RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product : Smart phone

Trade Mark : Blackview

Model Name : A52

Family Model : N/A

Report No. : STR220826001002E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

Page 2 of 55

Report No.: STR220826001002E

TEST RESULT CERTIFICATION

Applicant's name: DOKE COMMU	NICATION (HK) LIMITED
Address RM 1902 EASE WANCHAI HK, (Y COMM BLDG 253-261 HENNESSY ROAD
Manufacturer's Name: Shenzhen DOK	
Address	
Road, Guangmi	ng District, Shenzhen, China
Product description	
Product name: Smart phone	
Trademark:Blackview	
Model Name: A52	
Family Model N/A	
Standards: ETSI EN 300 32	8 V2.2.2 (2019-07)
This device described above has been tested by the equipment under test (EUT) is in compliance requirements. And it is applicable only to the test	
This report shall not be reproduced except in ful	I, without the written approval of Shenzhen NTEK,
this document may be altered or revised by She	nzhen NTEK, personnel only, and shall be noted
in the revision of the document.	
Test Sample Number T220	0826001R003
Date of Test	
Date (s) of performance of tests Aug	26, 2022 ~ Sep 14, 2022
	14, 2022
Test Result Pase	
	Il dai / a the
Testing Engineer :	Muhzi Lee
At an -	(Mukzi Lee)
Authorized Signatory :	Alless of St
	(Alex Li)

Page 3 of 55

Report No.: STR220826001002E

	Table of Contents	Page
1. GENERAL INF	ORMATION	6
1.1 GENERAL D	DESCRIPTION OF EUT	6
	ON ABOUT THE EUT	7
1.3 TEST COND	DITIONS AND CHANNEL	12
1.4 DESCRIPTION	ON OF TEST CONDITIONS	13
1.5 DESCRIPTION	ON OF SUPPORT UNITS	14
1.6 EQUIPMENT	TS LIST FOR ALL TEST ITEMS	15
2. SUMMARY OF		16
2.1 TEST FACIL		10
		17
	DURES AND RESUTLS	18
	IT ISOTROPIC RADIATED POWER OF EQUIVALENT ISOTROPIC RADIATED POWER	18
	PROCEDURE	18
3.1.3 TEST S		18
3.1.4 TEST F	RESULTS	19
3.2 . PEAK POW	VER DENSITY	20
	OF POWER SPECTRAL DENSITY	20
	PROCEDURE	20
3.2.3 TEST S 3.2.4 TEST F		20 21
	CHANNEL BANDWIDTH	22
	OF OCCUPIED CHANNEL BANDWIDTH	-22
3.3.2 TEST P	PROCEDURE	22
	TION FROM TEST STANDARD	22
3.3.4 TEST S 3.3.5 TEST F		22 23
	TER UNWANTED EMISSIONS IN THE OUT-OF-BAND	
	OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND	
DOMAIN		24
3.4.2 TEST P	PROCEDURE	24
	TION FROM TEST STANDARD	25
3.4.4 TEST S	-	25
3.4.5 TEST F		26
	(CHANNEL ACCESS MECHANISM) CABILITY OF ADAPTIVE REQUIREMENTS AND LILIT F	27 FOR WIDE BAND
	N TECHNIQUES	-OR WIDE BANL 27
	PROCEDURE	28
	SETUP CONFIGURATION	28
3.5.4 LIST OI	F MEASUREMENTS	29

Page 4 of 55

NTEK 北测[®]

	Table of Contents	Page
	3.5.5 TEST RESULTS	30
	3.6 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	30 31
_	3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN 3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURI	
	DOMAIN	31
	3.6.2 TEST PROCEDURE	- <u>31</u>
	3.6.3 DEVIATION FROM TEST STANDARD 3.6.4 TEST SETUP	31
	3.6.5 TEST RESULTS(Radiated measurement)	32 33
	3.6.6 TEST RESULTS (Conducted measurement)	35
	3.7 . RECEIVER SPURIOUS RADIATION	35
	3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION	35
	3.7.2 TEST PROCEDURE	35
	3.7.3 DEVIATION FROM TEST STANDARD 3.7.4 TEST SETUP	35 36
2	3.7.5 TEST RESULTS(Radiated measurement)	37
	3.7.6 TEST RESULTS (Conducted measurement)	38
	3.8 . RECEIVER BLOCKING	39
	3.8.1 PERFORMANCE CRITERIA	39
	3.8.2 LIMITS OF RECEIVER BLOCKING	39
	3.8.3 TEST PROCEDURE 3.8.4 DEVIATION FROM TEST STANDARD	41 41
	3.8.5 TEST SETUP	41
	3.8.6 TEST RESULTS	42
	4. TEST RESULTS	43
	4.1 RF Output Power	43
	4.2 Power Spectral Density	45
	4.3 Occupied Channel Bandwidth	47
	4.4 Transmitter unwanted emissions in the out-of-band domain	49
	4.5 Transmitter unwanted emissions in the spurious domain	50
	4.6 Receiver spurious emissions	53
	🗧 5 . EUT TEST PHOTO 🔔 🛛 🖉	55
	SPURIOUS EMISSIONS MEASUREMENT PHOTOS	55

Report No.: STR220826001002E

Revision History					
Report No. Version Description			Issued Date		
STR220826001002E	Rev.01	Initial issue of report	Sep 14, 2022		
			A.		
	5 6	t at	- A		
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		* 18 4			
	<u>t</u>	1	* -		
st a					
<u> </u>					
		~			
<u> </u>					
		~			
-		~	S.C.		
	4				
	4	A R X	×		
×	ATTER S		t the		

Page 6 of 55

Report No.: STR220826001002E

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart phone			
Trade Mark	Blackview			
Model Name.	A52			
Family Model	N/A			
Model Difference	N/A			
	The EUT is Smart phone			
	Operation Frequency: 2402~2480 MHz			
	Modulation Type: GFSK			
	Adaptive/non-adaptive Adaptive equipment			
Product Description	Receiver categories 3			
	Number Of Channel Please see Note 2.			
	Antenna Designation: PIFA Antenna			
	Antenna Gain(Peak) 1.04 dBi			
Channel List	Refer to below			
Adapter	Model: QZ-01000EA00 Input: 100-240V~50/60Hz 0.15A Output: 5.0V2.0A (10.0W)			
Battery	DC 3.85V, 5180mAh, 19.943Wh			
Rating	DC 3.85V from battery or DC 5V from Adapter.			
I/O Ports	Refer to users manual			
Hardware Version	L617_V1			
Software Version	S6317A_Duokoo_A52_EEA_V1.01			

Note:

2

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Channel	Frequency (MHz)
00	2402
L 01	2404
·····	
38	2478
39	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

- FHSS
- \boxtimes other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment:
 - The maximum number of Hopping Frequencies:
 - The minimum number of Hopping Frequencies:
- The (average) Dwell Time:

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- \boxtimes adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

- The maximum Channel Occupancy Time implemented by the equipment: ./. ms
- \boxtimes The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - The equipment can switch dynamically between Frame Based and Load Based equipment
 - The CCA time implemented by the equipment: / $\ensuremath{\mu s}$
 - The equipment has implemented a non-LBT based DAA mechanism
- The equipment can operate in more than one adaptive mode

Page 8 of 55

Report No.: STR220826001002E

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.):

The maximum (corresponding) Duty Cycle:

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

- RF Output Power
- GFSK
- Power Spectral Density
 GFSK
- Duty cycle, Tx-Sequence, Tx-gap N/A
- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
 N/A
- Hopping Frequency Separation (only for FHSS equipment) N/A
- Medium Utilization
 N/A
- Adaptivity

N/A

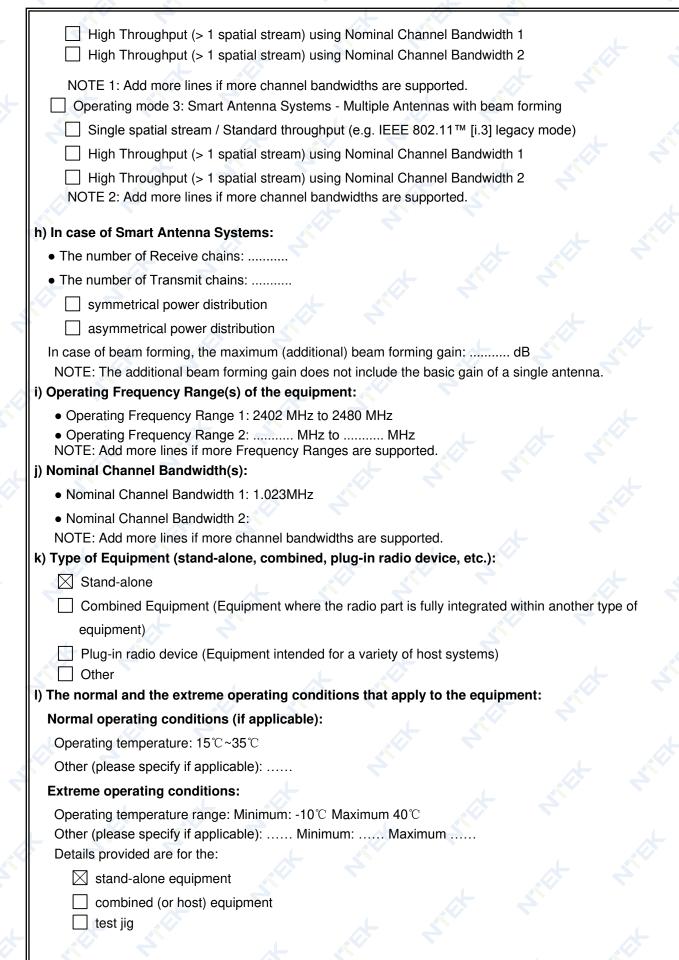
- Receiver Blocking
 GFSK
- Nominal Channel Bandwidth

