RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product : Smart phone Trade Mark : Blackview Model Name : A53 Pro Family Model : N/A Report No. : STR221215001002E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

Page 2 of 70

Report No.: STR221215001002E

	TEST RESULT CERTIFICATION
	Applicant's name : DOKE COMMUNICATION (HK) LIMITED Address : RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA Manufacturer's Name : Shenzhen DOKE Electronic Co.,Ltd
	Address
	Product description
	Product name:: Smart phone
	Trademark: Blackview
	Model Name: A53 Pro
	Family Model
	Standards: ETSI EN 300 328 V2.2.2 (2019-07)
	This device described above has been tested by Shenzhen NTEK, and the test results show that the equipment under test (EUT) is in compliance with the 2014/53/EU RED Directive Art.3.2 requirements. And it is applicable only to the tested sample identified in the report.
	This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personnel only, and shall be noted in the revision of the document. Test Sample Number
	Date of Test
	Date (s) of performance of tests : Dec 15, 2022 ~ Jan 03, 2023
	Date of Issue : Jan 03, 2023
	Test Result: Pass
	Testing Engineer : May Ha
	(Mary Hu)
	Authorized Signatory :
	(Alex Li)
0	

Page 3 of 70

Report No.: STR221215001002E

Table of Contents	Page
1. GENERAL INFORMATION	6
1.1 GENERAL DESCRIPTION OF EUT	6
1.2 INFORMATION ABOUT THE EUT	7
1.3 TEST CONDITIONS AND CHANNEL	12
1.4 DESCRIPTION OF TEST CONDITIONS	13
1.5 DESCRIPTION OF SUPPORT UNITS	13
1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	15
2 . SUMMARY OF TEST RESULTS	16
2.1 TEST FACILITY	17
2.2 MEASUREMENT UNCERTAINTY	17
3 . TEST PROCEDURES AND RESUTLS	18
3.1 EQUIVALENT ISOTROPIC RADIATED POWER	~ 18
3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER	18
3.1.2 TEST PROCEDURE 3.1.3 TEST SETUP	18 18
3.1.4 TEST RESULTS	
3.2 . PEAK POWER DENSITY	20
3.2.1 LIMITS OF POWER SPECTRAL DENSITY	20
3.2.2 TEST PROCEDURE	20
3.2.3 TEST SETUP	20
3.2.4 TEST RESULTS	21
3.3 . OCCUPIED CHANNEL BANDWIDTH 3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	22 22
3.3.2 TEST PROCEDURE	22
3.3.3 DEVIATION FROM TEST STANDARD	22
3.3.4 TEST SETUP	22
3.3.5 TEST RESULTS	23
3.4 . TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAN	
3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN TH DOMAIN	24
3.4.2 TEST PROCEDURE	24
3.4.3 DEVIATION FROM TEST STANDARD	25
3.4.4 TEST SETUP	25
3.4.5 TEST RESULTS	26
3.5 . ADAPTIVE (CHANNEL ACCESS MECHANISM) 3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILI	
MODULATION TECHNIQUES	1 FOR WIDE BAND 27
3.5.2 TEST PROCEDURE	28
3.5.3 TEST SETUP CONFIGURATION	28
3.5.4 LIST OF MEASUREMENTS	29

Page 4 of 70

NTEK 北测®

	Table of Contents	Page
	3.5.5 TEST RESULTS	30
	3.6 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOM	
	3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SI	
	DOMAIN	31
	3.6.3 DEVIATION FROM TEST STANDARD 3.6.4 TEST SETUP	31 32
	3.6.5 TEST RESULTS(Radiated measurement)	32
	3.6.6 TEST RESULTS (Conducted measurement)	35
	3.7 . RECEIVER SPURIOUS RADIATION	35
	3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION	35
	3.7.2 TEST PROCEDURE	35
	3.7.3 DEVIATION FROM TEST STANDARD	35
	3.7.4 TEST SETUP	36
	3.7.5 TEST RESULTS(Radiated measurement)	37
	3.7.6 TEST RESULTS (Conducted measurement)	38
	3.8 . RECEIVER BLOCKING	39
	3.8.1 PERFORMANCE CRITERIA	39
	3.8.2 LIMITS OF RECEIVER BLOCKING	39
	3.8.3 TEST PROCEDURE	41
	3.8.4 DEVIATION FROM TEST STANDARD 3.8.5 TEST SETUP	41 41
	3.8.6 TEST RESULTS	41
4	. TEST RESULTS	44
	1M 🔨 🔽	44
	4.1 RF Output Power	44
	4.2 Power Spectral Density	46
	4.3 Occupied Channel Bandwidth 4.4 Transmitter unwanted emissions in the out-of-band domain	48
	4.5 Transmitter unwanted emissions in the spurious domain	50
	4.6 Receiver spurious emissions	55
	2M	57 🗹
	4.1 RF Output Power	57
	4.2 Power Spectral Density	59
	4.3 Occupied Channel Bandwidth	61
	4.4 Transmitter unwanted emissions in the out-of-band domain	63
	4.5 Transmitter unwanted emissions in the spurious domain	65
	4.6 Receiver spurious emissions	68
5	. EUT TEST PHOTO	70
s	PURIOUS EMISSIONS MEASUREMENT PHOTOS	70

Page 5 of 70

Report No.: STR221215001002E

		Revision History	
Report No.	Version	Description	Issued Date
STR221215001002E	Rev.01	Initial issue of report	Jan 03, 2023
7			A 4
			~
•	<u>i</u> t 4	, t	the form
* 10 4		at ste	4
			d
	× ~	×	St R
	4	At 21	. 7
`		4	, t
	7	at .	
Store T			, · · · · · · · · · · · · · · · · · · ·
, ,		4	- Street
A AN	7		
			at a
Arter Arter		with with	

Page 6 of 70

Report No.: STR221215001002E

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart phone
Trade Mark	Blackview
Model Name.	A53 Pro
Family Model	N/A
Model Difference	N/A
	The EUT is Smart phone
	Operation Frequency: 2402~2480 MHz
	Modulation Type: GFSK
	Adaptive/non-adaptive Adaptive equipment
Product Description	Receiver categories 3
	Number Of Channel Please see Note 2.
	Antenna Designation: PIFA Antenna
	Antenna Gain(Peak) 1.0 dBi
Channel List	Refer to below
Adapter	Model: QZ-01000EA00 Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A (10.0W)
Battery	DC 3.87V, 5080mAh, 19.66Wh
Rating	DC 3.87V from battery or DC 5V from adapter
I/O Ports	Refer to users manual
Hardware Version	НСТ-М659МВ-А2
Software Version	A53Pro_EEA_M659_V1.0

Note:

2

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Channel	Frequency (MHz)
00	2402
L 01	2404
5	
38	2478
39	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

- FHSS
- \boxtimes other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment:
 - The maximum number of Hopping Frequencies:
 - The minimum number of Hopping Frequencies:
- The (average) Dwell Time:

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- \boxtimes adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

- The maximum Channel Occupancy Time implemented by the equipment: ./. ms
- \boxtimes The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - The equipment can switch dynamically between Frame Based and Load Based equipment
 - The CCA time implemented by the equipment: / $\ensuremath{\mu s}$
- The equipment has implemented a non-LBT based DAA mechanism
- The equipment can operate in more than one adaptive mode

Page 8 of 70

Report No.: STR221215001002E

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.):

The maximum (corresponding) Duty Cycle:

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

- RF Output Power
- GFSK
- Power Spectral Density
 GFSK
- Duty cycle, Tx-Sequence, Tx-gap N/A
- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
 N/A
- Hopping Frequency Separation (only for FHSS equipment) N/A
- Medium Utilization
 N/A
- Adaptivity

N/A

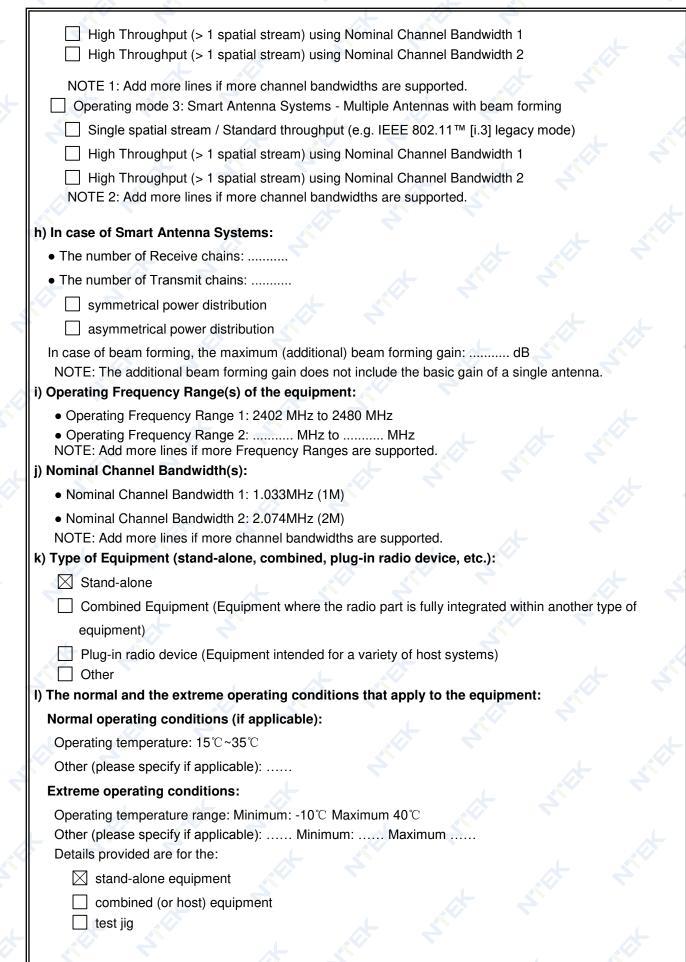
- Receiver Blocking
 GFSK
- Nominal Channel Bandwidth

GFSK

• Transmitter unwanted emissions in the OOB domain

GFSK

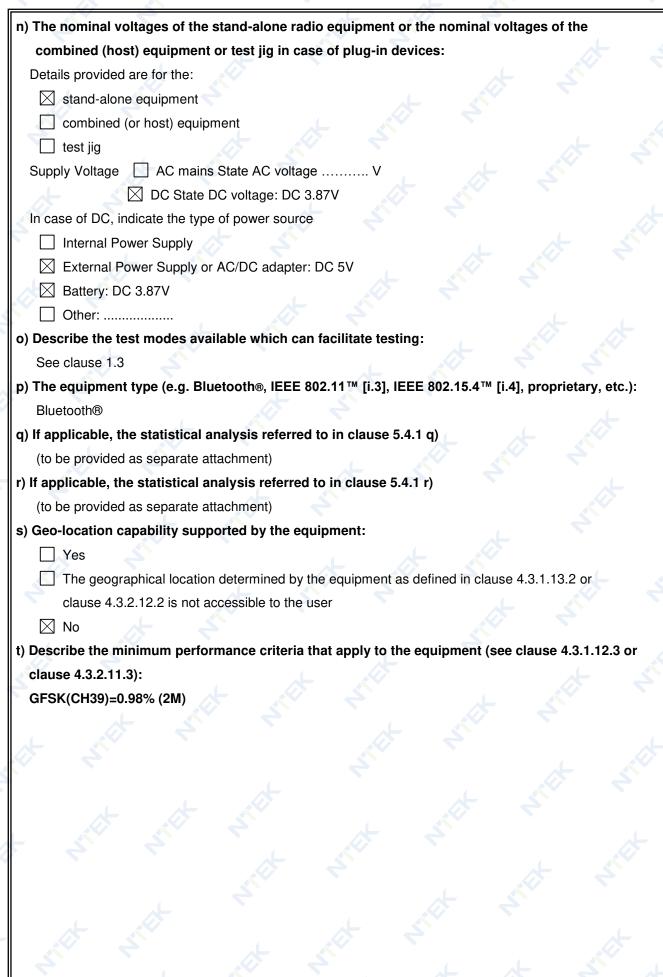
- Transmitter unwanted emissions in the spurious domain GFSK
- Receiver spurious emissions
 GFSK


g) The different transmit operating modes (tick all that apply):

Operating mode 1: Single Antenna Equipment

- Equipment with only one antenna
- Equipment with two diversity antennas but only one antenna active at any moment in time
- Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one antenna is used (e.g. IEEE 802.11[™] [i.3] legacy mode in smart antenna systems)
- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
- Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)

Page 9 of 70


Report No.: STR221215001002E

Page 10 of 70

	r corresponding e.i.r.p.	levels:	
 Antenna Type: PIFA 	Antenna		
Integral Antenna	(information to be provide	ed in case of conducted	measurements)
Antenna Gain: 1	.0 dBi		
If applicable, addit	ional beamforming gain (excluding basic antenna	a gain): dB
Temporary F	RF connector provided		
No temporar	ry RF connector provided		
Dedicated Antenr	nas (equipment with ante	nna connector)	
Single powe	r level with corresponding	g antenna(s)	
Multiple pow	ver settings and correspo	nding antenna(s)	
Number of diffe	erent Power Levels:	🖉	
Power Level 1:	dBm		
Power Level 2:	dBm		
Power Level 3:	dBm		
NOTE 1: Add n	nore lines in case the equ	uipment has more powe	r levels.
	e power levels are condu		
			es, their corresponding gains
		to account the beamfor	ming gain (Y) if applicable
	: dBm		
Number of ante	enna assemblies provideo	d for this power level:	
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1M	1.0		
		-2.3	* *
2M	1.0	-2.46	
	1.0	-2.46	
	1.0	-2.46	supported for this power level.
NOTE 3: Add n	1.0 nore rows in case more a	-2.46	
NOTE 3: Add n Power Level 2	1.0	-2.46	supported for this power level.
NOTE 3: Add n Power Level 2	1.0 nore rows in case more a	-2.46	supported for this power level.
NOTE 3: Add n Power Level 2 Number of ante	1.0 nore rows in case more a :: dBm enna assemblies provided	-2.46 antenna assemblies are d for this power level:	supported for this power level.
NOTE 3: Add n Power Level 2 Number of ante Assembly # 1	1.0 nore rows in case more a :: dBm enna assemblies provided	-2.46 antenna assemblies are d for this power level:	supported for this power level.
NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2	1.0 nore rows in case more a :: dBm enna assemblies provided	-2.46 antenna assemblies are d for this power level:	supported for this power level.
NOTE 3: Add m Power Level 2 Number of ante Assembly # 1 2 3	1.0 more rows in case more a enna assemblies provided Gain (dBi)	-2.46 antenna assemblies are d for this power level: e.i.r.p. (dBm)	supported for this power level. Part number or model name
NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3 NOTE 4: Add n	1.0 nore rows in case more a dBm enna assemblies provided Gain (dBi) nore rows in case more a	-2.46 antenna assemblies are d for this power level: e.i.r.p. (dBm)	supported for this power level.
NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3 NOTE 4: Add n Power Level 3	1.0 more rows in case more a more rows in case more a Gain (dBi) Gain (dBi) more rows in case more a :	-2.46 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are	supported for this power level.
NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3 NOTE 4: Add n Power Level 3 Number of ante	1.0 nore rows in case more a enna assemblies provided Gain (dBi) nore rows in case more a :	-2.46 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are d for this power level:	supported for this power level Part number or model name supported for this power level
NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3 NOTE 4: Add n Power Level 3	1.0 more rows in case more a more rows in case more a Gain (dBi) Gain (dBi) more rows in case more a :	-2.46 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are	supported for this power level.
NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3 NOTE 4: Add n Power Level 3 Number of ante	1.0 nore rows in case more a enna assemblies provided Gain (dBi) nore rows in case more a :	-2.46 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are d for this power level:	supported for this power level Part number or model name supported for this power level

