TEST PROCEDU	JRE S	22
3.3.3 DEVIATION FRO	OM TEST STANDARD	22
3.3.4 TEST SETUP 3.3.5 TEST RESULTS		22 23
	WANTED EMISSIONS IN THE OUT-OF-BAN	
	NANTED EMISSIONS IN THE OUT-OF-BAN NSMITTER UNWANTED EMISSIONS IN THE	
DOMAIN		24
3.4.2 TEST PROCEDU	JRE	24
3.4.3 DEVIATION FRO	OM TEST STANDARD	25
3.4.4 TEST SETUP		2 5
3.4.5 TEST RESULTS		26
•	EL ACCESS MECHANISM) OF ADAPTIVE REQUIREMENTS AND LILIT	
MODULATION TECHN		FOR WIDE BAND
3.5.2 TEST PROCEDU		28

Page 4 of 55 Report No.: STR210425002002E

	Table of Contents	Page	
	3.5.3 TEST SETUP CONFIGURATION	28	
	3.5.4 LIST OF MEASUREMENTS	20 29	
	3.5.5 TEST RESULTS	30	
	3.6 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN 3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPUR DOMAIN		
	3.6.2 TEST PROCEDURE	31	
	3.6.3 DEVIATION FROM TEST STANDARD	31	
	3.6.4 TEST SETUP 3.6.5 TEST RESULTS(Radiated measurement)	32 33	
	3.6.6 TEST RESULTS (Conducted measurement)	35	
	3.7 . RECEIVER SPURIOUS RADIATION	36	
	3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION	36	
	3.7.2 TEST PROCEDURE	36	
	3.7.3 DEVIATION FROM TEST STANDARD	36	
	3.7.4 TEST SETUP 3.7.5 TEST RESULTS(Radiated measurement)	37 38	
	3.7.6 TEST RESULTS (Conducted measurement)	39	
	3.8 . RECEIVER BLOCKING	40	
	3.8.1 PERFORMANCE CRITERIA	40	
	3.8.2 LIMITS OF RECEIVER BLOCKING	40	
		42	
	3.8.4 DEVIATION FROM TEST STANDARD 3.8.5 TEST SETUP	42 42	
	3.8.6 TEST RESULTS	42	
4	TEST RESULTS	44	
	4.1 RF OUTPUT POWER	44	
	4.2 POWER SPECTRAL DENSITY	46	
	4.3 OCCUPIED CHANNEL BANDWIDTH	48	
	4.4 TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMA		
	4.5 TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	51	
	4.6 RECEIVER SPURIOUS EMISSIONS	53	
5	EUT TEST PHOTO	55	
-			
51	PURIOUS EMISSIONS MEASUREMENT PHOTOS	55	

Report No.	Version	Description	Issued Date
STR210425002002E	Rev.01	Initial issue of report	May 12, 2021
	1 A		*
			5
		t the t	
	10 3		* *
S S			<u> </u>
4			
the second se			
		A.	
	4	1 A	
		2	
	<u> </u>		
7 7			×

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone		
Trade Mark	Blackview		
Model Name.	A100		
Family Model	N/A	Le Station and Station	
Model Difference	N/A		
	The EUT is Mobile Phone		
	Operation Frequency:	2402~2480 MHz	
4	Modulation Type:	GFSK	
at the second seco	Adaptive/non-adaptive	Adaptive equipment	
Product Description	Receiver categories	2	
5	Number Of Channel	Please see Note 2.	
-	Antenna Designation:	PIFA Antenna	
at the	Antenna Gain(Peak)	1.0dBi	
		<u> </u>	
Channel List	Refer to below		
Adapter	Model: HJ-FC017-EU Input: 100-240V~50/60Hz 0.6A Output: 5.0V/7.0V/9.0V2.0A 12.0V1.5A 18.0W		
Battery	DC 3.85V, 4680mAh, 18.01Wh DC 3.85V from battery or DC 5V from Adapter. Refer to users manual		
Rating			
I/O Ports			
Hardware Version	HCT-M880MB-A3	t i	
Software Version	A100_EEA_M880_V1.0		

Note:

2.

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Channel	Frequency (MHz)
00	2402
L 01 -	2404
·····	<u> </u>
38	2478
39	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

- FHSS
- \boxtimes other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment:
 - The maximum number of Hopping Frequencies:
 - The minimum number of Hopping Frequencies:
- The (average) Dwell Time:

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- Adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

- The maximum Channel Occupancy Time implemented by the equipment: ./. ms
- \boxtimes The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - The equipment can switch dynamically between Frame Based and Load Based equipment
 - The CCA time implemented by the equipment: / μs
 - The equipment has implemented a non-LBT based DAA mechanism
- The equipment can operate in more than one adaptive mode

Report No.: STR210425002002E

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.):

The maximum (corresponding) Duty Cycle:

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

- RF Output Power
- GFSK
- Power Spectral Density
 GFSK
- Duty cycle, Tx-Sequence, Tx-gap N/A
- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment) N/A
- Hopping Frequency Separation (only for FHSS equipment) N/A
- Medium Utilization
 N/A
- Adaptivity

N/A

- Receiver Blocking
 GFSK
- Nominal Channel Bandwidth

GFSK

Transmitter unwanted emissions in the OOB domain

GFSK

- Transmitter unwanted emissions in the spurious domain GFSK
- Receiver spurious emissions
 GFSK

g) The different transmit operating modes (tick all that apply):

Operating mode 1: Single Antenna Equipment

- Equipment with only one antenna
- Equipment with two diversity antennas but only one antenna active at any moment in time
- Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one antenna is used (e.g. IEEE 802.11[™] [i.3] legacy mode in smart antenna systems)
- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
 - Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)

Page 9 of 55

Report No.: STR210425002002E

	 High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1 High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
	NOTE 1: Add more lines if more channel bandwidths are supported.
	Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
	Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
	High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
	High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2 NOTE 2: Add more lines if more channel bandwidths are supported.
h)	In case of Smart Antenna Systems:
– '	The number of Receive chains:
	The number of Transmit chains:
	symmetrical power distribution
	asymmetrical power distribution
	In case of beam forming, the maximum (additional) beam forming gain: dB NOTE: The additional beam forming gain does not include the basic gain of a single antenna.
i)	Operating Frequency Range(s) of the equipment:
Ĺ	Operating Frequency Range 1: 2402 MHz to 2480 MHz
	Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported.
j)	Nominal Channel Bandwidth(s):
	Nominal Channel Bandwidth 1: 1.025MHz
	Nominal Channel Bandwidth 2: MHz
	NOTE: Add more lines if more channel bandwidths are supported.
k)	Type of Equipment (stand-alone, combined, plug-in radio device, etc.):
	Stand-alone
	Combined Equipment (Equipment where the radio part is fully integrated within another type of
	equipment)
	Plug-in radio device (Equipment intended for a variety of host systems) Other
I)	The normal and the extreme operating conditions that apply to the equipment:
	Normal operating conditions (if applicable):
	Operating temperature: 15°C~35°C
	Other (please specify if applicable):
	Extreme operating conditions:
	Operating temperature range: Minimum: -10℃ Maximum 40℃
	Other (please specify if applicable): Minimum: Maximum Details provided are for the:
	Stand-alone equipment
	<pre>combined (or host) equipment test jig</pre>

			s and one or more antenna
	eir corresponding e.i.r.p.	levels:	
 Antenna Type: PIF 	A Antenna		
Integral Antenn	a (information to be provide	ed in case of conducted	measurements)
Antenna Gain	:1.0dBi		
If applicable, add	ditional beamforming gain (excluding basic antenna	gain): dB
Temporar	y RF connector provided		
No tempor	rary RF connector provided		
Dedicated Ante	ennas (equipment with ante	nna connector)	
Single pov	ver level with corresponding	g antenna(s)	
Multiple po	ower settings and correspon	nding antenna(s)	
Number of di	fferent Power Levels:	🖉	
Power Level	1: dBm		
Power Level	2: dBm		
	3: dBm		
NOTE 1: Add	d more lines in case the equ	uipment has more power	levels.
NOTE 2: The	ese power levels are condu	cted power levels (at ant	enna connector).
Assembly #	ntenna assemblies provideo Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1	1.0	3.83	
2		. (
3		A A	4
	d more rows in case more a	Intenna assemblies are s	supported for this power level.
Power Level	l 2: dBm ntenna assemblies provideo		
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			
2	14 - E		
3			
NOTE 4: Add Power Level	d more rows in case more a 3: dBm ntenna assemblies provided		supported for this power level.
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			
2			
		4	A S
3			

