RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product : Mobile Phone Trade Mark : Blackview Model Name : A50 Family Model : N/A Report No. : STR211102001001E

Prepared for

DOKE COMMUNICATION (HK) LIMITED.

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

Report No.: STR211102001001E

TEST RESULT CERTIFICATION

Applicant's name:	DOKE COMMUNICATION (HK) LIMITED.
Address:	RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA.
	Shenzhen DOKE Electronic Co.,Ltd.
Address:	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China.
Product description	
Product name:	Mobile Phone
Trademark	Blackview
Model Name	A50
Family Model	N/A
Standards	ETSI EN 300 328 V2.2.2 (2019-07)
	s been tested by NTEK, and the test results show that the n compliance with the of article 3.2 of the Directive 2014/53/EU
requirements. And it is applicabl	e only to the tested sample identified in the report.
This report shall not be reproduc	ced except in full, without the written approval of NTEK, this
document may be altered or rev	ised by NTEK, personnel only, and shall be noted in the revision of
the document.	
Date of Test	
Date (s) of performance of tests	
Date of Issue	Nov 27. 2021
Test Result	

Testing Engineer

Muhzi Lee

(Mukzi Lee)

Authorized Signatory :

les

(Alex Li)

Table of Contents	Page
 GENERAL INFORMATION 1.1 GENERAL DESCRIPTION OF EUT 1.2 INFORMATION ABOUT THE EUT 1.3 TEST CONDITIONS 1.4 TEST CONFIGURATION OF EUT 1.5 DESCRIPTION OF TEST CONDITIONS 	7 7 8 13 13 13 14
1.6 DESCRIPTION OF SUPPORT UNITS	15
 1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS 2. SUMMARY OF TEST RESULTS 2.1 TEST FACILITY 2. DE OUTPUT DOWED 	16 17 18
 3. RF OUTPUT POWER 3.1 LIMITS OF RF OUTPUT POWER 3.2 TEST PROCEDURE 3.3 DEVIATION FROM TEST STANDARD 3.4 TEST SETUP 3.5 TEST RESULTS 	19 19 19 19 19 19 20
4 . ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATIO	
SEQUENCE 4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OC HOPPING SEQUENCE 4.2 TEST PROCEDURE 4.3 DEVIATION FROM TEST STANDARD	21 CUPATION AND 21 21 21
4.4 TEST SETUP 4.5 TEST RESULTS 5 . OCCUPIED CHANNEL BANDWIDTH	22 22 23
5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH 5.2 TEST PROCEDURE	23 23 23
5.3 DEVIATION FROM TEST STANDARD 5.4 TEST SETUP 5.5 TEST RESULTS	24 24 24 24
6 . TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAI 6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OU	

Page 3 of 91

Table of Conte	nts Page	
DOMAIN	25	
6.2 TEST PROCEDURE	25	
6.3 DEVIATION FROM TEST STANDARD	26	
6.4 TEST SETUP	26	
6.5 TEST RESULTS	26	
7 . HOPPING FREQUENCY SEPARATION	N 27	
7.1 LIMITS OF HOPPING FREQUENCY S	EPARATION 27	
7.2 TEST PROCEDURE	27	
7.3 DEVIATION FROM TEST STANDARD	27	
7.4 TEST SETUP	28	
7.5 TEST RESULTS	28	
8. TRANSMITTER UNWANTED EMISSIC	ONS IN THE SPURIOUS DOMAIN 29	
8.1 LIMITS OF TRANSMITTER TRANSMIT	ITER UNWANTED EMISSIONS IN THE	
SPURIOUS DOMAIN	29	
8.2 TEST PROCEDURE	29	
8.3 DEVIATION FROM TEST STANDARD	29	
8.4 TEST SETUP	30	
8.5 TEST RESULTS (Radiated measureme	nt) 🔷 31	
8.6 TEST RESULTS (Conducted measuren	ment) 32	
9. RECEIVER SPURIOUS EMISSIONS	-33	
9.1 LIMITS OF RECEIVER SPURIOUS RA	ADIATION 33	
9.2 TEST PROCEDURE	33	
9.3 DEVIATION FROM TEST STANDARD	33	
9.4 TEST SETUP	34	
9.5 TEST RESULTS (Radiated measureme		
9.6 TEST RESULTS (Conducted measuren	nent) 36	
10. RECEIVER BLOCKING	37	
10.1 PERFORMANCE CRITERIA	37	
10.2 LIMITS OF RECEIVER BLOCKING	37	
10.3 TEST PROCEDURE	38	
10.4 DEVIATION FROM TEST STANDARD	39	
10.5 TEST SETUP	39	
10.6 TEST RESULTS	40	
11. TEST RESULTS	41	

Page 4 of 91

	Table of Contents	Page	
	11.1 Accumulated Transmit Time	4 <i>*</i>	1
	11.2 Frequency Occupation	48	
	11.3 One Pulse Dwell Time	55	5 🔶
	11.4 RF Output Power	65	5
	11.5 Hopping Frequency Separation	67	7
	11.6 Occupied Channel Bandwidth	7′	1
	11.7 Transmitter unwanted emissions in the out-of-band domain	74	1
	11.8 Transmitter unwanted emissions in the spurious domain	77	7
	11.9 Receiver spurious emissions	85	5
	11.10 Hopping Sequence	89	9
1:	2. EUT TEST PHOTO	91	1
S	PURIOUS EMISSIONS MEASUREMENT PHOTOS	91	1

Page 5 of 91

Page 6 of 91

Report No.: STR211102001001E

Report No.	Version	Description	Issued Date
Report No.	•		
STR211102001001E	Rev.01	Initial issue of report	Nov 27. 2021
.1			
			4
< C		* 5 4	
	A 5		x 3
4			
		~ ~	t t
A A			<u><u> </u></u>
250	6		
4		4	
		*	
<u> </u>			
x			<u> </u>
		A 7 4	at the
1			* ~
it with		with with	

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone			
Trade Mark	Blackview	Blackview		
Model Name.	A50	A50		
Family Model	N/A			
Model Difference	N/A	~		
	The EUT is Mobile Phon	e 🖌 🖌		
	Operation Frequency:	2402~2480 MHz		
	Modulatin Type:	GFSK,π/4-DQPSK,8-DPSK		
	Modulation Technology:	FHSS		
	Adaptive/non-adaptive	Adaptive equipment		
	Receiver categories	2		
Product Description	Number Of Channel	79CH		
	Antenna Designation:	PIFA Antenna		
	Antenna Gain(Peak)	1.1dBi 🔔 💉		
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.			
Channel List	Refer to below Table			
Adapter	Input: AC 100-240V~50/	Model: HJ-0501000N2-EU Input: AC 100-240V~50/60Hz 0.15A Output: DC 5.0V1.0A 5.0W		
Battery	DC 3.87V, 4280mAh, 16	DC 3.87V, 4280mAh, 16.563Wh		
Rating	DC 3.87V from battery o	DC 3.87V from battery or DC 5V from Adapter.		
I/O Ports	Refer to users manual	L.		
Hardware Version	S654_V1			
Software Version	A50_EEA_S654_V1.0	A50_EEA_S654_V1.0		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page 8 of 91

79 channels are provided to (GFSK, π /4-DQPSK, 8-DPSK)

	-
Channel	Frequency
Chamler	(MHz
00	2402
01	2403
····· / /	
マン (Y	····
77	2479
78	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

FHSS

2.

other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment:

The maximum number of Hopping Frequencies: 79

- The minimum number of Hopping Frequencies: 79
- The (average) Dwell Time: 331.056s Maximum

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- Adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The maximum Channel Occupancy Time implemented by the equipment:/..... ms

- The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment

The equipment can switch dynamically between Frame Based and Load Based equipment

The CCA time implemented by the equipment:/.. µs

- The equipment has implemented a non-LBT based DAA mechanism
- The equipment can operate in more than one adaptive mode

<u>NTEK北测®</u>

Page 9 of 91

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.):

The maximum (corresponding) Duty Cycle:

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

• RF Output Power

GFSK

Power Spectral Density

N/A

• Duty cycle, Tx-Sequence, Tx-gap

N/A

Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
 GFSK

• Hopping Frequency Separation (only for FHSS equipment)

π/4-DQPSK

Medium Utilization

N/A

Adaptivity

N/A

Receiver Blocking

GFSK

- Nominal Channel Bandwidth
- 8-DPSK
- Transmitter unwanted emissions in the OOB domain 8-DPSK
- Transmitter unwanted emissions in the spurious domain

π/4-DQPSK

Receiver spurious emissions

8-DPSK

g) The different transmit operating modes (tick all that apply):

- Operating mode 1: Single Antenna Equipment
- Equipment with only one antenna
- Equipment with two diversity antennas but only one antenna active at any moment in time

Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only

- one antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
- Single spatial stream / Standard throughput / (e.g. IEEE 802.11[™] [i.3] legacy mode)
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2

Page 10 of 91

	<u> </u>
NOTE 1: Add more lines if more channel bandwidths are supported.	
Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming	
Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)	
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1	
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2	
NOTE 2: Add more lines if more channel bandwidths are supported.	
h) In case of Smart Antenna Systems:	
The number of Receive chains:	
The number of Transmit chains:	
symmetrical power distribution	
asymmetrical power distribution	
In case of beam forming, the maximum (additional) beam forming gain: dB	
NOTE: The additional beam forming gain does not include the basic gain of a single antenna.	
i) Operating Frequency Range(s) of the equipment:	
Operating Frequency Range 1: 2402 MHz to 2480 MHz	
Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported.	
j) Nominal Channel Bandwidth(s):	
Nominal Channel Bandwidth 1: 1.201MHz	
Nominal Channel Bandwidth 2:/ MHz	
NOTE: Add more lines if more channel bandwidths are supported.	
k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.):	
Stand-alone	
Combined Equipment (Equipment where the radio part is fully integrated within another type of	of
equipment)	
Plug-in radio device (Equipment intended for a variety of host systems)	
Other	
I) The normal and the extreme operating conditions that apply to the equipment:	
Normal operating conditions (if applicable):	
Operating temperature: 15℃~35℃	
Other (please specify if applicable):	
Extreme operating conditions:	
Operating temperature range: Minimum: -10°C Maximum 40°C	
Other (please specify if applicable): Minimum: Maximum	
Details provided are for the:	
stand-alone equipment	
combined (or host) equipment	
L test jig	

m) The intended combination(s) of the radio equipment power	r settings and one or	more antenna
assemblies and their corresponding e.i.r.p. levels:		

Antenna Type: PIFA Antenna

Integral Antenna (information to be provided in case of conducted measurements)

Antenna Gain: 1.1 dBi

If applicable, additional beamforming gain (excluding basic antenna gain):/..... dB

Temporary RF connector provided

No temporary RF connector provided

Dedicated Antennas (equipment with antenna connector)

Single power level with corresponding antenna(s)

Multiple power settings and corresponding antenna(s)

Number of different Power Levels:

Power Level 1: dBm

Power Level 2: dBm

Power Level 3: dBm

NOTE 1: Add more lines in case the equipment has more power levels.

NOTE 2: These power levels are conducted power levels (at antenna connector).

•For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains

(G) and the resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable

Power Level 1: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1 1	1.1	7.07	L.
2			*
3		7	

NOTE 3: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 2: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			
2			
2		2	

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1	ALC: NO		A A
2	C		~
3		At 2	

NOTE 5: Add more rows in case more antenna assemblies are supported for this power level.

n) The nominal voltages of the stand-	alone radio equipment or	the nominal voltages of the
combined (host) equipment or test	t jig in case of plug-in dev	vices:
Details provided are for the:		
Stand-alone equipment		
Combined (or host) equipment		
🗌 test jig		
Supply Voltage 🔲 AC mains State A	C voltageV	
DC State DC volt	age: DC 3.87V	
In case of DC, indicate the type of pow	wer source	
Internal Power Supply		
External Power Supply or AC/DC	C adapter: DC 5V	
Battery: DC 3.87V		
Other:		
o) Describe the test modes available v	which can facilitate testin	g: 🙏 🔏 🤇
See clause 1.4		
p) The equipment type (e.g. Bluetooth	n®, IEEE 802.11™ [i.3], IEE	E 802.15.4™ [i.4], proprietary,
Bluetooth®		
q) If applicable, the statistical analysis		.1 q)
(to be provided as separate attachme		<u> </u>
r) If applicable, the statistical analysis		1 r)
(to be provided as separate attachme		
s) Geo-location capability supported I	by the equipment:	
Yes The geographical location deterr	mined by the equipment of	defined in clause 4.2.1.12.2 or
clause 4.3.2.12.2 is not accessib		defined in clause 4.5.1.15.2 of
No		
t) Describe the minimum performance	e criteria that apply to the	equinment (see clause 4.3.1.1
clause 4.3.2.11.3):		
GFSK(CH00) =0.59%		
At 5		

1.3 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	-10℃ ~ 40℃ Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.87V	1

Page 13 of 91

Note:

(1) The HT 40 $^\circ\!C$ and LT -10 $^\circ\!C$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

1.4 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing					
Bluetooth mode	Data rate	Modulation type			
BR	1Mbps	GFSK			
EDR	2Mbps	π/4-DQPSK			
EDR	3Mbps	8-DPSK			

Test Channel Frequencies Configuration					
Test Channel	EUT Channel	Test Frequency (MHz)			
Lowest	CH00	2402 🔶			
Middle	CH39	2441			
Highest	CH78	2480			

Page 14 of 91 Report No.: STR211102001001E

1.5 DESCRIPTION OF TEST CONDITIONS

E-1 EUT

Page 15 of 91

1.6 DESCRIPTION OF SUPPORT UNITS

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.		Series No.		Note	
E-1	Mobile Phone	1	A50	N/A		EUT	4
1	4		4				
		X					
	At 1		~			<u>×</u>	
X					1		1
				2			
		*	2	·	1		
							2

Item	Shielded Type	Ferrite Core	Length	Note
	7			
		X	5	
	* *			
			い 、 は	L. C.

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength_a column.

<u>NTEK 北测[®]</u>

Page 16 of 91

Report No.: STR211102001001E

1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrat ion period
EMI Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
Turn Table	EM	SC100 1	60531	N/A	N/A	N/A
Antnna Mast	EM 🔨	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2021.03.29	2022.03.28	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2021.04.27	2022.04.26	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835S E	980246	2021.07.01	2022.06.30	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2021.04.27	2022.04.26	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2021.07.01	2022.06.30	1 year
Power Splitter	Mini-Circuits/U SA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2021.07.01	2022.06.30	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2021.04.27	2022.04.26	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2021.07.01	2022.06.30	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
Temperature & Humitidy Chamber	GIANT FORCE	GTH-056P	GF-94454-1	2021.04.27	2022.04.26	1 year

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
	TRANSMITTER PARAMETERS	
4.3.1.2	RF Output Power	Pass
4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2
4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
4.3.1.5	Hopping Frequency Separation	Pass
4.3.1.6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2
4.3.1.7	Adaptivity	Not Applicable (See Note 1)
4.3.1.8	Occupied Channel Bandwidth	Pass
4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	4
4.3.1.11	Receiver Spurious Emissions	Pass
4.3.1.12	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

<u>NTEK 北测®</u>

Page 18 of 91

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

	Maximum measurement un	certainty
No.	Item	Uncertainty
1	Occupied Channel Bandwidth	± 5%
2	RF output Power, conducted	÷1.5dB
3	Power Spectral Density, conducted	± 3dB
4	Unwanted emissions, conducted	± 3dB
5	All emissions, radiated	± 6dB
6	Temperature	± 3℃
7	Humidity	± 3%
9	Time	± 5%

Page 19 of 91

Report No.: STR211102001001E

TRANSMITTER PARAMETERS

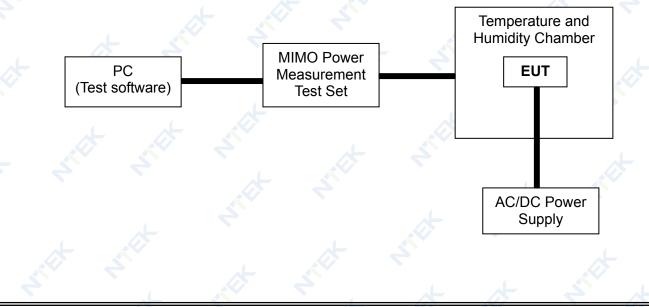
3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER

Refer to chapter 4.3.1.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER					
Condition	Limit				
Non-adaptive frequency hopping systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.				
Adaptive frequency hopping systems	equal to or less than 20 dBm.				

3.2 TEST PROCEDURE


Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement	
Conducted measurement	Radiated measurement	

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

N2017.06.06.0614.V.1.3

Page 20 of 91

3.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A50
Temperature :	20C	Relative Humidity :	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V 🔔 💦
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK		

Test data reference attachment

Page 21 of 91

4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Refer to chapter 4.3.1.4.3 of ETSI EN 300 328 V2.2.2 (2019-07)

Accumulated Transmit Time			
Limit			
≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]			
≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]			
FREQUENCY OCCUPATION TIME			
Limit			
Each hopping frequency of the hopping sequence shall be occupied at least once within a period not			
exceeding four times the product of the dwell time and the number of hopping frequencies in use.			
OPPING SEQUENCE (S)			
Limit			
≥15 hopping frequencies or 15/minimum			
Operating over a minimum of 70% of the Operating ir the band 2.4 GHz to 2.4835 GHz			
≥15 hopping frequencies or 15/minimum			

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of ETSI EN 300 328 V2.2.2 (2019-07)

Μ	easurement			
Conducted measurement		Radiated r	neasurement	
4.3 DEVIATION FROM TEST STANDARD	4	4	KET	4
No deviation				
				N2017.06.06.06

EUT

Page 22 of 91 Report No.: STR211102001001E

4.4 TEST SETUP

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Spectrum

Analyzer

4.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A50	
Temperature :	26℃	Relative Humidity	60 %	
Pressure :	1012 hPa	Test Voltage :	DC 3.87V	
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-Hopping Mode			

Test data reference attachment

Page 23 of 91

Report No.: STR211102001001E

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH

Refer to chapter 4.3.1.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

OCCUPIED CHANNEL BANDWIDTH				
	Condition	Limit		
AI	I types of equipment	Shall fall completely within the band 2400 to 2483.5 MHz		
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz		
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz		

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

M	easurement
Conducted measurement	Radiated measurement

The setting of the Spectrum Analyzer

The centre frequency of the channel under test	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2 × Nominal Channel Bandwidth		
RMS	.L	
~ 1 % of the span without going below 1 %		Z
3 × RBW	4	
Max hold		
1s		
	2 × Nominal Channel Bandwidth RMS ~ 1 % of the span without going below 1 % 3 × RBW Max hold	2 × Nominal Channel Bandwidth RMS ~ 1 % of the span without going below 1 % 3 × RBW Max hold

Page 24 of 91

5.3 DEVIATION FROM TEST STANDARD

No deviation

5.4 TEST SETUP

EUT Spectrum Analyzer

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

5.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A50
Temperature :	26℃	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-(0	CH00/CH78)	A S

Test data reference attachment

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN			
Condition	Limit		
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.		

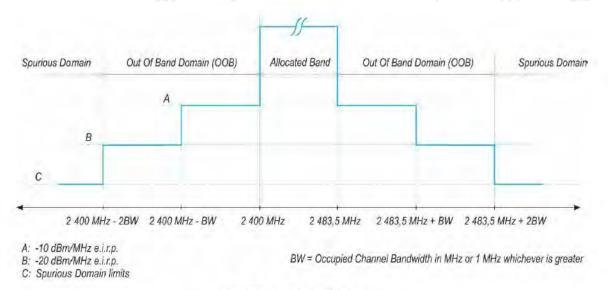
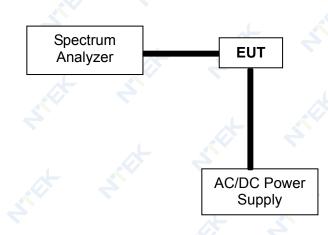


Figure 1: Transmit mask

6.2 TEST PROCEDURE

Refer to chapter 5.4.8.2of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement	
Conducted measure	ment	1
The setting of the Spectrum Ana	alyzer	
Span	0Hz	X
Filter Mode	Channel Filter	
Trace Mode	Clear/Write	
Trigger Mode	Video Trigger	
Detector	RMS	
Sweep Point / Sweep Mode	5000 / Continuous	
RBW / VBW	1MHz / 3MHz	


Page 26 of 91 Re

Report No.: STR211102001001E

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

6.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A50	
Temperature :	26°C	Relative Humidity :	60 %	
Pressure :	1012 hPa	Test Voltage :	DC 3.87V 🔔 💦 🔗	
Test Mode :	: BT-GFSK/π/4-DQPSK /8-DPSK-(CH78)			

Test data reference attachment

Page 27 of 91

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of ETSI EN 300 328 V2.2.2 (2019-07)

HOPPING FREQUENCY SEPARATION				
Condition	Limit			
Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.			
Adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be 100 kHz.			

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Me	easurement			
Conducted	measurement		Radiated measu	urement	
The setting of the Spec	trum Analyzer			L	Ļ
Center Frequency	Centre of the two ac	djacent hopping fr	requencies	<u> </u>	
Frequency Span	Sufficient to see the frequencies	complete power	envelope of bo	th hopping	
Detector	Max Peak	1			5
RBW	~ 1 % of the span				
VBW	3 × RBW		4		
Trace	Max hold	A -		. [
Sweep Time	Auto	5			7

7.3 DEVIATION FROM TEST STANDARD

No deviation

EUT

Page 28 of 91 Report No.: STR211102001001E

7.4 TEST SETUP

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Spectrum

Analyzer

7.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A50 🧹	S ^N		
Temperature :	26°C	Relative Humidity :	60 %			
Pressure :	1012 hPa	Test Voltage :	DC 3.87V			
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-(CH00/CH39/CH78)					

Test data reference attachment

Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz.
2.The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

NTEK 北测

8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

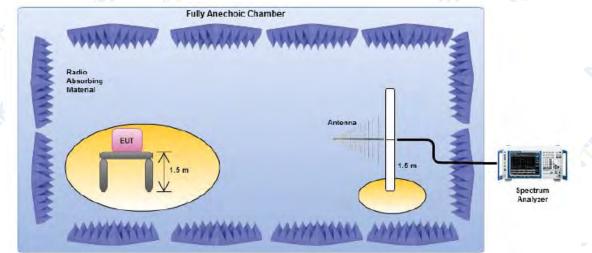
Refer to chapter 4.3.1.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EN	ISSIONS IN THE SPURIOUS DO	OMAIN
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

8.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement						
Conducted measurement						
The setting of the Spectro	um Analyzer	S S S S S S S S S S S S S S S S S S S	1		4	
RBW	100K(<1GHz) / 1M	(>1GHz)		~		
VBW	300K(<1GHz) / 3M	(>1GHz)			4	


8.3 DEVIATION FROM TEST STANDARD

No deviation

Page 30 of 91 Report No.: STR211102001001E

8.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

NTEK 北测

Page 31 of 91

8.5 TEST RESULTS (Radiated measurement)

EUT :	Mobile Phone	Model Name :	A50
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	BT-GFSK (CH00)		

	Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
ſ	V	42.002	-73.16	10.77	-62.39	-36	-26.39	peak
	V	109.384	-74.42	11.26	-63.16	-54	-9.16	peak
	V	197.175	-73.05	11.22	61.83	-54	-7.83	peak
ſ	V	316.066	71.18	11.19	-59.99	-36	-23.99	peak
ſ	V	506.1	-72.37	9.53	-62.84	-54	-8.84	peak
	Н	41.958	-72.78	10.45	-62.33	-36	-26.33	peak
	H	112.054	-75.97	10.20	-65.77	-54	-11.77	peak
ſ	Н	201.758	-77.85	10.83	-67.02	-54	-13.02	peak
ſ	Н	417.059	-67.7	11.11	-56.59	-36	-20.59	peak
	Н	511.573 🗸	-72.36	11.03	-61.33	-54	-7.33	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

NTEK北测

Page 32 of 91

ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

EUT :	Mobile Phone	Model Name :	A50
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa 🔶 📈	Test Power :	DC 3.87V 🔔 💦
Test Mode :	GFSK (CH00/CH39/CH78)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Remain
		ope	eration freq	uency:2402	A.	5	
V	2771	-70.14	10.22	-59.92	-30	-29.92	peak
V	4278.846	-68.26	9.68	-58.58	-30	-28.58	peak
V	2295.5	67.71	10.95	-56.76	-30	-26.76	peak
V	5044.826	-75.35	9.85	-65.50	-30	-35.50	peak
Н	2371.205	-70.86	10.50	-60.36	-30	-30.36	peak
Н 🏅	3523.383	-71.36	11.22	-60.14	-30	-30.14	peak
H	2764.765	-75.09	- 10.13 🗸	-64.96	-30	-34.96	peak
Н	4681.926	-77.92	10.38	-67.54	-30	-37.54	peak
		оре	eration freq	uency:2441			
V	2101.539	-75.3	10.17	-65.13 🏑	-30	-35.13	peak
V	3480.215	-77.91	10.22	-67.69	-30	-37.69	peak
V	2355.714	-74.82	10.42	-64.40	-30	-34.40	peak
V	4391.375	-77.29	10.79	-66.50	-30	-36.50	peak
Н	2639.358	-76.63	9.82	-66.81	-30	-36.81	peak
Н	3878.577	-68.35	9.57	-58.78	-30	-28.78	peak
Ŧ	2307.813	-76.21	9.66	-66.55	-30	-36.55	peak
Н	5642.841	-76.21	11.33	-64.88	-30	-34.88	peak
×				uency:2480			
V	2209.278	-73.21	10.13	-63.08	-30	-33.08	peak
V	5224.963	-67.88	9.68	-58.20	-30	-28.20	peak
V	2571.823	-69.25	10.78	-58.47	-30	-28.47	peak
V	3127.114	-75.68	10.82	-64.86	-30	-34.86	peak
Н	2199.121	-73.01	11.38	-61.63	-30	-31.63	peak
Н	5769.086	-68.4	10.36	-58.04	-30	-28.04	peak
Н	2709.268	-75.36	10.60	-64.76	-30	-34.76	peak
Н	5309.338	-67.78	10.51	-57.27	-30	-27.27	peak

Remark:

1. Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.

2. All the modes had been tested, but only the worst data recorded in the report.

8.6 TEST RESULTS (Conducted measurement) Test data reference attachment

Page 33 of 91

9. RECEIVER SPURIOUS EMISSIONS

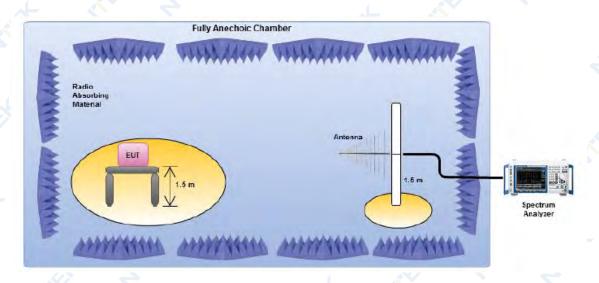
9.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.1.11.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS					
Frequency Range	Measurement Bandwidth				
30 MHz ~ 1 GHz	-57dBm	100KHz			
1 GHz ~ 12.75 GHz	-47dBm	1MHz			

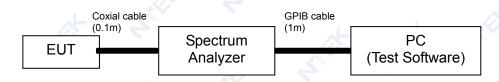
9.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement							
Conducted r	neasurement		Radiated	l measureme	ent			
The setting of the Spect	rum Analyzer	4	•		×			
RBW	100K(<1GHz) / 1M	l(>1GHz)	X	1				
VBW	300K(<1GHz) / 3N	l(>1GHz)		5	7			


9.3 DEVIATION FROM TEST STANDARD

No deviation


Page 34 of 91 Report No.: STR211102001001E

9.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

NTEK 北测

Page 35 of 91

9.5 TEST RESULTS (Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)						
EUT : Mobile Phone Model Name : A50						
Temperature :	24 °C	Relative Humidity	54%			
Pressure :	1010 hPa	Test Power :	DC 3.87V			
Test Mode :	GFSK(CH00)		\sim \sim			

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	30.966	-77.5	12.25	-65.25	-57	-8.25	peak
V	118.291	-82.42	16.13	-66.29	-57	-9.29	peak
V	208.071	-83.51	14.05	-69.46	-57	-12.46	peak
V	349.565	-84.85	17.01	-67.84	-57	-10.84	peak
V	651.679	-80.84	15.51	-65.33	-57	-8.33	peak
Н 🎸	32.439	-81.5	14.62	-66.88	-57	-9.88	peak
Н	98.114	-78.98	17.87	-61.11	-57	-4.11	peak
Н	223.544	-79.94	16.70	-63.24	-57	-6.24	peak
Н	291.494	-84.55	15.79	-68.76	-57	-11.76	peak
Н	538.508	-82.73	17.54	-65.19	-57 🧹	-8.19	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

EK 北测

Page 36 of 91

Report No.: STR211102001001E

RX ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

EUT :	Mobile Phone	Model Name :	A50
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	GFSK (CH00)	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Polar (H/V) [■]	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	2052.225	-80.75	10.46	-70.29	-47	-23.29	peak
V	3232.772	-79.76	10.21	-69.55	-47	-22.55	peak
V	2919.687	-81.43	10.57	-70.86	-47	-23.86	peak
V	3662.446	-80.17	16.88	-63.29	-47	-16.29	peak
Н	2213.986	-84.27	10.29	-73.98	-47	-26.98	peak
Н	3833.526	-81.02	11.29	-69.73	-47	-22.73	peak
Н	2476.365	-83.21	6.79	-76.42	-47	-29.42	peak
H	3619.532	-83.2	15.06	-68.14	-47	-21.14	peak

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

9.6 TEST RESULTS (Conducted measurement) Test data reference attachment

Page 37 of 91

10. RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504	-34	CW
(-139 dBm + 10 × log₁₀(OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524		STAT
	2584 2674	at at	

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 38 of 91

Report No.: STR211102001001E

Table 7: Receiver Blocking parameters receiver category 2 equipment							
Wanted signal mean power from	d signal mean power from Blocking signal		Type of blocking				
companion device (dBm)	Frequency (MHz)	(dBm) (see note 3)	signal				
(see notes 1 and 3)		1 K	•				
(-139 dBm + 10 × log₁₀(OCBW) + 10 dB)	2 380	-34	CW				
or (-74 dBm + 10 dB) whichever is less	2 504		X X				
(see note 2)	2 300						
	2 584		ς.				

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log₁₀(OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	A Contraction	
(see note 2)	2 300		
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

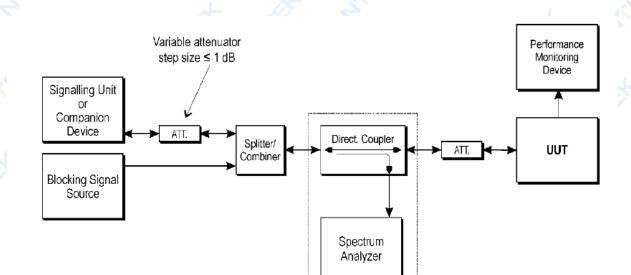
NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

10.3 TEST PROCEDURE

Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)

N	leasurement
Conducted measurement	Radiated measurement
5	5

Page 39 of 91 Report No.: S


Report No.: STR211102001001E

Optional

10.4 DEVIATION FROM TEST STANDARD

No deviation

10.5 TEST SETUP

Page 40 of 91

10.6 TEST RESULTS

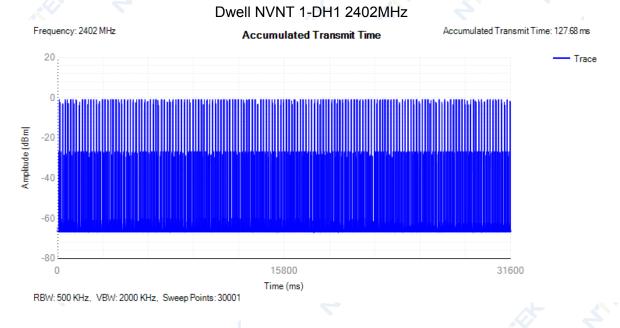
EUT :	Mobile Phone	Model Name :	A50
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	GFSK Hopping mode (RX)		

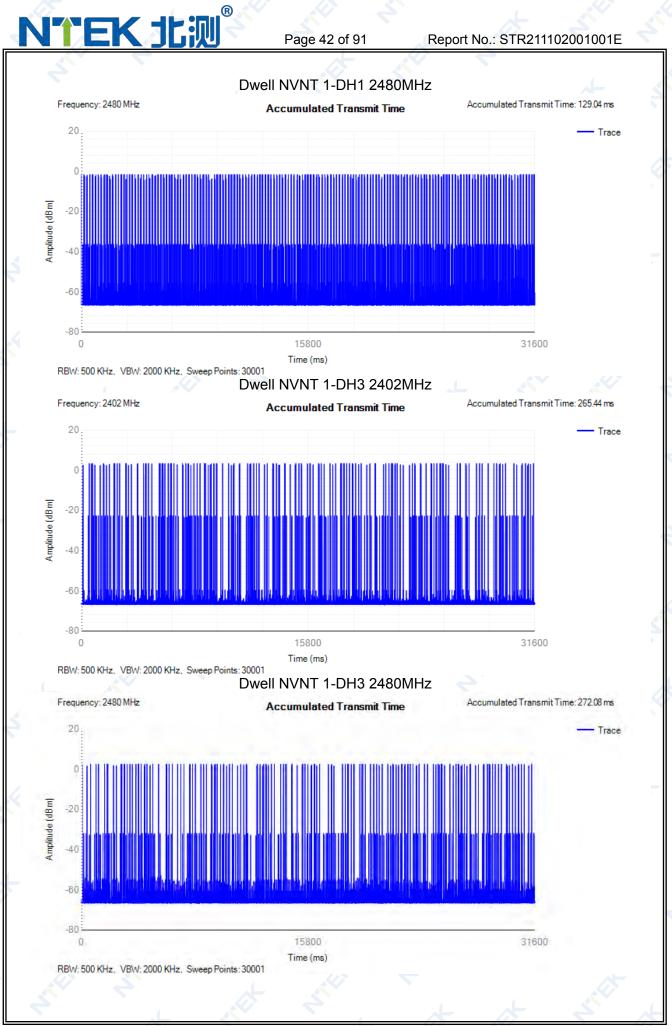
СН00

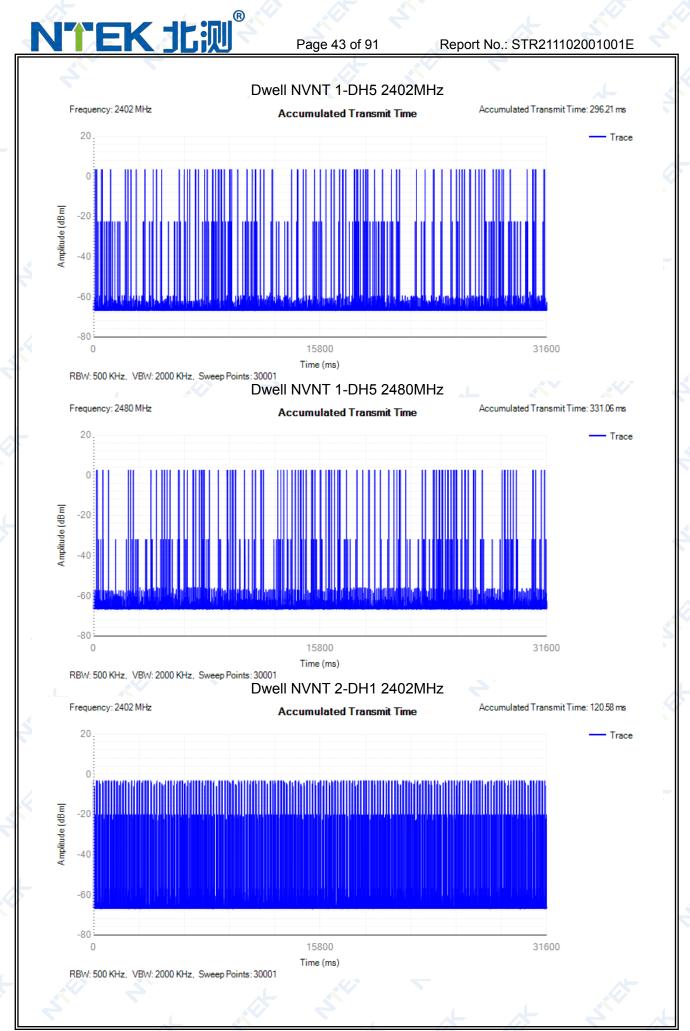
	receiver cate	gory 2		
Wanted signal mean power	Blocking signal	Blocking signal	X	PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)				%
	2 380		0.37%	≤10
	2 504	24	0.44%	≤10
-69.58	2 300	-34	0.37%	-10
4	2 584	~ ~ ~	0.59%	≤10

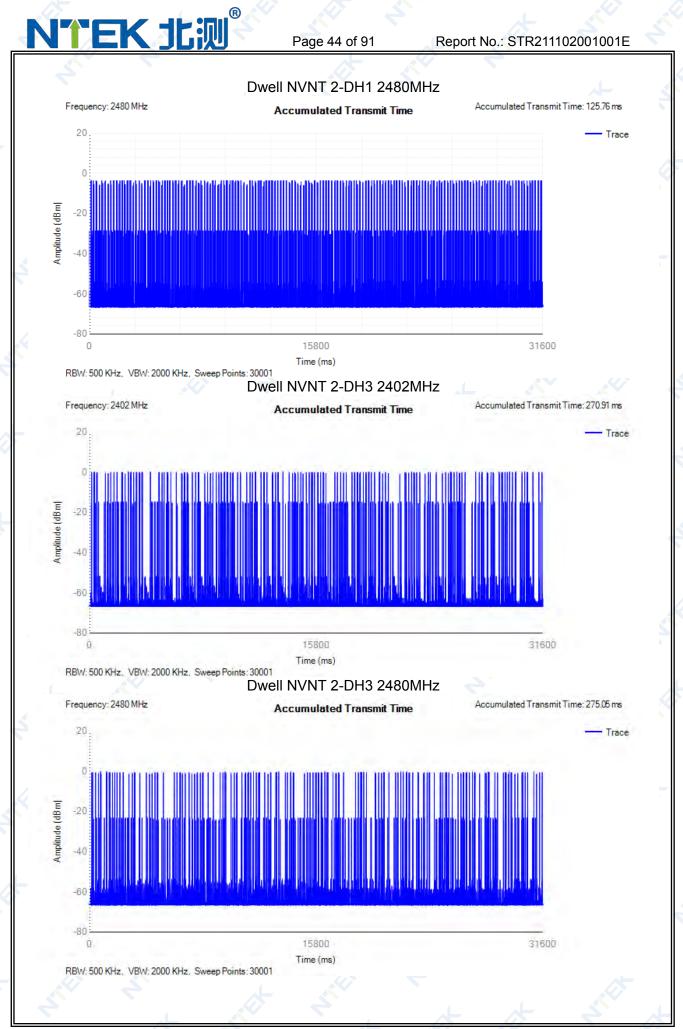
CH78

		receiver cate	gory 2 🔶 🔷		
	Wanted signal mean power	Blocking signal	Blocking signal		PER
	from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
	(see notes 1 and 3)				%
		2 380		0.23%	-10
Δ.	60.59	2 504	24	0.21%	≤10
	-69.58	2 300	34	0.24%	<10
		2 584	~	0.53%	≤10

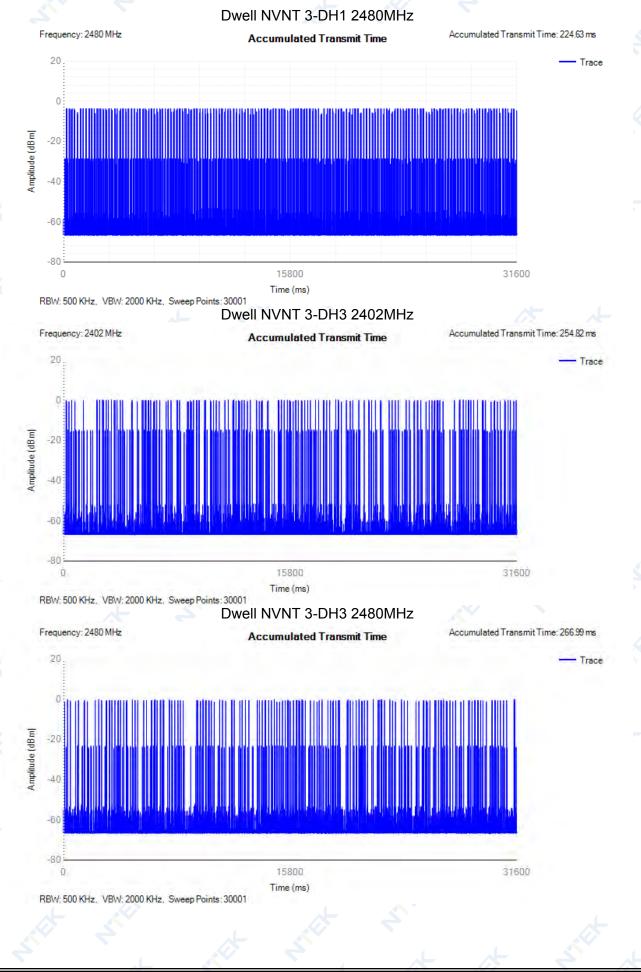

Note: (1) The above results were obtained from laboratory tests.


Page 41 of 91


11. TEST RESULTS


11.1 Accumulated Transmit Time

	to a mane						
Condition	Mode	Frequency (MHz)	Accumulated Transmit Time (ms)	Limit (ms)	Sweep Time (ms)	Burst Number	Verdict
NVNT	1-DH1	2402	127.68	400	31600	320	Pass
NVNT	1-DH1	2480	129.042	400	31600	321	Pass
NVNT	1-DH3	2402	265.44	400	31600	160	Pass
NVNT	1-DH3	2480	272.076	400	31600	164	Pass
NVNT	1-DH5	2402	296.208	400	31600	102	Pass
NVNT	1-DH5	2480	331.056	400	31600	114	Pass
NVNT	2-DH1	2402	120.582	400	31600	319	Pass
NVNT	2-DH1	2480	125.76	400	31600	320	Pass
NVNT	2-DH3	2402	270.912 🧷	400	\$31600	166	Pass
🖉 NVNT 🤜	2-DH3	2480	275.049	400	31600	167	Pass
NVNT	2-DH5	2402	306.128	400	31600	106	Pass
NVNT	2-DH5	2480	311.904	400	31600	108	Pass
NVNT	3-DH1	2402	125.76	400	31600	<u> </u>	Pass
NVNT	3-DH1	2480	224.625	400 💉	31600	599 🚿	Pass
NVNT	3-DH3	2402	254.82	400	31600	155	Pass
NVNT	3-DH3	2480	266.994	400	31600	163	Pass
NVNT	3-DH5	2402	300.352	400	31600	104	Pass
NVNT	3-DH5	2480	313.92	400	31600	109 🔨	Pass
			· · · · · · · · · · · · · · · · · · ·				



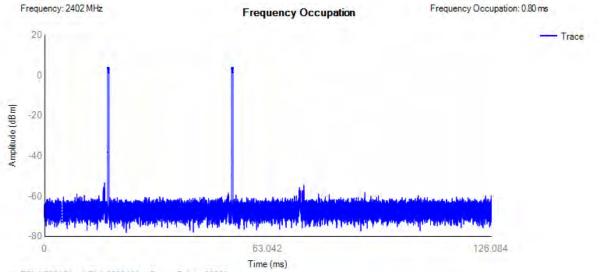
NTEK 北测

Page 45 of 91 Report No.: STR211102001001E Dwell NVNT 2-DH5 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 306.13 ms Accumulated Transmit Time 20 Trace 0 Amplitude (dBm) -20 -40 -60 -80 15800 31600 Ò. Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 2-DH5 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 311.90 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -20 41 -60 -80 Ò 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH1 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 125.76 ms Accumulated Transmit Time 20 - Trace 0 Amplitude (dBm) -20 -40 -60 -80 31600 0 15800 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

Page 46 of 91

Report No.: STR211102001001E

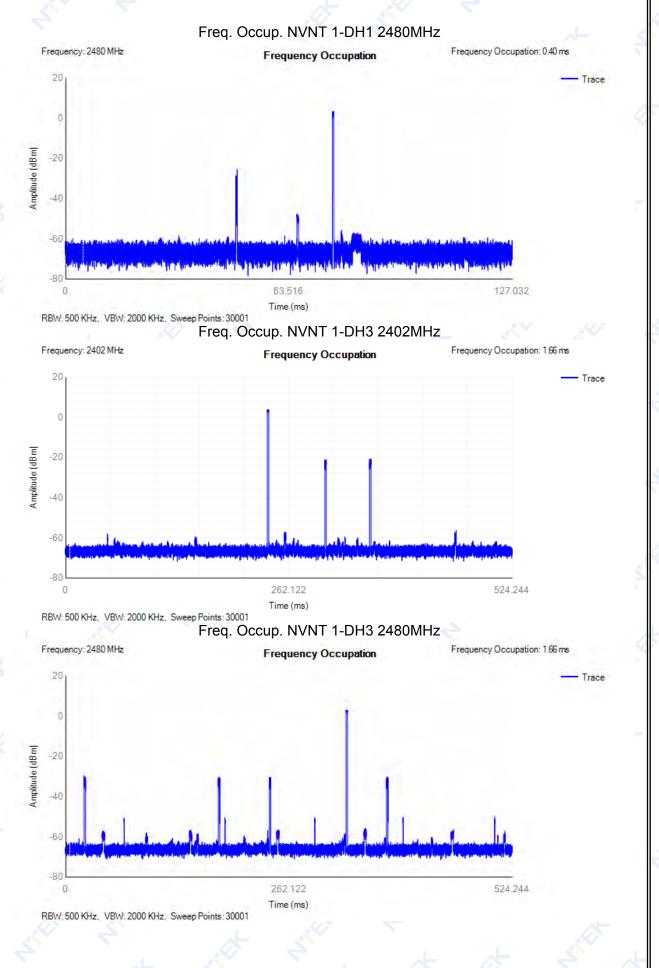
Page 47 of 91 Report No.: STR211102001001E Dwell NVNT 3-DH5 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 300.35 ms Accumulated Transmit Time 20 Trace ٥ Amplitude (dBm) -20 -40 -6 -80 Ò 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH5 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 313.92 ms Accumulated Transmit Time 20 Trace Ø Amplitude (dBm) -20 -40 -60 -80 Ò 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

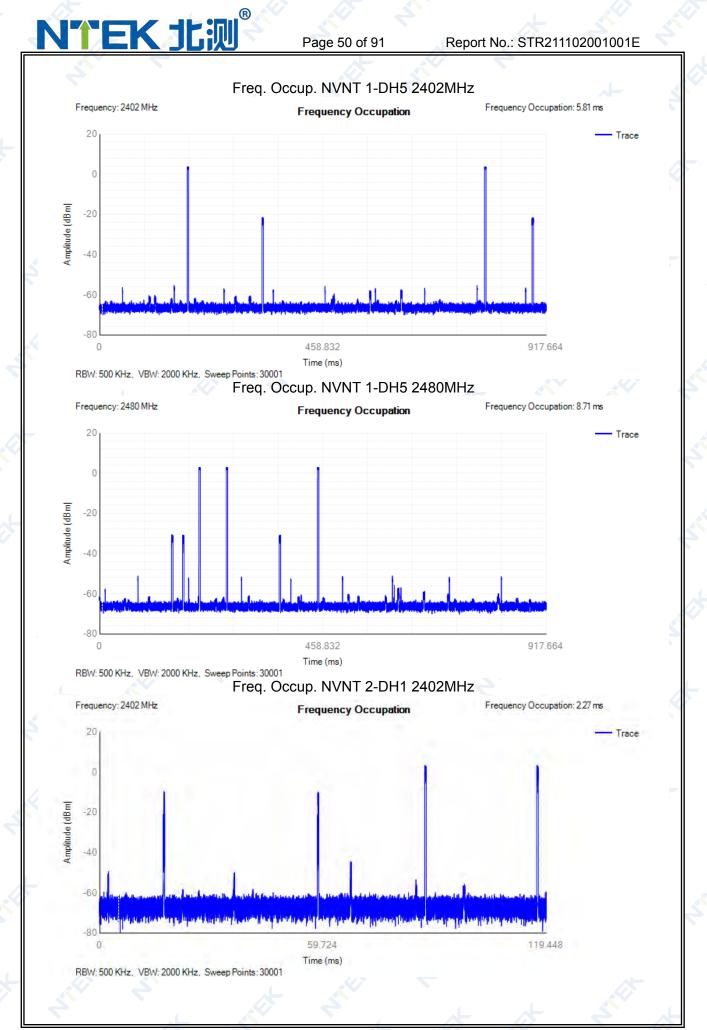

Page 48 of 91

Report No.: STR211102001001E

11.2 Frequency Occupation

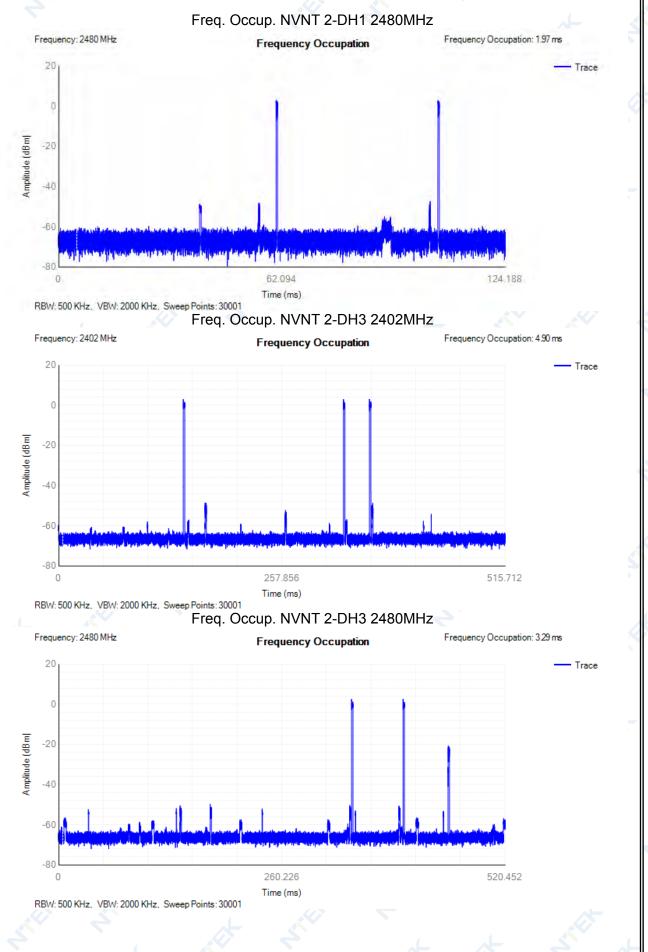
11.2 Frequence								
Condition	Mode	Frequency	Frequency	Limit	Sweep	Burst	Verdict	
		(MHz)	Occupation (ms)	(ms)	Time (ms)	Number		
NVNT	1-DH1	2402	0.798	0	126.084	2	Pass	
NVNT	1-DH1	2480	0.402	0	127.032	1	Pass	
NVNT	1-DH3	2402	1.659	0	524.244	1	Pass	
NVNT	1-DH3	2480	1.659	0	524.244	1	Pass	
NVNT	1-DH5	2402	5.808	0	917.664	2	Pass	
NVNT	1-DH5	2480	8.712	0	917.664	-3	Pass	
NVNT	2-DH1	2402	0.756	0	119.448	2	Pass	
NVNT	2-DH1	2480	0.786	0	124.188	2	Pass	
NVNT	2-DH3	2402	4.896	0	515.712	3	Pass	
NVNT	2-DH3	2480	3.294	0	520.452	2	Pass	
NVNT	2-DH5	2402	5.776	0	912.608	2	Pass	
NVNT	2-DH5	2480	2.888	0	912.608	1	Pass	
NVNT	3-DH1	2402	0.393	0	124.188	1	Pass	
NVNT	3-DH1	2480	0.375	0	118.5	1	Pass	
NVNT	3-DH3	2402	3.288	0	519.504	2	Pass	
NVNT	3-DH3	2480	4.914	0	517.608	S 3 🗸	Pass	
NVNT 🧹	3-DH5	2402	5.776	0	912.608	2	Pass	
NVNT	3-DH5	2480	11.52	0	910.08	4	Pass	

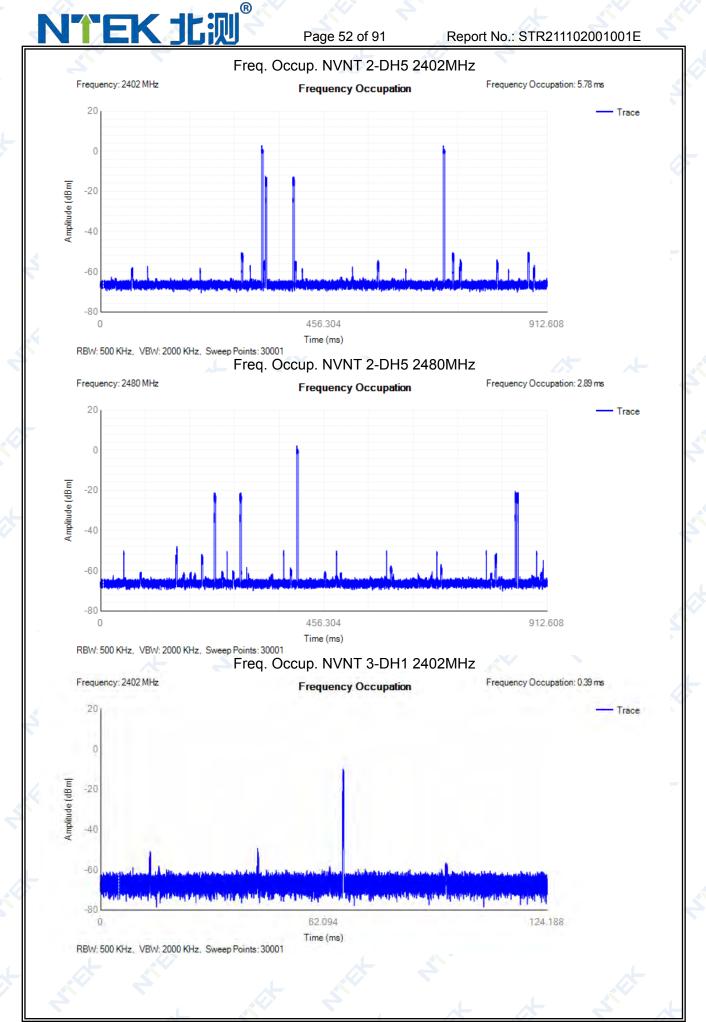

Freq. Occup. NVNT 1-DH1 2402MHz



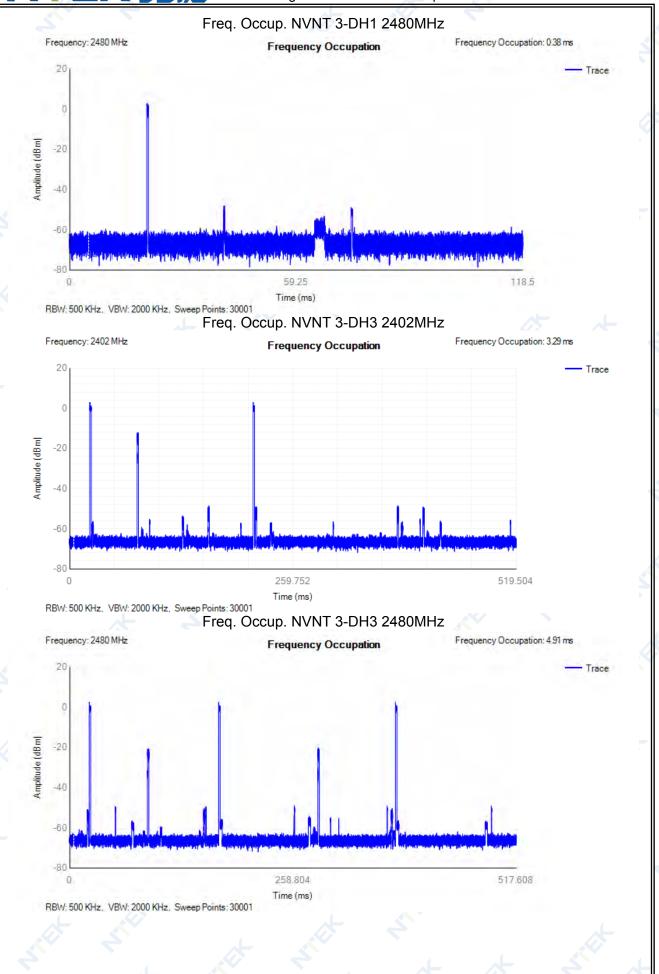
RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

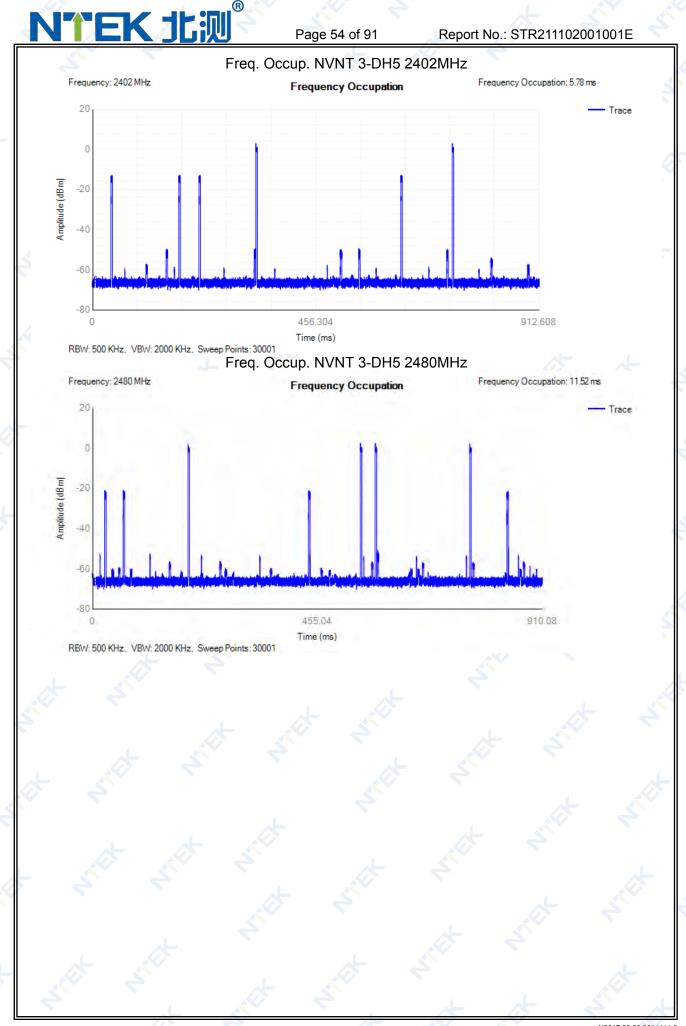
Page 49 of 91


Report No.: STR211102001001E



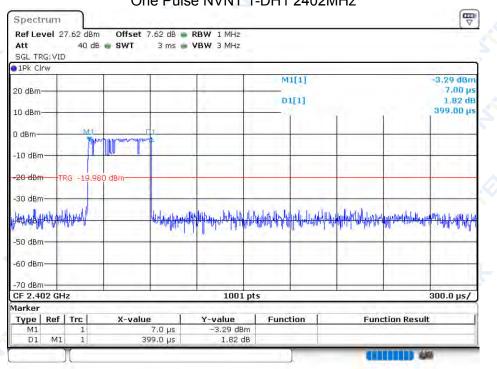
Page 51 of 91 Report No.: STR211102001001E Freq. Occup. NVNT 2-DH1 2480MHz Frequency: 2480 MHz Frequency Occupation





Page 53 of 91

Report No.: STR211102001001E

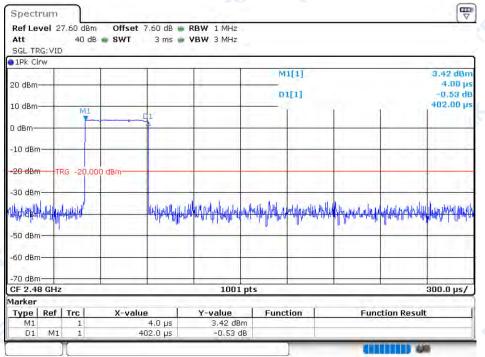


® NTEK 北测

Page 55 of 91

11.3 One Pulse Dwell Time

.3 One Puise Dwei	i iime		
Condition	Mode	Frequency (MHz)	Pulse Time (ms)
NVNT	1-DH1	2402	0.399
NVNT	1-DH1	2480	0.402
NVNT	1-DH3	2402	1.659
S NVNT	1-DH3	2480	1.659
NVNT	1-DH5 🖉	2402	2.904
NVNT	1-DH5	2480	2.904
NVNT 📈	2-DH1	2402	0.378
NVNT	2-DH1	2480	0.393
NVNT	2-DH3	2402	1.632
NVNT	2-DH3	2480	1.647
NVNT	2-DH5	2402	2.888
NVNT	2-DH5	2480	2.888
NVNT	3-DH1	2402	0.393
NVNT	3-DH1	2480	0.375
NVNT	3-DH3	2402	1.644
NVNT	3-DH3	2480	1.638
NVNT –	3-DH5	2402	2.888
NVNT	3-DH5	2480	2.88


One Pulse NVNT 1-DH1 2402MHz

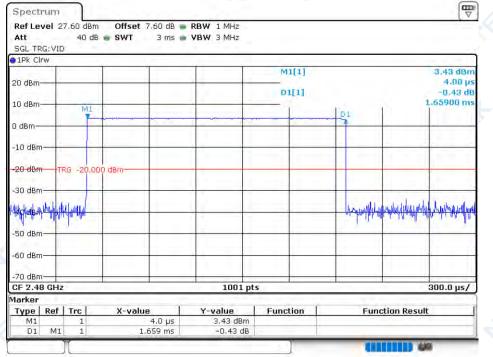
NTEK 北测

Page 56 of 91

Report No.: STR211102001001E

One Pulse NVNT 1-DH1 2480MHz

One Pulse NVNT 1-DH3 2402MHz


	W								
20 dBm·							1[1] 1[1]		-3.38 dBm 4.00 µs 1.97 dB
10 dBm-		-	-		1		0	1	1.65900 ms
D dBm—		M	Maral Maraliana	and the second s	All all and a second second	www		-0:1- 101917年	
-10 dBm	-								
-20 dBm	TF	RG -19,	980 dBm			_		-	
-30 dBm	-	_		-			-	-	
HAN BEE	PARA	Mary			1	_		My Jul Jun 19	adjathetine filler of the grant of the filler
-50 dBm									
-60 dBm	-		-	-				-	
-70 dBm									
CF 2.40		z		-	1001 pt	s			300.0 µs/
Marker	1000								
Type	Ref		X-valu		Y-value	Func	tion	Fund	ction Result
M1	MI	1		4.0 µs	-3.38 dBm 1.97 dB				

NTEK 北测

Page 57 of 91

Report No.: STR211102001001E

One Pulse NVNT 1-DH3 2480MHz

One Pulse NVNT 1-DH5 2402MHz

a tob of	16.11)							
 1Pk Cl 20 dBm 10 dBm 						1[1] 1[1]			-3.10 dBn 4.00 ps 1.62 dB 2.90400 ms
0 dBm ⁴	11.000	RG -9.98		D.1.					
-20 dBm -30 dBm	1								
				Unraminthaitanthai	draw hand had	Asthenhapping	derendskrenspendagter	anner an the second	typeship-shia,ar
-50 dBn -60 dBn									
-70 dBm CF 2.4		Iz		1001 pt	s			-	800.0 µs/
Marker	0.00								
Туре	Ref		X-value	Y-value	Funct	tion	Fund	ction Result	i
M1 D1	M1	1	4.0 μs 2.904 ms	-3.10 dBm 1.62 dB					

Page 58 of 91

Report No.: STR211102001001E

One Pulse NVNT 1-DH5 2480MHz

1Pk Clrw							
20 dBm			1		M1[1]		3.44 dBm 4.00 µs
				1	01[1]		-0,59 dB
	-	-		1070		1	2,90400 ms
	-	-	-	D1			
J dBm				1			1 1 1
10 dBm	TRG -10.0	DO dBm	-				· · · · ·
20 dBm		-	-				
-30 dBm							
				and the second second	and a constra	min to be	day a bar
a h h h h h h			-	bludy Hoper and	Ward ward and a strategy and the state of th	Nyber the mention of the product	to All hat on he provident had all a
40 dBm-+					, , , , , , , , , , , , , , , , , , , ,		a market management of the second s
-50 dBm							
-40 dBm							
-50 dBm							
-50 dBm	Z			1001 p	ts		800.0 µs/
-50 dBm -60 dBm -70 dBm CF 2.48 GH	2			1001 p	ts		800.0 µs/
-50 dBm		X-valu	ие	1001 p Y-value 3.44 dBm	ts	Func	800.0 µs/

One Pulse NVNT 2-DH1 2402MHz

	W			_						_
20 dBm-	-						1[1] 1[1]	_		-4.01 dBm 7.00 µs 1,67 dB
10 dBm-			d),				0	í.		378.00 µs
0 dBm—		No.	monumati							
-10 dBm	-		1 . û			-				
-20 dBm		RG -19,98	30 dBm							
-30 dBm	-	-	1							
Haddest	ht	hter the terms of te		when white h	Mind the state of	parent for the second	abidly planticely	allegraph leged	and the second	where the state of
-50 dBm	-									
-60 dBm	-									
-70 dBm										
CF 2.40	12 GF	łz			1001	pts				300.0 µs/
larker	100								A	
Туре	Ref		X-value		Y-value	Func	tion	Fund	tion Result	
M1 D1	M1	1		7.0 µs 78.0 µs	-4.01 dB 1.67 c					

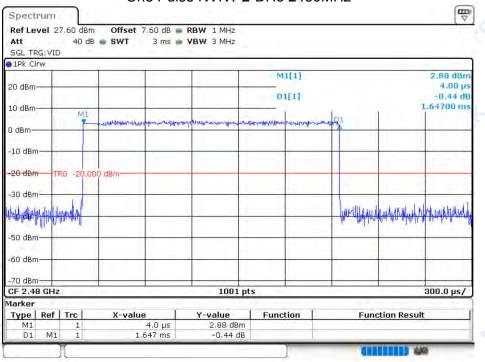
Page 59 of 91

Report No.: STR211102001001E

One Pulse NVNT 2-DH1 2480MHz

	W										
20 dBm-					-		1[1] 1[1]	_	2.91 dt 4.00 -0,51 393.00		
10 dBm-		MI	monthermaning	1			1	1	0.00	393.00 µs	
0 dBm— -10 dBm											
									1 - 1		
20 dBm		(G -20,00									
30 dBm		DA ANNA		un alla la l	ad dilineti hatas	andaruhlis	. U.Dteilme	hand the second of the	unandrawall	L. W. M. Hochilante	
50 dBm	a 01.061	lan)	1	م الم مراك ال	Alda a h (Drivey, a li	Anth warddhal	Man a a	ALL AND MANY	H ABAANINA I I	ավերավեր։	
-60 dBm					1.1	6.11					
-70 dBm CF 2.48		1			1001	pts		1		300.0 µs/	
CF 2.48 Aarker	GHz	-			1001	pts			2	300.0 µs/	
Туре	Ref		X-value		Y-value	Func	tion 📋	Fund	ction Result	1	
M1	MI	1		4.0 μs 3.0 μs	2.91 dB ~0.51 d						

One Pulse NVNT 2-DH3 2402MHz


20 dBm				M1[1]		-4.09 d8m 7.00 µs -0.95 d8 1.63200 ms
0 dBm	M	m Dadrie magaziatiana	dianed for a special for the form	jildader far fan gelegelike	WHRAT -	
	rrg -19,9	BO dBm				
-30 dBm	Anterio				ululurterality	Herlichter of the state of the
-50 dBm						
-70 dBm						
CF 2.402 G Marker	Hz		1001 pt:	5		300.0 µs/
Type Ref	Trc	X-value	Y-value	Function 1	Funct	ion Result
M1 D1 M	1	7.0 µs	-4.09 dBm -0.95 dB	runction	Tunce	iun kesut

NTEK 北测®

Page 60 of 91

Report No.: STR211102001001E

One Pulse NVNT 2-DH5 2402MHz

	-						
●1Pk Clr 20 dBm-					M1[1]	3	3.30 dBn 4.00 p 0.33 di 2.88800 m
10 dBm	-	hadron and have a series of the	and a second second second second	undan Ba		1	2.88800 m
-10 dBm -20 dBm		RG -9.980	dBm				
-30 dBm				her ward and	anthon to the second	himes routed and	napilalarangilalarangilalalari
-50 dBm							
-60 dBm -70 dBm							
CF 2.40	12 GH	z		1001 pt	s		800.0 µs/
Marker	er De Ref Trc X-value			Y-value	Function	Euro	ction Result
M1 D1	M1	1	4.0 µs 2.888 ms	3.30 dBm 0.33 dB	runction	T din	culti kesult

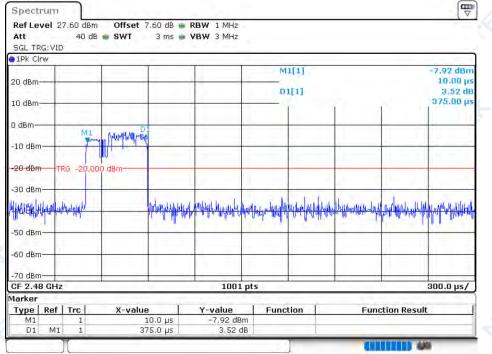
Page 61 of 91

Report No.: STR211102001001E

One Pulse NVNT 2-DH5 2480MHz

			M1[1]		2.90 dBm 4.00 µs -0.48 dB
	1 Brancher and	DI		1	2.88800 ms
andre all and a second second	all an experient in a second of the second	-united -			
-				-	
TRG -20,0	00 dBm				
-				-	
		pendiphologoaphiagoa	happenet and a state of the sta	us for watcher layour	and production of the state of
			2		
10.00					
z		1001 pt	5		800.0 µs/
ITerl	Minister I	Within 1	Countier 1	este	ction Result
1	x-value 4.0 μs	2.90 dBm	Function	Fund	ation Result
		TRG -20,000 d8m	iz 1001 pts	Image: state	Image: state

One Pulse NVNT 3-DH1 2402MHz


		D		_						
 1Pk Cli 20 dBm- 10 dBm- 	-						1[1] 1[1]			3.35 dBm 4.00 µs 0.48 dB 393.00 µs
D dBm—		M1	mapphillionaperetry	1	11					
-10 dBm		-		-		_				
-20 dBm		TRG -19,98	0 dBm							
-30 dBm	0.1	un all			het have wan and	(Wern We	Hilycophy	MALAHHALAAH	Munnhullul	have resulted and the first
-50 dBm	· of	Allin as		, walli hi	a contraction and a state of the state of th	le les r	the disk of			
-60 dBm										
-70 dBm		-						-		
CF 2.40	J2 G	Hz			1001 pt	s			1 million 1	300.0 µs/
Marker		1-1				-		Tact		
Type M1	Ret	Trc	X-value	4.0 μs	Y-value 3.35 dBm	Func	tion	Fun	ction Result	
D1	M			3.0 µs	0.48 dB					

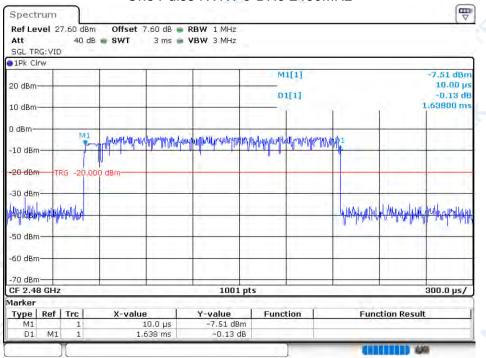
NTEK 北测

Page 62 of 91

Report No.: STR211102001001E

One Pulse NVNT 3-DH1 2480MHz

One Pulse NVNT 3-DH3 2402MHz


			db 🖷 SWT	3 ms 💼	VBW 3 MHz					
SGL TR		1		1.0	A					_
1Pk Clr	W		1	1	1 1	M1	141			3.35 dBm
20 dBm-			-			MI	[4]			4.00 µ
20 0011						01	[1]			0.64 dt
10 dBm-	-	M		-	-			6.	3.	1.64400 m
		M.	1	autowner another	nothe planter and an provide	oundration-following an	year when the state	manine		
0 dBm—	-	-			100000000000000000000000000000000000000				-	
-10 dBm										
-10 GBm		-			1	_		-		
-20 dBm	TF	RG -19	.980 dBm				_		-	
										1
-30 dBm	-	-		-						-
	Alleh	WILLIAM		1				- Ander de	Alexand I to the Autor	W M Mal March
lalla halli	170.64	Anna						androth	And all I aborate	hand Baddina an
-50 dBm	_		-	_			-	_	1	
-60 dBm			-					-	-	1
-70 dBm										
CF 2.40		7	-1	1	1001 pt	5		1.		300.0 µs/
Marker		.						-	-	and the party
Type	Ref	Trc	X-value	e	Y-value	Functi	on [Fu	nction Resu	lt
M1		1		4.0 µs	3.35 dBm		1			
D1	M1	1	1.	644 ms	0,64 dB				_	

NTEK 北测

Page 63 of 91

Report No.: STR211102001001E

One Pulse NVNT 3-DH5 2402MHz

	A						
1Pk Cli	W		1	1 1			
20 dBm-	-			1	M1[1]		3.34 dBm 4.00 ps 0.08 dB
10 dBm	_						2.88800 ms
M	MAN	مر الم معادل المراج معادل المراج مع	and water warman white a dealer and the property	1 Annex			
D dBm				4			
-10 dBm	TF	kG -9.980	dBm			-	
-20 dBm						-	
-30 dBm		_				-	
HALP OB	-			LANGH MARTIN	alandaliye and a second a second second	strift by istribute Aley	horningsolimatichanalismy
-50 dBm	_						
-60 dBm	-					-	
-70 dBm	_						
CF 2.40	2 GH	z		1001 pt:	5		800.0 µs/
Aarker							and a second
Type	Ref	Trc	X-value	Y-value	Function	on Function Result	
M1	· ·	1	4.0 μs 2.888 ms	3.34 dBm 0.08 dB			

Page 64 of 91

Report No.: STR211102001001E

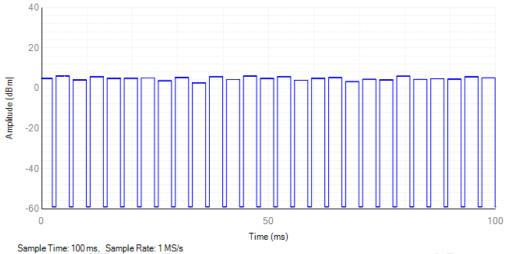
One Pulse NVNT 3-DH5 2480MHz

20 dBm					M	1[1]			
	660				D	1[1]	-7.61 dBm 4.00 µs 2.77 dB 2.88000 ms		
								1	
	γιωητιανήμ G -10.000	ulline why and	number Manuspad	nturBa ¹					
-20 dBm				-	-				
30 dBm			_		-		_		
40'd8m				Millionput	Jinspiller Margarit	ndaluaputa	eterfle-harthare	enterpyland hinteriory	haller handle hiller
-50 dBm					-				-
-60 dBm									
-70 dBm				1001	nte			1	800.0 µs/
larker	_		-	1001	prs		-		600.0 µS/

Page 65 of 91

Report No.: STR211102001001E

Power: 7.07 dBm

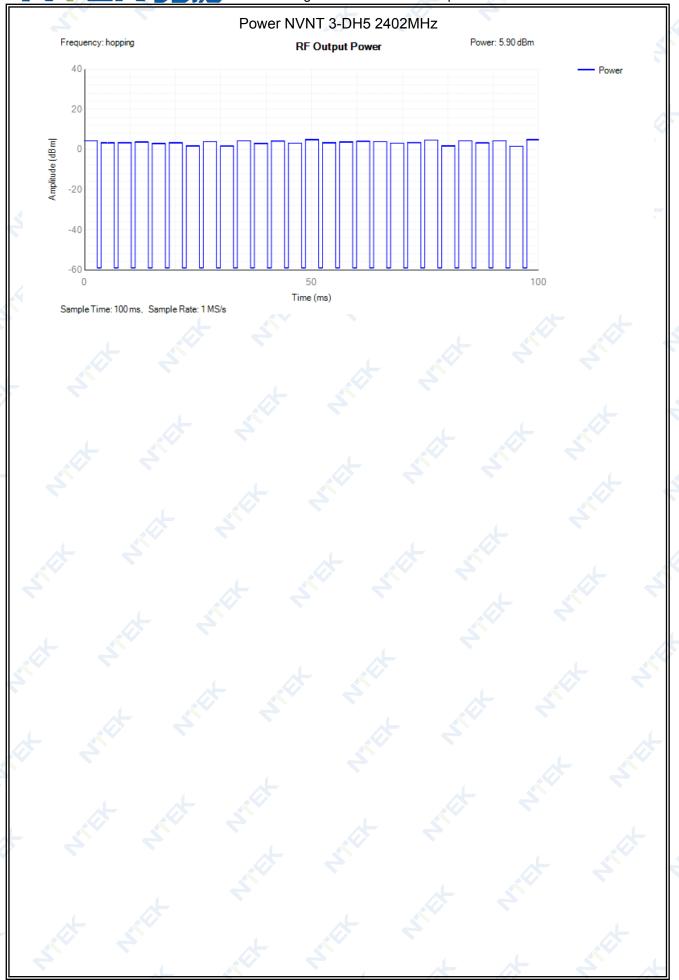

Power

11.4 RF Output Power

Frequency: hopping

	V CI						
Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	hopping	5.97	27	7.07	20	Pass
NVNT	2-DH5	hopping	4.81	28	5.91	20 💉	Pass
NVNT	3-DH5	hopping	4.8	27	5.9	20 🥄	Pass
NVLT	1-DH5	hopping	5.75	27	6.85	20	Pass
NVLT	2-DH5	hopping	4.76	28	5.86	20	Pass
NVLT	3-DH5	hopping	4.53	27	5.63	20	Pass
NVHT	– 1-DH5 <	hopping	5.54	27	6.64	20	Pass
NVHT	2-DH5	hopping	4.43	28	5.53	20	Pass
NVHT	3-DH5	hopping	4.25	27	5.35	20	Pass
	NVNT NVNT NVNT NVLT NVLT NVLT NVHT NVHT	NVNT1-DH5NVNT2-DH5NVNT3-DH5NVLT1-DH5NVLT2-DH5NVLT3-DH5NVLT1-DH5NVHT1-DH5NVHT2-DH5	NVNT1-DH5hoppingNVNT2-DH5hoppingNVNT2-DH5hoppingNVNT3-DH5hoppingNVLT1-DH5hoppingNVLT2-DH5hoppingNVLT2-DH5hoppingNVLT1-DH5hoppingNVLT2-DH5hoppingNVHT1-DH5hoppingNVHT2-DH5hopping	ConditionModeFrequency (MHz)Burst RMS Power (dBm)NVNT1-DH5hopping5.97NVNT2-DH5hopping4.81NVNT3-DH5hopping4.81NVLT1-DH5hopping5.75NVLT2-DH5hopping4.76NVLT2-DH5hopping4.76NVLT3-DH5hopping4.53NVLT1-DH5hopping4.53NVHT1-DH5hopping5.54NVHT2-DH5hopping4.43	ConditionModeFrequency (MHz)Burst RMS Power (dBm)Burst NumberNVNT1-DH5hopping5.9727NVNT2-DH5hopping4.8128NVNT3-DH5hopping4.827NVLT1-DH5hopping5.7527NVLT1-DH5hopping5.7527NVLT1-DH5hopping4.7628NVLT3-DH5hopping4.5327NVLT3-DH5hopping4.5327NVLT3-DH5hopping4.5327NVHT1-DH5hopping5.5427NVHT2-DH5hopping4.4328	ConditionModeFrequency (MHz)Burst RMS Power (dBm)Burst NumberMax EIRP (dBm)NVNT1-DH5hopping5.97277.07NVNT2-DH5hopping4.81285.91NVNT3-DH5hopping4.8275.9NVLT1-DH5hopping5.75276.85NVLT1-DH5hopping4.76285.86NVLT2-DH5hopping4.53275.63NVLT3-DH5hopping4.53275.63NVLT1-DH5hopping5.54276.64NVHT1-DH5hopping4.43285.53	ConditionModeFrequency (MHz)Burst RMS Power (dBm)Burst NumberMax EIRP (dBm)Limit (dBm)NVNT1-DH5hopping5.97277.0720NVNT2-DH5hopping4.81285.9120NVNT3-DH5hopping4.8275.920NVLT1-DH5hopping5.75276.8520NVLT1-DH5hopping4.76285.8620NVLT2-DH5hopping4.53275.6320NVLT3-DH5hopping4.53276.6420NVHT1-DH5hopping5.54276.6420NVHT1-DH5hopping4.43285.5320

Power NVNT 1-DH5 2402MHz RF Output Power



Power NVNT 2-DH5 2402MHz

Frequency: hopping Power: 5.91 dBm **RF Output Power** 40 Power 20 Amplitude (dBm| 0 -20 -40 -60 100 0 50 Time (ms) Sample Time: 100 ms, Sample Rate: 1 MS/s

Page 66 of 91

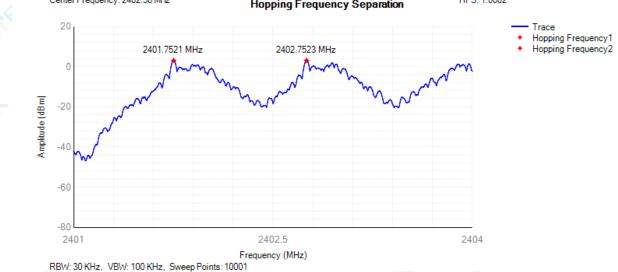
Report No.: STR211102001001E

11.5

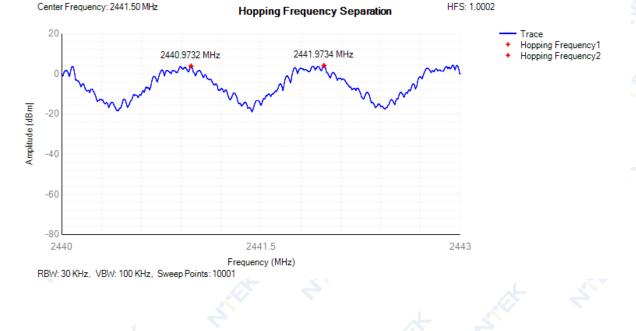
Page 67 of 91

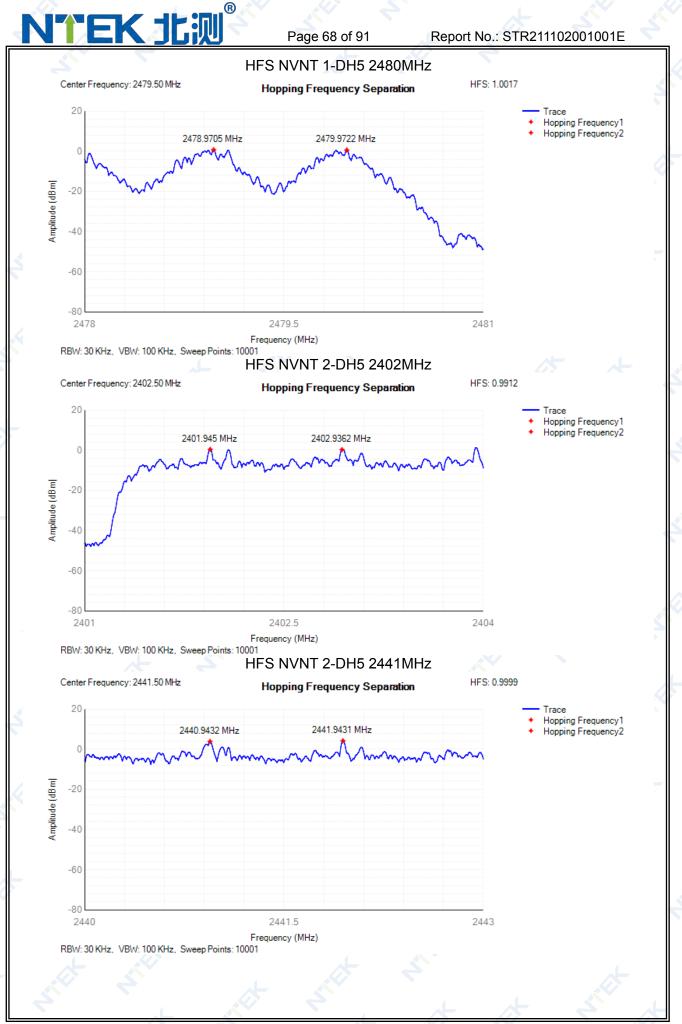
Report No.: STR211102001001E

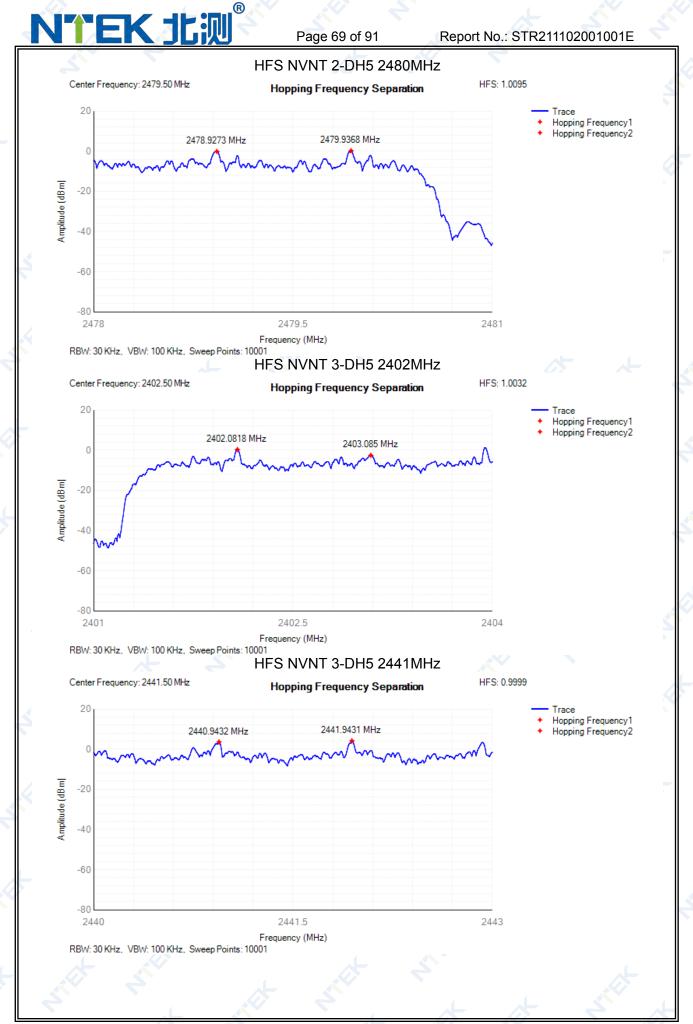
Verdict Pass

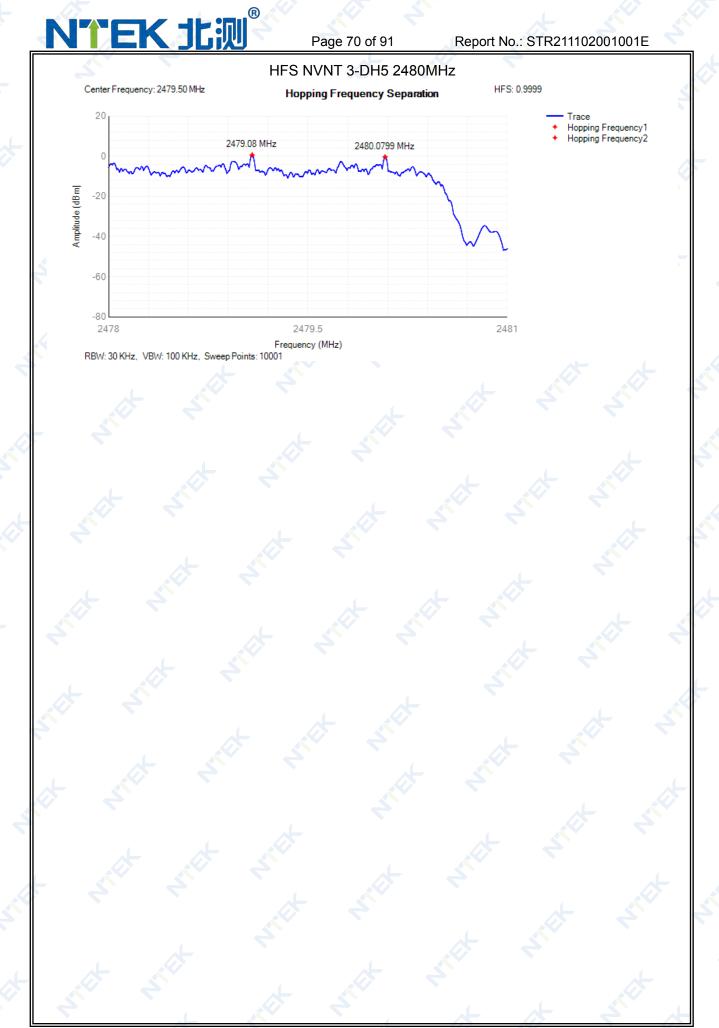

> Pass Pass Pass Pass

> Pass


Pass Pass


Pass

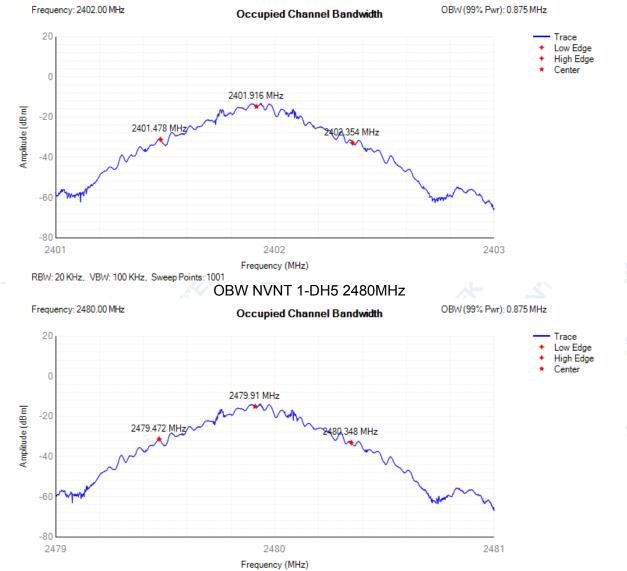

			age of or or	Report No 01	112111020010	
5				. 7		
1.5 Hopping	Frequen	ncy Separation	\sim $<$		4	
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	
Condition	woue	(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.7521	2402.7523	1.0002	0.1	
NVNT	1-DH5	2440.9732	2441.9734	1.0002	0.1	
NVNT	1-DH5	2478.9705	2479.9722	1.0017	0.1	
NVNT	2-DH5	2401.945	2402.9362	0.9912	0.1	
NVNT	2-DH5	2440.9432	2441.9431	0.9999	0.1	
NVNT	2-DH5	2478.9273	2479.9368	1.0095	-0.1	
NVNT	3-DH5	2402.0818	2403.085	1.0032	0.1	
NVNT	3-DH5	2440.9432	2441.9431	0.9999	0.1	
NVNT	3-DH5	2479.08	2480.0799	0.9999	0.1	
Center	Frequency: 240		VNT 1-DH5 2402MHz ng Frequency Separation	z HFS: 1.0002	K CF	
20					 Trace Hopping Freque 	



HFS NVNT 1-DH5 2441MHz

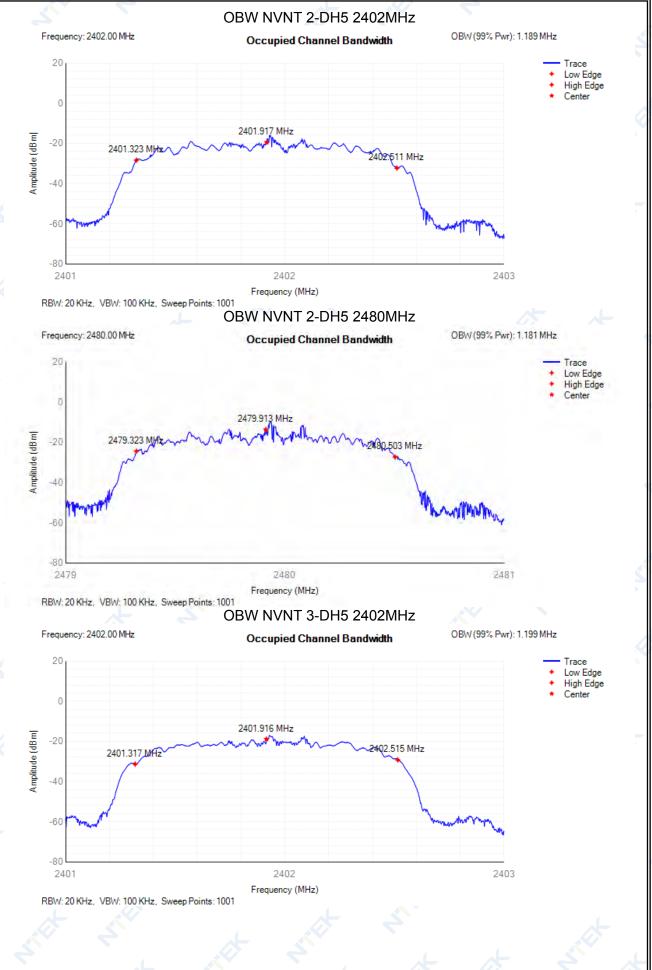
<u>NTEK 北测[®]</u>

Page 71 of 91

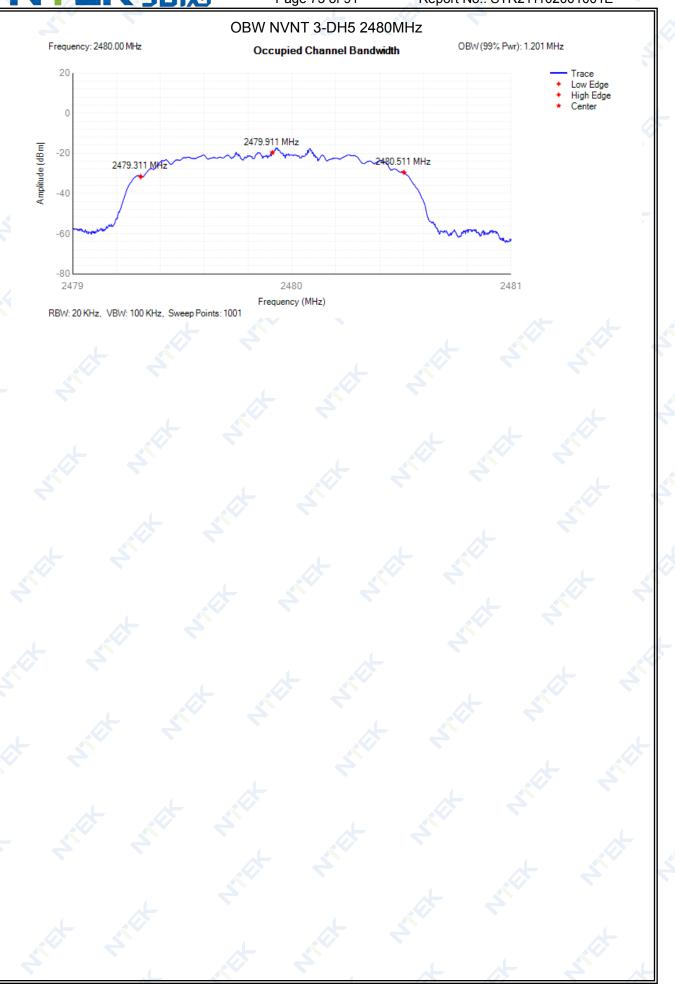

Report No.: STR211102001001E

11.6 Occupied Channel Bandwidth

RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001


Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
NVNT	1-DH5	2402	2401.916	0.875	2401.478	2402.354	2400 - 2483.5MHz	Pass
NVNT	1-DH5	2480	2479.91	0.875	2479.472	2480.348	2400 - 2483.5MHz	Pass
NVNT	2-DH5	2402	2401.917	1.189	2401.323	2402.511	2400 - 2483.5MHz	Pass
NVNT	2-DH5	2480	2479.913	1.181	2479.323	2480.503	2400 - 2483.5MHz	Pass
NVNT	3-DH5	2402	2401.916	1.199	2401.317	2402.515	2400 - 2483.5MHz	Pass
NVNT	3-DH5	2480	2479.911	1.201	2479.311	2480.511	2400 - 2483.5MHz	Pass

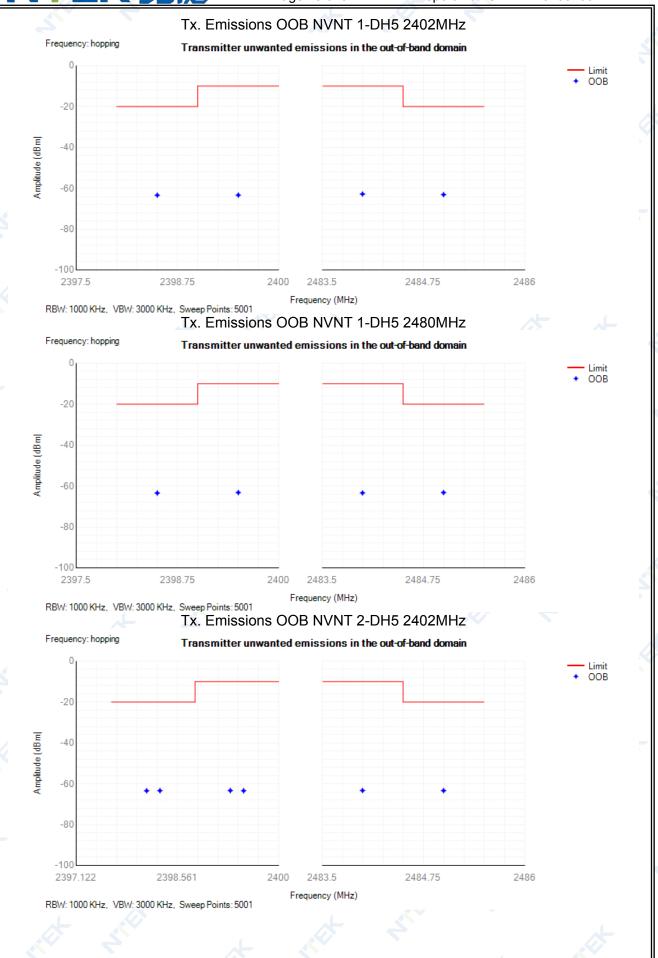
OBW NVNT 1-DH5 2402MHz



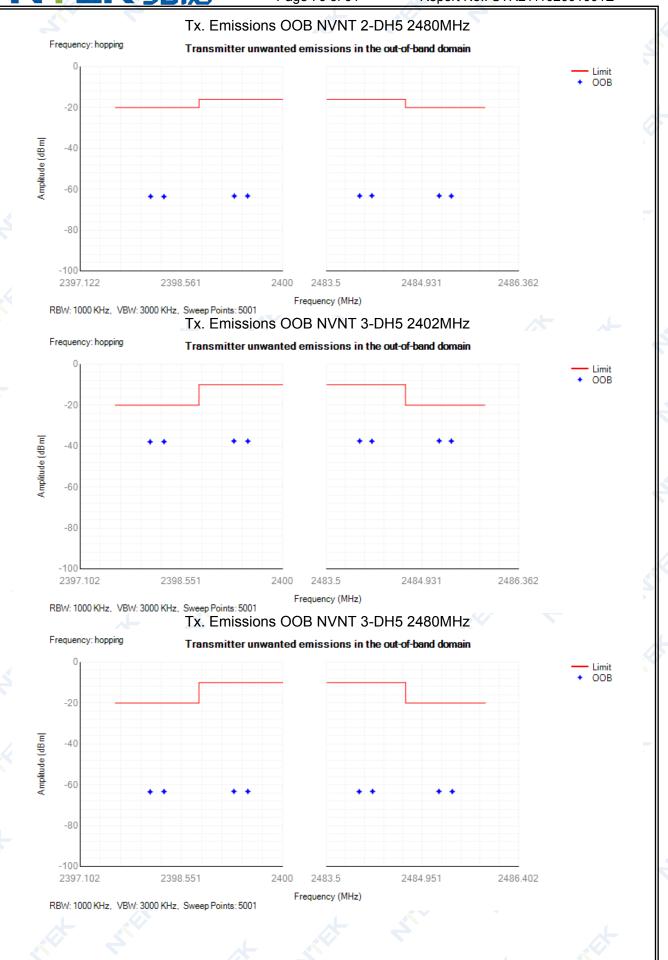
Page 72 of 91 Rep

Report No.: STR211102001001E

Page 73 of 91



Page 74 of 91


11.7 Transmitter unwanted emissions in the out-of-band domain

Condition	Mode	Frequency	OOB Frequency	Level	Limit	Verdic
		(MHz)	(MHz)	(dBm/MHz)	(dBm/MHz)	
NVNT	1-DH5	hopping	2399.5	-63.35	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.39	-20	Pass
NVNT	1-DH5	hopping	2484	-62.82	-10	Pass
NVNT	1-DH5	hopping	2485	-63.11	-20	Pass
NVNT	1-DH5	hopping	2399.5	-63.18	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.43	-20	Pase
NVNT	1-DH5	hopping	2484	-63.37	-10	Pas
NVNT	1-DH5	hopping	2485	-63.19	-20	Pas
NVNT	2-DH5	hopping	2399.5	-63.42	-10	Pas
NVNT	2-DH5	hopping	2399.311	-63.33	-10	Pas
NVNT	2-DH5	hopping	2398.311	-63.38	-20	Pas
NVNT	2-DH5	hopping	2398.122 🧷	-63.42	-20	Pas
NVNT	2-DH5	hopping	2484	-63.3	-10	Pas
NVNT	2-DH5	hopping	2485	-63.36	-20	Pas
NVNT	2-DH5	hopping	2399.5	-63.28	-16	Pas
NVNT	2-DH5	hopping	2399.311	-63.33	<u> </u>	Pas
NVNT	2-DH5	hopping	2398.311	-63.6	-20	Pas
NVNT	2-DH5	hopping	2398.122	-63.52	-20	Pas
NVNT	2-DH5	hopping	2484	-63.24	-16	Pas
NVNT	2-DH5	hopping	2484.181	-63.15	-16	Pas
NVNT	2-DH5	hopping	2485.181	-63.21	-20	Pas
NVNT	2-DH5	hopping	2485.362	-63.32	-20	Pas
NVNT	3-DH5	hopping	2399.5	-37.61	-10	Pas
NVNT	3-DH5	hopping	2399.301	-37.56	-10	Pas
NVNT	3-DH5	hopping 🔬	2398.301	-37.85	-20	Pas
NVNT	3-DH5	hopping	2398.102	-37.91	-20 🤿	Pas
NVNT	3-DH5	hopping	2484	-37.53	-10	Pas
NVNT	3-DH5	hopping	2484.181	-37.65	-10	Pas
NVNT	3-DH5	hopping	2485.181	-37.46	-20	Pas
NVNT	3-DH5	hopping	2485.362	-37.58	-20	Pas
NVNT	3-DH5	hopping	2399.5	-63.27	-10	Pas
NVNT	3-DH5	hopping	2399.301	-63.25 🔨	-10	Pas
NVNT	3-DH5	hopping	2398.301	-63.32	-20	Pas
NVNT	3-DH5	hopping	2398.102	-63.45	-20	Pas
NVNT	3-DH5	hopping	2484	-63.36	-10	Pas
NVNT	3-DH5	hopping	2484.201	-63.26	-10	Pas
NVNT	3-DH5	hopping	2485.201	-63.25	-20	Pas
NVNT	3-DH5	hopping	2485.402	-63.33	-20	Pas

Page 75 of 91

Page 76 of 91

Page 77 of 91

Report No.: STR211102001001E

Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
NVNT	1-DH5	2402	30 MHz -47 MHz	45	-66.52	NA	-36	Pass
NVNT	1-DH5	2402	47 MHz -74 MHz	68.05	-66.61	NA	-54	Pass
NVNT	1-DH5	2402	74 MHz -87.5 MHz 87.5	86.3	-66.74	NA	-36	Pass
NVNT	1-DH5	2402	MHz -118 MHz	116.2	-66.34	NA	-54	Pass
NVNT	1-DH5	2402	118 MHz -174 MHz	139.85	-65.19	NA	-36	Pass
NVNT	1-DH5	2402	174 MHz -230 MHz 230 MHz	217.1	-65.26	NA	-54	Pass
NVNT	1-DH5	2402	230 MHz -470 MHz 470 MHz	372.85	-65.23	NA	-36	Pass
NVNT	1-DH5	2402	-694 MHz	600.15	-64.5	NA	-54	Pass
NVNT	1-DH5	2402	694 MHz -1000 MHz	967.9	-63.97	NA	-36	Pass
NVNT	1-DH5	2402	1000 MHz -2398 MHz	2395	-53.05	NA	-30	Pass
NVNT	1-DH5	2402	2485.5 MHz -12750 MHz	2551	-43.61	NA	-30	Pass
NVNT	1-DH5	2441	30 MHz -47 MHz 47 MHz	37.5	-65.94	NA	-36	Pass
NVNT	1-DH5	2441	47 MHZ -74 MHz 74 MHz	54.05	-66.47	NA	-54	Pass
NVNT	1-DH5	2441	-87.5 MHz	80.15	-66.78	NA	-36	Pass
NVNT	1-DH5	2441	87.5 MHz -118 MHz	102.9	-66.28	NA	-54	Pass
NVNT	1-DH5	2441	118 MHz -174 MHz	149.05	-66.2	NA	-36	Pass
NVNT	1-DH5	2441	174 MHz -230 MHz	180.45	-65.73	NA	-54	Pass
NVNT	1-DH5	2441	230 MHz -470 MHz	461	-64.53	NA	-36	Pass
NVNT	1-DH5	2441	470 MHz -694 MHz	654.7	-64.37	NA	-54	Pass
NVNT	1-DH5	2441	694 MHz -1000 MHz	848.1	-63.63	NA	-36	Pass
NVNT	1-DH5	2441	1000 MHz -2398 MHz	2254	-52.87	NA	-30	Pass

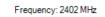
Page 78 of 91 F

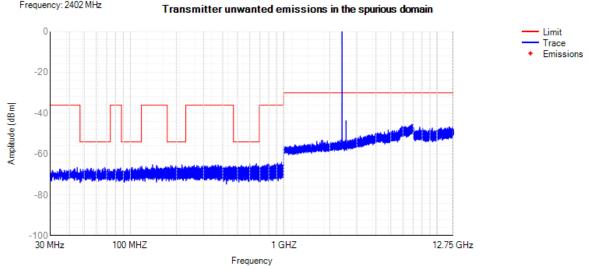
Report No.: STR211102001001E

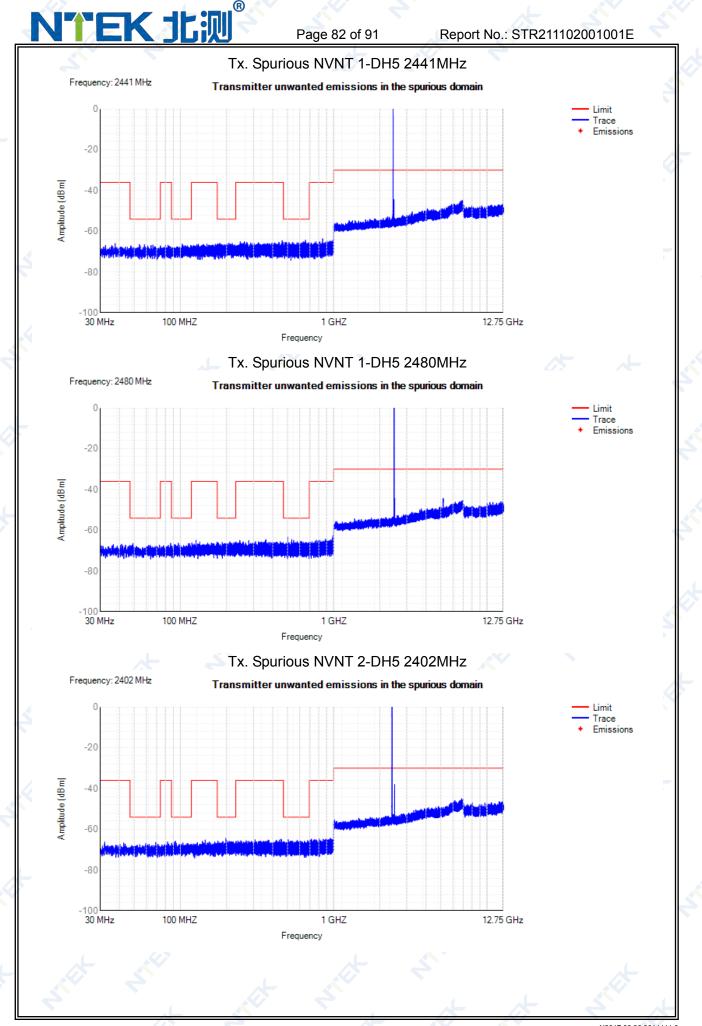
			2485.5		Č –			
NVNT	1-DH5	2441	MHz -12750 MHz	6903.5	-44.73	NA	-30	Pass
NVNT	1-DH5	2480	30 MHz -47 MHz	41.4	-66.8	NA	-36	Pass
NVNT	1-DH5	2480	47 MHz -74 MHz	49.1	-66.47	NA	-54	Pass
NVNT	1-DH5	2480	74 MHz -87.5 MHz	86.4	-66.35		-36	Pass
NVNT	1-DH5	2480	87.5 MHz -118 MHz	96.95	-66.3	NA	-54	Pass
NVNT	1-DH5	2480	118 MHz -174 MHz	126.5	-64.84	NA	-36	Pass
NVNT	1-DH5	2480	174 MHz -230 MHz	210.25	-65.6	NA	-54	Pass
NVNT	1-DH5	2480	230 MHz -470 MHz	361.65	-64.51	NA	-36	Pass
NVNT	1-DH5	2480	470 MHz -694 MHz	502.8	-63.31	NA	-54	Pass
NVNT	1-DH5	2480	694 MHz -1000 MHz	988.65	-62.7	NA	-36	Pass
NVNT	1-DH5	2480	1000 MHz -2398 MHz	2185	-53.68	NA	-30	Pass
NVNT	1-DH5	2480	2485.5 MHz -12750 MHz	5179	-44.29	NA	-30	Pass
NVNT	2-DH5	2402	30 MHz -47 MHz	32.15	-66.16	NA	-36	Pass
NVNT	2-DH5	2402	47 MHz -74 MHz	69.1	-66.35	NA	-54	Pass
NVNT	2-DH5	2402	► 74 MHz -87.5 MHz	82.55	-66.16	NA	-36	Pass
NVNT	2-DH5	2402	87.5 MHz -118 MHz	92.85	-65.8	NA	-54	Pass
NVNT	2-DH5	2402	118 MHz -174 MHz	145.3	-65.19	NA	-36	Pass
NVNT	2-DH5	2402	174 MHz -230 MHz	198.45	-64.4	NA	-54	Pass
NVNT	2-DH5	2402	230 MHz -470 MHz	451.65	-64.8	NA	-36	Pass
NVNT	2-DH5	2402	470 MHz -694 MHz	505.2	-65.04	NA	-54	Pass
NVNT	2-DH5	2402	694 MHz -1000 MHz	952.4	-64.44	NA	-36	Pass
NVNT	2-DH5	2402	1000 MHz -2398 MHz	2397	-48.58	NA	-30	Pass

VNT VNT VNT VNT VNT VNT VNT VNT VNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2402 2441 2441 2441 2441 2441 2441 2441	2485.5 MHz -12750 MHz 30 MHz -47 MHz -47 MHz -74 MHz -74 MHz -74 MHz -87.5 MHz -118 MHz 118 MHz -174 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz -694 MHz -1000 MHz 1000	2496.5 42.7 69.15 79 115.95 119.65 225.95 318.5 605.25 899.15	-38.02 -66.23 -66.45 -66.72 -65.56 -63.99 -65.44 -64.24 -64.24 -65.07 -64.19	NA NA NA NA NA NA NA	-30 -36 -54 -36 -54 -36 -54 -36 -54	
VNT VNT VNT VNT VNT VNT VNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2441 2441 2441 2441 2441 2441 2441 2441	MHz 30 MHz -47 MHz -74 MHz -74 MHz -74 MHz -87.5 MHz 87.5 MHz 118 MHz 118 MHz 174 MHz -230 MHz 230 MHz -470 MHz -470 MHz -694 MHz -694 MHz -1000 MHz	42.7 69.15 79 115.95 119.65 225.95 318.5 605.25	-66.23 -66.45 -66.72 -65.56 -63.99 -65.44 -64.24 -64.24	NA NA NA NA NA NA	-36 -54 -36 -54 -36 -54 -36	F F F F
VNT VNT VNT VNT VNT VNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2441 2441 2441 2441 2441 2441 2441 2441	47 MHz -74 MHz 74 MHz -87.5 MHz -118 MHz -118 MHz -174 MHz 118 MHz -174 MHz 230 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz -694 MHz -1000 MHz	69.15 79 115.95 119.65 225.95 318.5 605.25	-66.45 -66.72 -65.56 -63.99 -65.44 -64.24 -65.07	NA NA NA NA NA	-54 -36 -54 -36 -54 -36	F F F
VNT VNT VNT VNT VNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2441 2441 2441 2441 2441 2441 2441	74 MHz -87.5 MHz -118 MHz -118 MHz -174 MHz -174 MHz -230 MHz 230 MHz -230 MHz -470 MHz 470 MHz -694 MHz -694 MHz -1000 MHz	115.95 119.65 225.95 318.5 605.25	-65.56 -63.99 -65.44 -64.24 -65.07	NA NA NA	-54 -36 -54 -36	F
VNT VNT VNT VNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2441 2441 2441 2441 2441	87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz 694 MHz -1000 MHz	119.65 225.95 318.5 605.25	-63.99 -65.44 -64.24 -65.07	NA NA	-36 -54 -36	V.
VNT VNT VNT VNT	2-DH5 2-DH5 2-DH5 2-DH5	2441 2441 2441 2441	118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz 694 MHz -1000 MHz	225.95 318.5 605.25	-65.44 -64.24 -65.07	NA	-54 -36	
VNT VNT VNT	2-DH5 2-DH5 2-DH5	2441 2441 2441	174 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz 694 MHz -1000 MHz	318.5 605.25	-64.24 -65.07	NA	-36	
VNT	2-DH5 2-DH5	2441 2441	-470 MHz 470 MHz -694 MHz 694 MHz -1000 MHz	605.25	-65.07		Ś	
VNT	2-DH5	2441	470 MHz -694 MHz 694 MHz -1000 MHz		2	NA	-54	
			694 MHz -1000 MHz	899.15	-64.19			'
VNT	2-DH5	2441	1000		4	NA	-36	F
7	1		MHz -2398 MHz	2176	-53.61	NA	-30	
VNT	2-DH5	2441	2485.5 MHz -12750 MHz	2510	-37.76	NA	-30	F
VNT	2-DH5	2480	30 MHz -47 MHz	41.1520958083832	-67	NA	-36	1
VNT	2-DH5	2480	47 MHz -74 MHz	64.7341317365269	-65.94	NA	-54	
VNT	2-DH5	2480	-87.5 MHz	87.1544910179641	-67.01	NA	-36	
VNT	2-DH5	2480	87.5 MHz -118 MHz	106.089820359281	-67.06	NA	-54	
VNT	2-DH5	2480	118 MHz -174 MHz	148.723353293413	-64.9	NA	-36	1
VNT	2-DH5	2480	-230 MHz	208.782035928144	-64.68	NA	-54	F
VNT	2-DH5	2480	230 MHz -470 MHz	319.605988023952	-64.16	NA	-36	F
VNT	2-DH5	2480	470 MHz -694 MHz	510.585628742515	-64.79	NA	-54	F
VNT	2-DH5	2480	694 MHz -1000 MHz	771.614371257485	-63.99	NA	-36	F
VNT	2-DH5	2480	1000 MHz -2398 MHz	2349.49101796407	-53.56	NA	-30	d
	VNT VNT VNT VNT VNT VNT	VNT 2-DH5 VNT 2-DH5	VNT 2-DH5 2480 VNT 2-DH5 2480	VNT 2-DH5 2480 -74 MHz VNT 2-DH5 2480 -87.5 VNT 2-DH5 2480 -87.5 VNT 2-DH5 2480 -87.5 VNT 2-DH5 2480 -87.5 VNT 2-DH5 2480 -118 VNT 2-DH5 2480 -118 VNT 2-DH5 2480 -174 VNT 2-DH5 2480 -174 VNT 2-DH5 2480 -230 MHz 230 MHz -470 VNT 2-DH5 2480 -694 VNT 2-DH5 2480 -694 VNT 2-DH5 2480 -1000 MHz 1000 MHz -1000	VNT 2-DHS 2480 -74 MHz 64.7341317365269 VNT 2-DHS 2480 -74 MHz 87.5 87.1544910179641 VNT 2-DHS 2480 -87.5 87.1544910179641 VNT 2-DHS 2480 -87.5 87.1544910179641 VNT 2-DHS 2480 -118 106.089820359281 VNT 2-DHS 2480 -118 MHz VNT 2-DHS 2480 -174 148.723353293413 VNT 2-DHS 2480 -230 208.782035928144 VNT 2-DHS 2480 -230 208.782035928144 VNT 2-DHS 2480 -470 319.605988023952 VNT 2-DHS 2480 -470 319.605988023952 VNT 2-DHS 2480 -694 510.585628742515 MHz -1000 771.614371257485 MHz VNT 2-DH5 2480 -1000 771.614371257485 MHz -20H5 2480	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

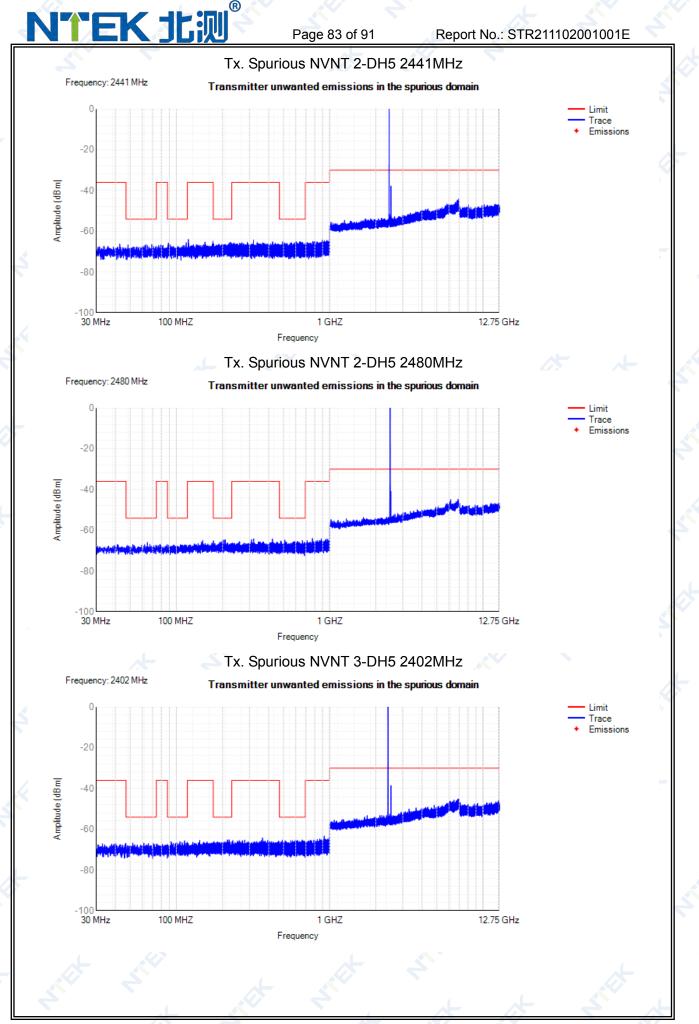
Page 80 of 91

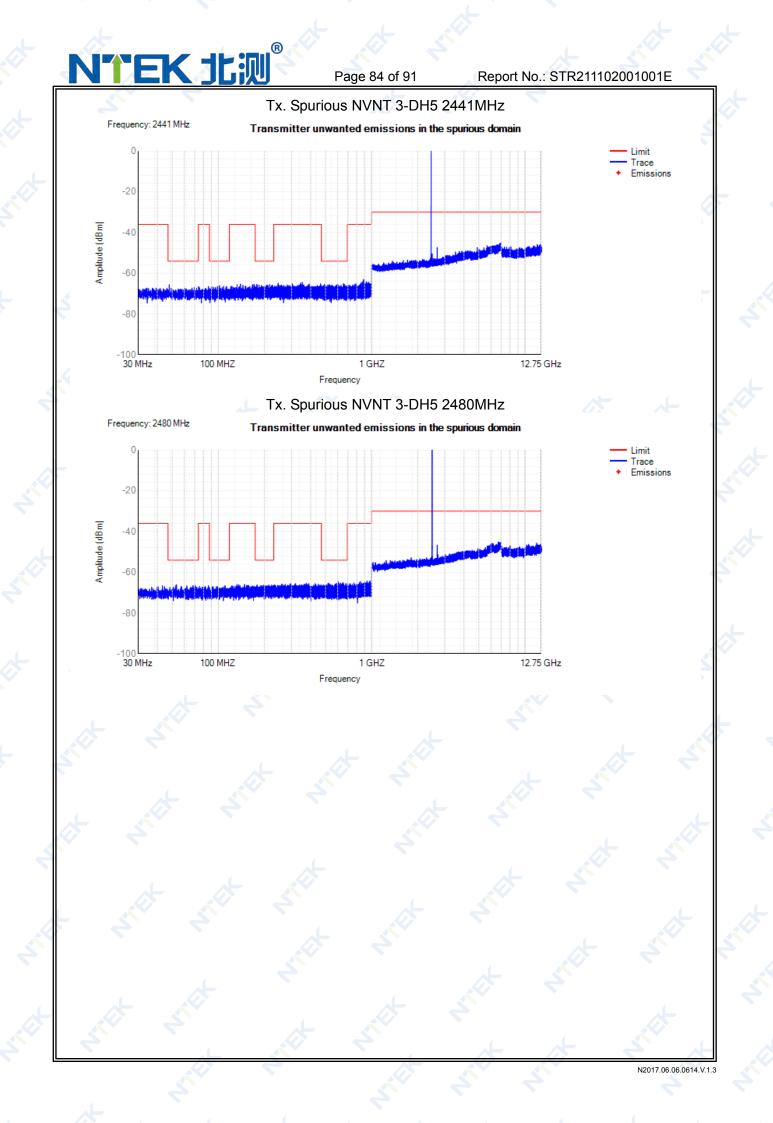

Report No.: STR211102001001E


NVNT	2-DH5	2480	2485.5 MHz -12750 MHz	2504.28143712575	-40.92	NA	-30	Pass
NVNT	3-DH5	2402	30 MHz -47 MHz	46.8	-66.81	NA	-36	Pass
NVNT	3-DH5	2402	47 MHz -74 MHz	61.4	-66.77	NA	-54	Pass
NVNT	3-DH5	2402	74 MHz -87.5 MHz	74.05	-67.16		-36	Pass
NVNT	3-DH5	2402	87.5 MHz -118 MHz	113.05	-65.59	NA	-54	Pass
NVNT	3-DH5	2402	118 MHz -174 MHz	142.05	-65.4	NA	-36	Pass
NVNT	3-DH5	2402	174 MHz -230 MHz	220.85	-65.15	NA	-54	Pass
NVNT	3-DH5	2402	230 MHz -470 MHz 470 MHz	365.2	-64.3	NA	-36	Pass
NVNT	3-DH5	2402	-694 MHz	662.15	-65.22	NA	-54	Pass
NVNT	3-DH5	2402	694 MHz -1000 MHz	923.9	-63.33	NA	-36	Pass
NVNT	3-DH5	2402	1000 MHz -2398 MHz	2397.5	-47.56	NA	-30	Pass
NVNT	3-DH5	2402	2485.5 MHz -12750 MHz	2510.5	-38.54	NA	-30	Pass
NVNT	3-DH5	2441	30 MHz -47 MHz	39.2	-67.17	NA	-36	Pass 🧹
NVNT	3-DH5	2441	47 MHz -74 MHz	47.8	-65.56	NA	-54	Pass
NVNT	3-DH5	2441	74 MHz -87.5 MHz	86.05	-66.48	NA	-36	Pass
NVNT	3-DH5	2441	87.5 MHz -118 MHz	101.65	-66.02	NA S	-54	Pass
NVNT	3-DH5	2441	118 MHz -174 MHz	139.4	-65.33	NA	-36	Pass
NVNT	3-DH5	2441	174 MHz -230 MHz	178.1	-65.45	NA	-54	Pass
NVNT	3-DH5	2441	230 MHz -470 MHz	353.35	-64.41	NA	-36	Pass
NVNT	3-DH5	2441	470 MHz -694 MHz	654.1	-65.03	NA	-54	Pass
NVNT	3-DH5	2441	694 MHz -1000 MHz	887.4	-62.94	NA	-36	Pass
NVNT	3-DH5	2441	1000 MHz -2398 MHz	2147	-53.05	NA	-30	Pass

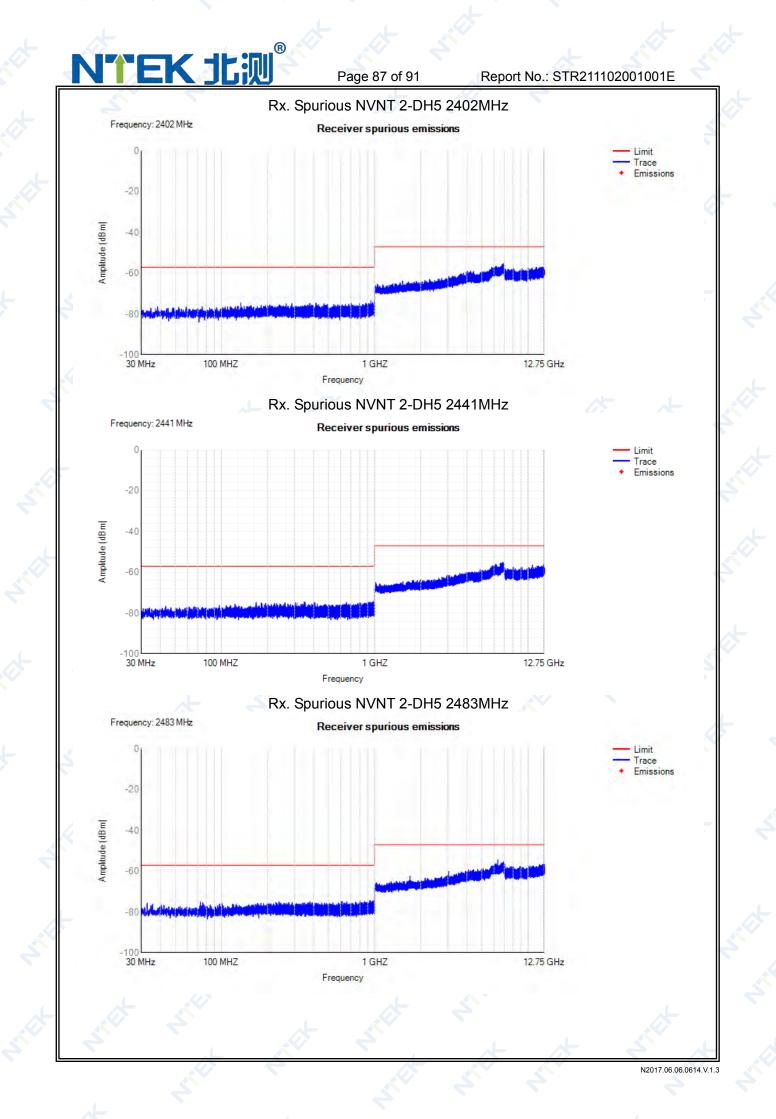

NVNT	3-DH5	2441	2485.5 MHz -12750 MHz	6990.5	-45.07	NA	-30	Pass
NVNT	3-DH5	2480	30 MHz -47 MHz	43.1	-66.51	NA	-36	Pass
NVNT	3-DH5	2480	47 MHz -74 MHz	53.3	-66.04	NA	-54	Pass
NVNT	3-DH5	2480	74 MHz -87.5 MHz	86.05	-66.47	NA	-36	Pase
NVNT	3-DH5	2480	87.5 MHz -118 MHz	110.7	-66.55	NA	-54	Pass
NVNT	3-DH5	2480	118 MHz -174 MHz	132.55	-65.85	- NA	-36	Pass
NVNT	3-DH5	2480	174 MHz -230 MHz	213.65	-66.11	NA	-54	Pass
NVNT	3-DH5	2480	230 MHz -470 MHz	374.5	-65.39	NA	-36	Pass
NVNT	3-DH5	2480	470 MHz -694 MHz	606.25	-64.53	NA	-54	Pass
NVNT	3-DH5	2480	694 MHz -1000 MHz	932.95	-64.26	NA	-36	Pass
NVNT	3-DH5	2480	1000 MHz -2398 MHz	1810.5	-52.85	NA	-30	Pass
NVNT	3-DH5	2480	2485.5 MHz -12750 MHz	6997	-45.02	NA	-30	Pase

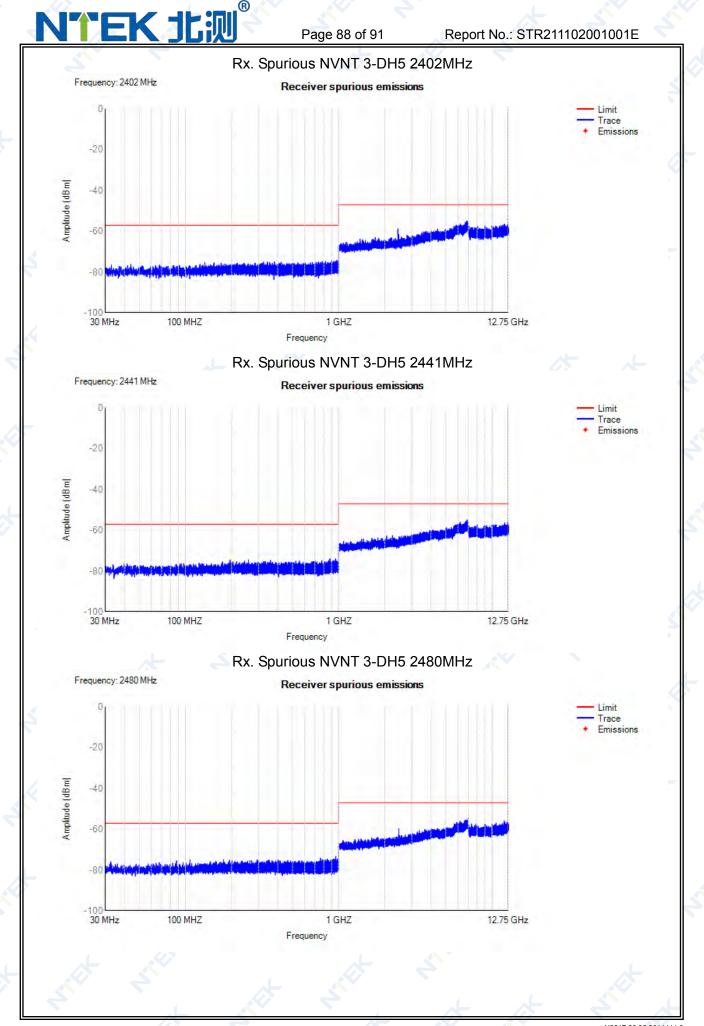
R


Tx. Spurious NVNT 1-DH5 2402MHz



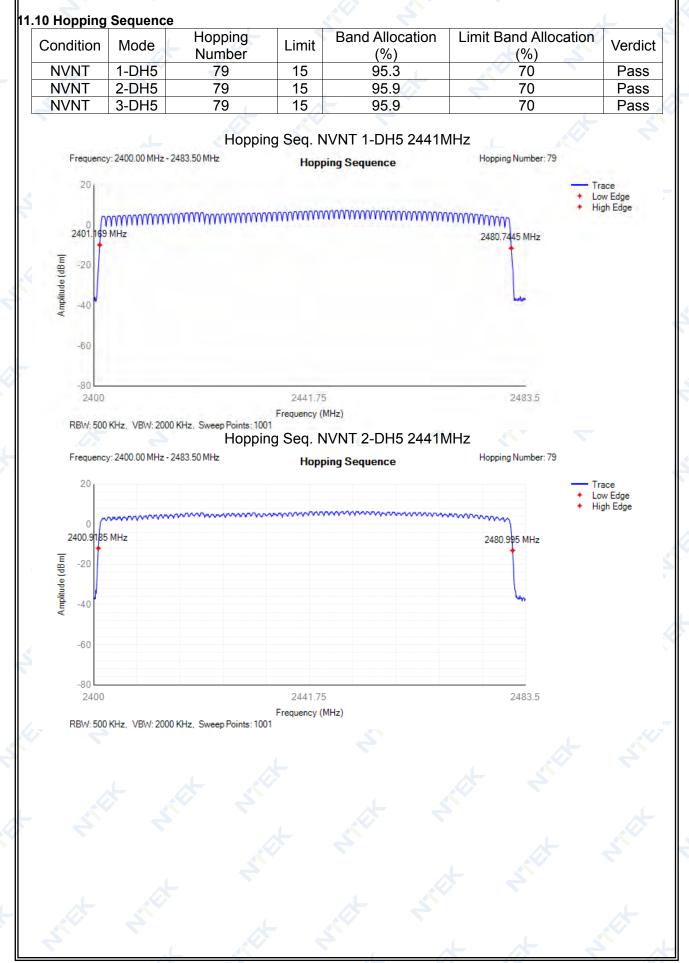
N2017.06.06.0614.V.1.3

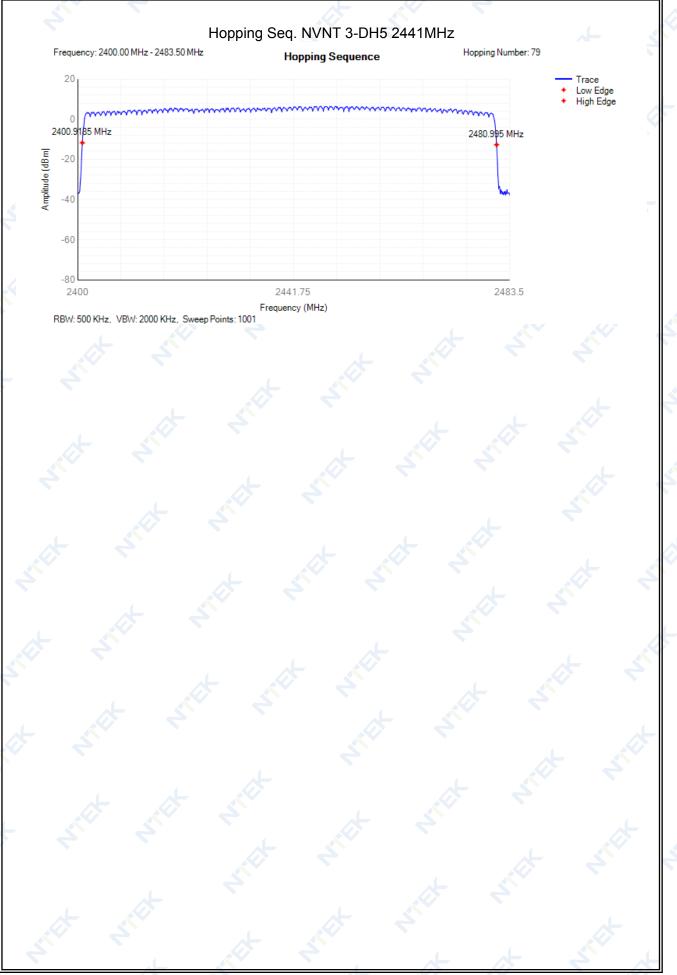

Page 85 of 91


Report No.: STR211102001001E

11.9 Receiver spurious emissions

Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
NVNT	1-DH5	2402	30 MHz -1000 MHz	749.7	-73.66	NA	-57	Pass
NVNT	1-DH5	2402	1000 MHz -12750 MHz	6895.24741522359	-55.58	NA	-47	Pass
NVNT	1-DH5	2441	30 MHz -1000 MHz	993.8	-73.77	NA 🗳	-57	Pass
NVNT	1-DH5	2441	1000 MHz -12750 MHz	6976	-54.81	NA	-47	Pass
NVNT	1-DH5	2480	30 MHz -1000 MHz	954.4	-73.75	NA	-57	Pass
NVNT	1-DH5	2480	1000 MHz -12750 MHz	6992	-55.09	NA	-47	Pass
NVNT	2-DH5	2402	30 MHz -1000 MHz	944.8	-73.49	NA	-57	Pass
NVNT	2-DH5	2402	1000 MHz -12750 MHz	6971	-55.09	NA	-47	Pass
NVNT	2-DH5	2441	30 MHz -1000 MHz	978	-74.26	NA	-57	Pass
NVNT	2-DH5	2441	1000 MHz -12750 MHz	6867.5	-55.07	NA	-47	Pass
NVNT	2-DH5	2483	30 MHz -1000 MHz	993	-73.96	NA	-57	Pass
NVNT	2-DH5	2483	1000 MHz -12750 MHz	6364	-54.38	NA	-47	Pass
NVNT	3-DH5	2402	30 MHz -1000 MHz	972.2	-74.18	NA	-57	Pass
NVNT	3-DH5	2402	1000 MHz -12750 MHz	6851	-54.96	NA	-47	Pass
NVNT	3-DH5	2441	30 MHz -1000 MHz	878	-73.89	NA	-57	Pass
NVNT	3-DH5	2441	1000 MHz -12750 MHz	6885	-54.87	NA	-47	Pass
NVNT	3-DH5	2480	30 MHz -1000 MHz	958.65	-73.35	NA	-57	Pass
NVNT	3-DH5	2480	1000 MHz -12750 MHz	6990.5	-54.26	NA	-47	Pass

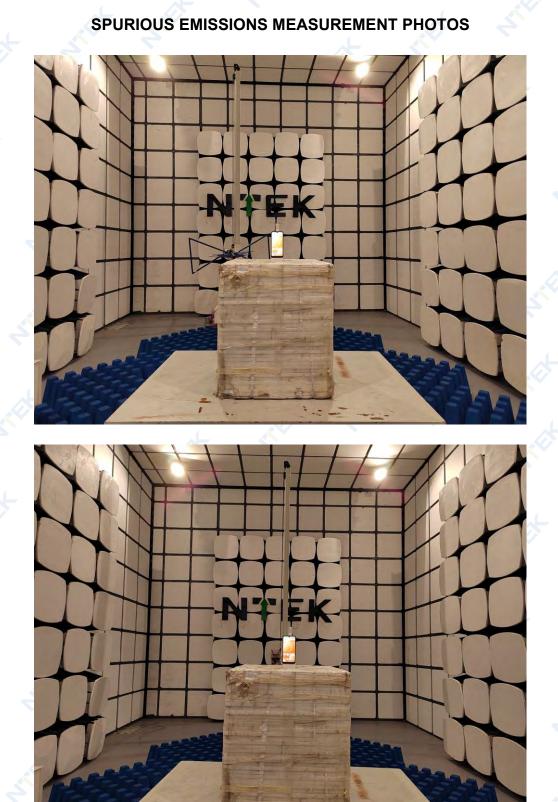




N2017.06.06.0614.V.1.3

Page 89 of 91

Report No.: STR211102001001E



Page 91 of 91

Report No.: STR211102001001E

12. EUT TEST PHOTO

END OF REPORT