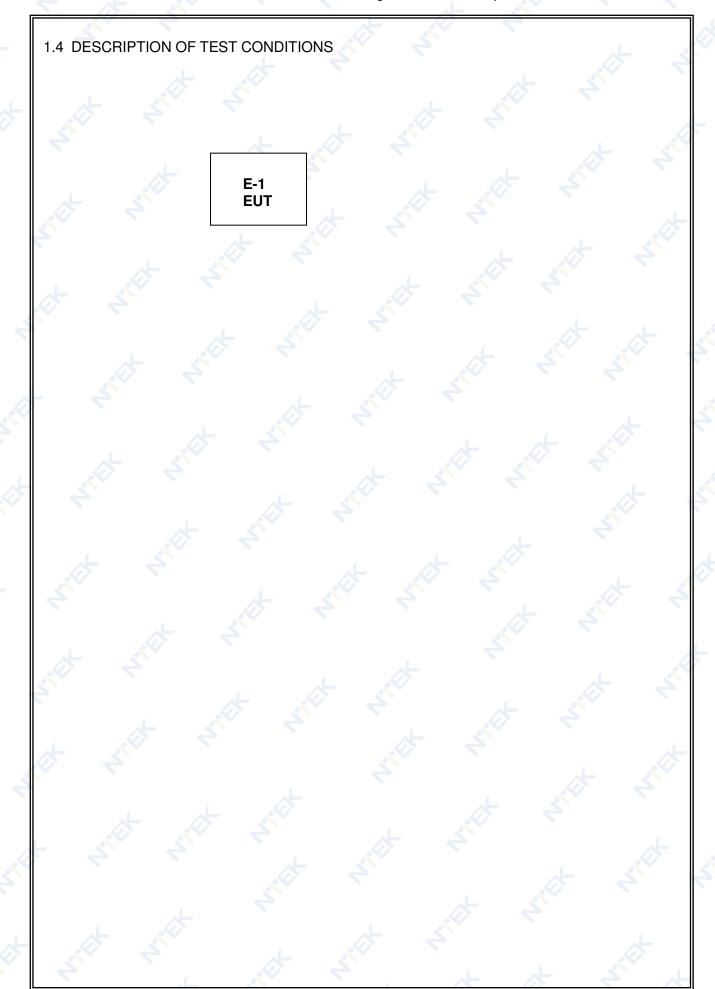
NOTE 5: Add more rows in case more antenna assemblies are supported for this power level.

Page 12 of 70 Report No.: STR221215001002E

1.3 TEST CONDITIONS AND CHANNEL

	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	40℃ ~ -10℃ Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.87V	/

	Test Channel	EUT Channel	Test Frequency (MHz)
	Lowest	CH00	2402
	Middle	CH19	2440
H	Highest	CH39	2480


Note:

(1) The HT 40 $^\circ\!C$ and LT -10 $^\circ\!C$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

Page 13 of 70 F

Report No.: STR221215001002E

1.5 DESCRIPTION OF SUPPORT UNITS

NTEK 北测[®]

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note	
E-1	Smart phone			EUT	•
	2		xt siv	2	
		* *			
	X	STV I			
t .	<u>s</u>			1	
		4	- 4		

ltem	Туре	Shielded Type	Ferrite Core	Length	Note
		\$ \$, 1		
	6	- 4			-
X			1		4
5				4 4	×
			1		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^[] Length ^[] column.

Page 15 of 70

Report No.: STR221215001002E

1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibratior period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
Turn Table	EM 🗸	SC100 1	60531	N/A	N/A	N/A
Antnna Mast	_ EM 🔨	SC100	N/A	N/A	N/A	N/A
Horn Antenna 🕢	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.01	2023.03.31	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01	2023.03.31	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	📏 3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Report No.: STR221215001002E

2. SUMMARY OF TEST RESULTS

	as been tested according to the following specifications:	<u>A</u>
	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
5	TRANSMITTER PARAMETERS	
4.3.2.2	RF Output Power	Pass
4.3.2.3	Power Spectral Density	Pass
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.2.5	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.2.6	Adaptivity	Not Applicable (See Note 1)
4.3.2.7	Occupied Channel Bandwidth	Pass
4.3.2.8	Transmitter unwanted emission in the OOB domain	Pass
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	
4.3.2.10	Receiver Spurious Emissions	Pass
4.3.2.11	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

Page 17 of 70 Report No.: STR221215001002E

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

2.2 MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

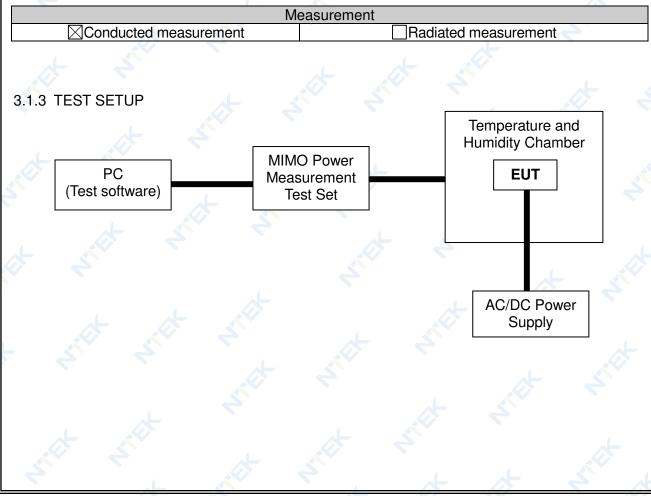
	Measurement uncertai	nty
No.	Item	Uncertainty (P=95)
	Occupied Channel Bandwidth	± 4.7%
2	RF output Power,conducted	± 0.9dB
3	Power Spectral Density, conducted	± 2.6dB
4	Unwanted emissions, conducted	± 2.2dB
5 🔇	All emissions, radiated	± 5.3dB
6	Temperature	± 0.5°C
7	Humidity	± 2.0%
8	Time	± 1.0%

Page 18 of 70

Report No.: STR221215001002E

3. TEST PROCEDURES AND RESUTLS

3.1 EQUIVALENT ISOTROPIC RADIATED POWER


3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER

Refer to chapter 4.3.2.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	RF OUTPUT POWER		
	Condition	Limit	
		Equal to or less than the value declared	
-	Non-adaptive wide band modulations	by the supplier.	
	systems	This declared value shall be equal to or	
		less than 20 dBm.	
	Adaptive wide band modulations systems	≤20dBm	

3.1.2 TEST PROCEDURE

Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

N2017.06.06.0614.V.1.2

Page 19 of 70 Report No.: STR221215001002E

3.1.4 TEST RESULTS

EUT :	Smart phone	Model Name :	A53 Pro
Temperature :	20°C	Relative Humidity:	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	X Low channel / Middle Channel / High Channel		

Test data reference attachment

Page 20 of 70

Report No.: STR221215001002E

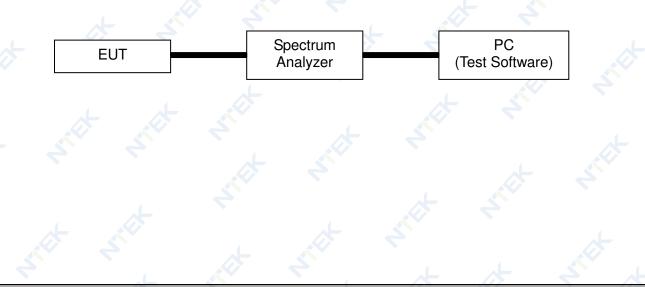
3.2. PEAK POWER DENSITY

3.2.1 LIMITS OF POWER SPECTRAL DENSITY

Refer to chapter 4.3.2.3.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT	POWER	
Condition	Limit	4
For equipment using wide band modulations other than FHSS	≤10 dBm/MHz	

3.2.2 TEST PROCEDURE


Refer to chapter 5.4.3.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement			
Conducted measurement	Radiated measurement		

The setting of the Spectrum Analyzer

Start Frequency	2400MHz
Stop Frequency	2483.5MHz
Detector	RMS
Sween Point	> 8 350; for spectrum analysers not supporting this number of
Sweep Point	sweep points, the
	frequency band may be segmented
the second se	For non-continuous transmissions: 2 × Channel Occupancy Time
	× number of sweep points
Sweep time:	For continuous transmissions: 10 s; the sweep time may be
4	increased further until a value where the sweep time has no
1 × ×	further impact anymore on the RMS value of the signal.
RBW / VBW	10KHz / 30KHz

3.2.3 TEST SETUP

Page 21 of 70

Report No.: STR221215001002E

3.2.4 TEST RESULTS

EUT :	Smart phone	Model Name :	A53 Pro
Temperature :	26 °C	Relative Humidity:	60 %
Pressure :	1012 hPa 📃 📜	Test Voltage :	DC 3.87V
Test Mode :	TX-GFSK(CH00/CH19/CH39)	7	<u> </u>

Test data reference attachment

Report No.: STR221215001002E

3.3. OCCUPIED CHANNEL BANDWIDTH

3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH

Refe	r to chapter 4.3.2	.7.3 of ETSI EN 300 328 V2.2.2 (20	19-07)			
2	OCCUPIED CHANNEL BANDWIDTH					
		Condition	Limit			
A.	All types of equipment using wide band modulations other than FHSS		Shall fall completely within the band 2400 to 2483.5 MHz			
	Additional	For non-adaptive using wide band modulations other than FHSS system and E.I.R.P >10 dBm	Less than 20 MHz			
(ct-	requirement	For non-adaptive frequency hopping system and E.I.R.P >10 dBm	Less than 5 MHz			

3.3.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	M	easurement	
Conducted n	neasurement	Radiated measurement	
The setting of the Spectr	rum Analyzer	At all all a	
Center Frequency	The centre frequence	cy of the channel under test	
Frequency Span	uency Span 2 × Nominal Channel Bandwidth		
Detector	RMS		
RBW	~ 1 % of the span w	/ithout going below 1 %	
VBW	3 × RBW		
Trace	Max hold		
Sweep time	1s	~	

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

3.3.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software has been activated to set the EUT on specific status.

Page 23 of 70

Report No.: STR221215001002E

3.3.5 TEST RESULTS

EUT :	Smart phone	Model Name :	A53 Pro
Temperature :	26 ℃	Relative Humidity :	60 %
Pressure :	1012 hPa 🛛 📈 🖉	Test Voltage :	DC 3.87V 🔔 🕺 🔏
Test Mode :	TX-GFSK(CH00/CH19/CH39)		7

Test data reference attachment

3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.2.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition Limit		
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	

Spurious Domain	Out Of Band Domain (OOB)	Allocated Band	Out Of Band Domain (OOB)	Spurious Domai
	Α			<u></u>
В				
c				
		-		

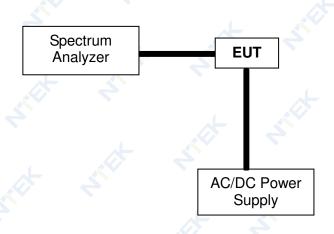
- A: -10 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p.
- C: Spurious Domain limits

BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

3.4.2 TEST PROCEDURE

Refer to chapter 5.4.8.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement			
Conducted measurement				
The setting of the Spectrum Ana	lyzer			
Span 🧹	0Hz			
Filter Mode	Channel Filter			
Trace Mode	Max Hold			
Trigger Mode	Video trigger; in case video triggering is not possible, an external trigger source may be used			
Detector	RMS			
Sweep Point / Sweep Mode	Sweep Time [s] / (1 μs) or 5 000 whichever is greater/ Continuous			
RBW / VBW	1MHz / 3MHz			


Page 25 of 70

Report No.: STR221215001002E

3.4.3 DEVIATION FROM TEST STANDARD

No deviation

3.4.4 TEST SETUP

According to the ETSI EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

Page 26 of 70 Report No.: STR221215001002E

3.4.5 TEST RESULTS

EUT :	Smart phone	Model Name :	A53 Pro	
Temperature :	24 °C	Relative Humidity :	54%	
Pressure :	1010 hPa	Test Power :	DC 3.87V	
Test Mode :	TX-GFSK(CH00/CH39)	7	A	Ń

Test data reference attachment

3.5. ADAPTIVE (CHANNEL ACCESS MECHANISM)

3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR WIDE BAND MODULATION TECHNIQUES

Refer to chapter ETSI EN 300 328 V2.2.2 (2019-07)

	Operational Mode				
			BT based Detect and Avoid		
Requirement	Non-LBT based Detect and Avoid	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as note 2)	
Minimum Clear Channel Assessment (CCA) Time	NA	not less than 18 us (see note 1)	(see note 2)	not less than 18 us (see note 1)	
Maximum Channel Occupancy (COT) Time	<40 ms	1ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)	
Minimum Idle Period	5 % minimum of 100 μs	5% of COT	(see note 2)	NA	
Extended CCA check	L NA	NA	(see note 2)	R*CCA (see note 4)	
Short Control Signalling Transmissions	Maximur	n duty cycle of 10% (;	see note 5)	on period of 50 ms	

Note 1: The CCA time used by the equipment shall be declared by the supplier.