NOTE 5: Add more rows in case more antenna assemblies are supported for this power level.

n) The nominal voltages of the stand-alone radio eq	uipment or the nominal voltages of the
combined (host) equipment or test jig in case of	plug-in devices:
Details provided are for the:	
Stand-alone equipment	
combined (or host) equipment	
🗌 test jig	
Supply Voltage 🔲 AC mains State AC voltage	V
DC State DC voltage: DC 3.85V	
In case of DC, indicate the type of power source	
Internal Power Supply	
External Power Supply or AC/DC adapter: DC 5	γV
Battery: DC 3.85V	
Other:	
o) Describe the test modes available which can facil	litate testing:
See clause 1.3	
p) The equipment type (e.g. Bluetooth®, IEEE 802.11	™ [i.3], IEEE 802.15.4™ [i.4], proprietary, etc.):
Bluetooth®	
q) If applicable, the statistical analysis referred to in	clause 5.4.1 q)
(to be provided as separate attachment)	
r) If applicable, the statistical analysis referred to in	clause 5.4.1 r)
(to be provided as separate attachment)	
s) Geo-location capability supported by the equipme	ent:
☐ Yes	
The geographical location determined by the eq	uipment as defined in clause 4.3.1.13.2 or
clause 4.3.2.12.2 is not accessible to the user	
🖂 No 🛛 🔶	
t) Describe the minimum performance criteria that a	pply to the equipment (see clause 4.3.1.12.3 or
clause 4.3.2.11.3):	
GFSK(CH39)=0.78%	
At St. 2	
At St.	
- 2 2	

Page 12 of 55 Report No.: STR210425002002E

1.3 TEST CONDITIONS AND CHANNEL

۲ V	Normal Test Conditions	Extreme Test Conditions
Temperature	15°C - 35°C	40℃ ~ -10℃ Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.85V	

Test Channel	EUT Channel	Test Frequency (MHz)
Lowest	CH00	2402
Middle	CH19	2440
Highest	CH39	2480


Note:

(1) The HT 40 $^\circ\!C$ and LT -10 $^\circ\!C$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

Page 13 of 55

Report No.: STR210425002002E

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	Mobile Phone	Blackview	A100	N/A	EUT
	4			5	
			~ ~		
	×	7 1			1
	<u> </u>		×	7, 4	
	2	X	Str.		

Item	Туре	Shielded Type	Ferrite Core	Length	Note
1		¥			
	_	-			
~					
	7		Y.	5 7	
7		t.			

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

Report No.: STR210425002002E

1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra ion period
EMI Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2020.05.11	2021.05.10	1 year
Turn Table	EM 🧹	SC100 1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna 🥢	EM	EM-AH-10180	2011071402	2020.05.11	2021.05.10	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2020.05.11	2021.05.10	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835S E	980246	2020.07.13	2021.07.12	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2020.05.11	2021.05.10	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2020.05.11	2021.05.10	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2020.07.13	2021.07.12	1 year
Power Splitter	Mini-Circuits/U SA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2020.07.13	2021.07.12	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2020.05.13	2021.05.12	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2020.05.13	2021.05.12	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
Temperature & Humitidy Chamber	GIANT FORCE	GTH-056P	GF-94454-1	2020.05.13	2021.05.12	1 year

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

N2017.06.06.0614.V.1.2

2. SUMMARY OF TEST RESULTS

	as been tested according to the following specifications: ETSI EN 300 328 V2.2.2 (2019-07)		
Clause	Test Item	Results	
<u> </u>	TRANSMITTER PARAMETERS	1	
4.3.2.2	RF Output Power	Pass	
4.3.2.3	Power Spectral Density	Pass	
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2	
4.3.2.5	Medium Utilization (MU) factor	Not Applicable (See Note 1/2	
4.3.2.6	Adaptivity	Not Applicable (See Note 1)	
4.3.2.7	Occupied Channel Bandwidth	Pass	
4.3.2.8	Transmitter unwanted emission in the OOB domain	Pass	
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Pass	
	RECEIVER PARAMETERS		
4.3.2.10	Receiver Spurious Emissions Pass		
4.3.2.11	Receiver Blocking		

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode

Page 17 of 55 Report No.: STR210425002002E

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

2.2 MEASUREMENT UNCERTAINTY

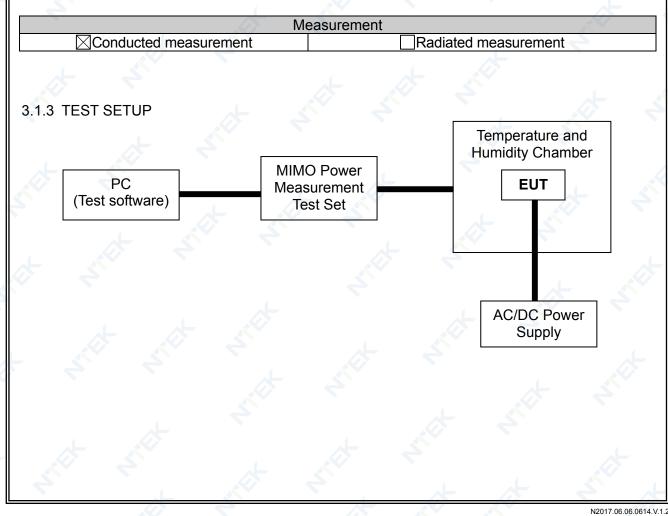
For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

	Measurement uncertai	nty
No.	Item	Uncertainty (P=95)
– 1	Occupied Channel Bandwidth	± 4.7%
2	RF output Power, conducted	± 0.9dB
3	Power Spectral Density, conducted	± 2.6dB
4	Unwanted emissions, conducted	± 2.2dB
5 All emissions,radiated		± 5.3dB
6	Temperature	± 0.5℃
7 Humidity		± 2.0%
8 🧷	Time	± 1.0%

Report No.: STR210425002002E

3. TEST PROCEDURES AND RESUTLS

3.1 EQUIVALENT ISOTROPIC RADIATED POWER


3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER

Refer to chapter 4.3.2.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER		
Condition	Limit	
Non-adaptive wide band modulations systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.	
Adaptive wide band modulations systems	≤20dBm	

3.1.2 TEST PROCEDURE

Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Page 19 of 55 Report No.: STR210425002002E

3.1.4 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A100
Temperature :	20 °C	Relative Humidity:	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode : TX Low channel / Middle Channel / High Channel		\star	

Test data reference attachment

Report No.: STR210425002002E

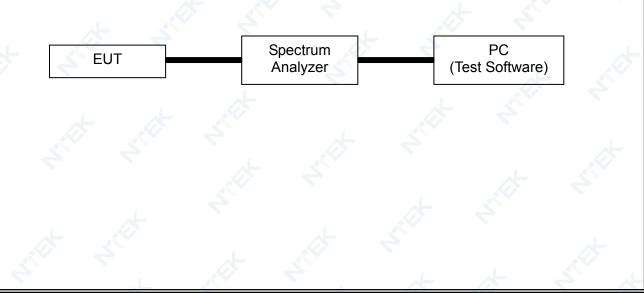
3.2. PEAK POWER DENSITY

3.2.1 LIMITS OF POWER SPECTRAL DENSITY

Refer to chapter 4.3.2.3.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	RF OUTPUT POWER		
	Condition	Limit	
ļ	For equipment using wide band modulations other than FHSS	≤10 dBm/MHz	

3.2.2 TEST PROCEDURE


Refer to chapter 5.4.3.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement				
Conducted measurement	Radiated measurement			