GFSK

Transmitter unwanted emissions in the OOB domain

GFSK

- Transmitter unwanted emissions in the spurious domain GFSK
- Receiver spurious emissions
- GFSK


g) The different transmit operating modes (tick all that apply):

Operating mode 1: Single Antenna Equipment

- Equipment with only one antenna
- Equipment with two diversity antennas but only one antenna active at any moment in time
- Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one antenna is used (e.g. IEEE 802.11[™] [i.3] legacy mode in smart antenna systems)
- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
 - Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)

Page 9 of 55

Report No.: STR220826001002E

Page 10 of 55

) The intended com	bination(s) of the radio ed	duipment power settin				
assemblies and th	eir corresponding e.i.r.p.	levels:				
 Antenna Type: PIF 						
Integral Antenna (information to be provided in case of conducted measurement						
Antenna Gain:1.04 dBi						
If applicable, ad	ditional beamforming gain (excluding basic antenna	a gain): dB			
Temporar	y RF connector provided					
No tempo	rary RF connector provided					
Dedicated Ante	ennas (equipment with ante	nna connector)				
Single pov	wer level with corresponding	g antenna(s)				
Multiple p	ower settings and correspo	nding antenna(s)				
Number of di	ifferent Power Levels:					
Power Level	1: dBm					
	2: dBm					
	3: dBm					
	d more lines in case the equ					
	ese power levels are condu					
(G) and the resulting Power Leve	e.i.r.p. levels, provide the inte e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provide	to account the beamfor				
(G) and the resulting Power Leve	e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provider Gain (dBi)	to account the beamfor d for this power level: e.i.r.p. (dBm)	ming gain (Y) if applicable			
(G) and the resulting Power Leve Number of a	e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provide	to account the beamfor	ming gain (Y) if applicable			
(G) and the resulting Power Leve Number of a	e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provider Gain (dBi)	to account the beamfor d for this power level: e.i.r.p. (dBm)	ming gain (Y) if applicable			
(G) and the resulting Power Leve Number of a Assembly #	e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provider Gain (dBi) 1.04	to account the beamfor d for this power level: e.i.r.p. (dBm) -1.69	ming gain (Y) if applicable Part number or model name			
(G) and the resulting Power Leve Number of a Assembly # NOTE 3: Add Power Leve	e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provider Gain (dBi) 1.04	to account the beamfor d for this power level: e.i.r.p. (dBm) -1.69	ming gain (Y) if applicable Part number or model name supported for this power level.			
(G) and the resulting Power Leve Number of a Assembly # NOTE 3: Add Power Leve	d more rows in case more a	to account the beamfor d for this power level: e.i.r.p. (dBm) -1.69	ming gain (Y) if applicable Part number or model name supported for this power level.			
(G) and the resulting Power Leve Number of a Assembly # NOTE 3: Add Power Leve Number of a	d more rows in case more a	to account the beamfor <u>d for this power level:</u> <u>e.i.r.p. (dBm)</u> -1.69 antenna assemblies are <u>d for this power level:</u>	ming gain (Y) if applicable Part number or model name supported for this power level.			
(G) and the resulting Power Leve Number of a Assembly # NOTE 3: Add Power Leve Number of a	d more rows in case more a	to account the beamfor <u>d for this power level:</u> <u>e.i.r.p. (dBm)</u> -1.69 antenna assemblies are <u>d for this power level:</u>	ming gain (Y) if applicable Part number or model name supported for this power level.			
(G) and the resulting Power Leve Number of a Assembly # NOTE 3: Add Power Leve Number of a Assembly # 1	d more rows in case more a	to account the beamfor <u>d for this power level:</u> <u>e.i.r.p. (dBm)</u> -1.69 antenna assemblies are <u>d for this power level:</u>	ming gain (Y) if applicable Part number or model name supported for this power level.			
(G) and the resulting Power Leve Number of an Assembly # NOTE 3: Add Power Leve Number of an Assembly # 1 2 3 NOTE 4: Add Power Level	d more rows in case more a	to account the beamfor d for this power level: e.i.r.p. (dBm) -1.69 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are	ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.			
(G) and the resulting Power Leve Number of an Assembly # NOTE 3: Add Power Leve Number of an Assembly # 1 2 3 NOTE 4: Add Power Level	d more rows in case more a Gain (dBi)	to account the beamfor d for this power level: e.i.r.p. (dBm) -1.69 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are	ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.			
(G) and the resulting Power Leve Number of an Assembly # NOTE 3: Add Power Leve Number of an Assembly # 1 2 3 NOTE 4: Add Power Level Number of an	I e.i.r.p. levels also taking in I 1: dBm I 1: dBm I 104 Gain (dBi) 1.04 d more rows in case more a I 2: dBm Intenna assemblies provider Gain (dBi) d more rows in case more a I 3: dBm Intenna assemblies provider	to account the beamfor d for this power level: e.i.r.p. (dBm) -1.69 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are d for this power level:	ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.			
(G) and the resulting Power Leve Number of an Assembly # NOTE 3: Add Power Leve Number of an Assembly # 1 2 3 NOTE 4: Add Power Level Number of an	I e.i.r.p. levels also taking in I 1: dBm I 1: dBm I 104 Gain (dBi) 1.04 d more rows in case more a I 2: dBm Intenna assemblies provider Gain (dBi) d more rows in case more a I 3: dBm Intenna assemblies provider	to account the beamfor d for this power level: e.i.r.p. (dBm) -1.69 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are d for this power level:	ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.			

N2017.06.06.0614.V.1.2

NTEK 北测®

Page 11 of 55

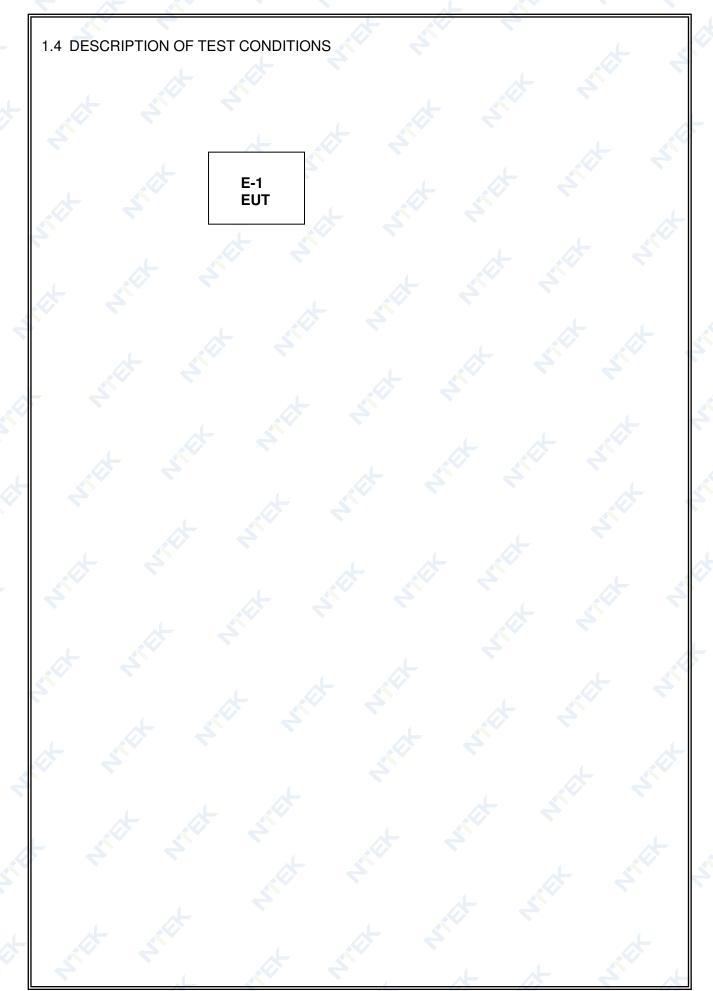
n) The nominal voltages of the stand-alone radio equipment or the no	minal voltages of the	
combined (host) equipment or test jig in case of plug-in devices:		
Details provided are for the:		
Stand-alone equipment		
Combined (or host) equipment		
🗌 test jig		
Supply Voltage 🔲 AC mains State AC voltage V		
DC State DC voltage: DC 3.85V		
In case of DC, indicate the type of power source		
Internal Power Supply		
External Power Supply or AC/DC adapter: DC 5V		
Battery: DC 3.85V		
Other:		
o) Describe the test modes available which can facilitate testing:		
See clause 1.3		
p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802.	15.4™ [i.4], proprietary	y, etc.):
Bluetooth®		
q) If applicable, the statistical analysis referred to in clause 5.4.1 q)		
(to be provided as separate attachment)		
r) If applicable, the statistical analysis referred to in clause 5.4.1 r)		
(to be provided as separate attachment)		
s) Geo-location capability supported by the equipment:		
Ves		
The geographical location determined by the equipment as defined	d in clause 4.3.1.13.2 or	
clause 4.3.2.12.2 is not accessible to the user		
🖂 No 🛛 🔶		
t) Describe the minimum performance criteria that apply to the equip	ment (see clause 4.3.1.	.12.3 or
clause 4.3.2.11.3):		
GFSK(CH00)=0.57%		
At St F		
t t		