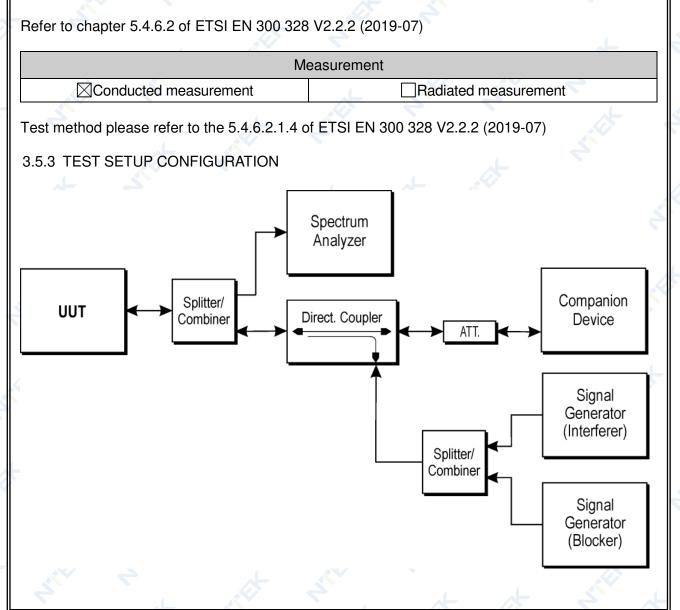
Note 2: Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect as described in IEEE 802.11[™]-2012 [i.3], clause 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in IEEE 802.15.4[™]-2011 [i.4], clause 4, clause 5 and clause 8 providing the equipment complies with the conformance requirements referred to in clause 4.3.2.6.3.4.

Note 3: q is selected by the manufacturer in the range [4...32]

Note 4: The value of R shall be randomly selected in the range [1...q]

Note 5: Adaptive equipment may or may not have Short Control Signaling Transmissions.

Interference threshold level


The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

TL = -70 dBm/MHz + 10 × log10 (100 mW / Pout) (Pout in mW e.i.r.p.)

	Table S	9: Unwanted Signal parameters	
	Wanted signal mean power from companion device (dBm)	Unwanted signal frequency (MHz)	Unwanted CW signal power (dBm)
Λ.	-30/ sufficient to maintain the link(see note 2)	2 395 or 2 488,5 (see note 1)	-35 (see note 2)

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1. NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz. NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.

3.5.2 TEST PROCEDURE

N2017.06.06.0614.V.1.2

Report No.: STR221215001002E

3.5.4 LIST OF MEASUREMENTS

	UUT operational Mode	
Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced)
	V	

Clause	Test Parameter	Remarks	PASS/FAIL
4.3.2.5.2.2.1	Adaptive (Frame Based Equipment)	Not Applicable	N/A
4.3.2.5.2.2.2	Adaptive (Load Based Equipment)	N/A	N/A
4.3.2.5.3	Short Control Signaling Transmissions	N/A	N/A

Page 30 of 70 Report No.: STR221215001002E

3.5.5 TEST RESULTS

EUT :	Smart phone	Model Name :	A53 Pro
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	N/A
Test Mode :	N/A	7	<u>k</u> <u>k</u>

Note: Not Applicable

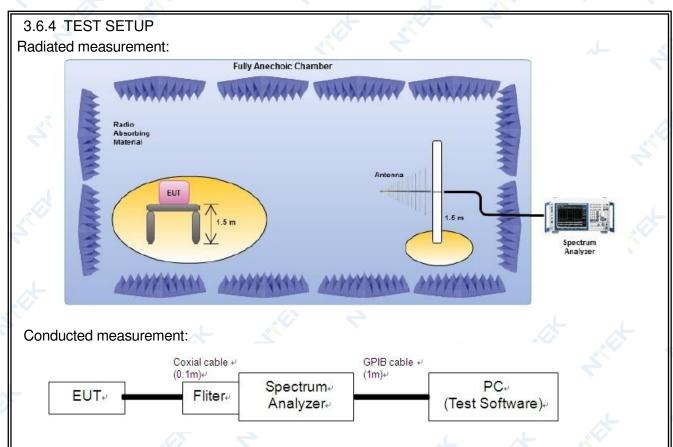
Report No.: STR221215001002E

3.6. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Refer to chapter 4.3.2.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth			
30 MHz to 47 MHz	-36dBm	100 kHz			
47 MHz to 74 MHz	-54dBm	100 kHz			
74 MHz to 87.5 MHz	-36dBm	100 kHz			
87.5 MHz to 118 MHz	-54dBm	100 kHz			
118 MHz to 174 MHz	-36dBm	100 kHz			
174 MHz to 230 MHz	-54dBm	100 kHz			
230 MHz to 470 MHz	-36dBm	100 kHz			
470 MHz to 694 MHz	- S-54dBm	100 kHz			
694 MHz to 1 GHz	-36dBm	100 kHz			
1 GHz ~ 12.75 GHz	-30dBm	1 MHz			


3.6.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Mea	easurement	
	ed measurement	Radiated measurement	
The setting of the Sp	bectrum Analyzer	A.	
RBW	100K(<1GHz) / 1M(I(>1GHz)	5
VBW	300K(<1GHz) / 3M(I(>1GHz)	

3.6.3 DEVIATION FROM TEST STANDARD

No deviation

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

Page 33 of 70

Report No.: STR221215001002E

3.6.5 TEST RESULTS(Radiated measurement)

	BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)					
EUT :	Smart phone	Model Name :	A53 Pro			
Temperature :	24°C	Relative Humidity :	57 %			
Pressure :	1012 hPa	Test Voltage :	DC 3.87V			
Test Mode :	TXGFSK(CH19)					

					· · · · · · · · · · · · · · · · · · ·	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
34.008	-76.21	16.21	-60.00	-36	-24.00	peak
111.234	-77.06	15.08	-61.98	-54	-7.98	peak
209.484	-76.81	16.17	-60.64	-36	-24.64	peak
322.509	-75.66	14.70	-60.96	-36	-24.96	peak
584.749	-79.55	15.99	-63.56	-36	-27.56	peak
715.187	-78.29	15.99	-62.30	-36	-26.30	peak
38.865	-75.18	15.64	-59.54	-36	-23.54	peak
96.513	-75	14.99	-60.01	-54	-6.01	peak
200.827	-79.66	14.80	-64.86	-36	-28.86	peak
265.108 🧹	-76.58	16.49	-60.09	-36	-24.09	peak
538.724	-77.05	15.62	-61.43 🔬	-36 💉	-25.43	peak
786.059	-77.98	15.45	-62.53	-36	-26.53	peak
	(MHz) 34.008 111.234 209.484 322.509 584.749 715.187 38.865 96.513 200.827 265.108 538.724	FrequencyReading(MHz)(dBm)34.008-76.21111.234-77.06209.484-76.81322.509-75.66584.749-79.55715.187-78.2938.865-75.1896.513-75200.827-79.66265.108-76.58538.724-77.05	FrequencyReadingFactor(MHz)(dBm)(dB)34.008-76.2116.21111.234-77.0615.08209.484-76.8116.17322.509-75.6614.70584.749-79.5515.99715.187-78.2915.9938.865-75.1815.6496.513-7514.99200.827-79.6614.80265.108-76.5816.49538.724-77.0515.62	PrequencyReadingPactorLevel(MHz)(dBm)(dB)(dBm)34.008-76.2116.21-60.00111.234-77.0615.08-61.98209.484-76.8116.17-60.64322.509-75.6614.70-60.96584.749-79.5515.99-63.56715.187-78.2915.99-62.3038.865-75.1815.64-59.5496.513-7514.99-60.01200.827-79.6614.80-64.86265.108-76.5816.49-60.09538.724-77.0515.62-61.43	PrequencyReadingPactorLevelLimits(MHz)(dBm)(dB)(dBm)(dBm)(dBm)34.008-76.2116.21-60.00-36111.234-77.0615.08-61.98-54209.484-76.8116.17-60.64-36322.509-75.6614.70-60.96-36584.749-79.5515.99-63.56-36715.187-78.2915.99-62.30-3638.865-75.1815.64-59.54-3696.513-7514.99-60.01-54200.827-79.6614.80-64.86-36265.108-76.5816.49-60.09-36538.724-77.0515.62-61.43-36	PrequencyReadingPactorLevelLimitsMargin(MHz)(dBm)(dB)(dBm)(dBm)(dB)34.008-76.2116.21-60.00-36-24.00111.234-77.0615.08-61.98-54-7.98209.484-76.8116.17-60.64-36-24.64322.509-75.6614.70-60.96-36-24.96584.749-79.5515.99-63.56-36-27.56715.187-78.2915.99-62.30-36-26.3038.865-75.1815.64-59.54-36-23.5496.513-7514.99-60.01-54-6.01200.827-79.6614.80-64.86-36-28.86265.108-76.5816.49-60.09-36-24.09538.724-77.0515.62-61.43-36-25.43

Remark:

1.Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level. 2.All the modes had been tested, but only the worst data recorded in the report.

Report No.: STR221215001002E

ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)					
EUT:	Smart phone	Model Name :	A53 Pro		
Temperature :	26°C	Relative Humidity :	60 %		
Pressure :	1012 hPa	Test Voltage :	DC 3.87V		
Test Mode :	TX-GFSK (CH00/CH19/CH39)	~		~ ~	

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
		ор	eration free	quency:2402			
V	4805.00	-67.30	25.63	-41.67	-30	-11.67	peak
V	7206.97	-74.10	29.83	-44.27	-30	-14.27	peak
Н	4805.00	-70.00	25.63	-44.37	-30	-14.37	peak
Н	7206.97	-76.20	29.83	-46.37	-30	-16.37	peak
		op	eration free	quency:2440			
V	4880.02	-74.50	26.62	-47.88	-30	-17.88	peak
V	7320.11	-75.40	29.64	-45.76	-30	-15.76	peak
H	4880.02	-75.50	26.62	-48.88	-30	-18.88	peak
Н	7320.11	-75.10 🏑	29.64	-45.46	-30	-15.46	peak
		ор	eration free	quency:2480		4	
V	4960.01	-65.50	27.49	-38.01	-30	-8.01	peak
V	7440.85	-71.70	29.82	-41.88	-30 🔨	-11.88	peak
Н	4960.01	-72.90	27.49	-45.41	-30	-15.41	peak
Ŧ	7440.85	-79.10	29.82	-49.28	-30	-19.28	peak
Remarl	k:		7				

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 35 of 70

Report No.: STR221215001002E

3.6.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

3.7. RECEIVER SPURIOUS RADIATION

3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.2.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

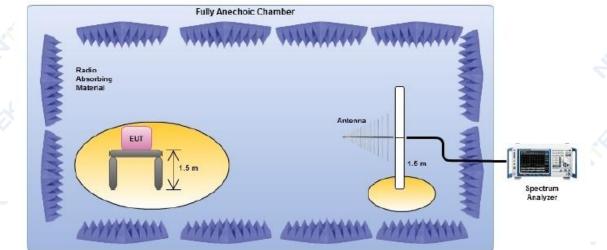
RECEIVER SPURIOUS EMISSIONS			
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth	
💎 30 MHz ~ 1 GHz	-57dBm	100KHz	
1 GHz ~ 12.75 GHz	-47dBm	1MHz	

3.7.2 TEST PROCEDURE

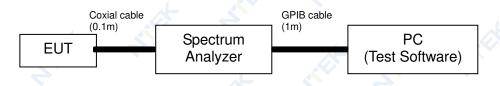
Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

M	easurement
Conducted measurement	Radiated measurement

The setting of the Spectrum Analyzer


RBW	100K(<1GHz) / 1M(>1GHz)		
VBW	300K(<1GHz) / 3M(>1GHz)	4	×

3.7.3 DEVIATION FROM TEST STANDARD


No deviation

3.7.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

Page 37 of 70

Report No.: STR221215001002E

3.7.5 TEST RESULTS(Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)						
EUT : Smart phone Model Name : A53 Pro						
Temperature :	26℃	Relative Humidity :	60 %			
Pressure :	1012 hPa	Test Voltage :	DC 3.87V 🔔 💦			
Test Mode :	RX Mode-GFSK(CH19)					

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	41.17	-82.69	10.25	-72.44	-57	-15.44	peak
V	92.68	-80.15	11.69	-68.46	-57	-11.46	peak
V	222.52	-84.85	14.23	-70.62	-57	-13.62	peak
V	356.94	-77.66	15.32	-62.34	-57	-5.34	peak
V	584.94	-78.98	15.23	-63.75	-57	-6.75	peak
V	707.70	-81.55	15.57	-65.98	-57	-8.98	peak
Н	42.89	-80.33	11.36	68.97	-57	-11.97	peak
H	103.54	-80.31	11.23	-69.08	-57	-12.08	peak
Н	225.12	-81.03 🖉	12.42	-68.61	-57	-11.61	peak
Н	327.14	-77.87	13.69	-64.18	-57	-7.18	peak
Н	484.64	-78.63	14.56	-64.07	-57	-7.07	peak
H	716.01	-82.91	15.57	-67.34	-57	-10.34	peak

Remark:

Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
 All the modes had been tested, but only the worst data recorded in the report.