The setting of the Spectrum Analyzer

Start Frequency	2400MHz
Stop Frequency	2483.5MHz
Detector	RMS
Sweep Point	> 8 350; for spectrum analysers not supporting this number of sweep points, the frequency band may be examinated
	frequency band may be segmented
	For non-continuous transmissions: 2 × Channel Occupancy Time × number of sweep points
Sweep time:	For continuous transmissions: 10 s; the sweep time may be
4	increased further until a value where the sweep time has no
	further impact anymore on the RMS value of the signal.
RBW / VBW	10KHz / 30KHz

3.2.3 TEST SETUP

Page 21 of 55 Report No.: STR210425002002E

3.2.4 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A100
Temperature :	26 ℃	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX-GFSK(CH00/CH19/CH39)	7	<u>×</u> ×

Test data reference attachment

Report No.: STR210425002002E

3.3. OCCUPIED CHANNEL BANDWIDTH

3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH

Refer to chapter 4.3.2.7.3 of ETSI EN 300 328 V2.2.2 (2019-07) OCCUPIED CHANNEL BANDWIDTH Condition Limit All types of equipment using wide band modulations Shall fall completely within the band other than FHSS 2400 to 2483.5 MHz For non-adaptive using wide band modulations other than FHSS Less than 20 MHz Additional system and E.I.R.P >10 dBm For non-adaptive frequency requirement hopping system and E.I.R.P >10 Less than 5 MHz dBm

3.3.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement					
Conducted	Conducted measurement				
The setting of the Spec	ctrum Analyzer				
Center Frequency	Center Frequency The centre frequency of the channel under test				
Frequency Span	2 × Nominal Channe	el Bandwidth			
Detector	RMS				
RBW	~ 1 % of the span w	vithout going below 1 %			
VBW	3 × RBW	3 × RBW			
Trace	Max hold	Max hold			
Sweep time 1s					

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

3.3.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software has been activated to set the EUT on specific status.

Page 23 of 55 F

Report No.: STR210425002002E

3.3.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A100
Temperature :	26 ℃	Relative Humidity :	60 %
Pressure :	1012 hPa 🛛 📈 🖉	Test Voltage :	DC 3.85V
Test Mode :	TX-GFSK(CH00/CH19/CH39)		

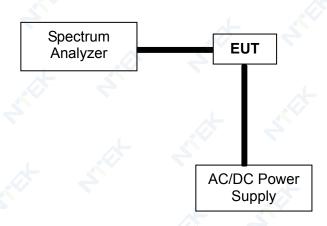
Test data reference attachment

3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.2.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

				1		
•	Condition	<u> </u>		Limit		
			The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.			
			\$F \$			
Spurious Domain	Out Of Band Doma	ain (OOB)	Allocated Band	Out Of Band Domain (C	DOB) Spurio	us Doma
	A L	5				
	A					
				5		
В					1	
с					t A	
	- 					
2 400 MH	z - 2BW 2 400 MHz -	BW 240	0 MHz 2 483,5 M	/Hz 2 483,5 MHz + BW	2 483,5 MHz + 2BM	<i>,</i>
: -10 dBm/MHz e.i. : -20 dBm/MHz e.i.	.r.p.	BW 2 40	4	/Hz 2 483,5 MHz + BW	S.C.	
-10 dBm/MHz e.i. -20 dBm/MHz e.i. Spurious Domain	r.p. .r.p. I limits	BW 2 40	4		S.C.	
: -10 dBm/MHz e.i. : -20 dBm/MHz e.i. : Spurious Domain 3.4.2 TEST P	r.p. .r.p. I limits		BW = Occupie	ed Channel Bandwidth in Mł	S.C.	
: -10 dBm/MHz e.i. : -20 dBm/MHz e.i. : Spurious Domain 3.4.2 TEST P	r.p. .r.p. n limits PROCEDURE		BW = Occupie	ed Channel Bandwidth in Mł	S.C.	
: -10 dBm/MHz e.i. : -20 dBm/MHz e.i. : Spurious Domain 3.4.2 TEST P Refer to chapt	r.p. .r.p. n limits PROCEDURE	SI EN 300	BW = Occupie 328 V2.2.2 (201	ed Channel Bandwidth in Mł	Hz or 1 MHz whichever	
: -10 dBm/MHz e.i. : -20 dBm/MHz e.i. : Spurious Domain 3.4.2 TEST P Refer to chapt ⊠Co	r.p. r.p. blimits PROCEDURE ter 5.4.8.2 of ETS nducted measure	SI EN 300	BW = Occupie 328 V2.2.2 (201	ed Channel Bandwidth in Mł	Hz or 1 MHz whichever	
: -10 dBm/MHz e.i. : -20 dBm/MHz e.i. : Spurious Domain 3.4.2 TEST P Refer to chapt ⊠Co	r.p. r.p. 1 limits PROCEDURE ter 5.4.8.2 of ETS	SI EN 300	BW = Occupie 328 V2.2.2 (201	ed Channel Bandwidth in Mł	Hz or 1 MHz whichever	

Trace ModeMax HoldTrigger ModeVideo trigger; in case video triggering is not possible, an external
trigger source may be usedDetectorRMSSweep Point / Sweep ModeSweep Time [s] / (1 µs) or 5 000 whichever is greater/ ContinuousRBW / VBW1MHz / 3MHz


Page 25 of 55

Report No.: STR210425002002E

3.4.3 DEVIATION FROM TEST STANDARD

No deviation

3.4.4 TEST SETUP

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

3.4.5 TEST RESULTS

· •			
EUT :	Mobile Phone	Model Name :	A100
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	TX-GFSK(CH00/CH39)	7	A A

Test data reference attachment

3.5. ADAPTIVE (CHANNEL ACCESS MECHANISM)

3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR WIDE BAND MODULATION TECHNIQUES

Refer to chapter ETSI EN 300 328 V2.2.2 (2019-07)

2	Operational Mode			
	LBT based Detect an		nd Avoid	
Requirement	Non-LBT based Detect and Avoid	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as note 2)
Minimum Clear Channel Assessment (CCA) Time	NA	not less than 18 us (see note 1)	(see note 2)	not less than 18 us (see note 1)
Maximum Channel Occupancy (COT) Time	<40 ms	1ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)
Minimum Idle Period	5 % minimum of 100 μs	5% of COT	(see note 2)	NA
Extended CCA check		NA	(see note 2)	R*CCA (see note 4)
Short Control Signalling Transmissions	Maximum duty cycle of 10% within an observation period of 50 ms (see note 5)			

Note 1: The CCA time used by the equipment shall be declared by the supplier.

Note 2: Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect as described in IEEE 802.11[™]-2012 [i.3], clause 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in IEEE 802.15.4[™]-2011 [i.4], clause 4, clause 5 and clause 8 providing the equipment complies with the conformance requirements referred to in clause 4.3.2.6.3.4.

Note 3: q is selected by the manufacturer in the range [4...32]

Note 4: The value of R shall be randomly selected in the range [1...q]

Note 5: Adaptive equipment may or may not have Short Control Signaling Transmissions.

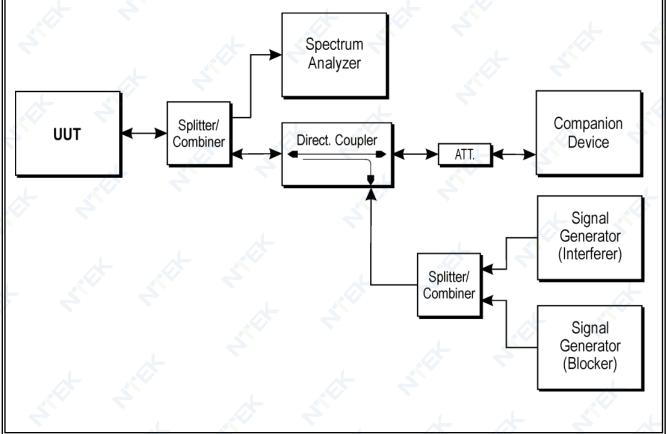
Interference threshold level

The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

TL = -70 dBm/MHz + 10 × log10 (100 mW / Pout) (Pout in mW e.i.r.p.)

Table	9: Unwanted Signal parameters	
Wanted signal mean power from companion device (dBm)	Unwanted signal frequency (MHz)	Unwanted CW signal power (dBm)
-30/ sufficient to maintain the	2 395 or 2 488,5 (see note 1)	-35 (see note 2)

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1. NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz. NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.