Page 12 of 55 Report No.: STR220826001002E

1.3 TEST CONDITIONS AND CHANNEL

	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	40℃ ~ -10℃ Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.85V	/

	Test Channel	EUT Channel	Test Frequency (MHz)
	Lowest	CH00	2402
	Middle	CH19	2440
e	Highest	СН39	2480


Note:

(1) The HT 40 $^\circ\!C$ and LT -10 $^\circ\!C$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

Page 13 of 55 Report No.: S

Report No.: STR220826001002E

1.5 DESCRIPTION OF SUPPORT UNITS

NTEK 北测[®]

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

		4		
Item	Equipment	Model/Type No.	Series No.	Note
E-1	Smart A52 N/A EU		EUT	
	2		x x	4
		* *		4
	X	Str. I		
Ţ.				1

ltem	Туре	Shielded Type	Ferrite Core	Length	Note
		\$ \$, 'Y		.(
	6	- 4			-
1	- 5		.1		4
5				7 7	ł
			1		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^[] Length ^[] column.

Page 15 of 55

Report No.: STR220826001002E

1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
Turn Table	EM 🗸	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM 🔨	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.01	2023.03.31	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01	2023.03.31	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	📏 3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

NTEK 北测

Report No.: STR220826001002E

2. SUMMARY OF TEST RESULTS

	as been tested according to the following specifications: ETSI EN 300 328 V2.2.2 (2019-07)		
Clause	Test Item	Results	
<u>s</u>	TRANSMITTER PARAMETERS		
4.3.2.2	RF Output Power	Pass	
4.3.2.3	Power Spectral Density	Pass	
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)	
4.3.2.5	4.3.2.5 Medium Utilization (MU) factor		
4.3.2.6	.3.2.6 Adaptivity		
4.3.2.7	Occupied Channel Bandwidth	Pass	
4.3.2.8	1.3.2.8 Transmitter unwanted emission in the OOB domain		
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Pass	
	RECEIVER PARAMETERS		
4.3.2.10	Receiver Spurious Emissions	Pass	
4.3.2.11	.2.11 Receiver Blocking Pass		

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

Page 17 of 55 Report No.: STR220826001002E

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

2.2 MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

-	Measurement uncertai	nty
No.	Item	Uncertainty (P=95)
	Occupied Channel Bandwidth	± 4.7%
2	RF output Power,conducted	± 0.9dB
3	Power Spectral Density, conducted	± 2.6dB
4	Unwanted emissions, conducted	± 2.2dB
5 <	All emissions, radiated ± 5.3dB	
6	Temperature ± 0.5°C	
7	Humidity	± 2.0%
8 🧷	Time	± 1.0%

Page 18 of 55

Report No.: STR220826001002E

3. TEST PROCEDURES AND RESUTLS

3.1 EQUIVALENT ISOTROPIC RADIATED POWER


3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER

Refer to chapter 4.3.2.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER		
Condition	Limit	
	Equal to or less than the value declared	
Non-adaptive wide band modulations	by the supplier.	
systems	This declared value shall be equal to or	
	less than 20 dBm.	
Adaptive wide band modulations systems	≤20dBm	
	Condition Non-adaptive wide band modulations systems	

3.1.2 TEST PROCEDURE

Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Page 19 of 55 Report No.: STR220826001002E

3.1.4 TEST RESULTS

EUT :	Smart phone	Model Name :	A52
Temperature :	20 ℃	Relative Humidity:	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX Low channel / Middle Channel / High Channel		

Test data reference attachment

Page 20 of 55

Report No.: STR220826001002E

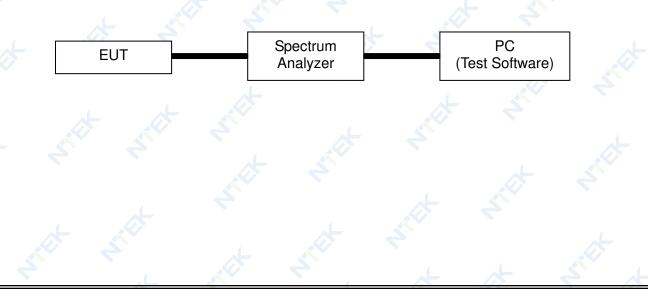
3.2. PEAK POWER DENSITY

3.2.1 LIMITS OF POWER SPECTRAL DENSITY

Refer to chapter 4.3.2.3.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	RF OUTPUT POWER		
Condition		Limit	6
For equipment using wide band modulations other than FHSS		≤10 dBm/MHz	

3.2.2 TEST PROCEDURE


Refer to chapter 5.4.3.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	easurement
Conducted measurement	Radiated measurement

The setting	of the	Spectrum Analy	/zer

The setting of the opectium And	
Start Frequency	2400MHz
Stop Frequency	2483.5MHz
Detector	RMS
A S	> 8 350; for spectrum analysers not supporting this number of
Sweep Point	sweep points, the
7	frequency band may be segmented
	For non-continuous transmissions: 2 × Channel Occupancy Time
	× number of sweep points
Sweep time:	For continuous transmissions: 10 s; the sweep time may be
4.	increased further until a value where the sweep time has no
	further impact anymore on the RMS value of the signal.
RBW / VBW	10KHz / 30KHz

3.2.3 TEST SETUP

Page 21 of 55 Report No.: STR220826001002E

3.2.4 TEST RESULTS

_			
EUT :	Smart phone	Model Name :	A52
Temperature :	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX-GFSK(CH00/CH19/CH39)	7	

Test data reference attachment

Report No.: STR220826001002E

3.3. OCCUPIED CHANNEL BANDWIDTH

3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH

Refe	r to chapter 4.3.2	.7.3 of ETSI EN 300 328 V2.2.2 (20	19-07)
	OCCUPIED CHANNEL BANDWIDTH		
	Condition		Limit
	All types of equipment using wide band modulations other than FHSS		Shall fall completely within the band 2400 to 2483.5 MHz
	Additional	For non-adaptive using wide band modulations other than FHSS system and E.I.R.P >10 dBm	Less than 20 MHz
	requirement	For non-adaptive frequency hopping system and E.I.R.P >10 dBm	Less than 5 MHz

3.3.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	M	easurement		
	Imeasurement	Radiated measurement		
The setting of the Spe	ctrum Analyzer	At all all t		
Center Frequency	Center Frequency The centre frequency of the channel under test			
Frequency Span	2 × Nominal Channe	2 × Nominal Channel Bandwidth		
Detector	RMS	RMS		
RBW	~ 1 % of the span w	~ 1 % of the span without going below 1 %		
VBW	3 × RBW			
Trace	Max hold			
Sweep time	1s			

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

3.3.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software has been activated to set the EUT on specific status.