Report No.: STR221215001002E

RX ABOVE 1 GHz WORST- CASE DATA(1GHz ~ 12.75GHz)							
EUT :	Smart phone	Model Name :	A53 Pro	5			
Temperature :	24 °C	Relative Humidity	54%				
Pressure :	1010 hPa	Test Power :	DC 3.87V				
Test Mode :	RX Mode-GFSK(CH19)	~		×-			

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	1654.50	-77.41	17.94	-59.47	-47	-12.47	peak
V	2972.95	-83.43	17.82	-65.61	-47	-18.61	peak
V	3834.68	-80.80	18.02	-62.78	-47	-15.78	peak
V	3876.59	-77.83	19.21	-58.62	-47	-11.62	peak
V	4472.00	-78.25	22.13	-56.12	-47	-9.12	peak
V	4798.23	-78.09	24.13	-53.96	-47	-6.96	peak
Н	2565.58	-84.92	18.11	-66.81	-47	-19.81	peak
Н	2733.84	-79.67	18.68	60.99	-47	-13.99	peak
H	3459.59	-83.58	18.21	-65.37	-47	-18.37	peak
Н	3575.07	-82.58 🧹	19.23	-63.35	-47	-16.35	peak
Н	4233.35	-80.06	16.60	-63.46	-47	-16.46	peak
Н	5936.30	-77.33	22.56	-54.77	-47	-7.77	peak
1. En	nission Level	= Meter Reading	a + Factor	. Margin= Emiss	ion Level	- Limit	

2. All the modes had been tested, but only the worst data recorded in the report.

3.7.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

3.8. RECEIVER BLOCKING

3.8.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

3.8.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less	2 380 2 504	-34	cw
(see note 2)			
(-139 dBm + 10 × log_{10} (OCBW)) or -74 dBm whichever is less	2 300 2 330 2 360	AND AND	4
(see note 3)	2524		
the second se	2584 2674		\mathbf{A}

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 40 of 70

Report No.: STR221215001002E

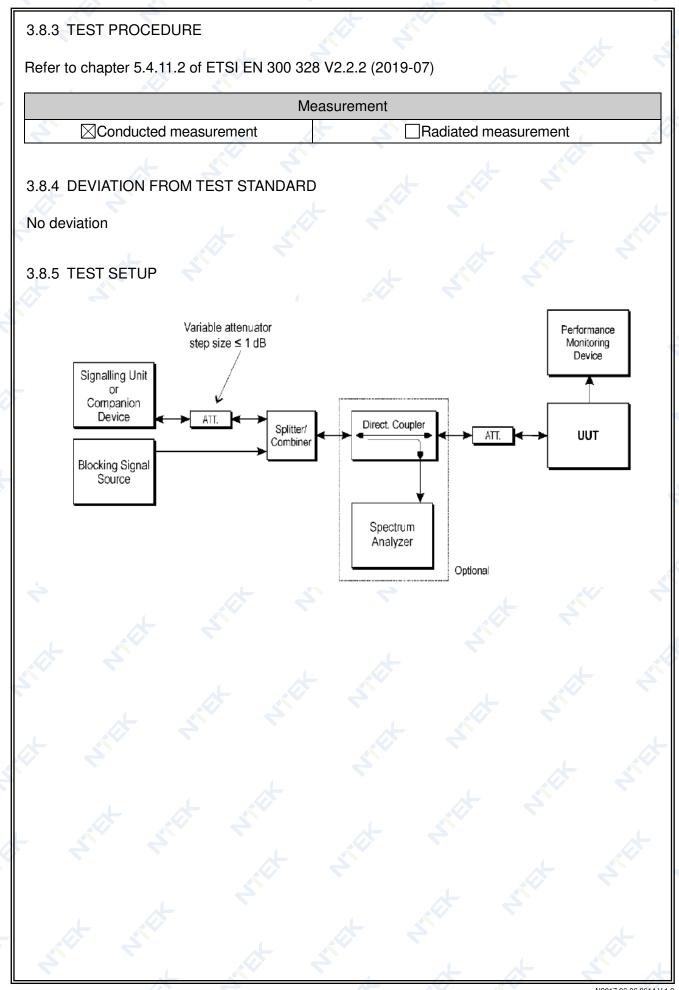
Table 15: Receiver Blocking parameters receiver category 2 equipment						
Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking			
companion device (dBm)	Frequency (MHz)	(dBm) (see note 3)	signal			
(see notes 1 and 3)						
(-139 dBm + 10 × log₁₀(OCBW) + 10 dB)	2 380	-34	CW			
or (-74 dBm + 10 dB) whichever is less	2 504					
(see note 2)	2 300					
	2 584					

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 16: Receiver Blocking parameters receiver category 3 equipment


Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504		4
(see note 2)	2 300		
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 41 of 70

Page 42 of 70 F

Report No.: STR221215001002E

3.8.6 TEST RESULTS

· · ·			
EUT :	Smart phone	Model Name :	A53 Pro 🛛 🔨 🔍
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode : GFSK-RX Mode (CH00/CH39)- 1M			

CH00:

receiver category 3						
Wanted signal mean power from companion device (dBm) Note(1)	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit %		
	2 380 2 504	- Ar	0.29% 0.57%	≤10%		
-58.87	2 300	-34	0.54%	≤10%		
	2 584		0.2078	*		

CH39:

receiver category 3						
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit		
	2 380 2 504	_	0.40% 0.96%	≤10%		
-58.86	2 300 2 584	-34	0.67% 0.53%	≤10%		

Page 43 of 70

Report No.: STR221215001002E

EUT :	Smart phone	Model Name :	A53 Pro	
Temperature :	24 °C	Relative Humidity	54%	
Pressure :	1010 hPa	Test Power :	DC 3.87V	
Test Mode : GFSK-RX Mode (CH00/CH39)- 2M				

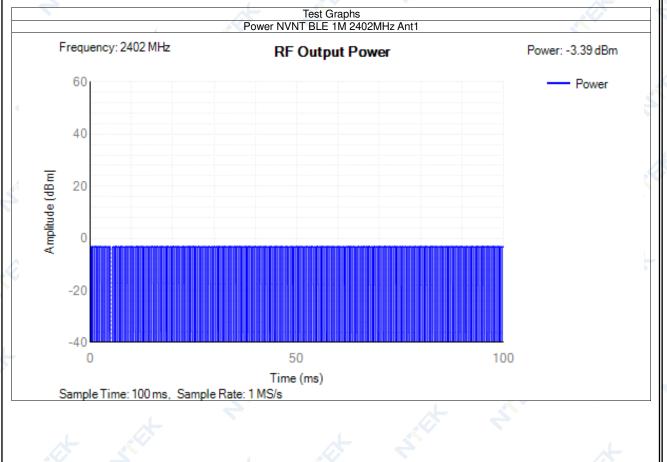
CH00:

receiver category 3						
Wanted signal mean power from companion device (dBm) Note(1)	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER	PER Limit %		
	2 380		0.54%	≤10%		
	2 504		0.44%	1070		
-58.87	2 300	-34	0.60%	≤10%		
t t	2 584		0.37%	210 %		

CH39:

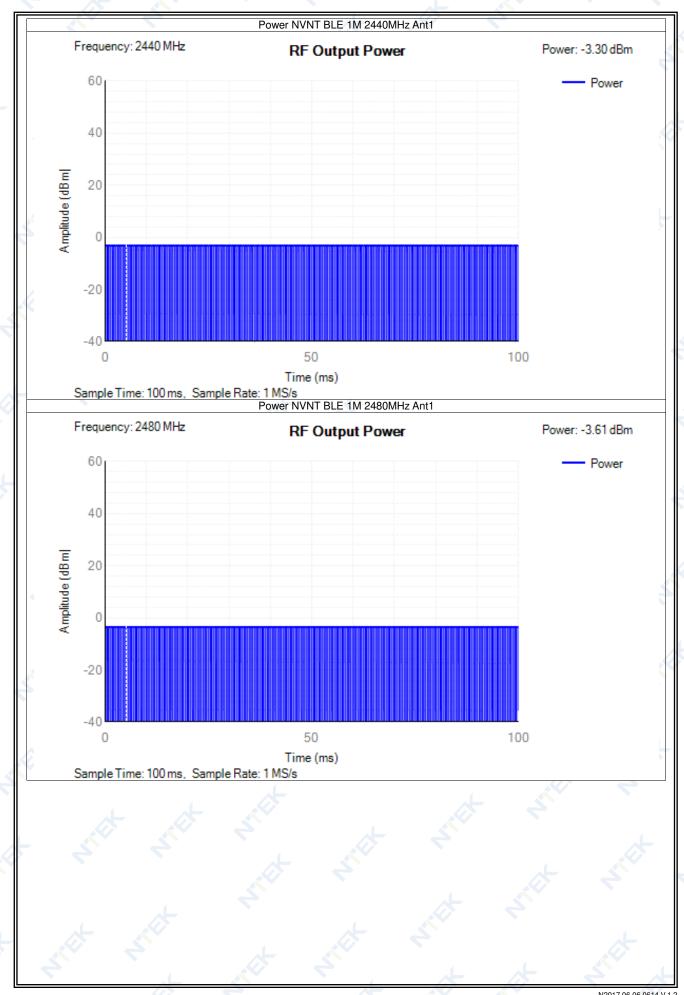
	rec	ceiver category 3		L.
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit %
	2 380 2 504	4	0.14% 0.66%	≤10%
-58.83	2 300	-34	0.98%	<100/
	2 584		0.48%	≤10%

Note: (1) The above results were obtained from laboratory tests.

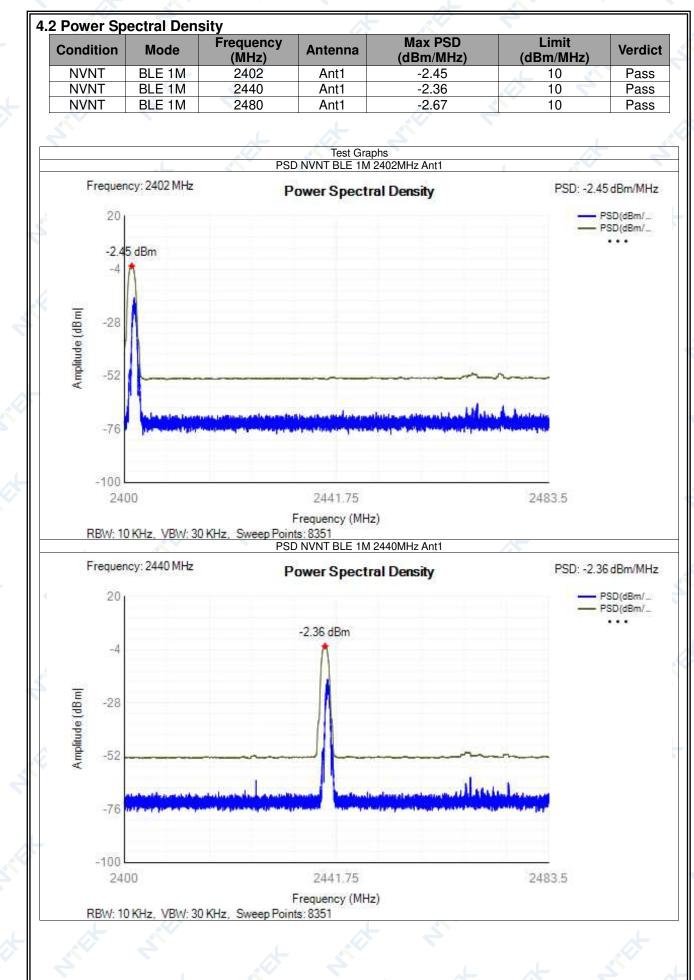

Report No.: STR221215001002E

4. TEST RESULTS

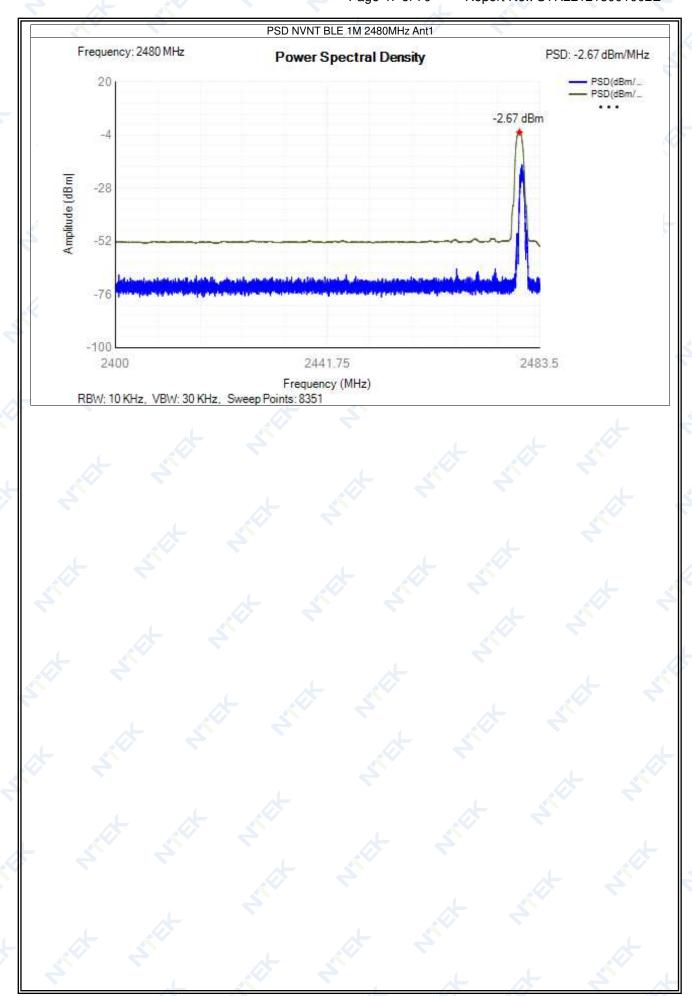
1M


4.1 RF Output Power

Condition	Mode	Frequency (MHz)	Antenna	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-3.39	161	-2.39	20	Pass
NVNT	BLE 1M	2440	Ant1	-3.30	160	-2.3	20	Pass
NVNT	BLE 1M	2480	Ant1	-3.61	160	-2.61	20	Pass
NVLT	BLE 1M	2402	Ant1	-3.54	161	-2.54	20	Pass
NVLT	BLE 1M	2440	Ant1	-3.42	160	-2.42	20	Pass
NVLT	BLE 1M	2480	Ant1	-3.84	160	-2.84	20	Pass
NVHT	BLE 1M	2402	Ant1	-3.75	161	-2.75	20	Pass
NVHT	BLE 1M	2440	Ant1	-3.55	160	-2.55	20	Pass
NVHT	BLE 1M	2480	Ant1	-3.95	160	-2.95	20	Pass
					<			


Page 45 of 70

Report No.: STR221215001002E

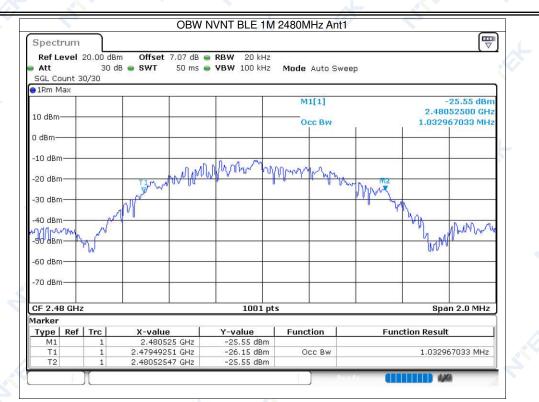


Page 46 of 70

Report No.: STR221215001002E

Page 47 of 70

NTEK 北测®

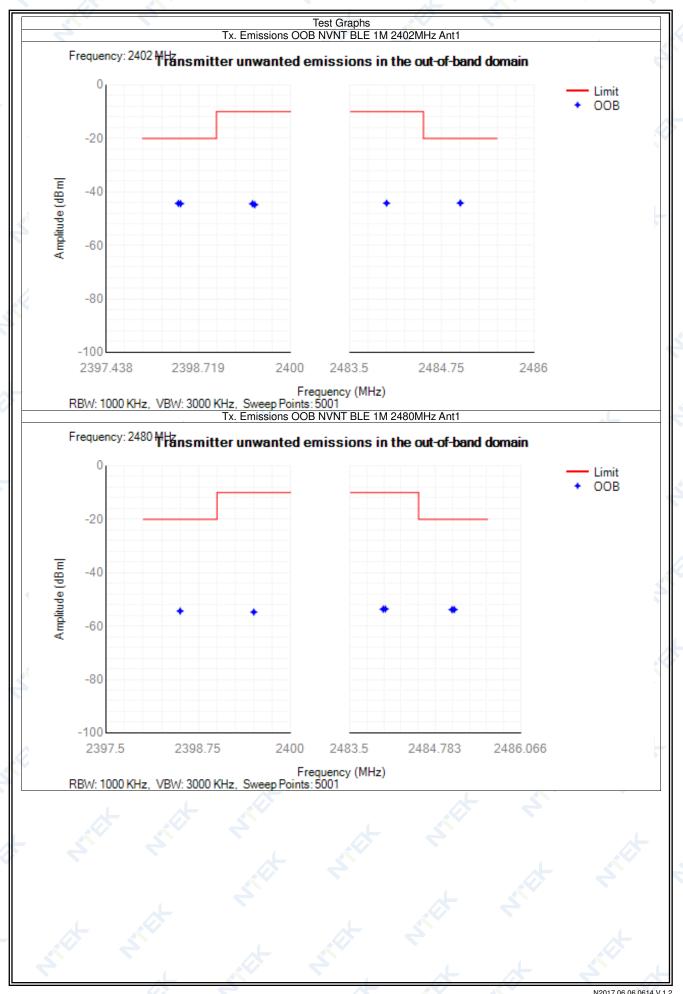

Page 48 of 70

Report No.: STR221215001002E

Condition	Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdic
NVNT	BLE 1M 🏑	2402	Ant1	2402.01	1.031	2401.495	2402.525	2400 - 2483.5MHz	Pass
NVNT	BLE 1M	2440	Ant1	2440.01	1.031	2439.495	2440.525	2400 - 2483.5MHz	Pass
NVNT	BLE 1M	2480	Ant1	2480.009	1.033	2479.493	2480.525	2400 - 2483.5MHz	Pass
			OBV	Test Gra V NVNT BLE 1M	phs 1 2402MH:	z Ant1	Q -	Ć.	
	Spect	evel 20.00 dBm	Offset 7.07 df	3 - RBW 20 kHz					
	SGL Co	30 dB 🖷 ount 100/100		5 • VBW 20 kHz 5 • VBW 100 kHz	Mode Au	ito Sweep			
	<mark>⊜</mark> 1Rm №	/lax	Ĩ		M1[1	1		24.91 dBm 49500 GHz	
	10 dBm				Occ	Bw		69031 MHz	
	0 dBm-								
	-10 dBn	n	min	mm	mm	1m			
	-20 dBn	n	m www.			mont	R I		
	-30 dBn	n /	~				M.		
	-40 dBn	man M				2		min	
	-50 dBn	n have been a second se					- V~		
	-60 dBn	n							
	-70 dBn	m			18				
	CE 2.4								
	0 2.7	02 GHz		1001 pt	ts	10	Spa	n 2.0 MHz	
	Marker		av metre	1001 pt	2	- 1		n 2.0 MHz	
	Marker Type M1	Ref Trc	X-value 2.401495 GHz	Y-value -24.91 dBm	Functio		Function Result		
	Marker Type	Ref Trc 1		Y-value	2		Function Result		
	Marker Type M1 T1	Ref Trc 1	2.401495 GHz 2.40149451 GHz	Y-value -24.91 dBm -24.91 dBm	Functio		Function Result		
	Marker Type M1 T1	Ref Trc 1	2.401495 GHz 2.40149451 GHz 2.40252547 GHz	Y-value -24.91 dBm -24.91 dBm	Function Occ	Bw	Function Result		
	Marker Type M1 T1	Ref Trc 1 1 1 1	2.401495 GHz 2.40149451 GHz 2.40252547 GHz	Y-value -24.91 dBm -24.91 dBm -24.29 dBm	Function Occ	Bw	Function Result		
	Marker Type M1 T1 T2 Spect	Ref Trc 1 1 1 1	2.401495 GHz 2.40149451 GHz 2.40252547 GHz OBV Offset 7.24 df	Y-value -24.91 dBm -24.91 dBm -24.29 dBm	Function Occ	Bw prest z Ant1	Function Result	59031 MHz	
	Marker Type M1 T1 T2 Spect Ref L SGL C0	Ref Trc 1 1 1 1 20.00 dBm 30 dB 30 dB 9	2.401495 GHz 2.40149451 GHz 2.40252547 GHz OBV Offset 7.24 df	Y-value -24.91 dBm -24.91 dBm -24.29 dBm V NVNT BLE 1M 3 ● RBW 20 kHz	Function Occ	Bw	Function Result	59031 MHz	
	Marker Type M1 T1 T2 Spect Ref L	Ref Trc 1 1 1 1 20.00 dBm 30 dB 30 dB 9	2.401495 GHz 2.40149451 GHz 2.40252547 GHz OBV Offset 7.24 df	Y-value -24.91 dBm -24.91 dBm -24.29 dBm V NVNT BLE 1M 3 ● RBW 20 kHz	Function Occ	z Ant1	Function Result	: 69031 MHz ♥	
	Marker Type M1 T1 T2 Spect Ref L SGL C0	Ref Trc 1 1 1 1 20.00 dBm 30 dB 30 dB 9	2.401495 GHz 2.40149451 GHz 2.40252547 GHz OBV Offset 7.24 df	Y-value -24.91 dBm -24.91 dBm -24.29 dBm V NVNT BLE 1M 3 ● RBW 20 kHz	1 2440MH: Mode Au	Bw Dendy z Ant1 Ito Sweep	Function Result 1.03096	59031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SGL CC	Ref Trc 1 1 1 1 20.00 dBm 30 dB 30 dB 9	2.401495 GHz 2.40149451 GHz 2.40252547 GHz OBV Offset 7.24 df	Y-value -24.91 dBm -24.91 dBm -24.29 dBm V NVNT BLE 1M 3 ● RBW 20 kHz	Mode Au	Bw Dendy z Ant1 Ito Sweep	Function Result 1.03096	59031 MHz 69031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SGL Cc IRm M 10 dBm	Ref Trc 1 1 1 1 1 1 evel 20.00 dBm 30 dB 9 punt 100/100 4ax	2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 df SWT 50 m:	Y-value -24.91 dBm -24.91 dBm -24.29 dBm W NVNT BLE 1M 3 ● RBW 20 kHz 5 ● VBW 100 kHz	Mode Au	Bw Dendy z Ant1 Ito Sweep	Function Result 1.03096	59031 MHz 69031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SGL CC IRm M 10 dBm	Ref Trc 1 1 1 1 1 1 evel 20.00 dBm 30 dB 0 punt 100/100 //ax 100/100	2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 df SWT 50 m:	Y-value -24.91 dBm -24.91 dBm -24.29 dBm V NVNT BLE 1M 3 ● RBW 20 kHz	Mode Au	z Ant1 Ito Sweep	Eunction Result 1.03096	59031 MHz 69031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SGL Cc IRm M 10 dBm -10 dBm	Ref Trc 1 1 1 1 1 1 evel 20.00 dBm 30 dB 0 punt 100/100 Max	2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 df SWT 50 m:	Y-value -24.91 dBm -24.91 dBm -24.29 dBm W NVNT BLE 1M 3 ● RBW 20 kHz 5 ● VBW 100 kHz	Mode Au	Bw Dendy z Ant1 Ito Sweep	Eunction Result 1.03096	59031 MHz 69031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SGL CC IRm M 10 dBm -10 dBm -20 dBm	Ref Trc 1 1 1 1 1 1 evel 20.00 dBm 30 dB 30 dB punt 100/100 dax 100/100	2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 df SWT 50 m:	Y-value -24.91 dBm -24.91 dBm -24.29 dBm W NVNT BLE 1M 3 ● RBW 20 kHz 5 ● VBW 100 kHz	Mode Au	z Ant1 Ito Sweep	Eunction Result 1.03096	59031 MHz 69031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SGL Cc IRm M 10 dBm -10 dBm -20 dBm -30 dBm	Ref Trc 1 1 1 1 1 1 evel 20.00 dBm 30 dB 0 punt 100/100 Aax 1	2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 df SWT 50 m:	Y-value -24.91 dBm -24.91 dBm -24.29 dBm W NVNT BLE 1M 3 ● RBW 20 kHz 5 ● VBW 100 kHz	Mode Au	z Ant1 Ito Sweep	Eunction Result 1.03096	59031 MHz 69031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SGL CC IRm M 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Ref Trc 1 1 1 1 1 1 evel 20,00 dBm 30 dB 0 punt 100/100 dax 1 n 1 n 1	2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 df SWT 50 m:	Y-value -24.91 dBm -24.91 dBm -24.29 dBm W NVNT BLE 1M 3 ● RBW 20 kHz 5 ● VBW 100 kHz	Mode Au	z Ant1 Ito Sweep	Eunction Result 1.03096	59031 MHz 69031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SGL CC IRm M 10 dBm- 10 dBm- 10 dBm- 20 dBm -30 dBm -30 dBm -30 dBm	Ref Trc 1 1 1 1 1 1 evel 20.00 dBm 30 dB 0 punt 100/100 Max 1 n 1 n 1 n 1	2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 df SWT 50 m:	Y-value -24.91 dBm -24.91 dBm -24.29 dBm W NVNT BLE 1M 3 ● RBW 20 kHz 5 ● VBW 100 kHz	Mode Au	z Ant1 Ito Sweep	Eunction Result 1.03096	59031 MHz 69031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SGL CC 1Rm M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Ref Trc 1 1 1 1 1 1 evel 20.00 dBm 30 dB 30 dB punt 100/100 Aax 1 n 1 n 1 n 1	2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 df SWT 50 m:	Y-value -24.91 dBm -24.91 dBm -24.91 dBm -24.29 dBm V NVNT BLE 1M 3 ● RBW 20 kHz 5 ● YBW 100 kHz	Function Occ Occ Mode Au M1[1 Occ Occc Occc Occ Occc Occc Occc Oc	z Ant1 Ito Sweep	Function Result 1.03096 1.03096 1.03096 2.441 1.0309 2.441 1.0309	44.56 dBm 00000 GHz 69031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SGL CC 1Rm M 10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -60 dBm	Ref Trc 1 1 1 1 1 1 evel 20.00 dBm 30 dB 30 dB punt 100/100 Aax 1 n 1 n 1 n 100/100 Aax 1 n 100/100 4 GHz 100/100	2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 df SWT 50 m:	Y-value -24.91 dBm -24.91 dBm -24.29 dBm W NVNT BLE 1M 3 ● RBW 20 kHz 5 ● VBW 100 kHz	Function Occ Occ Mode Au M1[1 Occ Occc Occc Occ Occc Occc Occc Oc	z Ant1 Ito Sweep	Function Result 1.03096 1.03096 1.03096 2.441 1.0309 2.441 1.0309	59031 MHz 69031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SG CC IRm M 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm CF 2.4 Marker Type	Ref Trc 1 1 1 1 evel 20,00 dBm 30 dB 0 punt 100/100 dax 1 n 1 n 1 n 1 n 100/100 dax 1 n 100/100 dax 1 n 1 n 100/100 dax 1 n 1 n 100/100 dax 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 <td>2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 df SWT 50 m:</td> <td>Y-value -24.91 dBm -24.91 dBm -24.29 dBm V NVNT BLE 1M 3 • RBW 20 kHz • VBW 100 kHz 0 0 0 kHz 0 0 kHz</td> <td>Function Occ Occ Mode Au M1[1 Occ Occc Occc Occ Occc Occc Occc Oc</td> <td>Bw</td> <td>Function Result 1.03096 1.03096 1.03096 2.441 1.0309 2.441 1.0309</td> <td>44.56 dBm 00000 GHz 69031 MHz 69031 MHz</td> <td></td>	2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 df SWT 50 m:	Y-value -24.91 dBm -24.91 dBm -24.29 dBm V NVNT BLE 1M 3 • RBW 20 kHz • VBW 100 kHz 0 0 0 kHz 0 0 kHz	Function Occ Occ Mode Au M1[1 Occ Occc Occc Occ Occc Occc Occc Oc	Bw	Function Result 1.03096 1.03096 1.03096 2.441 1.0309 2.441 1.0309	44.56 dBm 00000 GHz 69031 MHz 69031 MHz	
	Marker Type M1 T1 T2 Spect Ref L Att SGL CC IRm M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm CF 2.4 Marker	Ref Trc 1 1 1 1 1 1 evel 20.00 dBm 30 dB 0 bunt 100/100 Aax 1 n 1 n 1 n 1 n 1 n 1 n 1 AGHz 1	2.401495 GHz 2.40149451 GHz 2.40252547 GHz Offset 7.24 db SWT 50 m:	Y-value -24.91 dBm -24.91 dBm -24.29 dBm V NVNT BLE 1M 3 ● RBW 20 kHz 5 ● VBW 100 kHz 	Function Occ I 2440MH: Mode Au M1[1 Occ I Occ I I I I I I I I I I I I I I I I I I I	Bw	Function Result	44.56 dBm 00000 GHz 69031 MHz 69031 MHz	

Page 49 of 70

Report No.: STR221215001002E

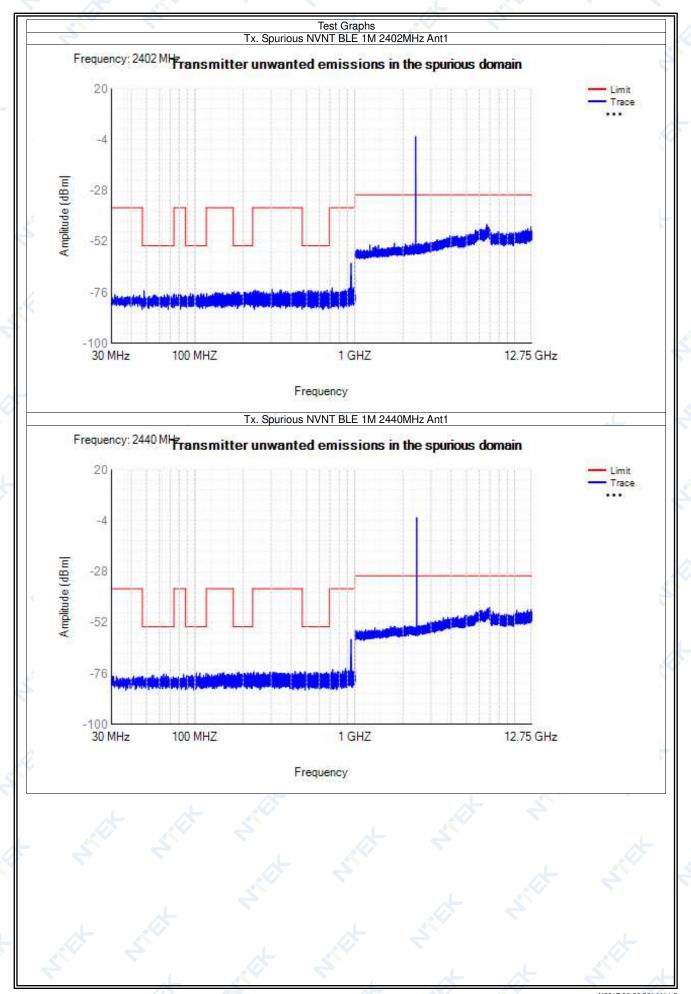


Page 50 of 70

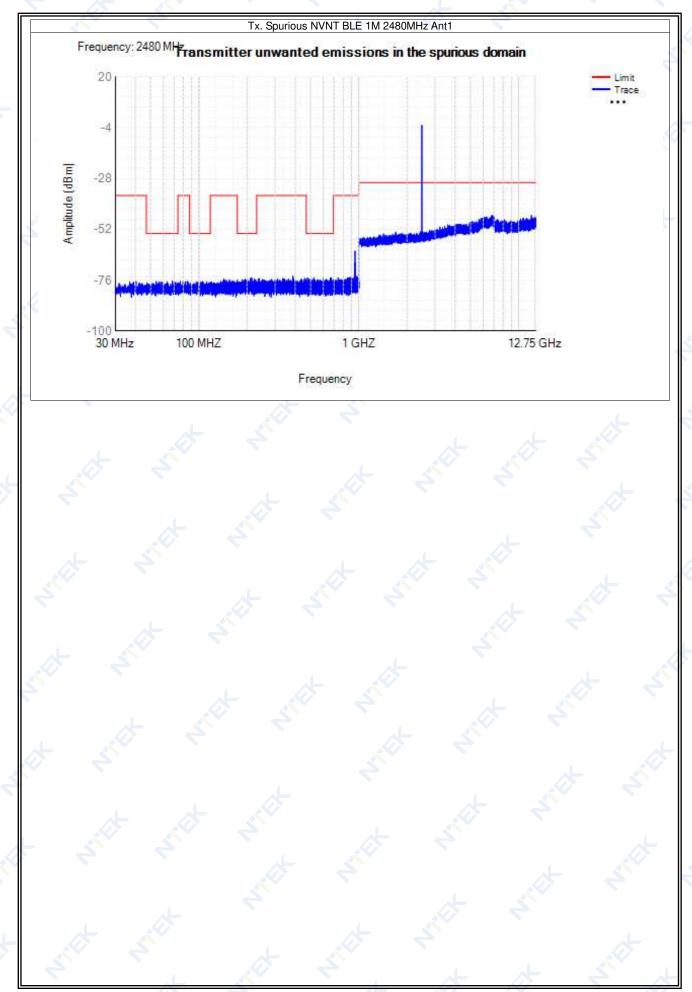
4.	4 Transmitt	ter unwar	nted emissio	ons in the	out-of-band de	omain			
	Condition	Mode	Frequency (MHz)	Antenna	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict	
	NVNT	BLE 1M	2402	Ant1	2399.5	-44.79	-10	Pass	
	NVNT	BLE 1M	2402	Ant1	2399.469	-44.45	-10	Pass	
	NVNT	BLE 1M	2402	Ant1	2398.469	-44.39	-20	Pass	
	NVNT	BLE 1M	2402	Ant1	2398.438	-44.3	-20	Pass	
	NVNT	BLE 1M	2402	Ant1	2484	-44.21	-10	Pass	
	NVNT	BLE 1M	2402	Ant1	2485	-44.16	-20	Pass	
	NVNT	BLE 1M	2480	Ant1	2399.5	-54.74	-10	Pass	
	NVNT	BLE 1M	2480	Ant1	2398.5	-54.36	-20	Pass	
	NVNT	BLE 1M	2480	Ant1	2484	-53.66	-10	Pass	
5	NVNT	BLE 1M	2480	Ant1	2484.033	-53.59	-10	Pass	
	NVNT	BLE 1M	2480	Ant1	2485.033	-53.84	-20	Pass	
	NVNT	BLE 1M	2480	Ant1	2485.066	-53.81	-20	Pass	

Page 51 of 70

Report No.: STR221215001002E

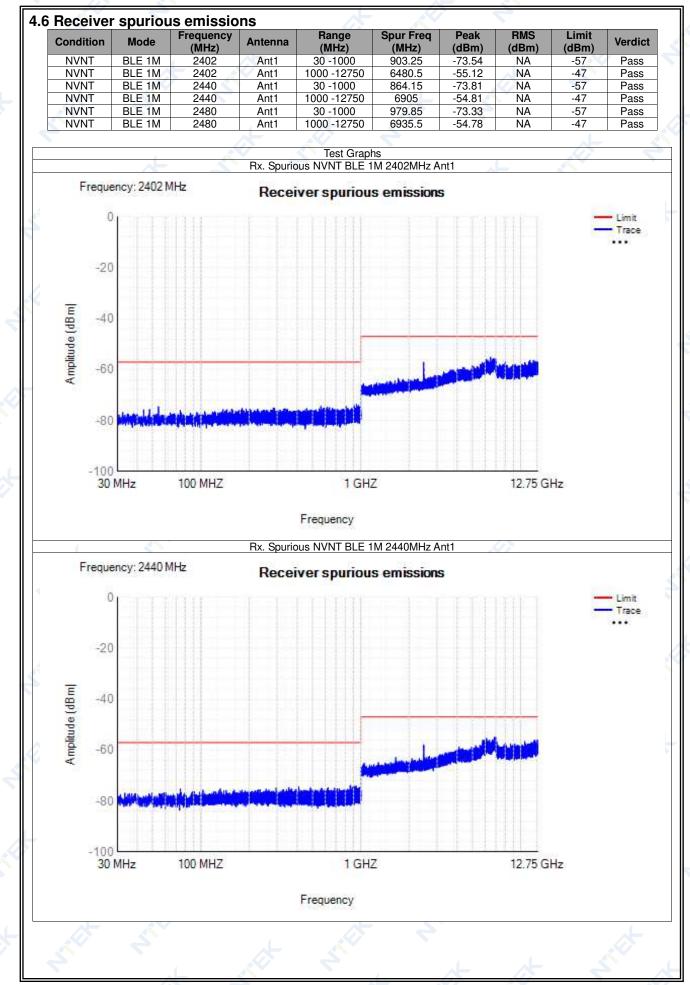

Page 52 of 70

Report No.: STR221215001002E

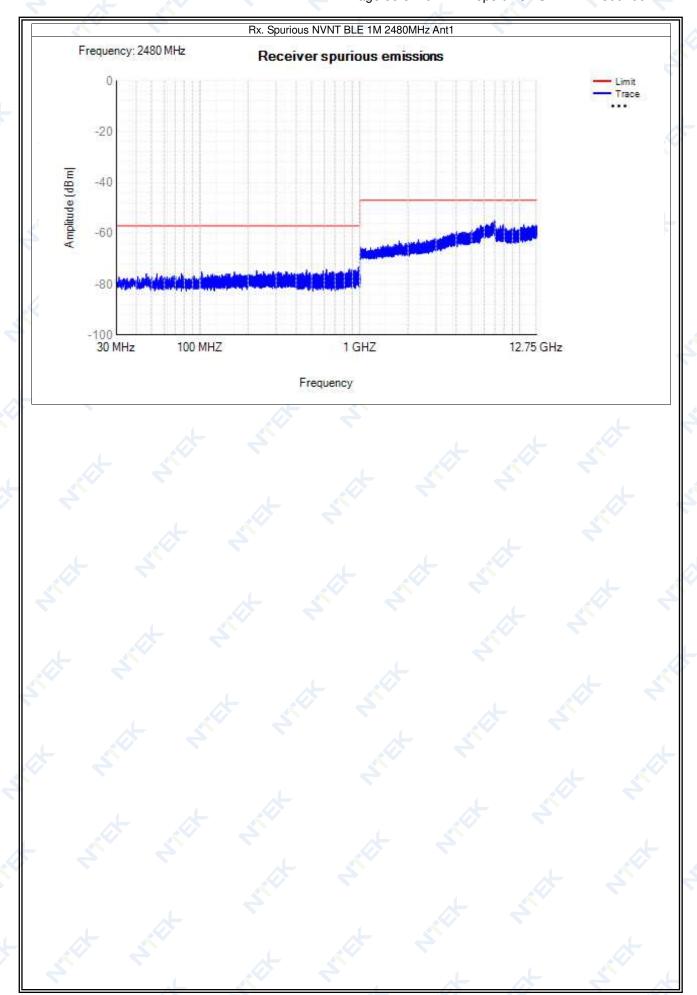

Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	30 -47	31.60	-76.97	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	47 -74	48.10	-75.19	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	74 -87.5	74.05	-76.56	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	87.5 -118	93.75	-76.46	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	118 -174	135.05	-75.86	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	174 -230	175.50	-75.58	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	230 -470	303.95	-74.35	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	470 -694	477.40	-74.80	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	694 -1000	948.20	-62.23	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	1000 -2398	1768.50	-52.70	NA	-30	Pass
NVNT	BLE 1M	2402	Ant1	2485.5 -12750	6690.00	-43.93	NA	-30	Pass
NVNT	BLE 1M	2440	Ant1	30 -47	41.50	-77.15	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	47 -74	63.70	-76.20	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1 🔨	74 -87.5	84.90	-76.37	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	87.5 -118	101.85	-75.66	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	118 -174	151.45	-75.51	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	174 -230	188.25	-75.28	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	230 -470 📈	424.00	-74.99	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	470 -694	486.15	-75.12	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	694 -1000	948.20	-59.85	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	1000 -2398	2053.50	-53.45	NA	-30	Pass
NVNT	BLE 1M	2440	Ant1	2485.5 -12750	6918.50	-44.91	NA	-30	Pass
NVNT	BLE 1M	2480	Ant1	30 -47	40.50	-76.54	NA	-36 🗸	Pass
NVNT	BLE 1M	2480	Ant1	47 -74	68.35	-76.42	NA	-54	Pass
NVNT	BLE 1M	2480	Ant1	74 -87.5	76.45	-76.49	NA	-36	Pass
NVNT	BLE 1M	2480	Ant1	87.5 -118	105.10	-76.56	NA	-54	Pass
NVNT	BLE 1M	2480	Ant1	118 - 174	143.30	-75.36	NA	-36	Pass
NVNT	BLE 1M	2480	Ant1	174 -230	214.05	-74.76	NA	-54	Pass
NVNT	BLE 1M	2480	Ant1	230 -470	387.65	-74.08	NA	-36	Pass
NVNT	BLE 1M	2480	Ant1	470 -694	669.85	-74.76	NA	-54	Pass
NVNT	🚽 BLE 1M 🍼	2480	Ant1	694 -1000	948.20	-62.24	NA	-36	Pass
NVNT	BLE 1M	2480	Ant1	1000 -2398	1701.50	-53.30	NA	-30	Pass
NVNT	BLE 1M	2480	Ant1	2485.5 -12750	12020.00	-45.40	NA	-30	Pass

Page 53 of 70

Report No.: STR221215001002E



Page 54 of 70

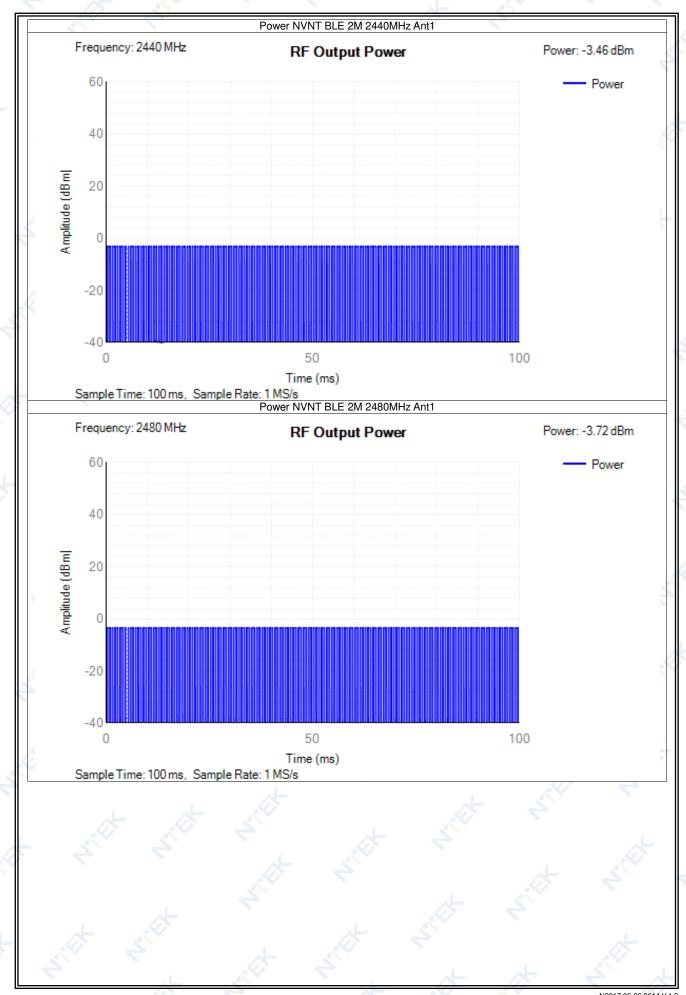


Page 55 of 70

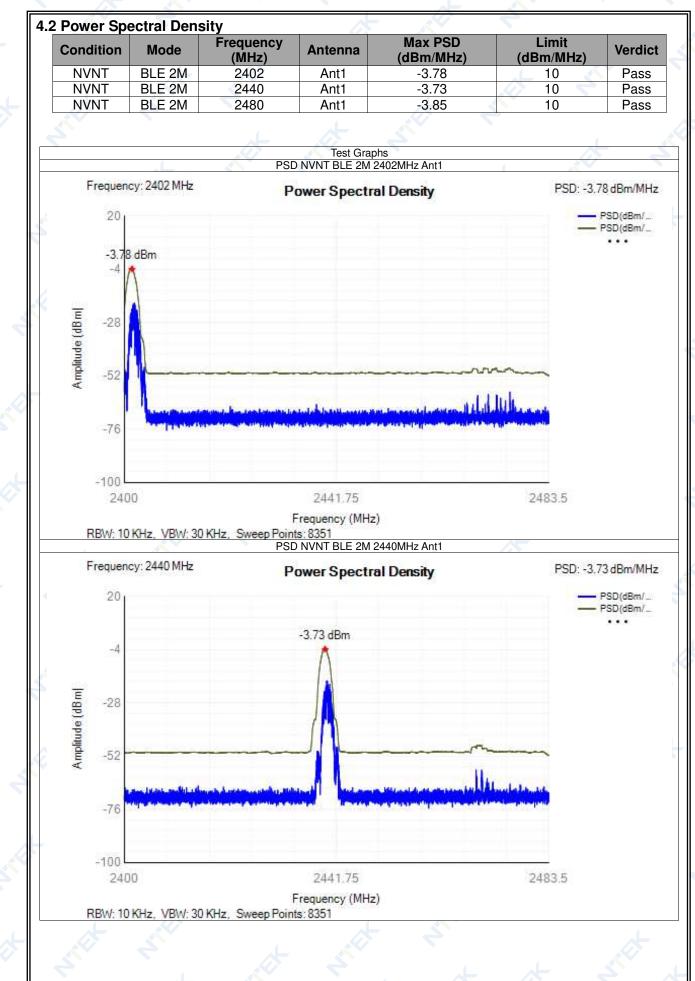
Report No.: STR221215001002E

Page 56 of 70

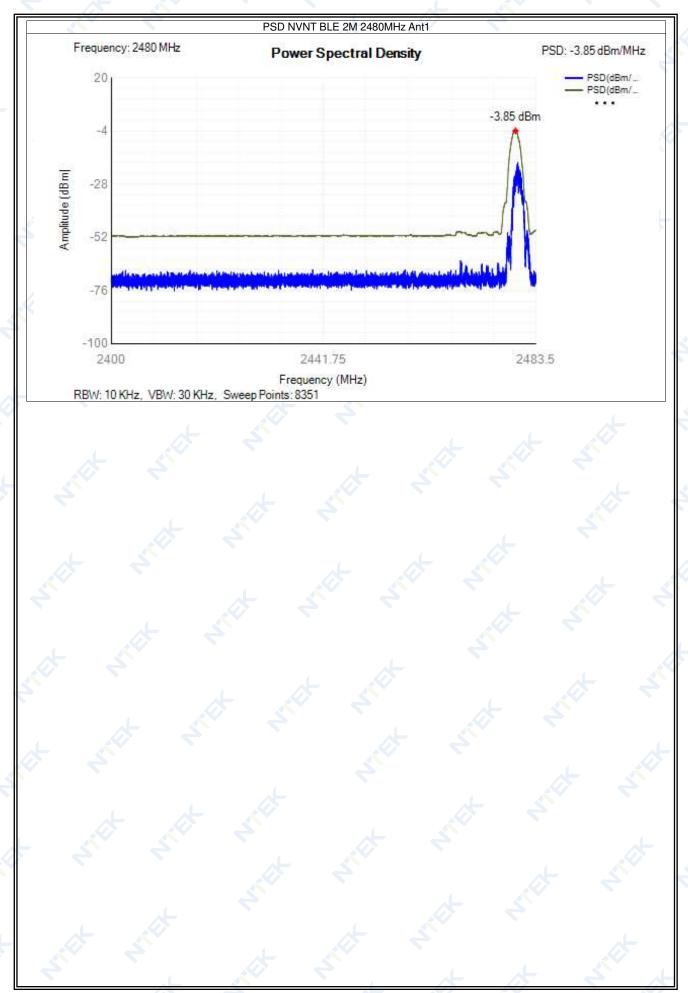
2M


4.1 RF Output Power

τ.	i ni Outpu								
	Condition	Mode	Frequency (MHz)	Antenna	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
	NVNT	BLE 2M	2402	Ant1	-3.53	157	-2.53	20	Pass
	NVNT	BLE 2M	2440	Ant1	-3.46	157	-2.46	20	Pass
Ś	NVNT	BLE 2M	2480	Ant1	-3.72	160	-2.72	20	Pass
	NVLT	BLE 2M	2402	Ant1	-3.68	157	-2.68	20	Pass
		BLE 2M	2440	Ant1	-3.58	157	-2.58	20	Pass
	NVLT	BLE 2M	2480	Ant1	-3.95	160	-2.95	20	Pass
	NVHT	BLE 2M	2402	Ant1	-3.89	157	-2.89	20	Pass
	NVHT	BLE 2M	2440	Ant1	-3.71	157	-2.71	20	Pass
	NVHT	BLE 2M	2480	Ant1	-4.06	160	-3.06	20	Pass

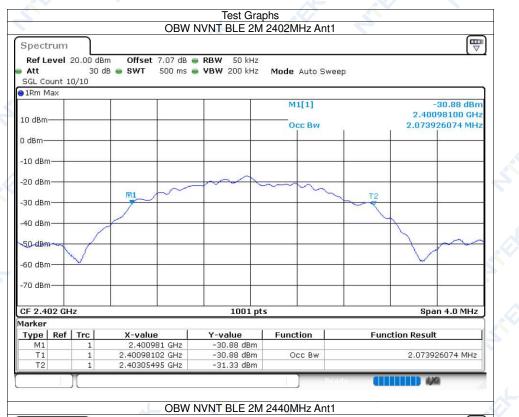

Page 58 of 70

Report No.: STR221215001002E



Page 59 of 70

Report No.: STR221215001002E


Page 60 of 70

Page 61 of 70

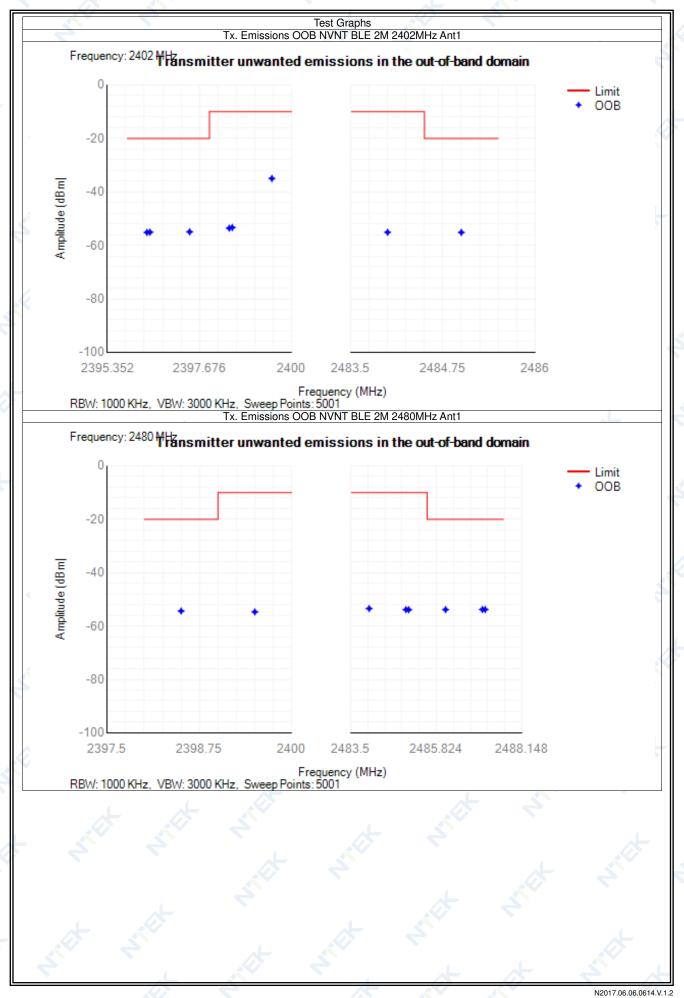
Report No.: STR221215001002E

ed Cha	innel Bandy	width						
Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
BLE 2M 🗸	2402	Ant1	2402.018	2.074	2400.981	2403.055	2400 - 2483.5MHz	Pass
BLE 2M	2440	Ant1	2440.018	2.074	2438.981	2441.055	2400 - 2483.5MHz	Pass
BLE 2M	2480	Ant1	2480.018	2.074	2478.981	2481.055	2400 - 2483.5MHz	Pass
	Mode BLE 2M BLE 2M BLE	ModeFrequency (MHz)BLE 2M2402BLE 2M2440BLE 2LE2480	Mode(MHz)AntennaBLE 2M2402Ant1BLE 2M2440Ant1BLE 2M2480Ant1	ModeFrequency (MHz)AntennaCenter Frequency (MHz)BLE 2M2402Ant12402.018BLE 2M2440Ant12440.018BLE 2M2480Ant12480.018	ModeFrequency (MHz)AntennaCenter Frequency (MHz)OBW (MHz)BLE 2M2402Ant12402.0182.074BLE 2M2440Ant12440.0182.074BLE 2M2480Ant12480.0182.074	ModeFrequency (MHz)AntennaCenter Frequency (MHz)OBW (MHz)Lower Edge (MHz)BLE 2M2402Ant12402.0182.0742400.981BLE 2M2440Ant12440.0182.0742438.981BLE 2M2480Ant12480.0182.0742478.981	Mode Frequency (MHz) Antenna Center Frequency (MHz) OBW (MHz) Lower Edge (MHz) Upper Edge (MHz) BLE 2M 2402 Ant1 2402.018 2.074 2400.981 2403.055 BLE 2M 2440 Ant1 2440.018 2.074 2438.981 2441.055 BLE 2M 2480 Ant1 2480.018 2.074 2478.981 2481.055	Mode Frequency (MHz) Antenna Center Frequency (MHz) OBW (MHz) Lower Edge (MHz) Upper Edge (MHz) Limit OBW (MHz) BLE 2M 2402 Ant1 2402.018 2.074 2400.981 2403.055 2400 - 2483.5MHz BLE 2M 2440 Ant1 2440.018 2.074 2438.981 2441.055 2400 - 2483.5MHz BLE 2M 2480 Ant1 2480.018 2.074 2478.981 2481.055 2400 -

Ref Level Att	20.00 dBr 30 d		• RBW 50 kHz • VBW 200 kHz	Mode Auto Swi	еер		
SGL Count : 1Rm Max	10/10						
10 dBm				M1[1] Occ Bw	47	-49. 2.442000 2.0739260	100 00 00 00 00 00 00 00 00 00 00 00 00
0 dBm							
-10 dBm					_		
-20 dBm				and and a get of a second			
-30 dBm		T1		<u>المربوبار</u> , وإ	T2 T2	0	
-40 dBm	pt.	r ma				home -	M
and Blorner	my P					Land	AUC MINAR
-60 dBm	ųr						
-70 dBm							
CF 2.44 GH	z		1001 pts	5		Span 4	.0 MHz
Marker	1 - 1				-		
Type Ref M1	1 Trc	2.442 GHz	Y-value -49.20 dBm	Function	Fund	ction Result	
T1	1	2.43898102 GHz	-30.92 dBm	Occ Bw		2.0739260	74 MHz
T2	1	2.44105495 GHz	-31.38 dBm				

Page 62 of 70

Report No.: STR221215001002E

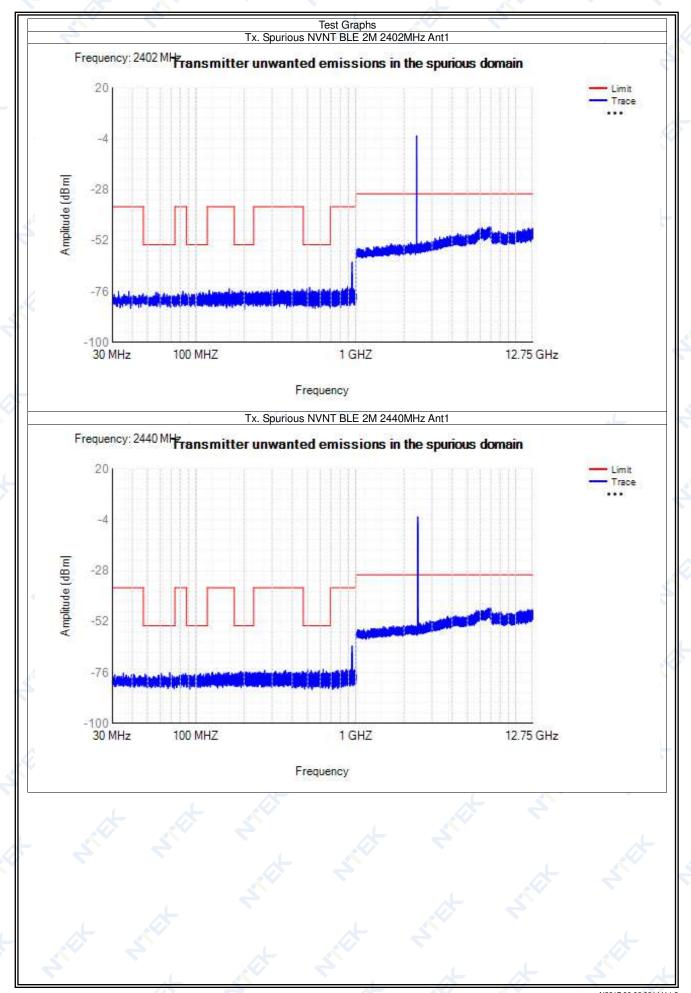

Att	vel :			 RBW 50 kHz VBW 200 kHz 	Mode Auto Swee	ep		
SGL Cou 1Rm Ma		0/10						
10 dBm—					M1[1]		2.481	31.85 dBm 05500 GHz 26074 MHz
) dBm—					OLL BW		2.0739.	
-10 dBm-								
-20 dBm-	-				~~~~			
-30 dBm-	_		T1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~	Ma		
-40 dBm-	-						2	
50.dBm~	~					-	1	m
-60 dBm-		\checkmark	-					
-70 dBm-	-							P2
CF 2.48	GHz			1001 pt	s		Spa	n 4.0 MHz
1arker		a						
Type F	Ref		X-value	Y-value	Function	Func	tion Result	
M1 T1		1	2.481055 GHz	-31.85 dBm -31.27 dBm	Occ Bw		2.07303	26074 MHz
T1 T2		1	2.47898102 GHz 2.48105495 GHz	-31.27 dBm -31.85 dBm	Occ Bw		2.07392	26074 MHz

Page 63 of 70

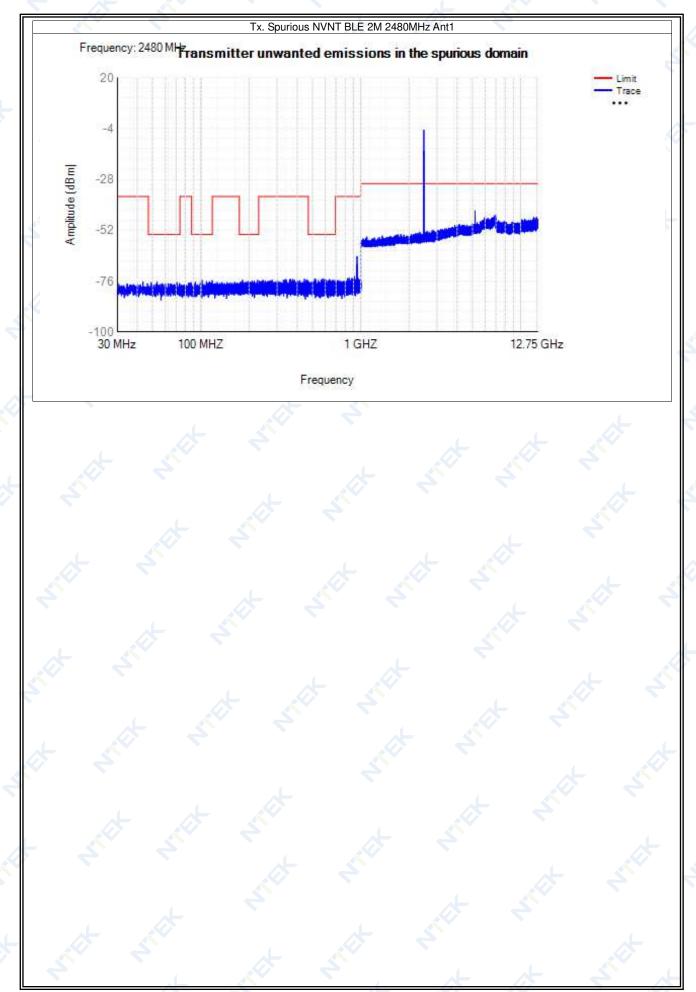
Report No.: STR221215001002E

4.	4 Transmit	ter unwar	nted emissio	ons in the o	out-of-band de	omain			
	Condition	Mode	Frequency (MHz)	Antenna	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict	
	NVNT	BLE 2M	2402	Ant1	2399.5	-35	-10	Pass	1
	NVNT	BLE 2M	2402	Ant1	2398.5	-53.31	-10	Pass	1
	NVNT	BLE 2M	2402	Ant1	2398.426	-53.56	-10	Pass	
	NVNT	BLE 2M	2402	Ant1 🧷	2397.426	-54.93	-20	Pass 💉	\mathbf{x}
	NVNT	BLE 2M	2402	Ant1	2396.426	-55.06	-20	Pass	
	NVNT	BLE 2M	2402	Ant1	2396.352	-55.15	-20	Pass	1
	NVNT	BLE 2M	2402	Ant1	2484	-55.12	-10	Pass	1
	NVNT	BLE 2M	2402	Ant1	2485	-55.15	-20	Pass	1
	NVNT	BLE 2M	2480	Ant1	2399.5	-54.67	-10	Pass	
\leq	NVNT	BLE 2M	2480	Ant1	2398.5	-54.35	-20	Pass	
	NVNT	BLE 2M	2480	Ant1	2484	-53.43	-10	Pass	1
	NVNT	BLE 2M	2480	Ant1	2485	-53.84	-10	Pass	1
	NVNT	BLE 2M	2480	Ant1	2485.074	-53.87	-10	Pass	1
	NVNT	BLE 2M	2480	Ant1	2486.074	-53.82	-20	Pass	1
X	NVNT	BLE 2M	2480	Ant1	2487.074	-53.77	-20	Pass	I
	NVNT	BLE 2M	2 <mark>480</mark>	Ant1	2487.148	-53.79	-20	Pass	1

Page 64 of 70

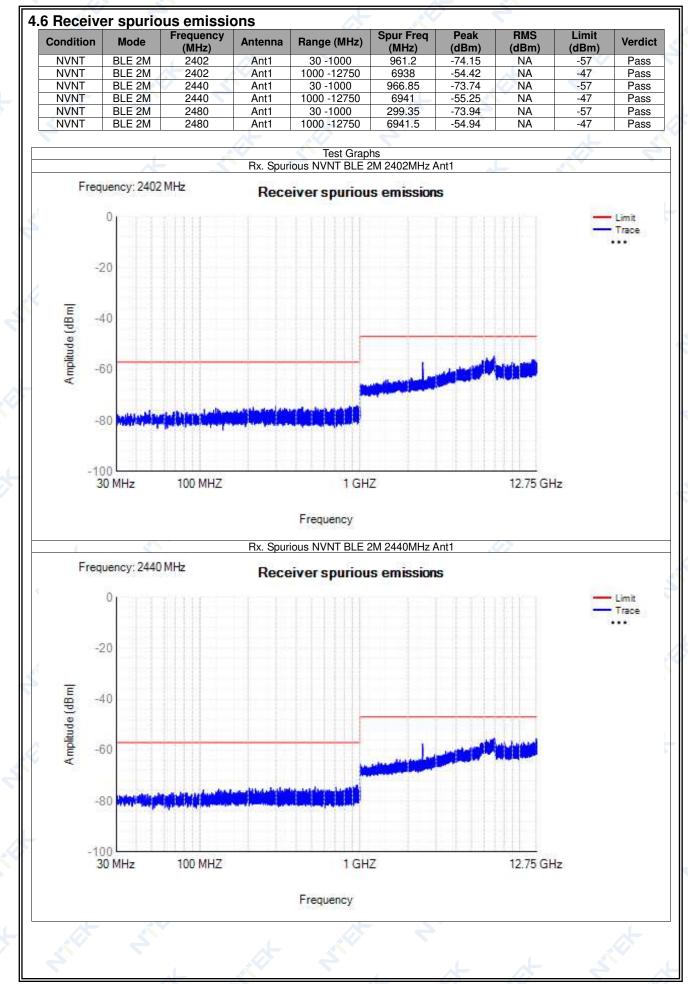

Page 65 of 70

Report No.: STR221215001002E

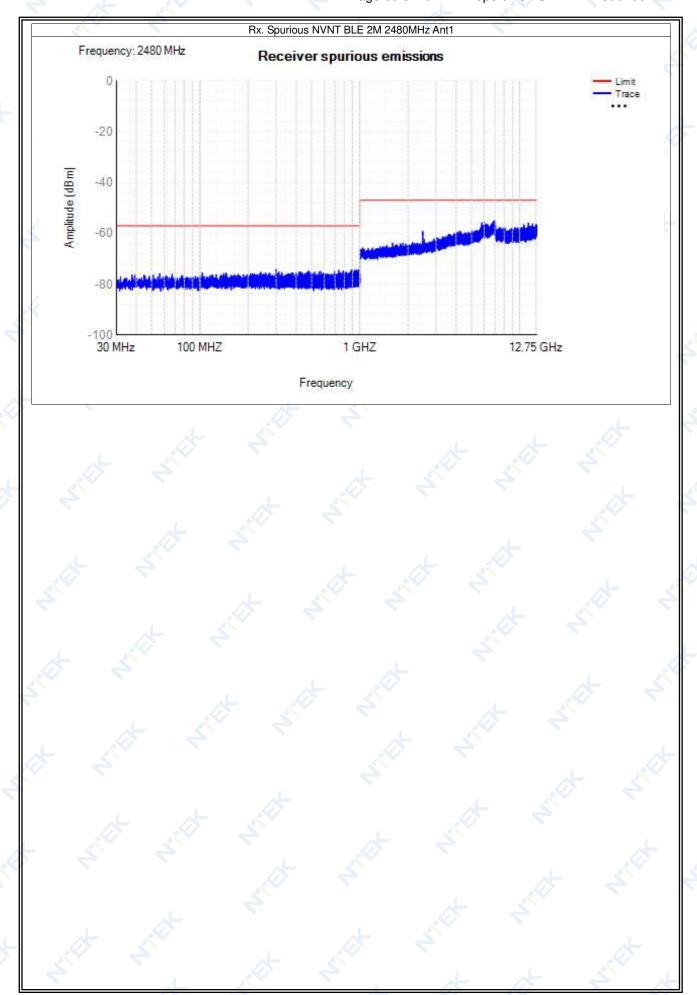

Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdic
NVNT	BLE 2M	2402	Ant1	30 -47	38.10	-75.91	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	47 -74	56.10	-76.40	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	74 -87.5	83.00	-75.86	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	87.5 -118	110.70	-76.33	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	118 -174	161.70	-74.60	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	174 -230	191.00	-75.56	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	230 -470	463.10	-74.76	NA	-36	Pass
NVNT	BLE 2M	2402 <	Ant1	470 -694	514.90	-74.03	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	694 -1000	948.25	-62.18	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	1000 -2396	2205.50	-52.96	NA	-30	Pass
NVNT	BLE 2M	2402	Ant1	2487.5 -12750	6974.50	-45.50	NA	-30	Pass
NVNT	BLE 2M	2440	Ant1	30 - 47	35.20	-76.19	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	47 -74	68.65	-75.97	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	74 -87.5	86.20	-76.28	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	87.5 -118	106.70	-76.40	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	118 -174	127.15	-75.75	NA 💉	-36	Pass
NVNT	BLE 2M	2440	Ant1	174 -230	190.40	-75.49	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	230 - 470	363.75	-74.86	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	470 -694 🦯	501.25	-74.38	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	694 -1000	948.20	-63.44	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1 💉	1000 -2396	2224.00	-53.60	NA	-30	Pass
NVNT	BLE 2M	2440	Ant1	2487.5 -12750	6955.00	-45.46	NA 🦯	-30	Pass
NVNT	BLE 2M	2480	Ant1	30 -47	43.45	-76.28	NA	-36 🗸	Pass
NVNT	BLE 2M	2480	Ant1	47 -74	53.25	-76.27	NA	-54	Pass
NVNT 🥂	BLE 2M	2480	Ant1	74 -87.5 🦯	86.75	-76.64	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	87.5 -118	101.70	-75.54	NA	-54	Pass
NVNT	BLE 2M	2480	Ant1	118 -174	162.45	-76.50	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	174 -230	225.95	-75.46	NA	-54	Pass
NVNT	BLE 2M	2480	Ant1	230 -470	363.15	-74.98	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	470 -694	577.35	-74.81	NA	-54	Pass
NVNT	BLE 2M	2480	Ant1	694 -1000	948.25	-64.26	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	1000 -2396	2335.00	-52.86	NA	-30	Pass
NVNT	BLE 2M	2480	Ant1	2487.5 -12750	5187.50	-42.80	NA	-30	Pass

Page 66 of 70

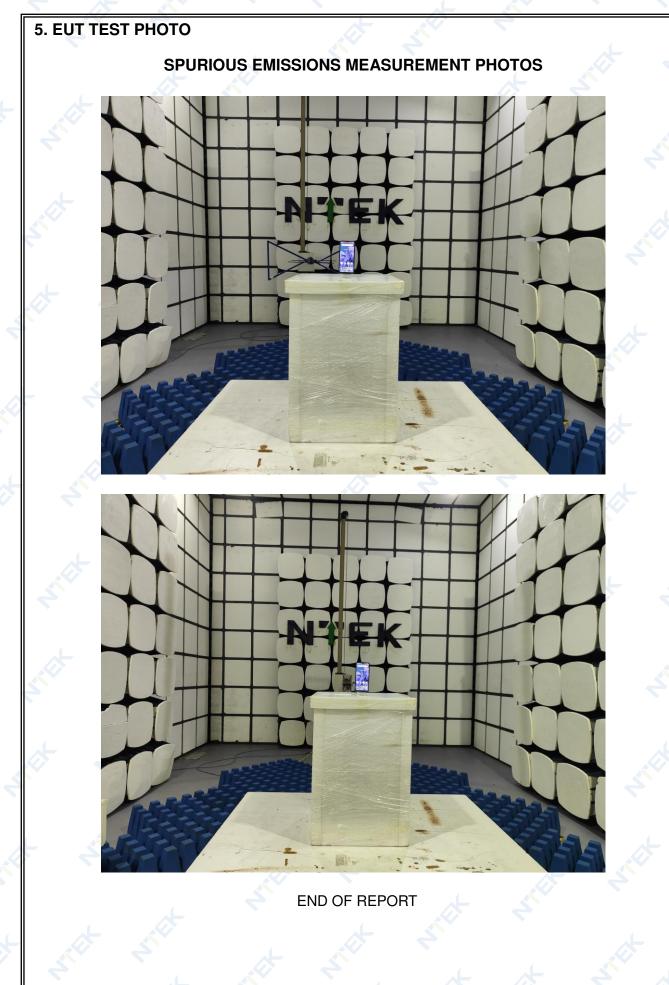
Report No.: STR221215001002E



Page 67 of 70



Page 68 of 70


Report No.: STR221215001002E

Page 69 of 70

Page 70 of 70