3.5.2 TEST PROCEDURE

Refer to chapter 5.4.6.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement		
Conducted measurement		Radiated measurement	

Test method please refer to the 5.4.6.2.1.4 of ETSI EN 300 328 V2.2.2 (2019-07)

3.5.3 TEST SETUP CONFIGURATION

N2017.06.06.0614.V.1.2

Report No.: STR210425002002E

3.5.4 LIST OF MEASUREMENTS

	UUT operational Mode	
Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced)
	V	

Clause	Test Parameter	Remarks	PASS/FAIL
4.3.2.5.2.2.1	Adaptive (Frame Based Equipment)	Not Applicable	N/A
4.3.2.5.2.2.2	Adaptive (Load Based Equipment)	N/A	N/A
4.3.2.5.3	Short Control Signaling Transmissions	N/A	N/A

Page 30 of 55 Report No.: STR210425002002E

3.5.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A100
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	N/A
Test Mode :	N/A	7	× ×

Note: Not Applicable

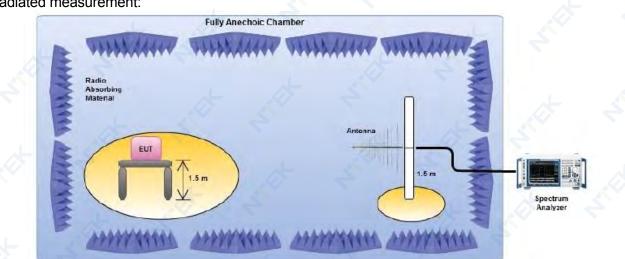
3.6. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Refer to chapter 4.3.2.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

3.6.2 TEST PROCEDURE


Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement						
Condu	Conducted measurement					
The setting of the	Spectrum Analyzer					
RBW	100K(<1GHz) / 1M(>	>1GHz)				
VBW	300K(<1GHz) / 3M(>	>1GHz)				

3.6.3 DEVIATION FROM TEST STANDARD

No deviation

3.6.4 TEST SETUP Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

Report No.: STR210425002002E

3.6.5 TEST RESULTS(Radiated measurement)

BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)				
EUT:	Mobile Phone	Model Name :	A100	
Temperature :	24°C	Relative Humidity :	57 %	
Pressure :	1012 hPa	Test Voltage :	DC 3.85V	
Test Mode :	TXGFSK(CH39)			

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	4
V	35.026	-71.86	11.08	-60.78	-36	-24.78	peak
V	94.925	-75.1	9.95	-65.15	-54	-11.15	peak
V	224.393	-70.8	11.04		-54	-5.76	peak
V	261.195	-73.36	9.57	-63.79	-36	-27.79	peak
V	602.589	-67.21	10.86	-56.35	-54	-2.35	peak
Н	32.63	-76.91	10.51	-66.40	-36	-30.40	peak
Н 🗸	90.423	-72.18	9.86	-62.32	-54	-8.32	peak
Н	214.006	-69.05	9.67	-59.38	-54	-5.38	peak
Н	357.315	-73.61	11.36	-62.25	-36	-26.25	peak
Н	517.685 🖉	-73.34	10.32	-63.02	-54	-9.02	peak

Remark:

1.Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level. 2.All the modes had been tested, but only the worst data recorded in the report.

NTEK比测

Report No.: STR210425002002E

UT : Mobile Phone emperature : 26°C			Model NameA100Relative Humidity60 %				
							ressure : 1012 hPa
t Mode	e : TX-GFSI	(CH00/CH19)	9/CH39)	2			
			5			<u> </u>	
Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
	1	0	peration fre	quency:2402		X	2
V	2422.737	-76.74	10.04	-66.70	-30	-36.70	peak
V	4013.636	-69.52	9.58	-59.94	-30	-29.94	peak
V	2946.199	-68.83	10.53	-58.30	-30	-28.30	peak
V	5401.714	-73.11	10.65	-62.46	-30	-32.46	peak
Н	2353.745	-72.06	10.83	-61.23	-30	-31.23	peak
Н	4187.901	-73.97	11.07	-62.90	-30	-32.90	peak
Н	2530.321	-75.17	10.74	-64.43	-30	-34.43	peak
Н	3901.925	-75.53	11.31	-64.22	-30	-34.22	peak
		0	peration fre	quency:2440			4
V	2763.009	-69.83	10.97	-58.86	-30	-28.86	peak
V	5748.622	-76.55	9.77	-66.78	-30	-36.78	peak
V	2237.218	-76.86	11.48	-65.38	-30 🔨	-35.38	peak
V	4309.14	-75.13	10.84	-64.29	-30	-34.29	peak
H	2326.821	-68.62	9.93	-58.69	-30	-28.69	peak
Н	5959.521	-75.22	11.34	-63.88	-30	-33.88	peak
Η	2564.765	-71.22	9.65	-61.57	-30	-31.57	peak
Н	3575.492	-75.98	9.59	-66.39	-30	-36.39	peak
	7			quency:2480		1	
V	2840.031	-73.79	9.93	-63.86	-30	-33.86	peak
V	5103.484	-70.5	10.19	-60.31	-30	-30.31	peak
V	2321.342	-67.3	10.59	-56.71	-30	-26.71	peak
V	4315.927	-72.41	11.39	-61.02	-30	-31.02	peak
Н	2498.549	-77.85	9.99	-67.86	-30	-37.86	peak
Н	4079.926	-71.42	11.47	-59.95	-30	-29.95	peak
Н	2378.077	-70.9	10.96	-59.94	-30	-29.94	peak
					_		

Remark:

4440.321

Н

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

-68.39

10.50

-57.89

-30

-27.89

peak

Page 35 of 55

Report No.: STR210425002002E

3.6.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

Report No.: STR210425002002E

3.7. RECEIVER SPURIOUS RADIATION

3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION

Refer to chapter 4.3.2.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

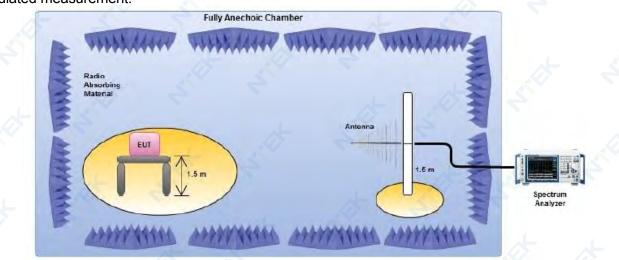
RECEIVER SPURIOUS EMISSIONS					
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth			
30 MHz ~ 1 GHz	-57dBm	100KHz			
1 GHz ~ 12.75 GHz	-47dBm	1MHz			

3.7.2 TEST PROCEDURE

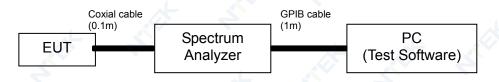
Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

N	leasurement
Conducted measurement	Radiated measurement

The setting of the Spectrum Analyzer


The cottang of the opeou			
RBW 🧹 🔷	100K(<1GHz) / 1M(>1GHz)	5	
VBW	300K(<1GHz) / 3M(>1GHz)		

3.7.3 DEVIATION FROM TEST STANDARD


No deviation

3.7.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

Report No.: STR210425002002E

3.7.5 TEST RESULTS(Radiated measurement)

	RX BELOW 1 GHz WORST-	CASE DATA(30 MH	z ~ 1GHz)
EUT :	Mobile Phone	Model Name :	A100
Temperature :	26 ℃	Relative Humidity :	60 %
Pressure :	1012 hPa 🛛 📈 🖉	Test Voltage :	DC 3.85V
Test Mode :	RX Mode-GFSK(CH39)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	2
V	33.006	-83.11	12.98	-70.13	-57	-13.13	peak
V	95.276	-79.41	11.67	-67.74	-57	-10.74	peak
V	203.641	-84.46	18.94	-65.52	-57	-8.52	peak
V	355.858	-77.15	11.65	-65.50	-57	-8.50	peak
V	522.817	-77.71	11.45	-66.26	-57	-9.26	peak
Н	41.385	-80.02	18.60	-61.42	-57	-4.42	peak
Н	103.606	-81.62	18.11	-63.51	-57	-6.51	peak
H	199.004	-77.19	10.30	-66.89	-57	-9.89	peak
Н	240.277	-79.92 🖉	15.00	-64.92	-57	-7.92	peak
Н	654.341	-84.12	14.63	-69.49	-57	-12.49	peak

Remark:

Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
 All the modes had been tested, but only the worst data recorded in the report.