Page 23 of 55

Report No.: STR220826001002E

3.3.5 TEST RESULTS

EUT :	Smart phone	Model Name :	A52
Temperature :	26 ℃	Relative Humidity :	60 %
Pressure :	1012 hPa 📈 📈	Test Voltage :	DC 3.85V 🔔 🕺
Test Mode :	TX-GFSK(CH00/CH19/CH39)		

Test data reference attachment

3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.2.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition	Limit	
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	
-		

Spurious Domain	Out Of Band Domain (OOB)	Allocated Band	Out Of Band Domain (OOB)	Spurious Domai
	A			
В				
c				

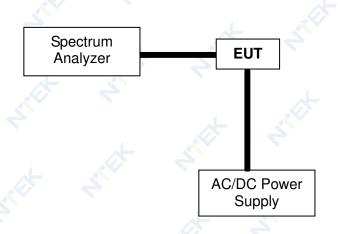
- A: -10 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p.
- C: Spurious Domain limits

BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

3.4.2 TEST PROCEDURE

Refer to chapter 5.4.8.2 of ETSI EN 300 328 V2.2.2 (2019-07)

·	Measurement
Conducted measure	ment
The setting of the Spectrum Ana	alyzer
Span 🧹	0Hz
Filter Mode	Channel Filter
Trace Mode	Max Hold
Trigger Mode	Video trigger; in case video triggering is not possible, an external trigger source may be used
Detector	RMS
Sweep Point / Sweep Mode	Sweep Time [s] / (1 $\mu s)$ or 5 000 whichever is greater/ Continuous
RBW / VBW	1MHz / 3MHz


Page 25 of 55

Report No.: STR220826001002E

3.4.3 DEVIATION FROM TEST STANDARD

No deviation

3.4.4 TEST SETUP

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

Page 26 of 55 Report No.: STR220826001002E

3.4.5 TEST RESULTS

EUT :	Smart phone	Model Name :	A52
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	TX-GFSK(CH00/CH39)	7	<u>k</u> <u>š</u>

Test data reference attachment

3.5. ADAPTIVE (CHANNEL ACCESS MECHANISM)

3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR WIDE BAND MODULATION TECHNIQUES

Refer to chapter ETSI EN 300 328 V2.2.2 (2019-07)

	Operational Mode			
			T based Detect and Avoid	
Requirement	Non-LBT based Detect and Avoid	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as note 2)
Minimum Clear Channel Assessment (CCA) Time	NA	not less than 18 us (see note 1)	(see note 2)	not less than 18 us (see note 1)
Maximum Channel Occupancy (COT) Time	<40 ms	1ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)
Minimum Idle Period	5 % minimum of 100 μs	5% of COT	(see note 2)	NA
Extended CCA check		NA	(see note 2)	R*CCA (see note 4)
Short Control Signalling Transmissions	Maximur	n duty cycle of 10% (;	within an observations within an observation see note 5)	on period of 50 ms

Note 1: The CCA time used by the equipment shall be declared by the supplier.

Note 2: Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect as described in IEEE 802.11[™]-2012 [i.3], clause 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in IEEE 802.15.4[™]-2011 [i.4], clause 4, clause 5 and clause 8 providing the equipment complies with the conformance requirements referred to in clause 4.3.2.6.3.4.

Note 3: q is selected by the manufacturer in the range [4...32]

Note 4: The value of R shall be randomly selected in the range [1...q]

Note 5: Adaptive equipment may or may not have Short Control Signaling Transmissions.

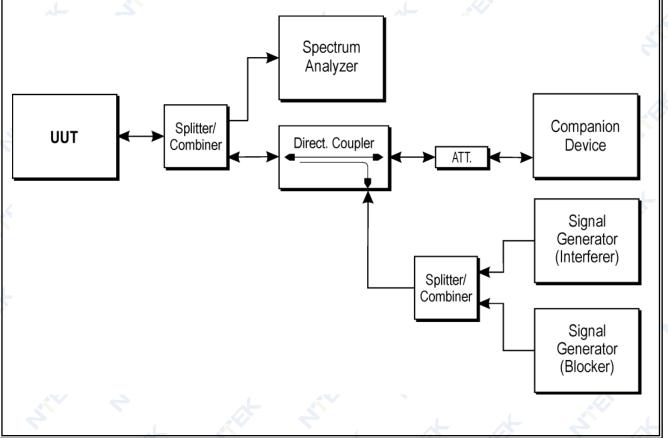
Interference threshold level

The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

TL = -70 dBm/MHz + 10 × log10 (100 mW / Pout) (Pout in mW e.i.r.p.)

	Table 9: Unwanted Signal parameters		
	Wanted signal mean power	Unwanted signal	Unwanted CW
	from companion device 🤝	frequency 🙏 🔨	signal power (dBm)
	(dBm)	(MHz)	
Z	-30/ sufficient to maintain the	2 395 or 2 488,5	-35
	link(see note 2)	(see note 1)	(see note 2)

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1. NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz. NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.


3.5.2 TEST PROCEDURE

Refer to chapter 5.4.6.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Ν	leasurement		
Conducted measurement		Radiated measurement	
		~ /	

Test method please refer to the 5.4.6.2.1.4 of ETSI EN 300 328 V2.2.2 (2019-07)

3.5.3 TEST SETUP CONFIGURATION

N2017.06.06.0614.V.1.2

Report No.: STR220826001002E

3.5.4 LIST OF MEASUREMENTS

		UUT operational Mode	
12	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced)
		V V	

Clause	Test Parameter	Remarks	PASS/FAIL
4.3.2.5.2.2.1	Adaptive (Frame Based Equipment)	Not Applicable	N/A
4.3.2.5.2.2.2	Adaptive (Load Based Equipment)	N/A	N/A
4.3.2.5.3	Short Control Signaling Transmissions	N/A	N/A

N2017.06.06.0614.V.1.2

Page 30 of 55 Report No.: STR220826001002E

3.5.5 TEST RESULTS

EUT :	Smart phone	Model Name :	A52
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	N/A
Test Mode :	N/A	7	

Note: Not Applicable

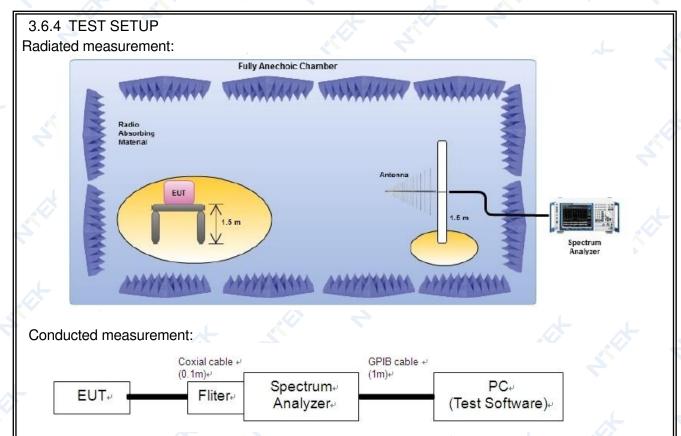
Report No.: STR220826001002E

3.6. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Refer to chapter 4.3.2.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	- S-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz


3.6.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement						
Conducted r	neasurement		Radiated measu	urement		
The setting of the Spect	rum Analyzer		4			
RBW	100K(<1GHz) / 1M	l(>1GHz)		X	Ś	
VBW	300K(<1GHz) / 3M	l(>1GHz)	×			

3.6.3 DEVIATION FROM TEST STANDARD

No deviation

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

Page 33 of 55

Report No.: STR220826001002E

3.6.5 TEST RESULTS(Radiated measurement)

BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)					
EUT:	Smart phone	Model Name :	A52		
Temperature :	24°C	Relative Humidity :	57 %		
Pressure :	1012 hPa	Test Voltage :	DC 3.85V 📌 🔬		
Test Mode :	TXGFSK(CH39)				

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits Margin		Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	32.10	-75.89	11.12	-64.77	-36	-28.77	peak
V	116.01	-69.95	10.06	-59.89	-54	-5.89	peak
V	202.85	-67.87	11.06		-54	-2.81	peak
V	458.28	74.96	9.69	-65.27	-36	-29.27	peak
V	505.09	-72.27	10.95	-61.32	-54	-7.32	peak
Н	41.07	-70.97	10.54	-60.43	-36	-24.43	peak
H	103.22	-74.64	9.98	-64.66	-54	-10.66	peak
Н	200.90	-71.45	9.72	-61.73	-54	-7.73	peak
Н	249.05	-74.30	11.41	-62.89	-36	-26.89	peak
Н	643.74 🏑	-74.85	10.40	-64.45	-54	-10.45	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Report No.: STR220826001002E

JT :	Smart ph	none 🦯		Model Name	: A52				
mperati	ure : 26℃						Relative Humidity : 60 %		
essure :		а		Test Voltage		8.85V			
st Mode		K (CH00/CH19	9/CH39)				1		
					4	Ŕ			
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark		
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)			
		0	peration fre	equency:2402		×	2		
V	2524.636	-75.73	10.10	-65.63	-30	-35.63	peak		
V	3651.97	-72.35	9.61	-62.74	-30	-32.74	peak		
V	2764.702	-73.97	10.56	-63.41	-30	-33.41	peak		
V	3632.842	-76.89	10.76	-66.13	-30	-36.13	peak		
Н	2687.913	-73.59	10.83	-62.76	-30	-32.76	peak		
Н	3701.439	-69.24	11.11	-58.13	-30	-28.13	peak		
Н	2309.504	-72.13	10.83	-61.30	-30	-31.30	peak		
H	3058.268	-71.51	11.36	-60.15	-30	-30.15	peak		
		0	peration fre	equency:2440			4		
V	2692.346	-69.13	11.01	-58.12	-30	-28.12	peak		
V	5411.327	-75.73	9.84	-65.89	-30	-35.89	peak		
V	2883.92	-77.52	11.59	-65.93	-30	-35.93	peak		
V	5256.472	-75.66	10.88	-64.78	-30	-34.78	peak		
H	2353.902	-76.85	9.97	-66.88	-30	-36.88	peak		
Н	4777.604	-74.04	11.46	-62.58	-30	-32.58	peak		
Н	2723.454	-69.03	9.67	-59.36	-30	-29.36	peak		
Н	3637.574	-68.91	9.70	-59.21	-30	-29.21	peak		
	7		peration fre	equency:2480					
V	2291.135	-73	9.97	-63.03	-30	-33.03	peak		
V	5125.806	-70.58	10.25	-60.33	-30	-30.33	peak		
V	2016.715	-74.96	10.68	-64.28	-30	-34.28	peak		
V	5043.098	-72.75	11.43	-61.32	-30	-31.32	peak		
Н	2108.872	-71.2	10.04	-61.16	-30	-31.16	peak		
Н	4827.136	-76.37	11.48	-64.89	-30	-34.89	peak		
Н	2272.204	-73.1	10.98	-62.12	-30	-32.12	peak		
Н	5274.659	-67.88	10.55	-57.33	-30	-27.33	peak		

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 35 of 55

Report No.: STR220826001002E

3.6.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

3.7. RECEIVER SPURIOUS RADIATION

3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.2.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

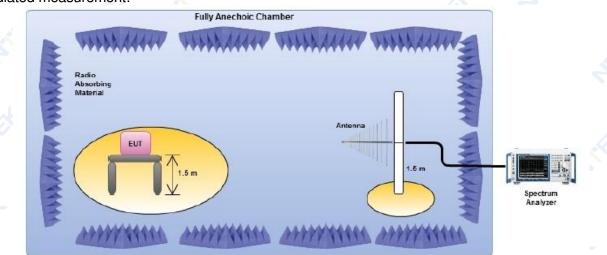
RECEIVER SPURIOUS EMISSIONS				
Frequency Range	Measurement Bandwidth			
💎 30 MHz ~ 1 GHz	-57dBm	100KHz		
1 GHz ~ 12.75 GHz	-47dBm	1MHz		

3.7.2 TEST PROCEDURE

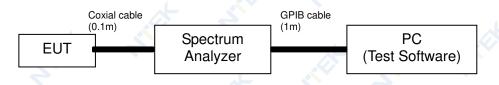
Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement		
Conducted measurement		Radiated measurement	

The setting of the Spectrum Analyzer


RBW	100K(<1GHz) / 1M(>1GHz)	¥		
VBW	300K(<1GHz) / 3M(>1GHz)		~	×

3.7.3 DEVIATION FROM TEST STANDARD


No deviation

3.7.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

Page 37 of 55

Report No.: STR220826001002E

3.7.5 TEST RESULTS(Radiated measurement)

	RX BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)								
EUT:	Smart phone	Model Name :	A52						
Temperature :	26 °C	Relative Humidity :	60 %						
Pressure :	1012 hPa 📈 📈	Test Voltage :	DC 3.85V 🔔 🕺						
Test Mode :	RX Mode-GFSK(CH39)								

	Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
ſ	V	40.762	-77.42	12.99	-64.43	-57	-7.43	peak
	V	97.172	-80.46	11.72	-68.74	-57	-11.74	peak
	V	203.28	-84.06	19.01	-65.05	-57	-8.05	peak
	V	332.198	-80.27	11.70	-68.57	-57	-11.57	peak
	V	604.462	-83.11	11.51	-71.60	-57	-14.60	peak
	Н	31.906	-77.73	18.68	-59.05	-57	-2.05	peak
	H	117.725	-81.83	18.23	63.60 🛛 🔨	-57	-6.60	peak
	Η	188.945	-80.71	10.30	-70.41	-57	-13.41	peak
	Н	398.457	-77.82 🖉	15.07	-62.75	-57	-5.75	peak
	Н	545.407	-81.53	14.73	-66.80	-57	-9.80	peak

Remark:

Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
 All the modes had been tested, but only the worst data recorded in the report.

N2017.06.06.0614.V.1.2

Report No.: STR220826001002E

	RX ABOVE 1 GHz WORS1	- CASE DATA(1GHz ~	12.75GHz)	
EUT :	Smart phone	Model Name :	A52	5
Temperature :	24 °C	Relative Humidity	54%	
Pressure :	1010 hPa	Test Power :	DC 3.85V	
Test Mode :	RX Mode-GFSK(CH39)	~		1 1

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	2384.184	-84.13	9.96	-74.17	-47	-27.17	peak
V	5170.014	-77.46	9.92	-67.54	-47	-20.54	peak
V	2793.046	-83.34	10.06	-73.28	-47	-26.28	peak
V	3632.749	-84.51	16.14	-68.37	-47	-21.37	peak
Н	2786.938	-79.19	10.24	-68.95	-47	-21.95	peak
Н	3133.093	-77.32	10.70	-66.62	-47	-19.62	peak
Н	2708.519	-78.41	7.10	-71.31	-47	-24.31	peak
Н	3521.524	-79.05	14.62	-64.43	-47	-17.43	peak

2. All the modes had been tested, but only the worst data recorded in the report.

3.7.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

3.8. RECEIVER BLOCKING

3.8.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

3.8.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504	-34	cw
(-139 dBm + 10 × log₁₀(OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524 2584 2674	ATTEN ATTEN	AN INT

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 40 of 55

Report No.: STR220826001002E

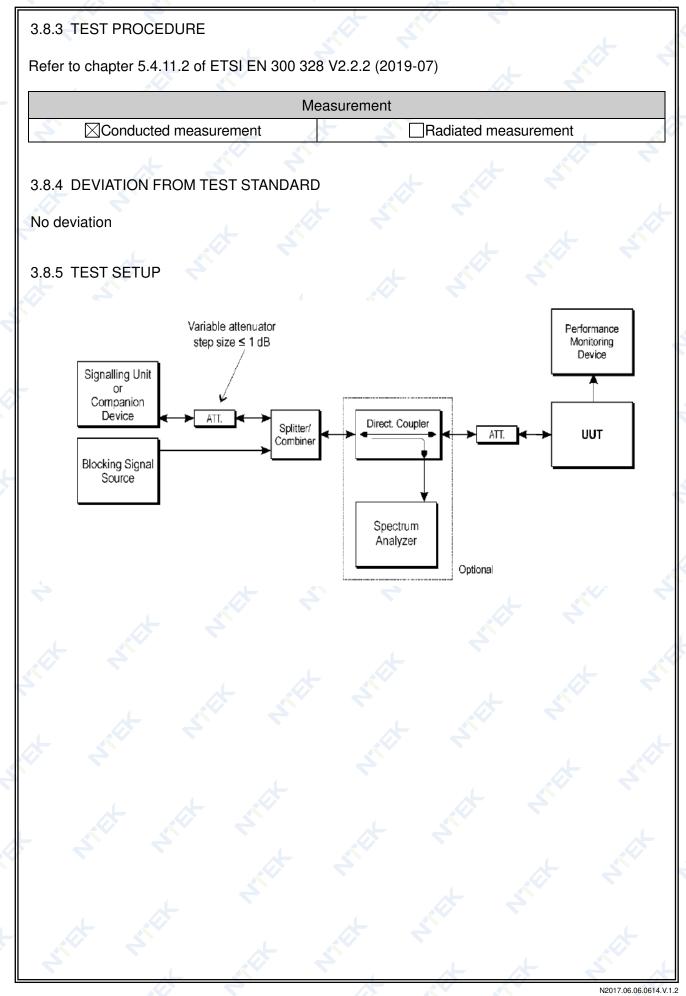
Table 15: Receiver Blocking parameters receiver category 2 equipment								
Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking					
companion device (dBm)	Frequency (MHz)	(dBm) (see note 3)	signal					
(see notes 1 and 3)								
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB)	2 380	-34	CW					
or (-74 dBm + 10 dB) whichever is less	2 504							
(see note 2)	2 300	للم						
	2 584		~					

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 16: Receiver Blocking parameters receiver category 3 equipment


Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504		4
(see note 2)	2 300		
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 41 of 55

Page 42 of 55 F

Report No.: STR220826001002E

3.8.6 TEST RESULTS

EUT:	Smart phone 💦 📃 🔨	Model Name :	A52
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK-RX Mode (CH00/CH39)		

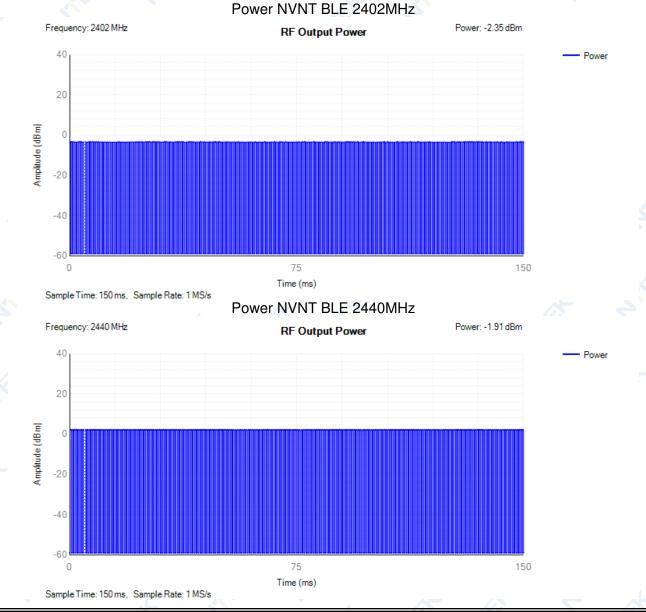
CH00:

	rece	eiver category 3		
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit %
	2 380 2 504	4	0.23%	≤10%
-58.90	2 300 2 584	-34	0.25%	≤10%

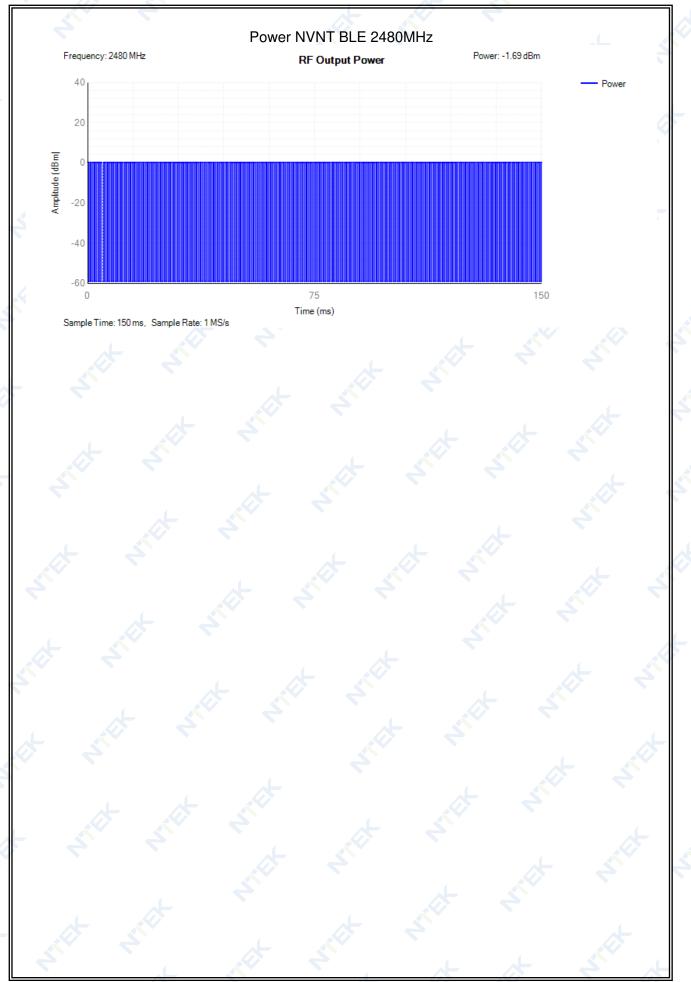
CH39:

	re re	ceiver category 3		
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit
A CONTRACTOR	2 380 2 504	_	0.14% 0.44%	≤10%
-58.90	2 300 2 584	-34	0.25% 0.37%	≤10%

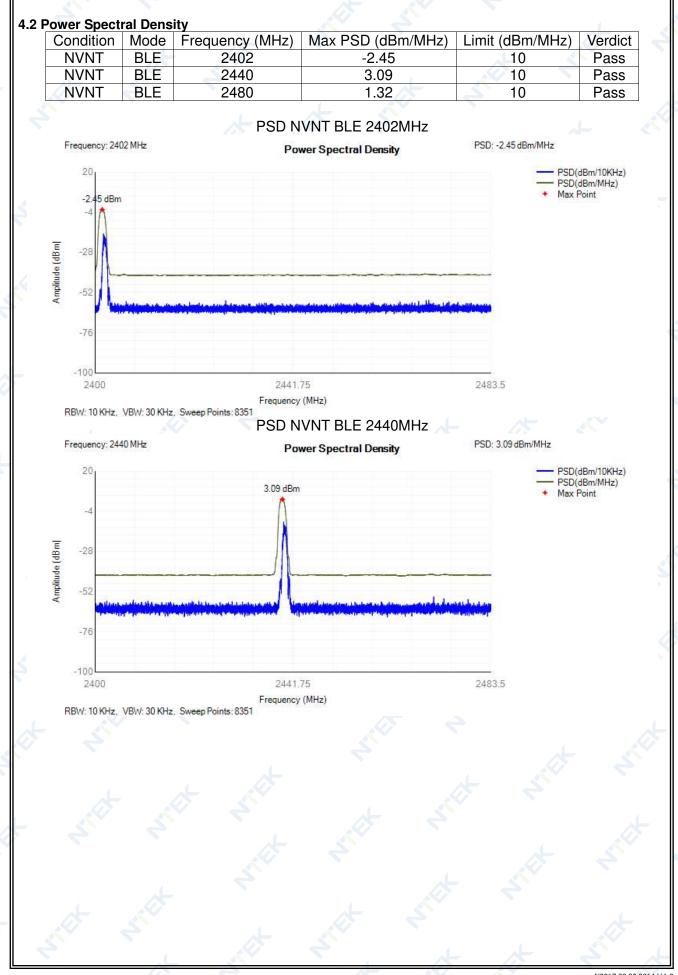
Note: (1) The above results were obtained from laboratory tests.

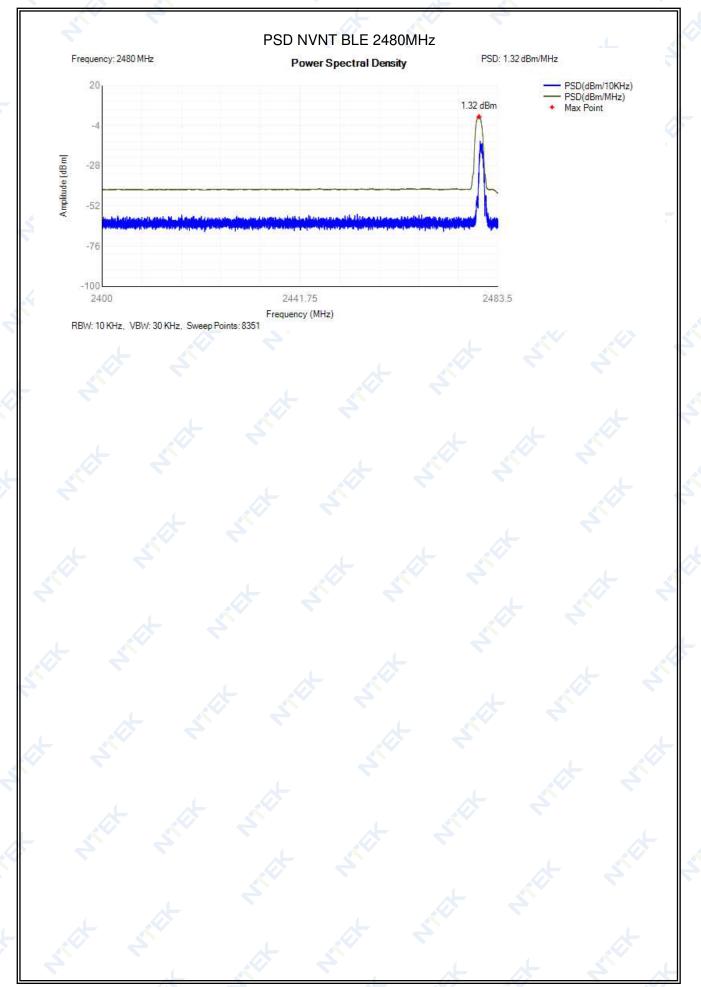

Page 43 of 55

Report No.: STR220826001002E

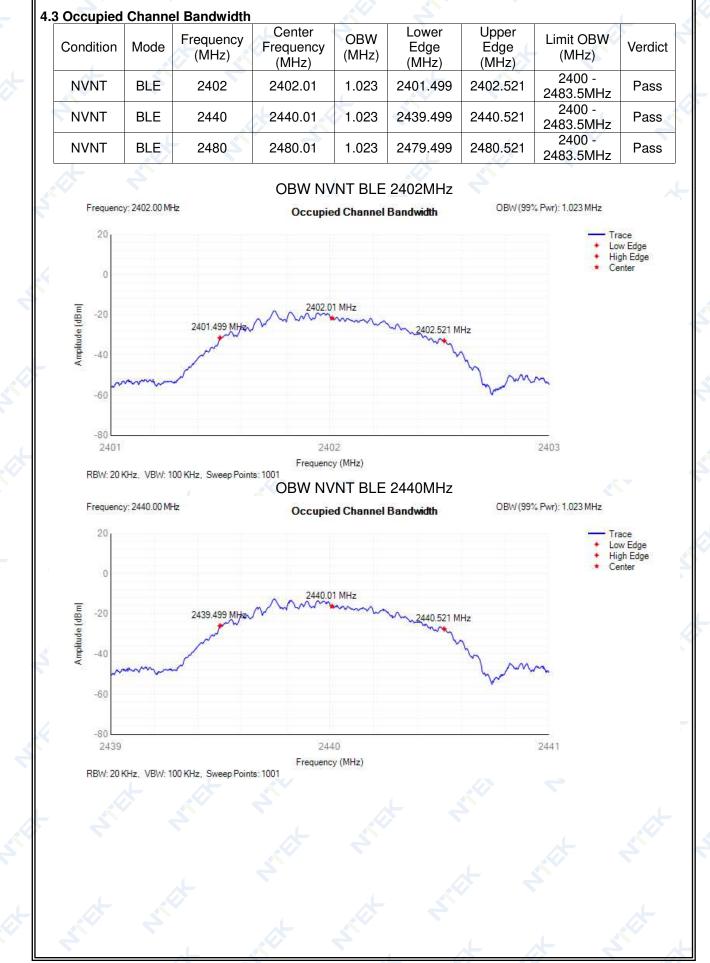

4. TEST RESULTS

4.1 RF Output Power

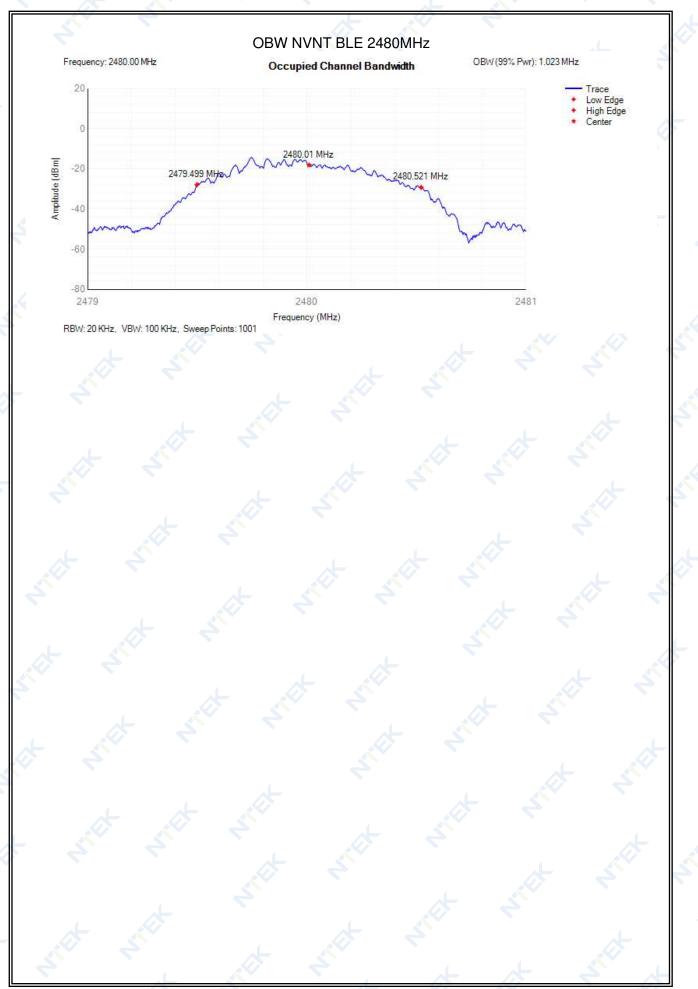

1.	Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict	
	- NVNT	BLE	2402	-3.39	241	-2.35	20	Pass	
X	NVNT	BLE	2440	-2.95	240	-1.91	20	Pass	
	NVNT	BLE	2480	-2.73	241	-1.69	20	Pass	
	NVLT	BLE	2402	-3.65	241	-2.61	20	Pass	
	NVLT	BLE	2440	-2.99	240	-1.95	20	Pass	
	NVLT	BLE	2480	-2.8	241	-1.76	20	Pass	
	NVHT	BLE	2402	-3.74	241	-2.7	20	Pass	
	NVHT	BLE	2440	-3.15	240	-2.11	20	Pass	
	NVHT	BLE	2480	-2.85	241	-1.81	20	Pass	
			•	•					-


Page 44 of 55

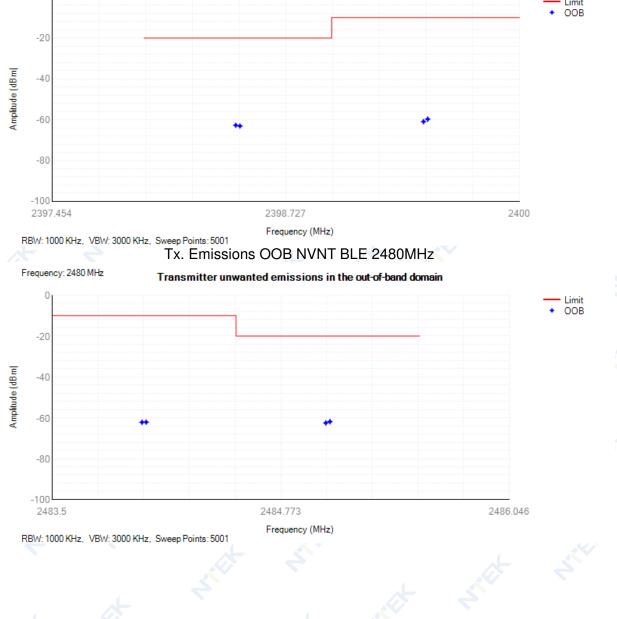
Report No.: STR220826001002E



Page 46 of 55



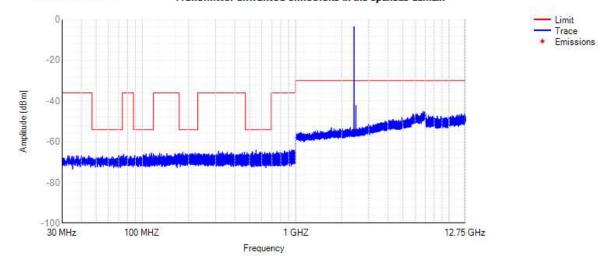
Page 47 of 55

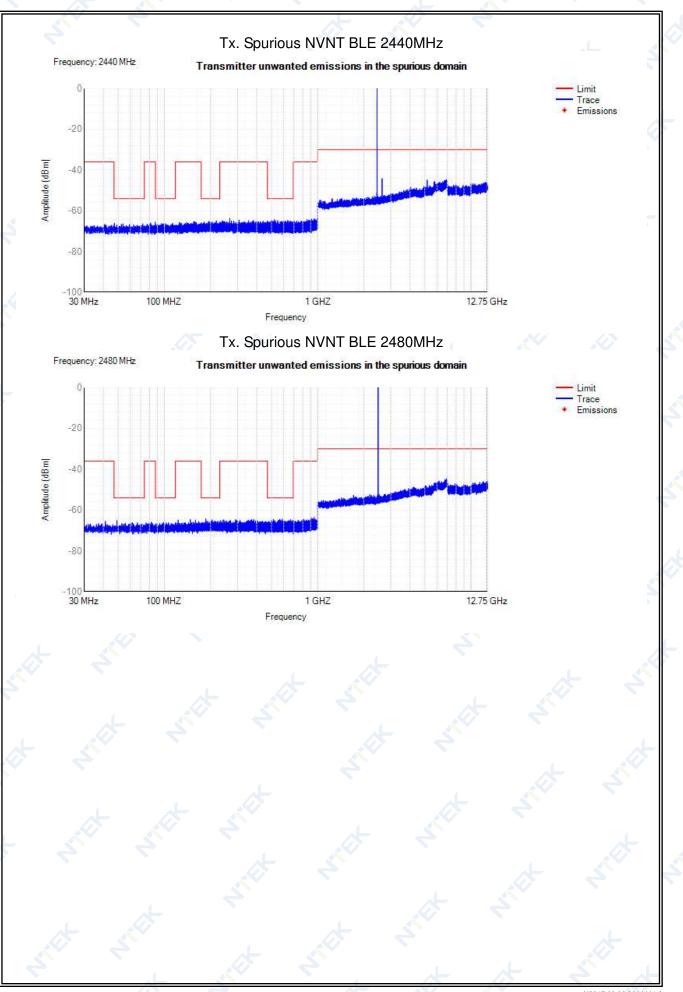

Report No.: STR220826001002E

Page 48 of 55

Condition	Mode	Frequency (MHz)	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	BLE	2402	2399.5	-59.7	-10	Pass
< <u>NVNT</u>	BLE	2402	2399.477	-60.92	-10	Pass
NVNT	BLE	2402	2398.477	-63.07	-20	Pass 🗸
NVNT	BLE	2402	2398.454	-62.7	-20	Pass
NVNT	BLE	2480	2484	-62.2	-10	Pass
NVNT	BLE	2480	2484.023	-62.14	-10	Pass
NVNT	BLE	2480	2485.023	-62.53	-20	Pass
NVNT	BLE	2480	2485.046	-61.9	-20	Pass
Frequency:	2402 MHz		sions OOB NVNT Inwanted emissions in			

Page 50 of 55

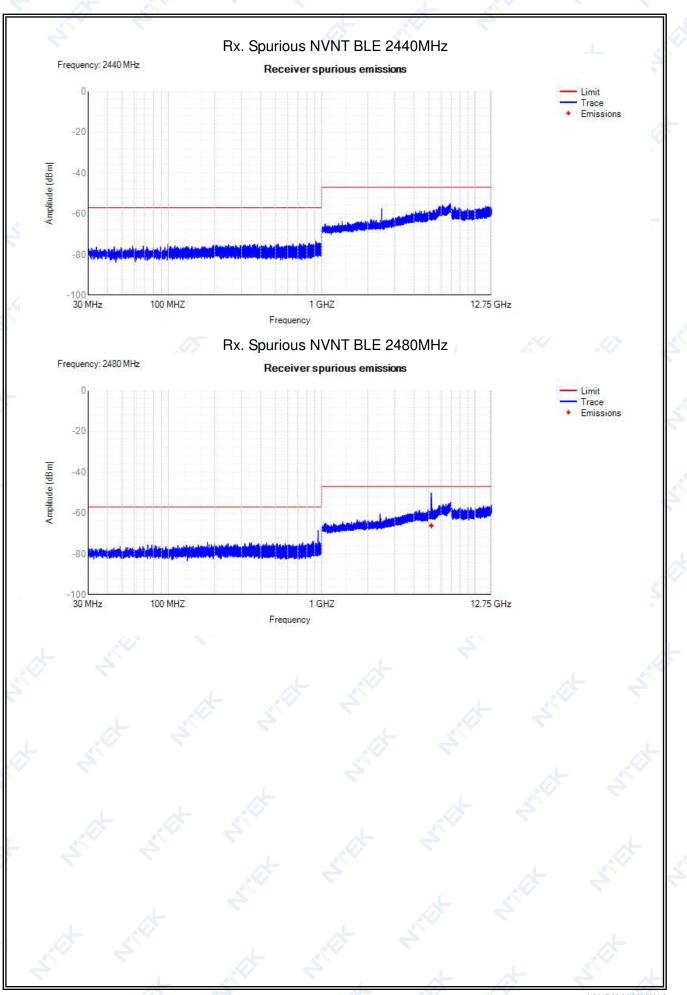

Report No.: STR220826001002E


Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	30 MHz -47 MHz	40.1	-66.72	NA	-36	Pass
NVNT	BLE	2402	47 MHz -74 MHz	70.5	-66.66	NA	-54	Pass
NVNT	BLE	2402	74 MHz -87.5 MHz	75.6	-66	NA	-36	Pass
NVNT	BLE	2402	87.5 MHz -118 MHz	114.3	-65.45	NA	-54	Pass
NVNT	BLE	2402	118 MHz -174 MHz	129.5	-65.56	NA	-36	Pass
NVNT	BLE	2402	174 MHz -230 MHz	183.55	-64.99	NA 🔷	-54	Pass
NVNT	BLE	2402	230 MHz -470 MHz	314.15	-64.54	NA	-36	Pass
NVNT	BLE	2402	470 MHz -694 MHz	551.2	-63.99		-54	Pass
NVNT	BLE	2402	694 MHz -1000 MHz	948.85	-63.88	NA	-36	Pass
NVNT	BLE	2402	1000 MHz -2398 MHz	2275	-52.74	NA	-30	Pass
NVNT	BLE	2402	2485.5 MHz -12750 MHz	6770	-45	NA	-30	Pass
NVNT	BLE	2440	30 MHz -47 MHz	40.85	-66.7	NA	-36	Pass
NVNT	BLE	2440	47 MHz -74 MHz	47.2	-66.04	NA	-54	Pass
NVNT	BLE	2440	74 MHz -87.5 MHz	87.05	-65.52	NA	-36	Pass
NVNT	BLE	2440	87.5 MHz -118 MHz	113.05	-66.1	NA	-54	Pass
NVNT	BLE	2440	118 MHz -174 MHz	155.35	-65.32	NA	-36	Pass
NVNT	BLE	2440	174 MHz -230 MHz	218	-64.88	NA	-54	Pass
NVNT	BLE	2440	230 MHz -470 MHz	267.3	-63.7	NA	-36	Pass
NVNT	BLE	2440	470 MHz -694 MHz	521.7	-64.35	NA	-54	Pass
NVNT	BLE	2440	694 MHz -1000 MHz	998	-63.93	NA 🗳	-36	Pass
NVNT	BLE	2440	1000 MHz -2398	2334.5	-52.77	NA	-30	Pass

Page 51 of 55

Report No.: STR220826001002E

NVNT	BLE	2440	2485.5 MHz -12750 MHz	2633.5	-44.22	NA	-30	Pass
NVNT	BLE	2480	30 MHz -47 MHz	41.2	-65.43	NA	-36	Pass
NVNT	BLE	2480	47 MHz -74 MHz	49.05	-65.12	NA	-54	Pass
NVNT	BLE	2480	74 MHz -87.5 MHz	81.9	-65.87	NA	-36	Pase
NVNT	BLE	2480	87.5 MHz -118 MHz	98.7	-66.01	NA	-54	Pass
NVNT	BLE	2480	118 MHz -174 MHz	147.6	-64.63	NA	-36	Pass
NVNT	BLE	2480	174 MHz -230 MHz	186.4	-64.36	NA	-54	Pass
NVNT	BLE	2480	230 MHz -470 MHz	382.55	-64.58	NA	-36	Pass
NVNT	BLE	2480	470 MHz -694 MHz	586.4	-64.34		-54	Pass
NVNT	BLE	2480	694 MHz -1000 MHz	948.8	-63.52	NA	-36	Pass
NVNT	BLE	2480	1000 MHz -2398 MHz	2189.5	-52.39	NA	-30	Pass
NVNT	BLE	2480	2485.5 MHz -12750 MHz	6958.5	-44.57	NA	-30	Pass



Page 53 of 55

6 F	Receiver	-			Spur	*			
С	Condition	Mode	Frequency (MHz)	Range	Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
	NVNT	BLE	2402	30 MHz -1000 MHz	948.881	-68.59	NA	-57	Pass
	NVNT	BLE	2402	1000 MHz -12750 MHz	5214.5	-54.66	NA	-47	Pass
	NVNT	BLE	2440	30 MHz -1000 MHz 1000	915.35	-73.46	NA	-57	Pass
ł	NVNT	BLE	2440	MHz -12750 MHz	6939	-55.11	NA	-47	Pass
	NVNT	BLE	2480	30 MHz -1000 MHz	948.2	-68.43	NA	-57	Pass
	NVNT	BLE	2480	1000 MHz -12750 MHz	5186.5	-50.08	-66.14	-47	Pass
	0 -20	y: 2402 MHz		1.000	ous NVNT Priver spurious	BLE 2402MHz emissions	-	- Tr	mit ace nissions
	-20 -40 -60	y: 2402 MHz		1.000				- Tr	ace
	0 -20 -40 -40 -60 -80	nyunaa marka da		1.000		emissions		- Tr	ace
	-20 -40 -60	nyunaa marka da	100 MHZ	Rece		emissions		- Tr	ace
	0 -20 -40 -40 -60 -80	nyunaa marka da		Rece	eiver spurious	emissions		- Tr	ace
	0 -20 -40 -40 -60 -80	nyunaa marka da		Rece	eiver spurious	emissions		- Tr	ace
	0 -20 -40 -40 -60 -80	nyunaa marka da		Rece	eiver spurious	emissions		- Tr	ace
	0 -20 -40 -40 -60 -80	nyunaa marka da		Rece	eiver spurious	emissions		- Tr	ace

Report No.: STR220826001002E

Page 55 of 55

Report No.: STR220826001002E