N2017.06.06.0614.V.1.2

Report No.: STR210425002002E

	RX ABOVE 1 GHz WORST- C	ASE DATA(1GHz ~	12.75GHz)
EUT :	Mobile Phone	Model Name :	A100
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	RX Mode-GFSK(CH39)	~	1 × ×

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	2089.216	-77.38	9.94	-67.44	-47	-20.44	peak
V	5910.214	-79.34	9.82	-69.52	-47	-22.52	peak
V	2538.921	-80.54	10.02	-70.52	-47	-23.52	peak
V	4027.744	-84.29	16.13	-68.16	-47	-21.16	peak
Н	2771.407	-78.43	10.11	-68.32	-47	-21.32	peak
Н	3118.678	-82.4	10.68	-71.72	-47	-24.72	peak
Н	2022.179	-82.33	7.00	-75.33	-47	-28.33	peak
Н	4625.063	-84.01	14.56	-69.45	-47	-22.45	peak

2. All the modes had been tested, but only the worst data recorded in the report.

3.7.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

3.8. RECEIVER BLOCKING

3.8.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

3.8.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less	2 380 2 504	-34	cw
(see note 2) (-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524	with with	Are at
the state	2584 2674		5

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 41 of 55

Report No.: STR210425002002E

Table 15: Receiver	Blocking parameter	s receiver category 2 equ	ipment
Wanted signal mean power from companion device (dBm)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(see notes 1 and 3)			~
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB)	2 380	-34	CW
or (-74 dBm + 10 dB) whichever is less	2 504		\downarrow
(see note 2)	2 300	ــــــــــــــــــــــــــــــــــــــ	
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 16: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504		<
(see note 2)	2 300		
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

NTEK比测

Report No.: STR210425002002E

3.8.3 TEST PROCEDURE Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07) Measurement Radiated measurement Conducted measurement 3.8.4 DEVIATION FROM TEST STANDARD No deviation 3.8.5 TEST SETUP Variable attenuator Performance step size ≤ 1 dB Monitoring Device Signalling Unit or Companion Device AT1 Direct. Coupler Splitter/ UUT ATT. Combiner Blocking Signal Source Spectrum Analyzer Optional

Page 43 of 55

Report No.: STR210425002002E

3.8.6 TEST RESULTS

· · · · · · · · · · · · · · · · · · ·			
EUT :	Mobile Phone	Model Name :	A100
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK-RX Mode (CH00/CH39)		

CH00:

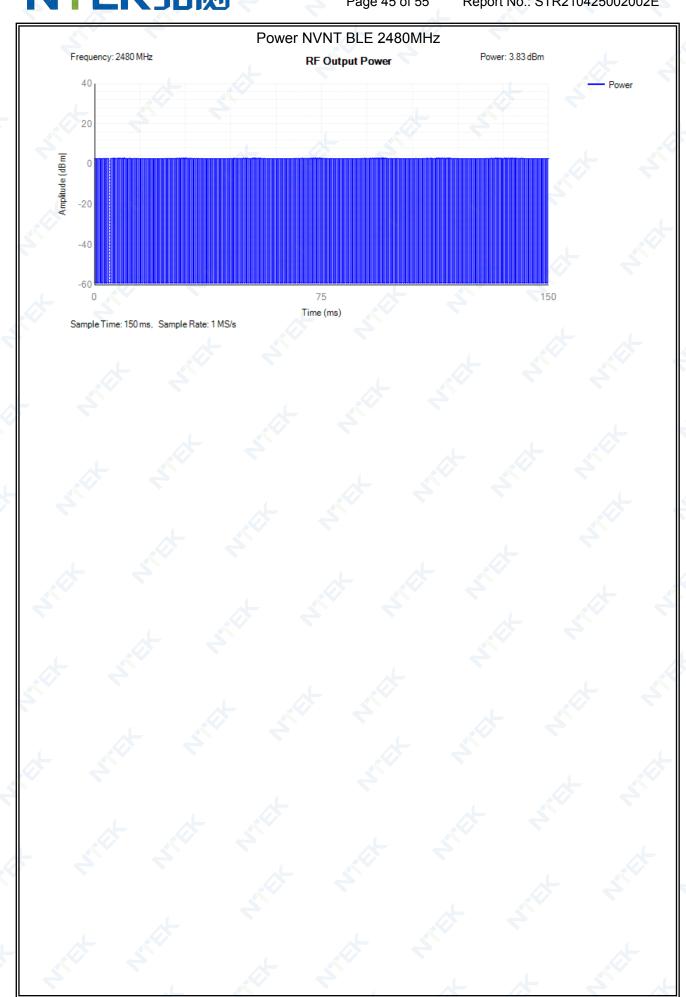
	rec	eiver category 2		
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit
	2 380	*	0.13	-100/
	2 504		0.52	≤10%
-68.89	2 300	-34	0.75	1100/
	2 584		0.57	≤10%

CH39:

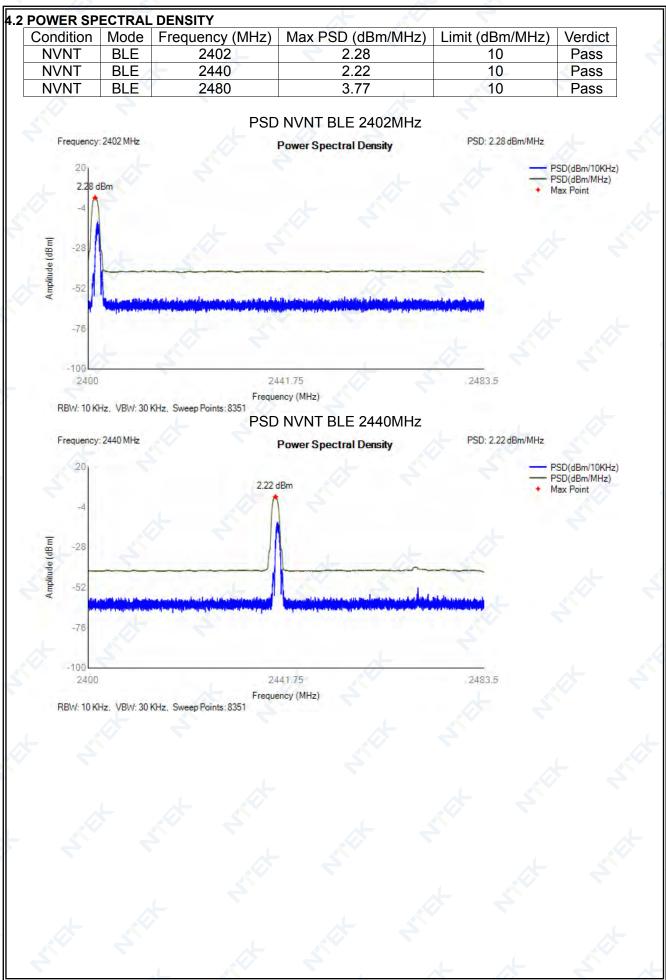
	re	ceiver category 2		
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit %
4	2 380		0.34	400/
	2 504	4	0.78	≤10%
-68.91	2 300	-34	0.32	
x x	2 584		0.13	≤10%

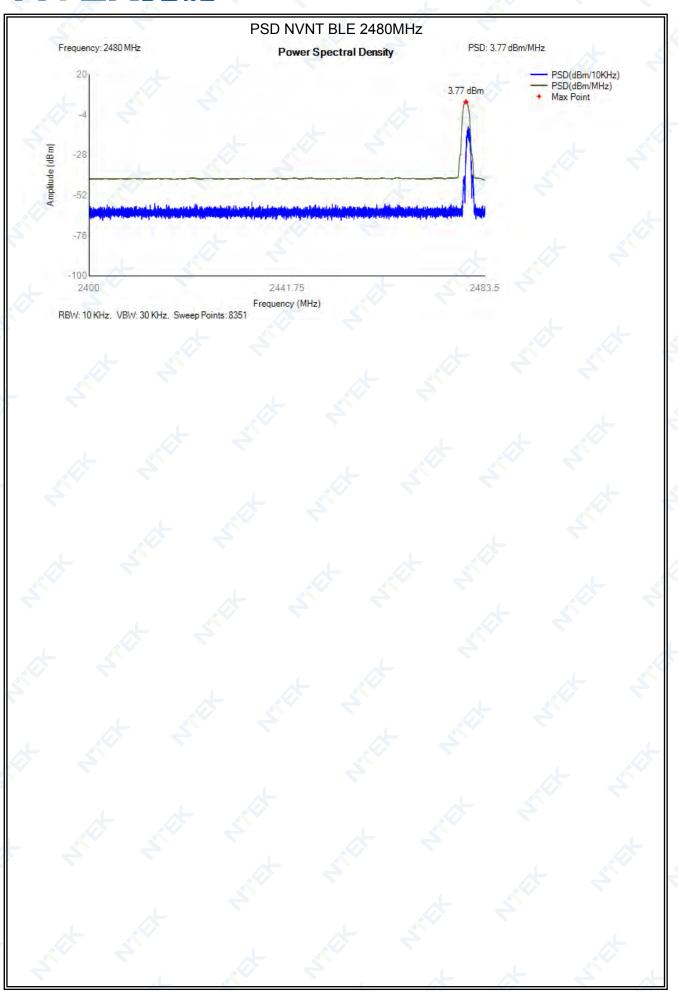
Note: (1) The above results were obtained from laboratory tests.

Sample Time: 150 ms, Sample Rate: 1 MS/s

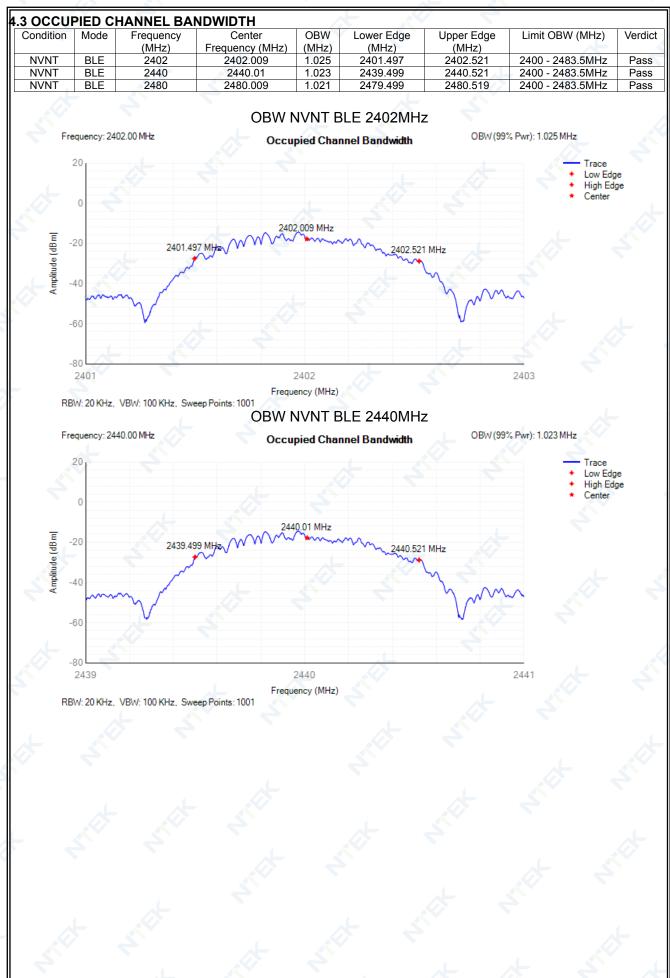

4. TEST RESULTS

4.1 RF OUTPUT POWER

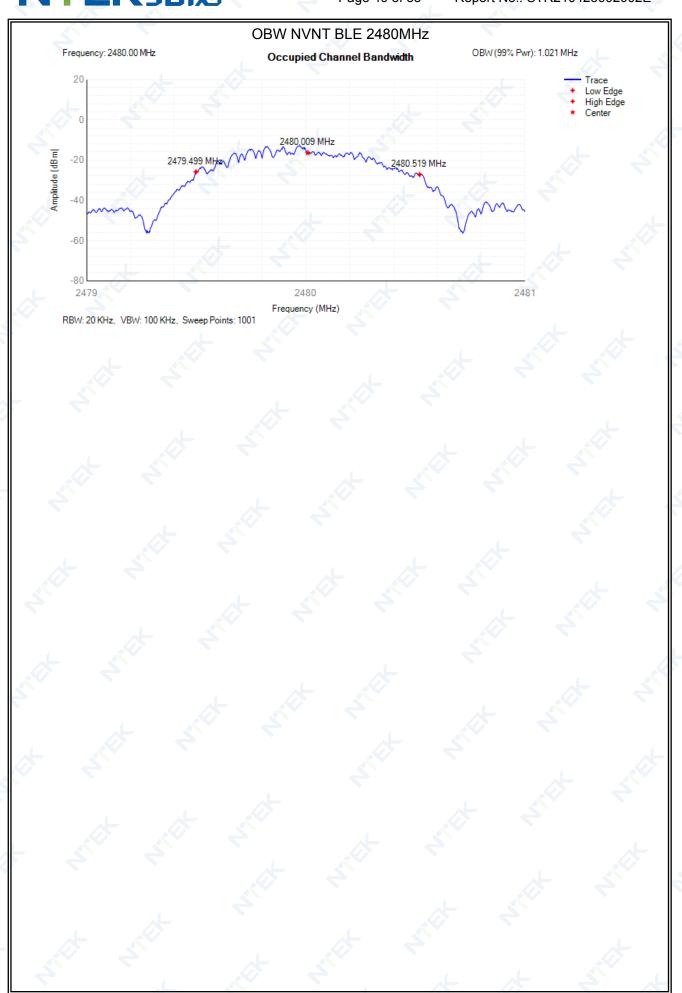

Condition NVNT NVNT NVLT NVLT NVLT NVLT NVHT NVHT NVHT	Mode	Frequency	Max Burst RMS	Burst	Max EIRP	Limit	Verdict
		(MHz)	Power (dBm)	Number	(dBm)	(dBm)	
NVNT	BLE	2402	1.35	240	2.35	20	Pass
NVNT	BLE	2440 💉	1.28	241	2.28	20	Pass
NVNT	BLE	2480	2.83	241	3.83	20	Pass
NVLT	BLE	2402	0.5	161	1.5	20	Pass
NVLT	BLE	2440	0.5	161	1.5	20	Pass
NVLT	BLE	2480	2.29	161	3.29	20	Pass
NVHT	BLE	2402	0.44	161	1.44	20	Pass
NVHT	BLE	2440	0.6	161	1.6	20	Pass
NVHT	BLE	2480	2.49	161	3.49	20	Pass
			•				


Page 45 of 55

Page 46 of 55



Page 47 of 55



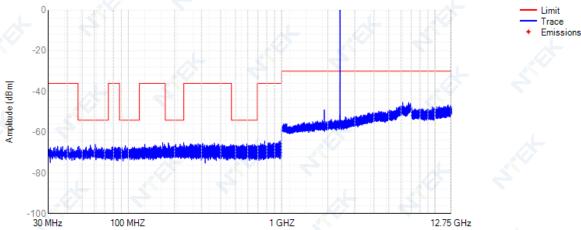
Page 48 of 55

Report No.: STR210425002002E

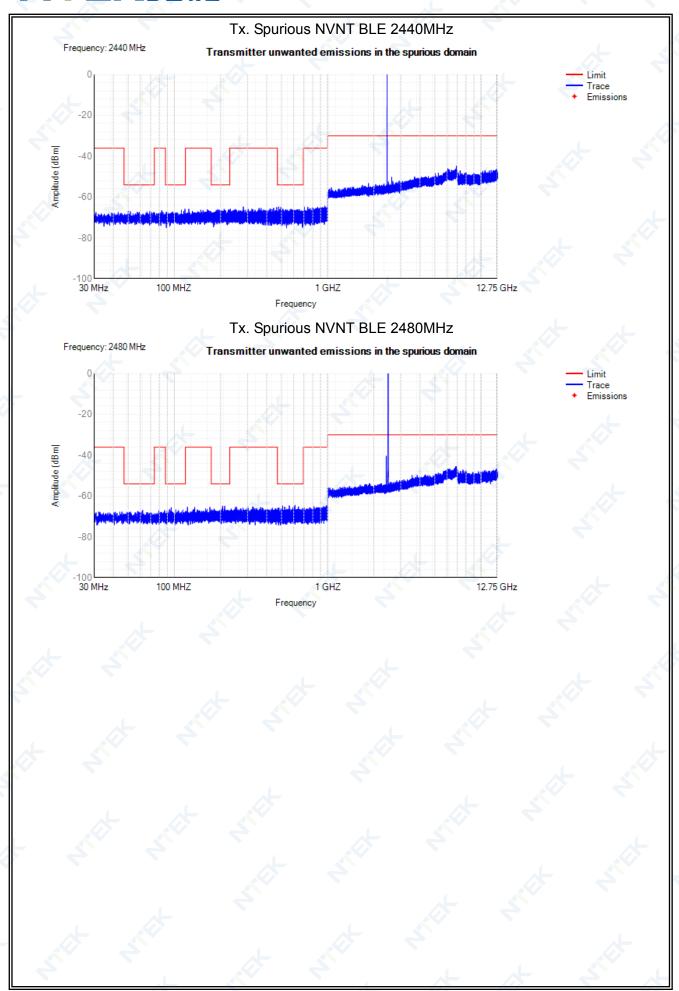
Page 49 of 55

Page 50 of 55

Condition	Mode	Frequency (MHz)	IONS IN THE OUT-OF OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdic
NVNT	BLE	2402	2399.5	-54.78	-10	Pass
NVNT	BLE	2402	2399.475	-55.55	-10	Pass
NVNT	BLE	2402	2398.475	-62.97	-20	Pass
NVNT	BLE	2402	2398.45	-62.98	-20	Pass
NVNT	BLE	2480	2484	-62.66	-10	Pass
NVNT	BLE	2480	2484.021	-62.84	-10	Pass
NVNT	BLE	2480	2485.021	-62.64	-10 -20	
						Pass
NVNT	BLE	2480	2485.042	-62.52	-20	Pass
Freque	ency: 2402 MHz		issions OOB NVNT F runwanted emissions in t			
,L					× .	- Limit OOB
-20)					
<u>–</u> 40						
E P						
Amplitude (dBm)						
-60)					
-						
-80						
-100						
239	97.45	√: 3000 KHz, Sweep Points: 5 Tx. Emi	2398.725 Frequency (MHz) Soon OOB NVNT I	BLE 2480MHz	2400	
239 RBW: 1	97.45	Tx. Emi	5001 Frequency (MHz)		بع ج	Limit OOB
239 RBW: 1	97.45 1000 KHz, VBV Incy: 2480 MHz	Tx. Emi	Frequency (MHz) issions OOB NVNT I		بع ج	
RBW: 1 Freque	97.45 1000 KHz, VBV ency: 2480 MHz	Tx. Emi	Frequency (MHz) issions OOB NVNT I		بع ج	
RBW: 1 Freque	97.45 1000 KHz, VBV ency: 2480 MHz	Tx. Emi	Frequency (MHz) issions OOB NVNT I		بع ج	
RBW: 1 Freque	97.45 1000 KHz, VBV ency: 2480 MHz	Tx. Emi	Frequency (MHz) issions OOB NVNT I		بع ج	
RBW: 1 Freque	97.45 1000 KHz, VBV ency: 2480 MHz	Tx. Emi	Frequency (MHz) issions OOB NVNT I		بع ج	
RBW: 1 Freque	97.45	Tx. Emi	Frequency (MHz) issions OOB NVNT I		بع ج	
239 RBW: 1 Freque 0 -20 <u>W</u> -40 W	97.45	Tx. Emi	Frequency (MHz) issions OOB NVNT I		بع ج	
239 RBW: 1 Freque -20 <u>(ug) pparte</u> -40 pparte -60 -80	97.45	Tx. Emi	Frequency (MHz) issions OOB NVNT I		بع ج	
239 RBW: 1 Freque 0 -20 [mgp] -40 -80 -80 -100	97.45	Tx. Emi	Frequency (MHz) issions OOB NVNT I		بع ج	
239 RBW: 1 Freque -20 Two Populdury -60 -80 -100 24	000 KHz, VBV	Tx. Emi	Erequency (MHz) Sold Sissions OOB NVNT B or unwanted emissions in the Provide the second			
239 RBW: 1 Freque -20 Two Papay dury -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	000 KHz, VBV	Tx. Emi	Erequency (MHz) Sold Sissions OOB NVNT B or unwanted emissions in the Provide the second			
239 RBW: 1 Freque -20 Two Papay dury -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	000 KHz, VBV	Tx. Emi	Erequency (MHz) Sold Sissions OOB NVNT B or unwanted emissions in the Provide the second			
239 RBW: 1 Freque -20 Two Papay dury -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	000 KHz, VBV	Tx. Emi	Erequency (MHz) Sold Sissions OOB NVNT B or unwanted emissions in the Provide the second			
239 RBW: 1 Freque -20 Two Papay dury -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	000 KHz, VBV	Tx. Emi	Erequency (MHz) Sold Sissions OOB NVNT B or unwanted emissions in the Provide the second			
239 RBW: 1 Freque -20 Two Papay dury -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	000 KHz, VBV	Tx. Emi	Erequency (MHz) Sold Sissions OOB NVNT B or unwanted emissions in the Provide the second			
239 RBW: 1 Freque -20 Two Papay dury -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	000 KHz, VBV	Tx. Emi	Erequency (MHz) Sold Sissions OOB NVNT B or unwanted emissions in the Provide the second			
239 RBW: 1 Freque -20 The population -20 The population -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	000 KHz, VBV	Tx. Emi	Erequency (MHz) Sold Sissions OOB NVNT B or unwanted emissions in the Provide the second			
239 RBW: 1 Freque -20 The population -20 The population -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	000 KHz, VBV	Tx. Emi	Erequency (MHz) Sold Sissions OOB NVNT B or unwanted emissions in the Provide the second			
239 RBW: 1 Freque -20 The population -20 The population -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	000 KHz, VBV	Tx. Emi	Erequency (MHz) Sold Sissions OOB NVNT B or unwanted emissions in the Provide the second			
239 RBW: 1 Freque -20 Two Papay dury -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	000 KHz, VBV	Tx. Emi	Erequency (MHz) Sold Sissions OOB NVNT B or unwanted emissions in the Provide the second			

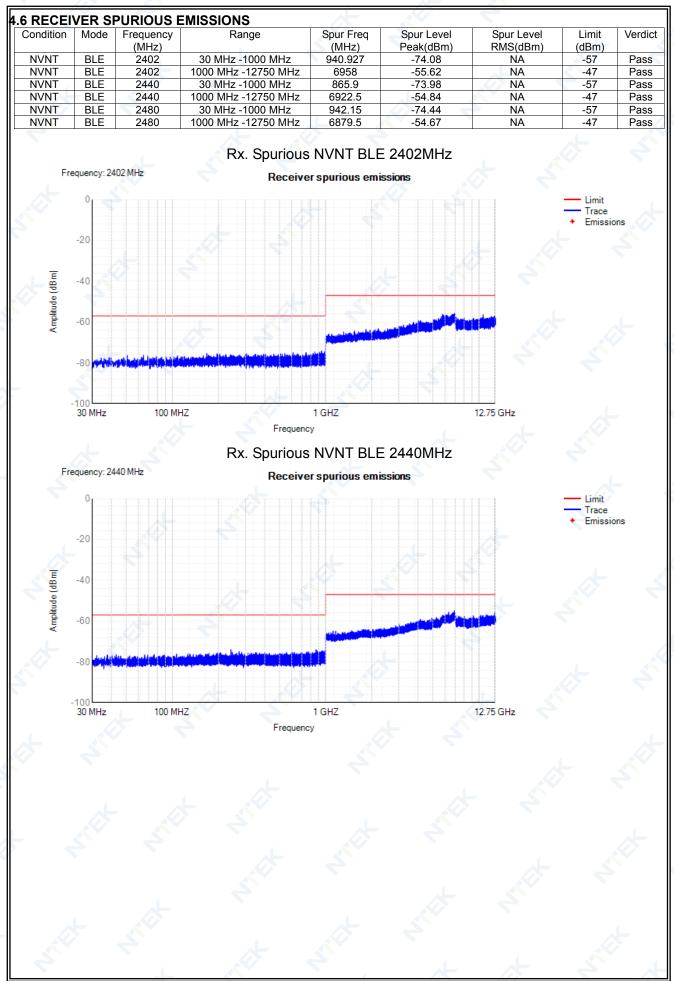

Page 51 of 55

Report No.: STR210425002002E

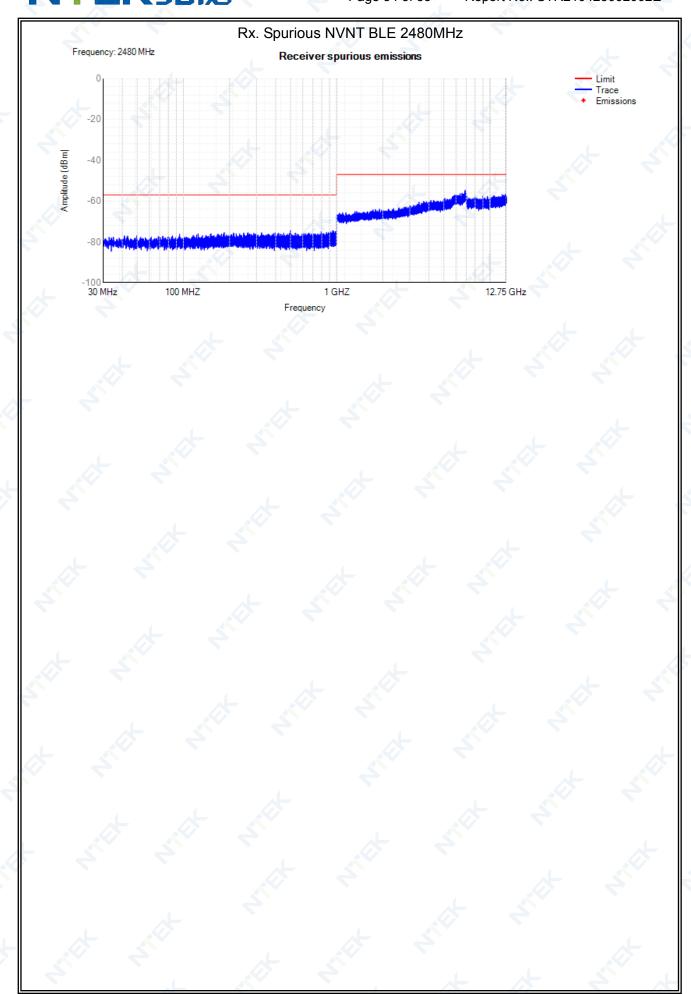

Condition	Mode	Frequency	Range	Spur Freq	Spur Level	Spur Level	Limit	Verdic
		(MHz)		(MHz)	Peak(dBm)	RMS(dBm)	(dBm)	
NVNT	BLE	2402	30 MHz -47 MHz	40.45	-66.66	NA	-36	Pass
NVNT	BLE	2402	47 MHz -74 MHz	60.75	-65.91	NA	-54	Pass
NVNT	BLE	2402	74 MHz -87.5 MHz	79.05	-67.08	NA	-36	Pass
NVNT	BLE	2402	87.5 MHz -118 MHz	95.6	-66.47	NA	-54	Pass
NVNT	BLE	2402	118 MHz -174 MHz	167.4	-64.96	NA	-36	Pass
NVNT	BLE	2402	174 MHz -230 MHz 📃	229.45	-64.99	NA	-54	Pas
NVNT	BLE	2402	230 MHz -470 MHz	363.4	-65.27	NA	-36	Pas
NVNT	BLE	2402	470 MHz -694 MHz	593.8	-65.6	NA	-54	Pas
NVNT	BLE	2402	694 MHz -1000 MHz	775.65	-64.28	👔 NA 🏑	-36	Pas
NVNT	BLE	2402	1000 MHz -2398 MHz	1897.5	-48.98	NA	-30	Pas
NVNT	BLE	2402	2485.5 MHz -12750 MHz	6155	-45.3	NA	-30	Pas
NVNT	BLE	2440	30 MHz -47 MHz	43 🧹	-67.44	NA	-36	Pas
NVNT	BLE	2440	47 MHz -74 MHz 🦯	50.05	-66.89	NA	-54	Pas
NVNT	BLE	2440	74 MHz -87.5 MHz	82.85	-66.53	NA	-36	Pas
NVNT	BLE	2440	87.5 MHz -118 MHz	117.15	-65.87	NA	-54	Pas
NVNT	BLE	2440	118 MHz -174 MHz	124.2	-65.9	NA NA	-36	Pas
NVNT	BLE	2440	174 MHz -230 MHz	211.15	-65.95	NA	-54	Pas
NVNT	BLE	2440	230 MHz -470 MHz	281.55	-64.79	NA	-36	Pas
NVNT	BLE	2440	470 MHz -694 MHz	479.8	-64.8	NA	-54	Pas
NVNT	BLE	2440	694 MHz -1000 MHz	959.25	-64.43	NA	-36	Pas
NVNT	BLE	2440	1000 MHz -2398 MHz	1845	-53.3	NA	-30	Pas
NVNT	BLE	2440	2485.5 MHz -12750 MHz	6923.5	-44.74	NA	-30	Pas
NVNT	BLE	2480	30 MHz -47 MHz	32.1	-67.71	NA	-36	Pas
NVNT	BLE	2480	47 MHz -74 MHz	62.1	-66.97	NA	-54	Pas
NVNT	BLE	2480	74 MHz -87.5 MHz	86.35	-67.07	NA	-36	Pas
NVNT	BLE	2480	87.5 MHz -118 MHz	95.3	-65.65	NA	-54	Pas
NVNT	BLE	2480	118 MHz -174 MHz	121.65	-65.45	NA	-36	Pas
NVNT	BLE	2480	174 MHz -230 MHz	213.2	-64.92	NA	-54	Pas
NVNT	BLE	2480	230 MHz -470 MHz	324.35	-65.22	NA	-36	Pas
NVNT	BLE	2480	470 MHz -694 MHz	611.45	-64.49	NA	-54	Pas
NVNT	BLE	2480	694 MHz -1000 MHz	989.15	-64.66	NA	-36	Pas
NVNT	BLE	2480	1000 MHz -2398 MHz	2242.5	-53.89	NA	-30	Pas
NVNT	BLE	2480	2485.5 MHz -12750 MHz	6840.5	-45.48	NA	-30	Pas

Tx. Spurious NVNT BLE 2402MHz Transmitter unwanted emissions in the spurious domain

Frequency: 2402 MHz



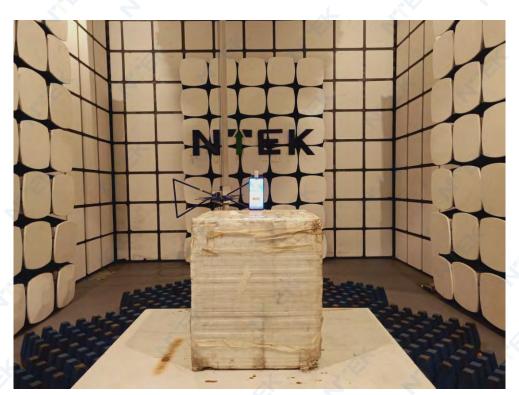
Frequency



Page 53 of 55

Report No.: STR210425002002E

Page 54 of 55



Page 55 of 55

Report No.: STR210425002002E

5. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT