RADIO TEST REPORT ETSI EN 300 440 V2.2.1 (2018-07)

Product : Smart phone Trade Mark : Blackview Model Name : A53 Pro Family Model : N/A Report No. : STR221215001005E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Page 2 of 74

	DOKE COMMUNICATION (HK) LIMITED
Address: F V	RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD VANCHAI HK CHINA
	Shenzhen DOKE Electronic Co.,Ltd
Address	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China
Product description	
Product name: S	Smart phone
Trademark: B	Blackview
Model and/or type reference : A	A53 Pro
Family Model N	J/A
Standards E	ETSI EN 300 440 V2.2.1 (2018-07)
This device described above has	been tested by NTEK, and the test results show that the

equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.

Test Sample Number	T221215001R003
Date of Test	
Date (s) of performance of tests:	Dec 15, 2022 ~ Jan 03, 2023
Date of Issue	Jan 03, 2023
Test Result:	Pass

Testing Engineer

NTEK 北测

Mukri Lee

(Mukzi Lee)

Authorized Signatory :

(Alex Li)

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.2 MEASUREMENT UNCERTAINTY	8
2. GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 TEST CONDITIONS	10
2.3 DESCRIPTION OF TEST CONDITIONS	11
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 12
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	13
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	14
3 . EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)	15
3.1 APPLICABILITY	15
3.2 LIMITS	15
3.3 GENERAL REQUIREMENTS	15
3.4 TEST PROCEDURES	15
3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS 3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS	15 16
3.5 TEST SETUP LAYOUT	16
3.6 EUT OPERATION DURING TEST	16
3.7 TEST RESULT FOR -6 DB BANDWIDTH	17
3.8 TEST RESULT FOR E.I.R.P	18
4 . PERMITTED RANGE OF OPERATING FREQUENCIES	19
4.1 APPLIED PROCEDURES / LIMIT	19
4.2 TEST PROCEDURES	19
4.3 TEST SETUP LAYOUT	19
4.4 EUT OPERATION DURING TEST	19
4.5 TEST RESULTS	20
5 . UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	23
5.1 APPLIED PROCEDURES / LIMIT	23
5.2 MEASURING INSTRUMENTS AND SETTING	23
5.3 TEST PROCEDURES	23
5.4 TEST SETUP LAYOUT	24

Page 3 of 74

NTEK 北测[®]

Table of Contents	Page
5.5 EUT OPERATION DURING TEST	24
5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS	24
5.7 TEST RESULTS	25
6.DUTY CYCLE	27
6.1 APPLICABILITY AND DESCRIPTION	27
6.2 LIMITS	27
6.4 METHOD OF MEASUREMENT	27
6.5 TEST SETUP	28
6.6 TEST RESULTS	28
7 . SPURIOUS EMISSIONS – RX	29
7.1 APPLIED PROCEDURES / LIMIT	29
7.2 MEASURING INSTRUMENTS AND SETTING	29
7.3 TEST PROCEDURES	29
7.5 TEST SETUP LAYOUT	29
7.6 EUT OPERATION DURING TEST	29
7.7 TEST RESULTS	30
8 . ADJACENT CHANNEL SELECTIVITY	31
8.1 APPLICABILITY	31
8.2 LIMITS	31
8.3 METHODS OF MEASUREMENT	31
8.4 TEST SETUP LAYOUT	32
8.5 TEST RESULTS	32
9 . BLOCKING OR DESENSITIZATION	33
9.1 APPLICABILITY	33
9.2 LIMITS	33
9.3 TEST PROCEDURES	33
8.4 TEST SETUP LAYOUT	34
9.4 TEST RESULTS	35
10 . TEST RESULTS	42
10.1 DUTY CYCLE	42
10.2 -6DB EMISSION BANDWIDTH	50
10.3 OCCUPIED CHANNEL BANDWIDTH	58
10.4 RF OUTPUT POWER	66

Page 4 of 74

NTEK 北测[®]

Table of Contents	Page
11 . EUT TEST PHOTO	74
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	74
APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

Revision History				
Report No.	Version	Description	Issued Date	
STR221215001005E	Rev.01	Initial issue of report	Jan 03, 2023	
L	L	1		

Revision History

1. SUMMARY OF TEST RESULTS

NTEK 北测[®]

Test procedures according to the technical standards: ETSI EN 300 440 V2.2.1 (2018-07)

Clause	Description of Test Item	Remarks	Results		
	Transmitter Parameters				
4.2.2	-6 dB channel bandwidth	Conducted	Pass		
4.2.2	Effective isotropic radiated power	Conducted	Pass		
4.2.3	Permitted range of operation frequencies	Conducted	Pass		
4.2.4	Unwanted emissions in the spurious domain	Radiated	Pass		
4.2.5	Duty cycle	Conducted	Pass		
4.2.6	Additional requirements for FHSS equipment	Conducted	N/A		
	Receiver Parameters				
4.3.3	Adjacent channel selectivity(For Receiver category 1)	Conducted	N/A		
4.3.4	Blocking or desensitization(For Receiver category 1,2,3)	Conducted	Pass		
4.3.5	Spurious emissions(For Receiver category 1,2,3)	Radiated	Pass		

Page 7 of 74

Note: The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter

1.1 TEST FACILITY

NTEK 北测

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

Page 8 of 74

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of ~k=2, providing a level of confidence of approximately 95 % $^\circ$

No.	Item	Uncertainty	
1	Radio frequency	±1 x 10-7	
2	RF power (conducted)	±2,5 dB	
3	Radiated emission of transmitter, valid to 26,5 GHz	±6 dB	
4	Radiated emission of transmitter, valid between	±8 dB	
	26,5 GHz and 66 GHz		
5	Radiated emission of receiver, valid to 26,5 GHz	±6 dB	
6	Radiated emission of receiver, valid between 26,5 ±8 dB		
	GHz and 66 GHz		
7	Temperature	±1 ℃	
8	Humidity	±5 %	
9	Voltage (DC)	±1 %	
10	10 Voltage (AC, < 10 kHz) ±2 %		
NOTE: For radiated emissions above 26,5 GHz it may not be possible to			

achieve measurement uncertainties complying with the levels specified in this table. In these cases alone it is acceptable to employ the alternative interpretation procedure specified in EN 300440 V2.2.1 clause 5.9.1.

Report No.: STR221215001005E

2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart phone		
Trade Mark	Blackview		
Model Name	A53 Pro		
Family Model	N/A		
Model Difference	N/A		
Product Description	Operation Frequency: Data Rate: Modulation Channel No.:	5745-5825 MHz for 802.11a/n20/ac20; 5755-5795 MHz for 802.11n40/ac40; 5775MHz for 802.11 ac80; 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS7; 802.11ac(VHT20/ VHT40/VHT80): NSS1, MCS0-MCS9, NSS2 OFDM with BPSK/QPSK/16QAM/64QAM/256QAM 5 channels for 802.11a/n20/ac20 in the 5745-5825MHz band ; 2 channels for 802.11 n40/ac40 in the	
	Antenna Designation: Antenna Gain(Peak)	5755-5795MHz band ; 1 channels for 802.11 ac80 in the 5775MHz band ; PIFA Antenna 1 dBi	
Receiver category	 Category 1: Highly reliable SRD communication media; e.g. serving human life inherent systems (may result in a physical risk to a person). Category 2: Medium reliable SRD communication media e.g. causing inconvenience to persons, which cannot simply be overcome by other means. Category 3: Standard reliable SRD communication media e.g. Inconvenience to persons, which can simply be overcome by other means (e.g. manual). 		
Channel List	Refer to below		
Adapter	Model: QZ-01000EA00 Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A (10.0W)		
Battery	DC 3.87V, 5080mAh, 19.66Wh		
Rating	DC 3.87V from	n battery or DC 5V from adapter	
Hardware Version	HCT-M659MB-A2		
Software Version	A53Pro_EEA_	M659_V1.0	

Page 9 of 74

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Channel list:

NTEK北测[®]

Frequency and Channel list for 802.11a/n/ac(20 MHz) band IV (5745-5825MHz):

Page 10 of 74

	802.11a/n/ac(20 MHz) Carrier Frequency Channel						
Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-

Frequency and Channel list for 802.11n/ac(40MHz) band IV (5755-5795MHz):

802.11n/ac 40MHz Carrier Frequency Channel					
Channel Frequency (MHz) Channel Frequency (MHz) Channel (MHz) Channel (MHz)					
151	5755	159	5795	-	-

Frequency and Channel list for 802.11ac(80MHz) band IV (5775MHz):

802.11ac 80MHz Carrier Frequency Channel		
Channel Frequency (MHz)		
155	5775	

2.2 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions	
Temperature	15°C - 35°C	-10°C ~ 40°C _{Note1}	
Relative Humidity	20% - 75%	N/A	
Power Rating	DC 3.87V	N/A	
Test voltage	DC 3.87V	DC 4.2V-DC 3.4V Note2	

Note:

(1) The temperature range as declared by the manufacturer; or one of the following specified temperature ranges:

- Temperature category I (General): -20 °C to +40 °C;

- Temperature category II (Portable): -10 °C to +40 °C;

- Temperature category III (Equipment for normal indoor use): 5 °C to +35 °C.

(2) The High Voltage 4.2V and Low Voltage 3.4V was declarated by manufacturer.

2.3 DESCRIPTION OF TEST CONDITIONS

NTEK 北测[®]

For Conducted Test				
Pretest Mode Description				
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165			
Mode 2	802.11n/ ac40 CH 151 / CH 159			
Mode 3	802.11 ac80 CH 155			

Page 11 of 74

For Radiated Test				
Final Test Mode Description				
Mode 1 802.11a /n/ ac 20 CH149/ CH157/ CH 16				
Mode 2	802.11n/ ac40 CH 151 / CH 159			
Mode 3	802.11 ac80 CH 155			

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Page 13 of 74

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Smart phone	A53 Pro	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength _l column.
- (3) "YES" means "shielded" or "with ferrite core";"NO" means "unshielded" or "without ferrite core"

Page 14 of 74

Report No.: STR221215001005E

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

NTEK 北测[®]

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
Turn Table	EM	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.01	2023.03.31	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01	2023.03.31	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

NTEK 北视[®] Page 15 of 74

Report No.: STR221215001005E

3. EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)

3.1 APPLICABILITY

The equivalent isotropically radiated power requirement shall apply to all transmitters.

3.2 LIMITS

Table 2: Maximum radiated peak power (e.i.r.p.)

Frequency Bands	Power	Application	Notes
2 400 MHz to 2 483,5 MHz	10 mW e.i.r.p.	Non-specific short range devices	
2 400 MHz to 2 483,5 MHz	25 mW e.i.r.p.	Radio determination devices	
(a) 2 446 MHz to 2 454 MHz	500 mW e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
(b) 2 446 MHz to 2 454 MHz	4 W e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
5 725 MHz to 5 875 MHz	25 mW e.i.r.p.	Non-specific short range devices	
9 200 MHz to 9 500 MHz	25 mW e.i.r.p.	Radio determination devices	
9 500 MHz to 9 975 MHz	25 mW e.i.r.p.	Radio determination devices	
10,5 GHz to 10,6 GHz	500 mW e.i.r.p.	Radio determination devices	
13,4 GHz to 14,0 GHz	25 mW e.i.r.p.	Radio determination devices	
17,1 GHz to 17,3 GHz	400 mW e.i.r.p.	Radio determination devices	See annex F
24,00 GHz to 24,25 GHz	100 mW e.i.r.p.	Non-specific short range devices and	
		Radio determination devices	

3.3 GENERAL REQUIREMENTS

1. To measure e.i.r.p. it is first necessary to determine the appropriate method of measurement: see EN 300440 V2.2.1 clauses 4.2.2.3.1 and 4.2.2.3.2. The -6 dB transmitter bandwidth shall be determined using a 100 kHz measuring bandwidth in order to establish which measurement method is applicable:

Co	Condition			
Non spread spectrum transmitters with a -6 dB bandwidth of up to 20 MHz and spread	Non spread spectrum equipment with a -6 dB bandwidth of 20 MHz or less and a duty cycle above 50 %;	Refer to section 3.4.1		
spectrum transmitters with channel bandwidth of up to 1 MHz;	Spread spectrum equipment with a -6 dB channel bandwidth of 1 MHz or less.			
☑ for all other transmitter bandwidths.	☐equipment with a -6 dB bandwidth greater than 20 MHz, and equipment with a duty cycle below 50 %;; ⊠spread spectrum equipment with a channel bandwidth above 1 MHz	Refer to section 3.4.2		

2. Measurements shall be performed at normal test conditions.

3.4 TEST PROCEDURES

3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS

The measurement shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded. **Equipment measured as constant envelope modulation equipment**

NTEK 北视[®] Page 16 of 74

For practical reasons, measurements shall be performed only at the highest power level at which the transmitter is intended to operate. The measurement arrangement in figure 2 shall be used. The measurement shall be performed preferably in the absence of modulation.

When it is not possible to measure it in the absence of modulation, this fact shall be stated in test reports.

The transmitter shall be set in continuous transmission mode. If this is not possible, the measurements shall be carried

out in a period shorter than the duration of the transmitted burst. It may be necessary to extend the duration of the burst.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

Equipment measured as non-constant envelope modulation equipment

The measurement shall be performed with test signals D-M2 or D-M3 as appropriate. The transmitter shall be preferably set in continuous transmission mode. If this is not possible, the measurement can be performed in discontinuous mode.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured. The measuring instrument shall have a measurement bandwidth not less than sixteen times the channel bandwidth.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS

Step 1:

• using a suitable means, the output of the transmitter shall be coupled to a matched diode detector;

• the output of the diode detector shall be connected to the vertical channel of an oscilloscope;

• the combination of the diode detector and the oscilloscope shall be capable of faithfully

reproducing the envelope peaks and the duty cycle of the transmitter output signal;

• the observed duty cycle of the transmitter (Tx on/(Tx on + Tx off)) shall be noted as x, (0 < x < 1)And recorded.

Step 2:

• the average output power of the transmitter shall be determined using a wideband, calibrated RF power meter with a matched thermocouple detector or an equivalent thereof and, where applicable, with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);

• the e.i.r.p. shall be calculated from the above measured power output A, the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

 $-P = A + G + 10 \log (1/x);$

- P should be EIRP POWER.

3.5 TEST SETUP LAYOUT

3.6 EUT OPERATION DURING TEST

Where possible, the equipment shall be able to operate in a continuous transmit mode for testing purposes.

3.7 TEST RESULT FOR -6 DB BANDWIDTH

EUT :	Smart phone	Model Name :	A53 Pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

3.8 TEST RESULT FOR E.I.R.P

EUT :	Smart phone	Model Name :	A53 Pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

4. PERMITTED RANGE OF OPERATING FREQUENCIES

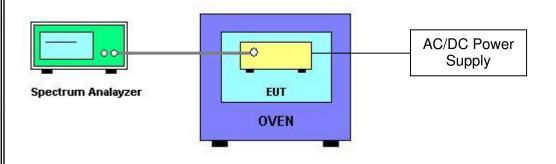
4.1 APPLIED PROCEDURES / LIMIT

The Permitted range of operating frequencies shall apply to all transmitters.

Limits: The width of the power spectrum envelope is fH -fL for a given operating frequency. In equipment that allows adjustment or selection of different operating frequencies, the power envelope takes up different positions in the allowed band. The frequency range is determined by the lowest value of fL and the highest value of fH resulting from the adjustment of the equipment to the lowest and highest operating frequencies.

The occupied bandwidth (i.e. the bandwidth in which 99 % of the wanted emission is contained) of the transmitter shall fall within the assigned frequency band.

For all equipment the frequency range shall lie within the frequency band given by section 3.2, table 2. For non-harmonized frequency bands the available frequency range may differ between national administrations.


4.2 TEST PROCEDURES

These measurements shall be performed under both normal and extreme operating conditions except for the occupied bandwidth assessment for which measurement at normal operating conditions is sufficient.

The measurement procedure shall be as follows:

- a) put the spectrum analyser in video averaging mode with a minimum of 50 sweeps selected;
- b) select the lowest operating frequency of the equipment under test and activate the transmitter with modulation applied. The RF emission of the equipment shall be displayed on the spectrum analyser;
- c) using the marker of the spectrum analyser, find the lowest frequency below the operating frequency at which the spectral power density drops below the level given in clause 4.2.3. This frequency shall be recorded in the test report;
- d) select the highest operating frequency of the equipment under test and find the highest frequency at which the spectral power density drops below the value given in clause 4.2.3. This frequency shall be recorded in the test report;
- e) the difference between the frequencies measured in steps c) and d) is the operating frequency range. It shall be recorded in the test report.

4.3 TEST SETUP LAYOUT

4.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

NTEK Lin[®] Page 20 of 74

Report No.: STR221215001005E

4.5 TEST RESULTS

EUT :	Smart phone	Model Name :	A53 Pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	ТХ		

802.11a

Extreme condition			Frequency range (MHz)		
			F _L CH149	F _н CH165	
		V max (V)	4.2	5736.793	5833.219
T min (°C)	-10	V nom (V)	3.87	5736.794	5833.221
		V min (V)	3.4	5736.790	5833.217
	40	V max (V)	4.2	5736.791	5833.218
T max (°C)		V nom (V)	3.87	5736.792	5833.219
		V min (V)	3.4	5736.793	5833.220
T normal (°C)	24	V nom (V)	3.87	5736.793	5833.219
Min. f_L / Max. f_H Band Edges			5736.790	5833.221	
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
Result			Con	nplies	

802.11n20

Extreme condition				Frequency	range (MHz)
	ztrem	econation	F _L CH149	F _н CH165	
		V max (V)	4.2	5736.189	5833.811
T min (°C)	-10	V nom (V)	3.87	5736.190	5833.812
		V min (V)	3.4	5736.186	5833.808
	40	V max (V)	4.2	5736.187	5833.810
T max (°C)		V nom (V)	3.87	5736.188	5833.811
		V min (V)	/ min (V) 3.4 5736.189		5833.812
T normal (°C)	24	V nom (V)	3.87	5736.189	5833.811
Min. f	Min. f_L / Max. f_H Band Edges			5736.186	5833.812
Indoor Use Limits			F _L > 5725.0 MHz	$\mathbf{F_L}~<~5875.0~\text{MHz}$	
Result			Complies		

Report No.: STR221215001005E

	F				Frequency range (MHz)		
ľ	Extreme condition			F _L CH151	F _н CH159		
		V max (V)	4.2	5736.978	5813.062		
T min (°C)	-10	V nom (V)	3.87	5736.979	5813.064		
		V min (V)	3.4	5736.975	5813.060		
	40	V max (V)	4.2	5736.976	5813.061		
T max (°C)		V nom (V)	3.87	5736.977	5813.062		
		V min (V)	3.4	5736.978	5813.063		
T normal (°C)	24	V nom (V)	3.87	5736.978	5813.062		
Min. f _L / Max. f _H Band Edges			5736.975	5813.064			
	Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$		
	Result			Con	nplies		

Page 21 of 74

802.11ac20

Extreme condition				Frequency range (MHz)		
	Extrem	econdition	F _L CH149	F _н CH165		
		V max (V)	4.2	5736.185	5833.795	
T min (°C)	-10	V nom (V)	3.87	5736.186	5833.797	
		V min (V) 3.4		5736.182	5833.793	
	40	V max (V)	4.2	5736.183	5833.794	
T max (°C)		V nom (V)	3.87	5736.184	5833.795	
		V min (V) 3.4		5736.185	5833.796	
T normal (°C)	24	V nom (V)	3.87	5736.185	5833.795	
Min. f_L / Max. f_H Band Edges				5736.182	5833.797	
Indoor Use Limits			F _L > 5725.0 MHz	$\mathbf{F}_{L}~<~5875.0~\text{MHz}$		
	R	lesult		Con	nplies	

Report No.: STR221215001005E

-	Eutoma condition				range(MHz)
E C	Extreme condition			F _L CH151	F _н CH159
		V max (V)	4.2	5737.002	5813.038
T min (°C)	-10	V nom (V)	3.87	5737.003	5813.040
		V min (V)	3.4	5736.999	5813.036
	40	V max (V)	4.2	5737.000	5813.037
T max (°C)		V nom (V)	3.87	5737.001	5813.038
		V min (V)	3.4	5737.002	5813.039
T normal (°C)	24	V nom (V)	3.87	5737.002	5813.038
Min. f_L / Max. f_H Band Edges			5736.999	5813.040	
	Indoor Use Limits			F _L > 5725.0 MHz	$\mathbf{F_L}~<~5875.0~\text{MHz}$
	Result				nplies

Page 22 of 74

802.11ac80

	Extreme condition				range(MHz)
-	xtrem	econdition	F _L CH155	F _н CH155	
		V max (V)	4.2	5737.259	5812.932
T min (°C)	-10	V nom (V)	3.87	5737.260	5812.934
		V min (V)	3.4	5737.256	5812.930
		V max (V)	4.2	5737.257	5812.931
T max (°C)	40	V nom (V)	3.87	5737.258	5812.932
		V min (V)	3.4	5737.259	5812.933
T normal (°C)	24	V nom (V)	3.87	5737.259	5812.932
Min. f_L / Max. f_H Band Edges				5737.256	5812.934
Indoor Use Limits			F_L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
	Result			Con	nplies

NTEK 北视[®] Page 23 of 74

5. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

5.1 APPLIED PROCEDURES / LIMIT

The unwanted emissions in the spurious domain requirement shall apply to all transmitters.

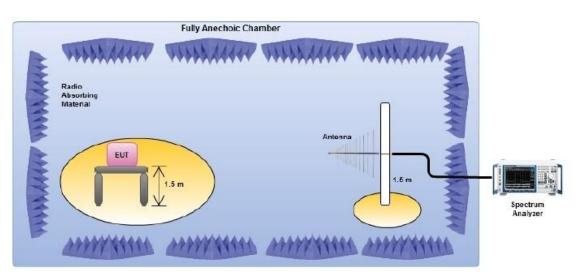
	47 MHz to 74 MHz		
State	87.5 MHz to 118 MHz	Other frequencies	Frequencies
Sidle	174 MHz to 230 MHz	≤□ 1 000 MHz	> 1 000 MHz
	470 MHz to 862 MHz		
Operating	4 nW /-54dBm	250 nW/-36dBm	1 µW /-30dBm
Standby	2 nW /-57dBm	2 nW /-57dBm	20 nW /-47dBm

5.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz
	For frequency above 1G:1MHz

5.3 TEST PROCEDURES


- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable. For above 1G, using Horn antenna .
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

NTEK 北测

Report No.: STR221215001005E

5.4 TEST SETUP LAYOUT

Radiated Emission Test Set-Up

Page 24 of 74

5.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS

For the initial investigation on standby mode and receiving mode, no significant differences in spurious emissions were observed between these 2 modes. So test data for standby mode was omitted in this section.

NTEK LM[®] Page 25 of 74

Report No.: STR221215001005E

5.7 TEST RESULTS

EUT :	Smart phone	Model Name :	A53 Pro
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V (NORMAL)
Test Mode :	TX-802.11a mode		

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	48.91	-70.43	14.74	-55.69	-36	-19.69	peak
V	112.31	-74.78	8.68	-66.10	-54	-12.10	peak
V	231.29	-68.30	11.24	-57.06	-54	-3.06	peak
V	368.72	-70.45	12.73	-57.72	-36	-21.72	peak
V	487.26	-77.47	11.81	-65.66	-54	-11.66	peak
V	779.66	-68.14	17.15	-50.99	-36	-14.99	peak
Н	47.23	-72.22	13.48	-58.74	-36	-22.74	peak
Н	103.34	-72.95	6.39	-66.56	-54	-12.56	peak
Н	211.24	-69.73	11.04	-58.69	-54	-4.69	peak
Н	271.38	-67.68	12.80	-54.88	-36	-18.88	peak
Н	371.90	-74.53	14.03	-60.50	-36	-24.50	peak
Н	718.84	-74.85	20.18	-54.67	-36	-18.67	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Page 26 of 74

Report No.: STR221215001005E

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
		ор	eration frequenc	y:5755 MHz			
V	1232.03	-51.54	13.64	-37.90	-30	-7.90	peak
V	1732.38	-55.42	15.03	-40.39	-30	-10.39	peak
V	2232.67	-57.97	11.57	-46.40	-30	-16.40	peak
V	5794.39	-63.26	16.82	-46.44	-30	-16.44	peak
Н	1731.19	-54.16	14.82	-39.34	-30	-9.34	peak
Н	3857.19	-69.70	16.54	-53.16	-30	-23.16	peak
Н	5793.89	-61.95	17.17	-44.78	-30	-14.78	peak
Н	9416.94	-66.59	19.52	-47.07	-30	-17.07	peak
		ор	eration frequenc	y:5785 MHz			
V	1230.95	-52.77	13.64	-39.13	-30	-9.13	peak
V	1733.08	-45.74	15.03	-30.71	-30	-0.71	peak
V	2231.84	-55.23	11.57	-43.66	-30	-13.66	peak
V	3919.55	-68.45	15.98	-52.47	-30	-22.47	peak
Н	1732.78	-54.96	14.82	-40.14	-30	-10.14	peak
Н	2231.17	-60.36	16.65	-43.71	-30	-13.71	peak
Н	5857.50	-63.33	16.88	-46.45	-30	-16.45	peak
Н	9421.40	-63.85	19.51	-44.34	-30	-14.34	peak
		ор	eration frequenc	y:5825 MHz			
V	1730.29	-57.40	15.03	-42.37	-30	-12.37	peak
V	2231.57	-56.51	15.74	-40.77	-30	-10.77	peak
V	2668.57	-70.18	16.74	-53.44	-30	-23.44	peak
V	5857.25	-59.50	16.58	-42.92	-30	-12.92	peak
Н	1731.36	-52.30	14.82	-37.48	-30	-7.48	peak
Н	2232.21	-62.56	16.65	-45.91	-30	-15.91	peak
Н	2669.37	-68.62	17.93	-50.69	-30	-20.69	peak
Н	5857.27	-64.77	19.70	-52.51	-30	-22.51	peak

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Note: Only the worst case 802.11a mode recorded in the report.

NTEK 北视 Page 27 of 74

Report No.: STR221215001005E

6. DUTY CYCLE

6.1 APPLICABILITY AND DESCRIPTION

Duty Cycle (DC) shall apply to all transmitting equipment except those which utilize Listen Before Talk (LBT) clause 4.4.2, or Detect And Avoid (DAA), clause 4.4.3. RFID transmitters operating in the 2 446 MHz to 2 454 MHz frequency band that transmit at a maximum radiated peak power level of less than 500 mW e.i.r.p. are also excluded.

Duty cycle is the ratio expressed as a percentage, of the cumulative duration of transmissions $T_{on_{cum}}$ within an observation interval T_{obs} .

$$DC = \left(\frac{T_{on_cum}}{T_{obs}}\right)F_{obs}$$

on an observation bandwidth Fobs.

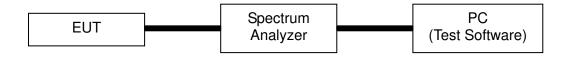
Unless otherwise specified, $T_{\mbox{\tiny obs}}$ is 1 hour and the observation bandwidth $F_{\mbox{\tiny obs}}$ is the operational frequency band

Each transmission consists of an RF emission, or sequence of RF emissions separated by intervals $< T_{Dis}$.

6.2 LIMITS

Table 4 defines the maximum duty cycle within a 1 hour period. Table 4: Duty cycle limits

Frequency Band	Duty cycle	Application	Notes
2 400 MHz to 2 483,5 MHz	No Restriction	Generic use	
2 400 MHz to 2 483,5 MHz	No Restriction	Detection, movement and alert	
		applications	
(a) 2 446 MHz to 2 454 MHz	No Restriction	RFID	Limits shown in
			annex D shall apply
(b) 2 446 MHz to 2 454 MHz	≤ 15 %	RFID	Limits shown in
			annex D shall apply
5 725 MHz to 5 875 MHz	No Restriction	Generic use	
9 200 MHz to 9 500 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
9 500 MHz to 9 975 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
10,5 GHz to 10,6 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
13,4 GHz to 14,0 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
-		alert applications	
17,1 GHz to 17,3 GHz	DAA or	Radiodetermination:	Limits shown in
	equivalent	GBSAR detecting and movement	annex F shall apply
	techniques	and alert applications	
24,00 GHz to 24,25 GHz	No Restriction	Generic use and for	
		Radiodetermination:	
		radar, detection, movement and	
	1	alert applications	


For devices with a 100 % duty cycle transmitting an unmodulated carrier most of the time, a time-out shut-off facility shall be implemented in order to improve the efficient use of spectrum. The method of implementation shall be declared by the manufacturer.

6.4 METHOD OF MEASUREMENT

Please refer to EN 300440 V2.2.1 Clause 4.2.5.3.

Report No.: STR221215001005E

6.5 TEST SETUP

Page 28 of 74

6.6 TEST RESULTS

EUT:	Smart phone	Model Name:	A53 Pro
Temperature:	26°C	Relative Humidity:	53 %
Pressure:	1012 hPa	Test Voltage:	DC 3.87V (NORMAL)
Test Mode:	Mode 1/2/3		

Test data reference attachment

7. SPURIOUS EMISSIONS - RX

7.1 APPLIED PROCEDURES / LIMIT

Clause	Test Item	Frequency(MHz)	Limit
4.3.5.4	Spurious emissions	30-1000	-57dBm
	(radiated)	Above 1000	-47dBm

7.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

7.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.For above 1G, using Horn antenna .
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

7.5 TEST SETUP LAYOUT

This test setup layout is the same as that shown in section 5.4.

7.6 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously receiving mode.

NTEK 北测[®] Page 30 of 74

Report No.: STR221215001005E

7.7 TEST RESULTS

EUT :	Smart phone	Model Name :	A53 Pro
Temperature :	26°C	Relative Humidity :	53 %
Pressure :	1012 hPa	Test Power :	DC 3.87V (NORMAL)
Test Mode :	RX-802.11a mode		

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	47.47	-85.39	18.60	-66.79	-57	-9.79	peak
V	61.11	-78.57	9.62	-68.95	-57	-11.95	peak
V	127.00	-76.04	10.28	-65.76	-57	-8.76	peak
V	176.24	-75.97	12.06	-63.91	-57	-6.91	peak
V	245.83	-76.15	11.56	-64.59	-57	-7.59	peak
V	381.24	-77.02	14.99	-62.03	-57	-5.03	peak
Н	60.39	-73.55	9.91	-63.64	-57	-6.64	peak
Н	101.78	-75.67	10.70	-64.97	-57	-7.97	peak
Н	183.24	-76.71	12.77	-63.94	-57	-6.94	peak
Н	212.01	-74.50	12.34	-62.16	-57	-5.16	peak
Н	403.04	-84.65	15.31	-69.34	-57	-12.34	peak
Н	569.33	-86.78	18.55	-68.23	-57	-11.23	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Above 1G :

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	1209.22	-82.57	11.69	-70.88	-47	-23.88	peak
V	1709.62	-82.94	13.80	-69.14	-47	-22.14	peak
V	2210.08	-87.58	18.53	-69.05	-47	-22.05	peak
V	2646.46	-90.50	19.39	-71.11	-47	-24.11	peak
V	8460.62	-97.92	26.28	-71.64	-47	-24.64	peak
Н	1209.51	-80.48	12.08	-68.40	-47	-21.40	peak
Н	1709.44	-79.57	13.64	-65.93	-47	-18.93	peak
Н	2209.15	-85.71	18.77	-66.94	-47	-19.94	peak
Н	3834.38	-92.16	18.93	-73.23	-47	-26.23	peak
Н	6708.07	-99.22	23.64	-75.58	-47	-28.58	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

8. ADJACENT CHANNEL SELECTIVITY

NTEK 北测

8.1 APPLICABILITY

This requirement applies to channelized Category 1 receivers..

8.2 LIMITS

The adjacent channel selectivity of the equipment under specified conditions shall not be less than -30 dBm + k.

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

8.3 METHODS OF MEASUREMENT

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.

Signal generator B shall be unmodulated and shall be adjusted to the adjacent channel centre frequency immediately

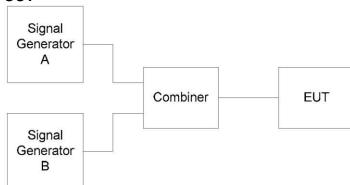
above that of the wanted signal.

Initially signal generator B shall be switched off and using signal generator A the level that still gives sufficient

response shall be established. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurements shall be repeated with signal generator B unmodulated and adjusted to the adjacent channel centre immediately below the wanted signal.

The adjacent channel selectivity shall be recorded for the upper and lower adjacent channels as the level in dBm of the unwanted signal.


For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres.

In this case, the adjacent selectivity shall be recorded as the level in dBm of lowest level of the unwanted signal

(generator B) resulting in a non-read of the tag.

Report No.: STR221215001005E

8.4 TEST SETUP LAYOUT

Page 32 of 74

8.5 TEST RESULTS

EUT :	Smart phone	Model Name :	A53 Pro
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	N/A
Test Mode :	N/A		

Not applicable.

9. BLOCKING OR DESENSITIZATION

9.1 APPLICABILITY

This requirement applies to all Category 1, 2, and 3 SRD communication media receivers.

9.2 LIMITS

The blocking level, for any frequency within the specified ranges, shall not be less than the values given in table 6, except at frequencies on which spurious responses are found.

Receiver category	Limit
1	-30 dBm + k
2	-45 dBm + k
3	-60 dBm + k

The correction factor, k, is as follows:

 $k = \Box$ -20log f -10log BW

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

9.3 TEST PROCEDURES

This measurement shall be conducted under normal conditions.

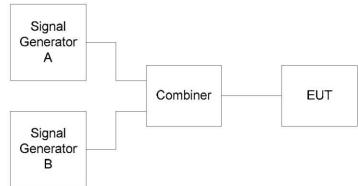
Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or

b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.Signal generator B shall be unmodulated and shall be adjusted to a test frequency at approximately 10 times, 20 times and 50 times of the occupied bandwidth above upper band edge of occupied bandwidth.Initially signal generator B shall be switched off and using signal generator A the level which still gives sufficient response shall be established. The output level of generator A shall then be increased by 3 dB.Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.


The measurement shall be repeated with the test frequency for signal generator B at 10 times, 20 times and 50 times of the occupied bandwidth below the lower band edge of the occupied bandwidth The blocking or desensitization shall be recorded as the level in dBm of lowest level of the unwanted signal(generator B).

For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres. In this case, the blocking or desensitization shall be recorded as the ratio in dB of lowest level of the unwanted signal (generator B) resulting in a non-read of the tag. to the declared sensitivity of the receiver +3 dB.

Page 34 of 74

Report No.: STR221215001005E

8.4 TEST SETUP LAYOUT

NTEK LM[®] Page 35 of 74

9.4 TEST RESULTS

L				
	EUT :	Smart phone	Model Name :	A53 Pro
	Temperature :	24 ℃	Relative Humidity :	54%
	Pressure :	1010 hPa	Test Voltage :	DC 3.87V (NORMAL)
	Test Mode :	RX		

802.11a

5745 MHz

Flow= 5736.792MHz; Fhigh= 5753.214MHz, occupied bandwidth=16.422MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5572.572	-	-29.74	-87.34(Note1)
3	20 times lower band edge of the occupied bandwidth	5408.352	-	-32.46	-87.34
	50 times lower band edge of the occupied bandwidth	4915.692	-	-32.98	-87.34
	10 times upper band edge of the occupied bandwidth	5917.434	-	-31.35	-87.34
	20 times upper band edge of the occupied bandwidth	6081.654	-	-32.73	-87.34
	50 times upper band edge of the occupied bandwidth	6574.314	-	-29.56	-87.34

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20 \log f - 10 \log BW$

k = -27.34

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

Report No.: STR221215001005E

802.11a

5825 MHz

Flow= 5816.773MHz; Fhigh= 5833.219MHz, occupied bandwidth=16.446MHz

Page 36 of 74

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	\geq Limit(dB)
	5825 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5652.313	-	-30.92	-87.47(Note1)
	20 times lower band edge of the occupied bandwidth	5487.853	-	-29.28	-87.47
3	50 times lower band edge of the occupied bandwidth	4994.473	-	-32.55	-87.47
	10 times upper band edge of the occupied bandwidth	5997.679	-	-30.87	-87.47
	20 times upper band edge of the occupied bandwidth	6162.139	-	-31.77	-87.47
	50 times upper band edge of the occupied bandwidth	6655.519	-	-31	-87.47

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

NTEK 比测[®] Page 37 of 74

Report No.: STR221215001005E

802.11n20

5745 MHz

Flow= 5736.189MHz; Fhigh= 5753.807MHz, occupied bandwidth=17.618MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5560.009	-	-29.53	-87.65(Note1)
	20 times lower band edge of the occupied bandwidth	5383.829	-	-29.08	-87.65
3	50 times lower band edge of the occupied bandwidth	4855.289	-	-32.47	-87.65
	10 times upper band edge of the occupied bandwidth	5929.987	-	-31.36	-87.65
	20 times upper band edge of the occupied bandwidth	6106.167	-	-30.65	-87.65
	50 times upper band edge of the occupied bandwidth	6634.707	-	-30.06	-87.65

Note1 :

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.65

Where:

- f is the frequency in GHz;

Report No.: STR221215001005E

802.11n20

5825 MHz

Flow= 5816.173MHz; Fhigh= 5833.811MHz, occupied bandwidth=17.638MHz

Page 38 of 74

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	\geq Limit(dB)
	5825 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5639.793	-	-29.14	-87.65(Note1)
	20 times lower band edge of the occupied bandwidth	5463.413	-	-29.12	-87.65
3	50 times lower band edge of the occupied bandwidth	4934.273	-	-32.98	-87.65
	10 times upper band edge of the occupied bandwidth	6010.191	-	-32.13	-87.65
	20 times upper band edge of the occupied bandwidth	6186.571	-	-30.34	-87.65
	50 times upper band edge of the occupied bandwidth	6715.711	-	-31.16	-87.65

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.65

Where:

- f is the frequency in GHz;

Report No.: STR221215001005E

802.11n40

5755 MHz

Flow= 5737.978MHz; Fhigh= 5774.012MHz, occupied bandwidth=36.034MHz

Page 39 of 74

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5755 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5377.638	-	-31.88	-90.77(Note1)
	20 times lower band edge of the occupied bandwidth	5017.298	-	-31.95	-90.77
3	50 times lower band edge of the occupied bandwidth	3936.278	-	-31.66	-90.77
	10 times upper band edge of the occupied bandwidth	6134.352	-	-32.56	-90.77
	20 times upper band edge of the occupied bandwidth	6494.692	-	-32.38	-90.77
	50 times upper band edge of the occupied bandwidth	7575.712	-	-29.02	-90.77

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.77

Where:

- f is the frequency in GHz;

Report No.: STR221215001005E

802.11n40

5795 MHz

Flow= 5777.026MHz; Fhigh= 5813.063MHz, occupied bandwidth=36.037MHz

Page 40 of 74

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5416.656	-	-31.33	-90.83(Note1)
	20 times lower band edge of the occupied bandwidth	5056.286	-	-31.95	-90.83
3	50 times lower band edge of the occupied bandwidth	3975.176	-	-30.97	-90.83
	10 times upper band edge of the occupied bandwidth	6173.433	-	-30.21	-90.83
	20 times upper band edge of the occupied bandwidth	6533.803	-	-31.55	-90.83
	50 times upper band edge of the occupied bandwidth	7614.913	-	-29.21	-90.83

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.83

Where:

- f is the frequency in GHz;

NTEK 北詞® Page 41 of 74

Report No.: STR221215001005E

802.11ac80

5775 MHz

Flow= 5737.259MHz; Fhigh= 5812.931MHz, occupied bandwidth=75.672MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5775	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	4980.539	-	-30.48	-94.05(Note1)
	20 times lower band edge of the occupied bandwidth	4223.819	-	-29.44	-94.05
3	50 times lower band edge of the occupied bandwidth	1953.659	-	-29.53	-94.05
	10 times upper band edge of the occupied bandwidth	6569.651	-	-29.34	-94.05
	20 times upper band edge of the occupied bandwidth	7326.371	-	-31.56	-94.05
	50 times upper band edge of the occupied bandwidth	9596.531	-	-32.21	-94.05

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

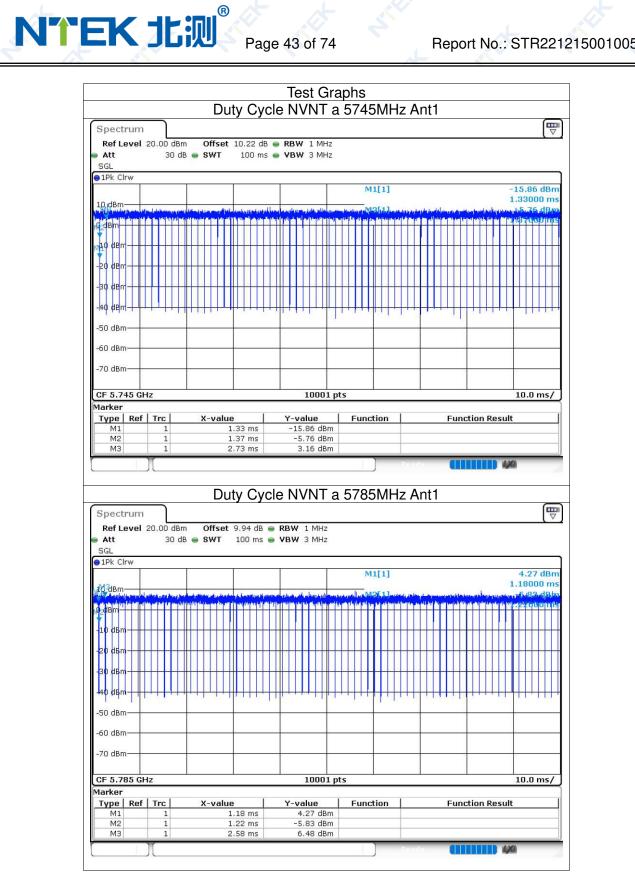
 $k = -20\log f - 10\log BW$

k = -34.05

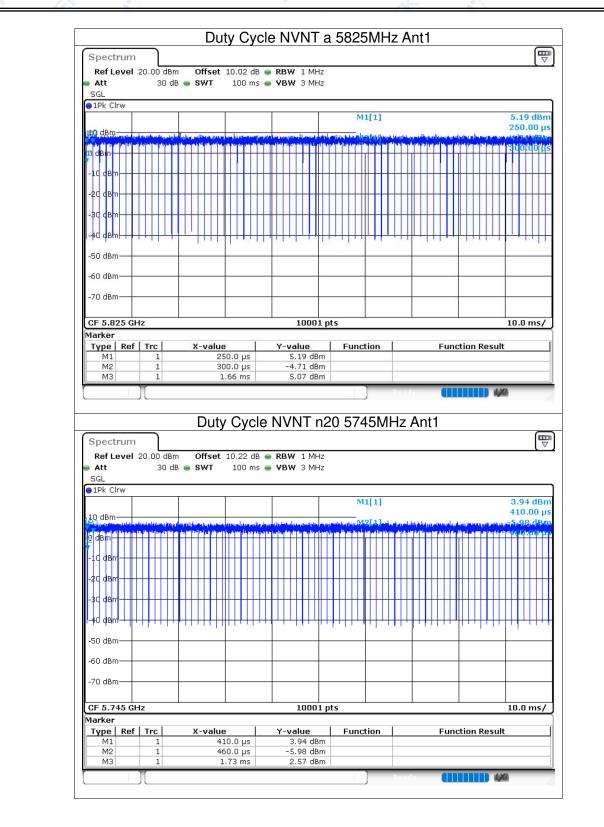
Where:

- f is the frequency in GHz;

NTEK LM[®] Page 42 of 74

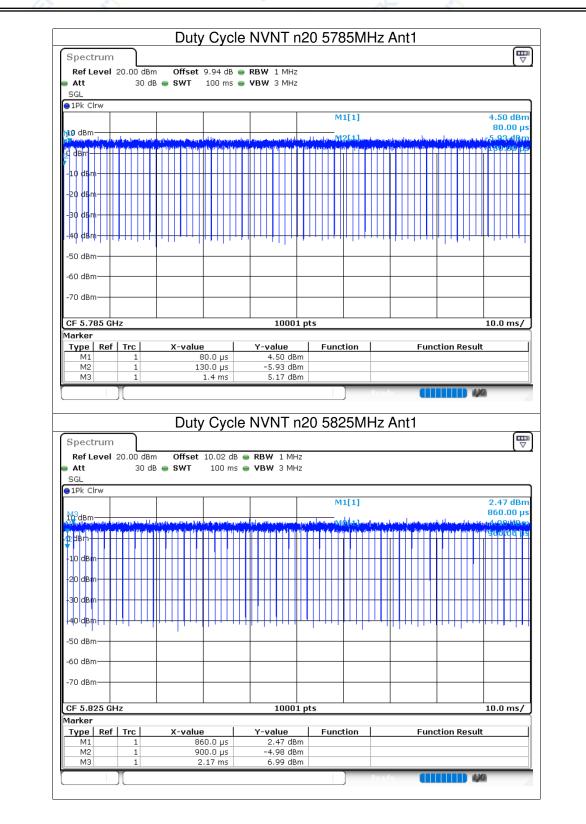

Report No.: STR221215001005E

10. TEST RESULTS


10.1 DUTY CYCLE

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	а	5745	Ant1	97.61	0.11	0.74
NVNT	а	5785	Ant1	97.61	0.11	0.74
NVNT	а	5825	Ant1	97.56	0.11	0.74
NVNT	n20	5745	Ant1	97.37	0.12	0.79
NVNT	n20	5785	Ant1	97.4	0.11	0.79
NVNT	n20	5825	Ant1	97.37	0.12	0.79
NVNT	n40	5755	Ant1	91.77	0.37	1.64
NVNT	n40	5795	Ant1	91.79	0.37	1.61
NVNT	ac20	5745	Ant1	97.46	0.11	0.78
NVNT	ac20	5785	Ant1	97.48	0.11	0.78
NVNT	ac20	5825	Ant1	97.46	0.11	0.78
NVNT	ac40	5755	Ant1	95.13	0.22	1.56
NVNT	ac40	5795	Ant1	95.15	0.22	1.56
NVNT	ac80	5775	Ant1	88.41	0.53	3.33

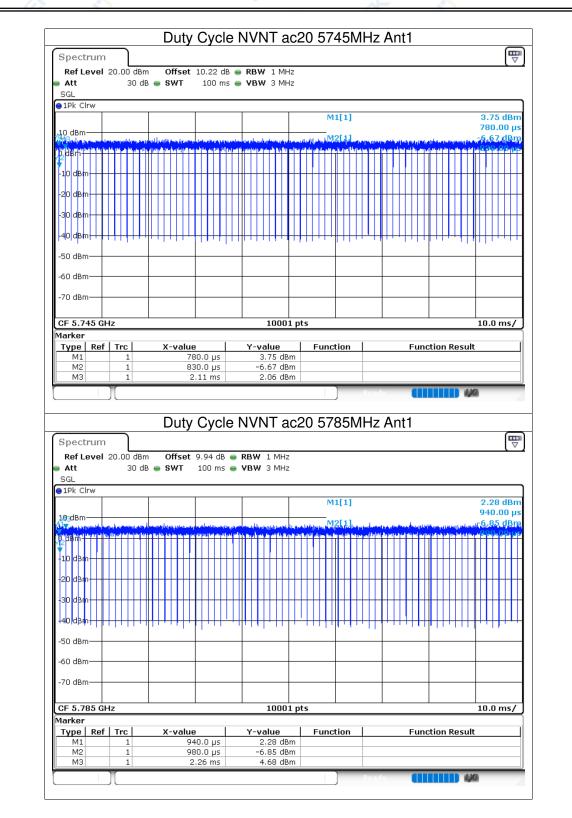
Page 43 of 74


Report No.: STR221215001005E

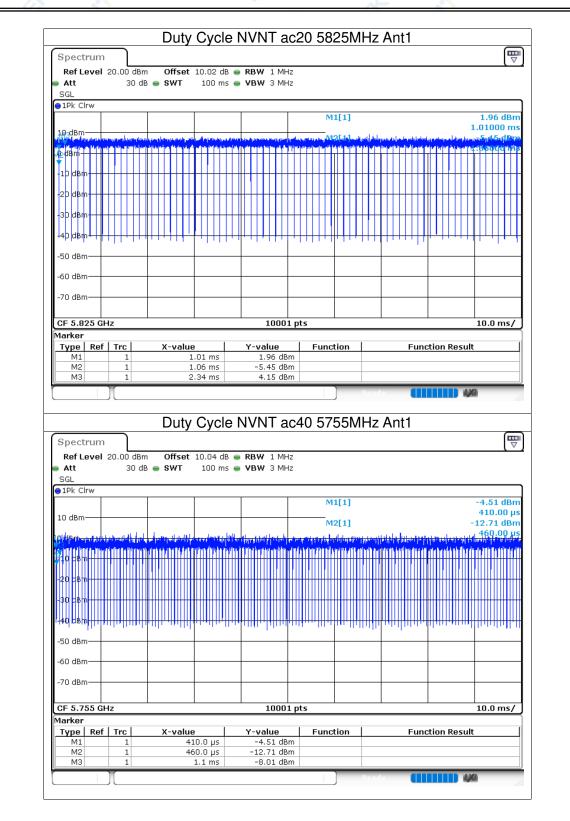
Page 44 of 74


NTEK 北测®

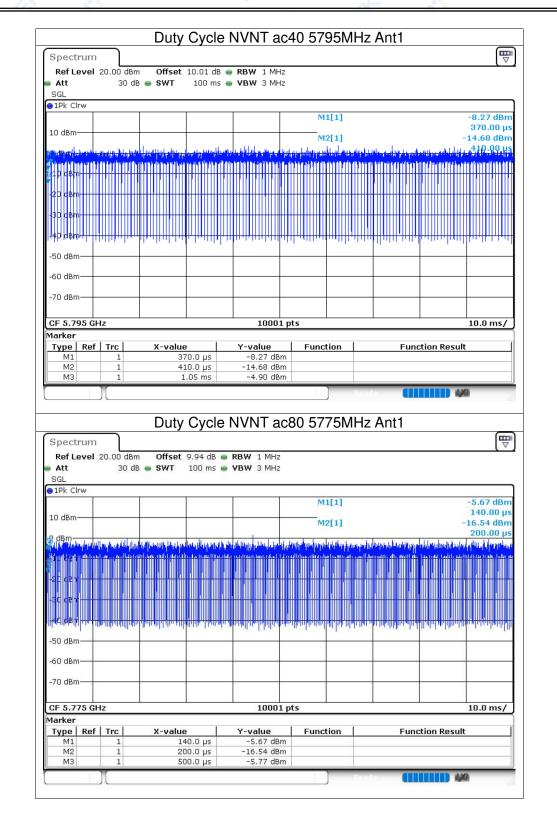
Report No.: STR221215001005E



Page 45 of 74


NTEK 北视® Page 46 of 74

NTEK 北视® Page 47 of 74



Report No.: STR221215001005E

Page 48 of 74

Report No.: STR221215001005E

Page 49 of 74

Report No.: STR221215001005E

10.2 -6DB EMISSION BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	a	5745	Ant1	15.39	0.5	Pass
NVNT	a	5785	Ant1	13.8	0.5	Pass
NVNT	a	5825	Ant1	13.53	0.5	Pass
NVNT	n20	5745	Ant1	13.86	0.5	Pass
NVNT	n20	5785	Ant1	13.83	0.5	Pass
NVNT	n20	5825	Ant1	14.19	0.5	Pass
NVNT	n40	5755	Ant1	35.16	0.5	Pass
NVNT	n40	5795	Ant1	35.16	0.5	Pass
NVNT	ac20	5745	Ant1	13.05	0.5	Pass
NVNT	ac20	5785	Ant1	17.55	0.5	Pass
NVNT	ac20	5825	Ant1	16.95	0.5	Pass
NVNT	ac40	5755	Ant1	33.84	0.5	Pass
NVNT	ac40	5795	Ant1	35.16	0.5	Pass
NVNT	ac80	5775	Ant1	75.12	0.5	Pass

Page 50 of 74

Page 51 of 74

NTEK 北视[®] Page 52 of 74

	_			IVNT a 5		,			
Spectrum									ſ
Ref Level 2	0.00 dBm	Offset 10.	02 dB 🥌	RBW 100 kH	z				
Att	30 dB	SWT 75	5.9 µs 👄	VBW 300 kH	z Mode Auto	D FF T			
SGL Count 10	0/100								
1Pk Max									
					M1[1]			E C	1.69 dB 237410 G
10 dBm					M2[1]			0.6	-4.31 dB
0.10		140		M1			-	5.8	181000 G
0 dBm		murtahow	1 brande	matranting	untrutioner	marchine and			
-10 dBm		purs-o-		l V	100 C 100 C		winning		
							L.		
-20 dBm		N		+ +			34	ρ.	
179 A19 A19 A19 A19	Anna	-						"Musque	nin Aria
Wange and and have	• •								NINOMOUL
-40 dBm									
an 10									
-50 dBm									
-60 dBm									
-70 dBm							-		
CF 5.825 GHz	2			1001	pts			Spa	in 30.0 MH
larker					2				
Type Ref		X-value		Y-value	Function		Func	tion Resu	ılt
M1 M2	1	5.823741 5.8181		1.69 dBn -4.31 dBn					
M3	1	5.83163							
C n a atmum				-4.25 dBn	5745MH	Profest z Ant1	a		M F
Spectrum						Pradv z Ant1	a		<u>مر</u>
Ref Level 2		EB Offset 10.3	₩ N\ 22 dB ●	/NT n20 RBW 100 kH	5745MH2	z Ant1)XX) [[
Ref Level 2 Att	20 dB	EB Offset 10.3	₩ N\ 22 dB ●	/NT n20	5745MH2	carefordad.			ж [
Ref Level 20 Att SGL Count 10	20 dB	EB Offset 10.3	₩ N\ 22 dB ●	/NT n20 RBW 100 kH	5745MH2	carefordad.			жі Г
Ref Level 2 Att SGL Count 10	20 dB	EB Offset 10.3	₩ N\ 22 dB ●	/NT n20 RBW 100 kH	5745MH2 z z Mode Auto	carefordad.			
Ref Level 24 Att SGL Count 10 1Pk Max	20 dB	EB Offset 10.3	₩ N\ 22 dB ●	/NT n20 RBW 100 kH	5745MH2	carefordad.		5.7	0.63 dB
Ref Level 24 Att SGL Count 10 1Pk Max	20 dB	EB Offset 10.3	₩ N\ 22 dB ●	/NT n20 RBW 100 kH VBW 300 kH	5745MH2 z z Mode Auto	carefordad.		5.7	0.63 dB
Ref Level 2 Att	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	Ma		0.63 dB 7437410 GI
Ref Level 24 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	M3 Any Man .		0.63 dB 7437410 GI -3.81 dB
Ref Level 24 Att SGL Count 10 1Pk Max 10 dBm	20 dB	EB Offset 10.3	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	5745MH2 ² Mode Auto M1[1]) FF T	MS		0.63 dB 7437410 GI -3.81 dB
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm- -10 dBm-	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	MS	5.7	0.63 dB /437410 GI -3.81 dB /386700 GI
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm- -10 dBm-	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	M3	5.7	0.63 dB /437410 GI -3.81 dB /386700 GI
Ref Level 20 Att SGL Count 10 SGL Count 10 10 ID dBm 0 dBm -10 dBm	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	Ms	5.7	0.63 dB /437410 GI -3.81 dB /386700 GI
Ref Level 21 Att SGL Count 10 1Pk Max 10 10 10 dBm	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	Ma		0.63 dB /437410 GI -3.81 dB /386700 GI
Ref Level 21 Att SGL Count 10 1Pk Max 10 10 10 dBm	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	MS	5.7	0.63 dB /437410 GI -3.81 dB /386700 GI
Ref Level 20 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	M3	5.7	0.63 dB /437410 GI -3.81 dB /386700 GI
Ref Level 20 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	MS	5.7	0.63 dB /437410 GI -3.81 dB /386700 GI
Ref Level 2/ Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm -39 dBm vv/v/v -40 dBm -50 dBm	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	M3	5.7	0.63 dB /437410 GI -3.81 dB /386700 GI
Ref Level 20 Att SGL Count 10 SGL Count 10 10 ID dBm 0 0 -10 dBm -0 0 -20 dBm -0 -0 -39 dBm -0 -0 -60 dBm -0 -0	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	M3	5.7	0.63 dB /437410 GI -3.81 dB /386700 GI
Ref Level 20 Att SGL Count 10 SGL Count 10 10 ID dBm 0 0 -10 dBm -0 0 -20 dBm -0 -0 -39 dBm -0 -0 -60 dBm -0 -0	20 dB	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	2 2 Mode Auto M1[1] M2[1]) FF T	Ma	5.7	0.63 dB /437410 GI -3.81 dB /386700 GI
Ref Level 20 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm	20 dB 00/1000	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●		5745MH: ² ² ² ² ² ³ ⁴ ¹ ¹ ¹ ¹ ¹ ¹ ² ² ² ² ³ ⁴ ¹) FF T	Ma	5.7	0.63 dB -3.81 dB 386700 G
Ref Level 20 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm	20 dB 00/1000	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20 RBW 100 kH VBW 300 kH	5745MH: ² ² ² ² ² ³ ⁴ ¹ ¹ ¹ ¹ ¹ ¹ ² ² ² ² ³ ⁴ ¹) FF T	MS	5.7	0.63 dB /437410 GI -3.81 dB /386700 GI
Ref Level 20 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	20 dB 00/1000	EB Offset 10 SWT 75	₩ N\ 22 dB ● 3.9 µs ●	/NT n20	5745MH: ^z ^z Mode Auto M1[1] M2[1] M2[1] M2[1] M2[1]) FF T		5.7 MMMM Spa	0.63 dB -3.81 dB 386700 GI
Ref Level 2d Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20 dB 00/1000	EB Offset 10 SWT 75	W N\ 22 dB • 5.9 μs • Μωνολίο	/NT n20 RBW 100 kH VBW 300 kH M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	5745MH: ² ² ² ² ² ^{Mode Auto ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹}) FF T		5.7	0.63 dB -3.81 dB 386700 GI
Ref Level 20 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	20 dB 00/1000	EB Offset 10 SWT 75	W N 22 dB • 5.9 μs • ΜΜΜΜΜ	/NT n20	5745MH; 2 Mode Auto M1[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1]) FF T		5.7 MMMM Spa	0.63 dB -3.81 dB 386700 GI
Ref Level 20 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -60 dBm -70 dBm -60 dBm -70 dBm	20 dB 00/1000	EB Offset 10.: SWT 75 	W N\ 22 dB • 5.9 µs • Млими GHz GHz GHz	/NT n20 RBW 100 kH VBW 300 kH M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	5745MH: z Mode Auto M1[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1]) FF T		5.7 MMMM Spa	0.63 dB -3.81 dB 386700 GI

NTEK 北视[®] Page 53 of 74

Report No.: STR221215001005E

Spectrum)		1 1120 0	785MHz			ſ
Ref Level 20.0		94 dB 🥌 RBV		1.1111 (1.111 (1.111))	5.258739		
SGL Count 100/1		i.9 μs 💩 VBV	V 300 kHz	Mode Auto F	FT		
91Pk Max	00						
TEN MIGA		- T		M1[1]			-0.13 d
				mit[1]			5.7837110 0
10 dBm				M2[1]			-3.99 di
0 dBm	M2		M1				5.7786700 0
o dom		when haven	meeting poor	Marthum	Mina M	3	
-10 dBm	Manyaman	and we have a	W		and amanardy	many	
			- P				
-20 dBm	<u>_</u>					7	
-30 dBm. 1	1 contractions					Nov.	mannam
Manna	Č.						in allandar
-40 dBm							(()
					1		
-50 dBm							
<0.40m							
-60 dBm							
-70 dBm							
CF 5.785 GHz			1001 pts				Span 30.0 Mł
Marker			1001 hts	•		2	ipan au.u Mi
Type Ref Tro	X-value	1 v	-value	Function	1	Function Re	scult
	1 5.783711		-0.13 dBm	Function		Function Re	suit
	1 5.77867		-3.99 dBm				
M3	1 5.7925	5 GHz	-5.90 dBm				
	EE	3W NVN	T n20 5	825MHz	Ant1		
Spectrum	EE	3W NVN	T n20 5	825MHz	Ant1		ſ
Spectrum				825MHz	Ant1		(
Ref Level 20.0	0 dBm Offset 10	.02 dB 🖷 RB	W 100 kHz	21-51 AK 20 AK 0			(
Ref Level 20.0	0 dBm Offset 10 20 dB SWT 7		W 100 kHz	21-51 AK 20 AK 0			(
Ref Level 20.00	0 dBm Offset 10 20 dB SWT 7	.02 dB 🖷 RB	W 100 kHz	21-51 AK 20 AK 0			(
Ref Level 20.00 Att SGL Count 1000/	0 dBm Offset 10 20 dB SWT 7	.02 dB 🖷 RB	W 100 kHz	21-51 AK 20 AK 0			
Ref Level 20.00 Att SGL Count 1000/ 1Pk Max	0 dBm Offset 10 20 dB SWT 7	.02 dB 🖷 RB	W 100 kHz	Mode Auto M1[1]			1.62 d 5.8237410 C
Ref Level 20.00 Att SGL Count 1000/	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT		1.62 di 5.8237410 d -4.33 di
Ref Level 20.00 Att SGL Count 1000/ 1Pk Max	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT		1.62 di 5.8237410 d -4.33 di
Ref Level 20.00 Att SGL Count 1000/ IPk Max 10 dBm 0 dBm	0 dBm Offset 10 20 dB SWT 7	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1]	FFT		1.62 d 5.8237410 C -4.33 d
Ref Level 20.00 Att SGL Count 1000/ 1Pk Max 10 dBm	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT		1.62 d 5.8237410 C -4.33 d
Ref Level 20.00 Att SGL Count 1000/ SGL Count 1000/ 1000/ IPk Max 10 dBm 0 dBm -10 dBm -10 dBm -10 dBm	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT	3 Month	1.62 dl 5.8237410 G -4.33 dl 5.8183400 G
Ref Level 20.00 Att SGL Count 1000/ SGL Count 1000/ 1000/ IPk Max 10 dBm 0 dBm -10 dBm -10 dBm -10 dBm	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT	3 Month	1.62 dl 5.8237410 G -4.33 dl 5.8183400 G
Ref Level 20.00 Att SGL Count 1000/ SGL Count 1000/ 1000/ IPk Max 10 dBm 0 dBm -10 dBm -10 dBm -10 dBm	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT	3 Month	1.62 dl 5.8237410 G -4.33 dl 5.8183400 G
Ref Level 20.00 Att SGL Count 1000/ SGL Count 1000/ 1000/ IPk Max 10 dBm - 0 dBm - - -10 dBm - - -20 dBm - -	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT	3 Month	1.62 dl 5.8237410 G -4.33 dl 5.8183400 G
Ref Level 20.00 Att SGL Count 1000/ SGL Count 1000/ 1000/ IPk Max 10 dBm 0 dBm -10 dBm -10 dBm -10 dBm	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT	3 Month	1.62 dl 5.8237410 G -4.33 dl 5.8183400 G
Ref Level 20.00 Att SGL Count 1000/ IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT	3 Month	1.62 d 5.8237410 (-4.33 d 5.8183400 (
Ref Level 20.00 Att SGL Count 1000/ SGL Count 1000/ 1000/ IPk Max 10 dBm - 0 dBm - - -10 dBm - - -20 dBm - -	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT	3 Month	1.62 d 5.8237410 (-4.33 d 5.8183400 (
Ref Level 20.00 Att SGL Count 1000/ IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT	3 Month	1.62 dl 5.8237410 G -4.33 dl 5.8183400 G
Ref Level 20.00 Att SGL Count 1000/ SGL Count 1000/ 1000/ IPk Max 10 dBm -00 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT	3 Month	1.62 d 5.8237410 (-4.33 d 5.8183400 (
Ref Level 20.00 Att SGL Count 1000/ SGL Count 1000/ 1000/ IPk Max 10 dBm -00 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT	3 Month	1.62 d 5.8237410 (-4.33 d 5.8183400 (
Ref Level 20.00 Att SGL Count 1000/ IPk Max 10 dBm -10 dBm -20 dBm -40 dBm -50 dBm	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1]	FFT	3 Month	1.62 d 5.8237410 (-4.33 d 5.8183400 (
Ref Level 20.00 Att SGL Count 1000/ IPk Max 10 dBm -10 dBm -20 dBm -40 dBm -50 dBm	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1] Mynthymlymlym 	FFT	3 Marina () () () () () () () () () ()	1.62 d 5.8237410 (-4.33 d 5.8183400 (
Ref Level 20.00 Att SGL Count 1000/ IPk Max 10 10 dBm 10 dBm - - -10 dBm - - -20 dBm - - -40 dBm - - -50 dBm - - -70 dBm - -	0 dBm Offset 10 20 dB SWT 7 1000	.02 dB 👄 RB 5.9 µs 👄 VB	W 100 kHz W 300 kHz	Mode Auto M1[1] M2[1] Mynthymlymlym 	FFT	3 Marina () () () () () () () () () ()	1.62 d 5.8237410 (-4.33 d 5.8183400 (
Ref Level 20.00 Att SGL Count 1000/ IPk Max 10 dBm -10 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	C dBm Offset 10 20 dB SWT 7 1000	.02 dB • RB 5.9 μs • VB	W 100 kH2 W 300 kH2	Mode Auto M1[1] M2[1] Mynthymlymlym 	FFT	3 Marina () () () () () () () () () ()	1.62 d 5.8237410 с -4.33 d 5.8183400 с -////////////////////////////////////
Ref Level 20.01 Att SGL Count 1000/ SGL Count 1000/ IPk Max 10 IPk Max 10 0 dBm	2 dBm Offset 10 20 dB SWT 7 1000	.02 dB • RB 5.9 μs • VB	W 100 kH2 W 300 kH2 M1 M1 1001 pts 1.62 dBm	Mode Auto M1[1] M2[1] M2[1]	FFT	2 Marine 1 Marine 1 M	1.62 dl 5.8237410 G -4.33 dl 5.8183400 G
Ref Level 20.00 Att SGL Count 1000/ SGL Count 1000/ IPk Max 10 10 dBm - -10 dBm - -20 dBm - -40 dBm - -50 dBm - -60 dBm - -70 dBm -	C dBm Offset 10 0 dBm Offset 10 1000 MB MB MB MB MB MB MB MB MB MB	.02 dB	W 100 kH2 W 300 kH2 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	Mode Auto M1[1] M2[1] M2[1]	FFT	2 Marine 1 Marine 1 M	1.62 d 5.8237410 с -4.33 d 5.8183400 с -////////////////////////////////////
Ref Level 20.00 Att SGL Count 1000/ SGL Count 1000/ IPk Max 10 10 dBm - -10 dBm - -20 dBm - -40 dBm - -50 dBm - -60 dBm - -70 dBm -	2 dBm Offset 10 20 dB SWT 7 1000	.02 dB	W 100 kH2 W 300 kH2 M1 M1 1001 pts 1.62 dBm	Mode Auto M1[1] M2[1] M2[1]	FFT	2 Marine 1 Marine 1 M	

*

NTEK 北视[®] Page 54 of 74

	_			VNT n40	1 37 33		AIILI			_
Spectrum	٦									P.
Ref Level 20.	00 dBm	Offset 10).04 dB 🖷	RBW 100 k	Hz					
Att	20 dB			VBW 300 k		e Auto F	FT			
SGL Count 1000)/1000	5450455478 54595					08.000820			
1Pk Max					-					
					ſ	41[1]				-2.36 dB
10 dBm									5.	7524830 GH
				1.1.1	1	42[1]			-	-7.57 dB
0 dBm	M2	0	11.7	M1	01/20	1			SIL	7374200 GH
	T	LLLA	Inmortente	Autophaling	presedbashint	molecolour	Industry	A. L . T		
-10 dBm	Jul .	Witch the country						and all all and a second	1	
-20 dBm					Y .					
	8								he	
-30 dBm	INT					-	-		Mun Ma	moundary
well Whether May	2 ¹⁴								JV. 44	Mannerundel
-40 dBm							2			
-50 dBm										
-60 dBm										
santon na ann tora										
-70 dBm		-						1		1 0
CF 5.755 GHz				1001	1 pts				Spa	an 60.0 MHz
larker										
Type Ref Ti		X-value		Y-value		ction		Fund	tion Resu	ult
M1 M2	1	5.75248		-2.36 dE -7.57 dE						
M2 M3	1	5.7374		-7.57 dE						
					200					
		EE	3W N	VNT n4() MHz .	erady Ant1			UNI C
Spectrum	 ר	EE	BM N,	VNT n4() MHz .	Prody Ant1			
Spectrum Ref Level 20.	00 dBm			VNT n4() 5795) MHz .	Ant1			<u>الم</u>
Ref Level 20. Att	20 dB	Offset 10).01 dB 🥌) 5795 _{Hz}					ya (Ę
Ref Level 20. Att SGL Count 1000	20 dB	Offset 10).01 dB 🥌	RBW 100 k) 5795 _{Hz}					UN R
Ref Level 20. Att SGL Count 1000	20 dB	Offset 10).01 dB 🥌	RBW 100 k) 5795 Hz Hz Mode	e Auto F		a		
Ref Level 20. Att SGL Count 1000	20 dB	Offset 10).01 dB 🥌	RBW 100 k) 5795 Hz Hz Mode			a		-1.99 dB
Ref Level 20.1 Att SGL Count 1000 1Pk Max	20 dB	Offset 10).01 dB 🥌	RBW 100 k) 5795 Hz Mode	e Auto F M1[1]			5.	-1.99 dB 7924830 GH
Ref Level 20.1 Att SGL Count 1000 1Pk Max 10 dBm	20 dB	Offset 10).01 dB 🥌	RBW 100 k) 5795 Hz Mode	e Auto F				-1.99 dB 7924830 GF -7.54 dB
Ref Level 20.1 Att SGL Count 1000 1Pk Max	20 dB 0/1000	Offset 10 SWT 13	0.01 dB e 32.7 µs e	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	m	5.	-1.99 dB 7924830 GF -7.54 dB
Ref Level 20.0 Att SGL Count 1000 1Pk Max 10 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB e 32.7 µs e	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	Minimum June June June June	5.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF
Ref Level 20.0 Att SGL Count 1000 1Pk Max 10 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB e 32.7 µs e	RBW 100 k) 5795	9 Auto F M1[1] M2[1]	FT	M.	5.	-1.99 dB 7924830 GF -7.54 dB
Ref Level 20.1 Att SGL Count 1000 1Pk Max 10 dBm 0 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB e 32.7 µs e	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	Mit and a start of the start of	5.	-1.99 dB 7924830 GF -7.54 dB
Ref Level 20.1 Att SGL Count 1000 1Pk Max 10 dBm -10 dBm -20 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB e 32.7 µs e	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	Min charlos de	5.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF
Ref Level 20.1 Att SGL Count 1000 IPk Max 10 dBm -10 dBm -20 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB e 32.7 µs e	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	M.	5.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF
Ref Level 20,7 Att SGL Count 1000 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB e 32.7 µs e	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	Ma In cloud of	5.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF
Ref Level 20,7 Att SGL Count 1000 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB 🖷	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	Markey (5.	-1.99 dB 7924830 GF -7.54 dB
Ref Level 20.1 Att SGL Count 1000 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB 🖷	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	M	5.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF
Ref Level 20.1 Att SGL Count 1000 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB 🖷	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	Mi Jundania Martina	5.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF
Ref Level 20.0 Att SGL Count 1000 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB 🖷	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	Manufacture and a star	5.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF
Ref Level 20.7 Att SGL Count 1000 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB 🖷	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	M.	5.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF
Ref Level 20.7 Att SGL Count 1000 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB 🖷	RBW 100 k VBW 300 k) 5795	9 Auto F M1[1] M2[1]	FT	Marchard Marchard	5.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF
Ref Level 20.1 Att SGL Count 1000 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB 🖷	M1	D 5795	9 Auto F M1[1] M2[1]	FT	Ma In charles for	5.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF
Ref Level 20.7 Att SGL Count 1000 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	20 dB 0/1000	Offset 10 SWT 13	0.01 dB 🖷	M1) 5795	9 Auto F M1[1] M2[1]	FT	Min chaulter for	5.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF
Ref Level 20.1 Att SGL Count 1000 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm	20 dB 1/1000	Offset 10 SWT 13	0.01 dB 32.7 μs	RBW 100 k VBW 300 k M1	D 5795	 Auto F ท1[1] ท2[1] พป้องในปล 	FT		S.	-1.99 dB. 7924830 GF -7.54 dB 7774200 GF ଜ୍ଞାଦ୍ୟୁଦ୍ଦମ୍ୟୁ କୁନ୍ଦି
Att SGL Count 1000 SGL Count 1000 IPk Max 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -70 dBm	20 dB 1/1000	Offset 10 SWT 13	0.01 dB 32.7 μs 	RBW 100 k VBW 300 k	D 5795	9 Auto F M1[1] M2[1]	FT		5.	-1.99 dB. 7924830 GF -7.54 dB 7774200 GF ଜ୍ଞାଦ୍ୟୁଦ୍ଦମ୍ୟୁ କୁନ୍ଦି
Ref Level 20.7 Att SGL Count 1000 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -70 dBm	20 dB 1/1000	Offset 10 SWT 13	3.01 dB 32.7 μs	RBW 100 k VBW 300 k M1 Multiplication 1001 Y-value -1.99 de	D 5795	 Auto F ท1[1] ท2[1] พป้องในปล 	FT		S.	-1.99 dB. 7924830 GF -7.54 dB 7774200 GF ଜ୍ଞାଦ୍ୟୁଦ୍ଦମ୍ୟୁ କୁନ୍ଦି
Ref Level 20.7 Att SGL Count 1000 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	20 dB 1/1000	Offset 10 SWT 13	2.01 dB 32.7 μs	RBW 100 k VBW 300 k M1 Multiple for the former 100 for the former 100 for the former -1.99 dt -1.99 dt -7.54 dt	D 5795	 Auto F ท1[1] ท2[1] พป้องในปล 	FT		S.	-1.99 dB. 7924830 GF -7.54 dB 7774200 GF ଜ୍ଞାଦ୍ୟୁଦ୍ଦମ୍ୟୁ କୁନ୍ଦି
Ref Level 20.7 Att SGL Count 1000 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -70 dBm	20 dB 1/1000	Offset 10 SWT 13	2.01 dB 32.7 μs	RBW 100 k VBW 300 k M1 Multiplication 1001 Y-value -1.99 de	D 5795	 Auto F ท1[1] ท2[1] พป้องในปล 	FT	Func	S.	-1.99 dB 7924830 GF -7.54 dB 7774200 GF

Report No.: STR221215001005E

Spectrum								(
Ref Level 20.00			RBW 100 kH					
Att SGL Count 100/1	30 dB SWT 00	75.9 µs 🥌	VBW 300 kH	IZ Mode	Auto FFT			
1Pk Max		~						
				M:	1[1]			-0.29 di
10 dBm				M	2[1]		5.	7437110 C -6.15 di
0 dBm			M1				5.	7384600 0
U UBIN	M2	hundrude	mbronelling,	montering	manphaga	M3		
-10 dBm	paprosition	Purples of a second	W.		of the other	www.mulau	1	
-20 dBm			ĭ					
	S. C.						Margare	
-30 dBm	V ^a						No	Munh
-40 dBm								V V1
-50 dBm								
-60 dBm								
-70 dBm								
-yo ubin								
CF 5.745 GHz			1001	nts			Sn	an 30.0 MF
larker								
		L51 GHz	-6.26 dBn	n				
			-0.20 UBI	n) P.e	erte 🛄		4)61
						ndr 🔳		ANA
	E		'NT ac20) ИНz А	.nt1		4,40
Spectrum	E) MHz A	ntr 💶		1)KI (
Ref Level 20.00	dBm Offset	BW NV 9.94 dB	/NT ac20) 57851		ntr		496) (
Ref Level 20.00) dBm Offset 9 30 dB SWT	BW NV 9.94 dB	'NT ac20) 57851	MHZ A	ntr		6)KI)
Ref Level 20.00 Att SGL Count 100/1) dBm Offset 9 30 dB SWT	BW NV 9.94 dB	/NT ac20) 57851		nt1		6,859
Ref Level 20.00) dBm Offset 9 30 dB SWT	BW NV 9.94 dB	/NT ac20) 5785N Mode 4		nt1		-3.48 di
Ref Level 20.00 Att SGL Count 100/1) dBm Offset 9 30 dB SWT	BW NV 9.94 dB	INT ac20) 5785N Mode 4	uto FFT	nt1	5.	-3.48 di 7859890 di
Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 dBm 10 dBm) dBm Offset 9 30 dB SWT	BW NV 9.94 dB	INT ac20) 5785N Mode 4	uto FFT	nt1		-3.48 di
Ref Level 20.00 Att SGL Count 100/1 1Pk Max	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	(NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M:	uto FFT 1[1] 2[1]			-3.48 di 7859890 di -8.66 di
Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 dBm 10 dBm	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	/NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M:	uto FFT 1[1] 2[1]			-3.48 di 7859890 di -8.66 di
Ref Level 20.00 Att SGL Count 100/1 JPk Max 10 dBm 0 dBm	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	(NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M:	uto FFT 1[1] 2[1]			-3.48 di 7859890 di -8.66 di
Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 dBm 10 dBm	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	(NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M:	uto FFT 1[1] 2[1]		5.	-3.48 di 7859890 G -8.66 di 7762100 G
Ref Level 20.00 Att SGL Count 100/1 IPk Max 10 dBm 10 dBm	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	(NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M:	uto FFT 1[1] 2[1]		5.	-3.48 di 7859890 G -8.66 di 7762100 G
Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 dBm 10 dBm	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	(NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M:	uto FFT 1[1] 2[1]		5.	-3.48 di 7859890 di -8.66 di
Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 dBm 10 dBm 10 dBm	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	(NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M:	uto FFT 1[1] 2[1]		5.	-3.48 di 7859890 G -8.66 di 7762100 G
Ref Level 20.00 Att SGL Count 100/1 SGL Count 100/1 1Pk Max 1D dBm 0 0 dBm	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	(NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M:	uto FFT 1[1] 2[1]		5.	-3.48 di 7859890 G -8.66 di 7762100 G
Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 dBm 10 dBm 10 dBm	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	(NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M:	uto FFT 1[1] 2[1]		5.	-3.48 di 7859890 G -8.66 di 7762100 G
Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 dBm 10 dBm	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	(NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M:	uto FFT 1[1] 2[1]		5.	-3.48 di 7859890 G -8.66 di 7762100 G
Ref Level 20.00 Att SGL Count 100/1 SGL Count 100/1 10/1 IPk Max 10 0 dBm	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	(NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M:	uto FFT 1[1] 2[1]		5.	-3.48 di 7859890 G -8.66 di 7762100 G
Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 dBm 10 dBm	0 dBm Offset 30 dB SWT 00	BW NV 9.94 dB ● 75.9 µs ●	(NT ac20 RBW 100 kHz VBW 300 kHz) 5785N Mode 4 M: M: M:	uto FFT 1[1] 2[1]		5.	-3.48 di 7859890 G -8.66 di 7762100 G
Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 10 10 dBm - - -10 dBm - - -20 dBm - - -30 dBm - - -60 dBm - - -70 dBm - - -70 dBm - - -70 dBm - - -77 dBm - - -70 dBm - - -77 dBm - - -70 dBm - -	D dBm Offset 1 30 dB SWT D0 M2 M2 M2 M2 M2 M2 M2 M3 M2 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	BW NV 9.94 dB • 75.9 μs •	/NT ac20 RBW 100 kHz yBW 300 kHz) 5785N Mode 4 M: M: M: M: M: M: M: M: M: M: M: M: M:	Auto FFT [[1] 2[1] สมหารงกำไห	Marina A. As A	5.	-3.48 dl 7859890 G -8.66 dl 7762100 G
Ref Level 20.00 Att SGL Count 100/1 SGL Count 100/1 10 IPk Max	D dBm Offset 1 30 dB SWT D0 M2 July Angenetics Angeneti	BW NV 9.94 dB • 75.9 µs •	/NT ac20 RBW 100 kHz VBW 300 kHz www.www.www.www. www.www.www.www. www.www.) 5785N Mode 4 Mi Mi Mi mm ^M /MANAM	Auto FFT [[1] 2[1] สมหารงกำไห	Marina A. As A	5.	-3.48 dl 7859890 G -8.66 dl 7762100 G
Ref Level 20.00 Att SGL Count 100/1 1Pk Max	M2 Control Control Co	BW NV 9.94 dB • 75.9 μs •	/NT ac20 RBW 100 kHz yBW 300 kHz) 5785N Mode 4 M: M: M: M: M: M: M: M: M: M: M: M: M:	Auto FFT [[1] 2[1] สมหารงกำไห	Marina A. As A	5.	-3.48 dl 7859890 G -8.66 dl 7762100 G

Page 55 of 74

NTEK 北视[®] Page 56 of 74

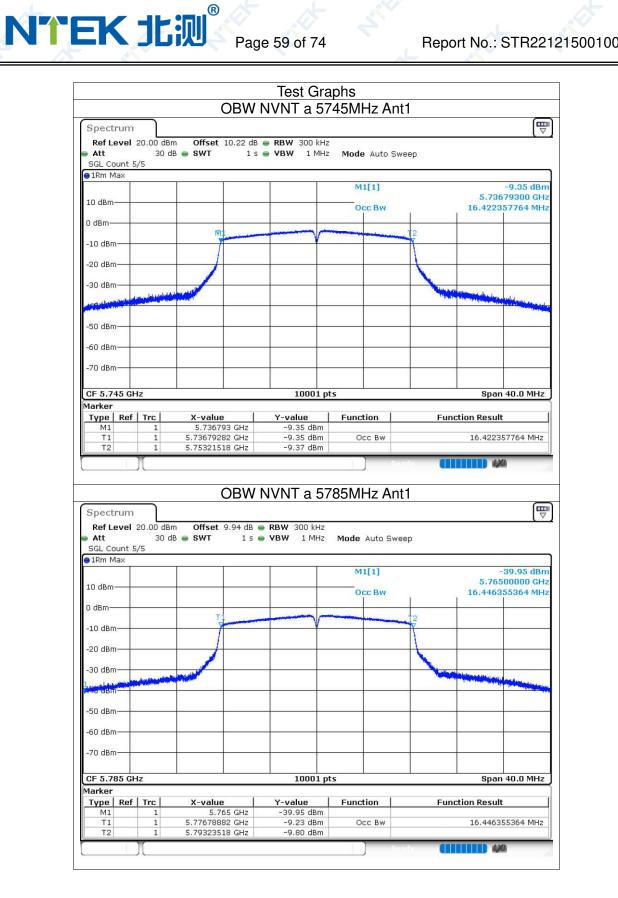
Report No.: STR221215001005E

	_	EE		/NT ac2	0 5825	IVIHZ	Anti			
Spectrum										
Ref Level 20			Sector Merch	RBW 100 k		25 N 65				
Att	30 dB	SWT	75.9 µs 🥌	VBW 300 k	Hz Mode	e Auto P	FFT			
SGL Count 100 1Pk Max	J/100									
	1	1		1	N	41[1]				-1.44 (
10 dBm									5	.8237410
10 dBm					N	42[1]				-7.19
0 dBm		110		M1		1			5	.8168100
		M2	unhappenho	gunnanter	nonman	motorwate	about the some	MIMINT	211	
-10 dBm		Mail a Cha			V			AMMAN A		
-20 dBm									n	
20 dbiii	N.								human	
-30 dBm	N		-						Marken	males
MMMMM	n.								101000	and and
-40 dBm							2	2		2
-50 dBm										
						1				
-60 dBm						-				
70 40 5						1				
-70 dBm										0
05 5 065 011				10-1						
CF 5.825 GHz				100:	L pts				Sp	an 30.0 M
1arker Type Ref ⁻	Teo I	X-value	1	Y-value	L Fue	ction	1	Fund	tion Res	
M1	1	5.82374		-1.44 dE		CLION		Func	CION KES	un
M2	1	5.8168		-7.19 de						
M3	1	5.8337	6 GHz	-7.44 dE	AND A REAL PROPERTY OF A					
				-7.44 ut	3m					
				-7,44 U	3m		Pendy			430
Spectrum		EE	3W NV	/NT ac4) MHz	Ant1			6,49
Spectrum Ref Level 20		Offset 1	0.04 dB 🥃	/NT ac4	0 5755 _{Hz}	10 AV 03		a		
Ref Level 20 Att	30 dB	Offset 1	0.04 dB 🥃	/NT ac4	0 5755 _{Hz}	MHz Auto F				lijki
Ref Level 20 Att SGL Count 100	30 dB	Offset 1	0.04 dB 🥃	/NT ac4	0 5755 _{Hz}	10 AV 03				1040
Ref Level 20 Att	30 dB	Offset 1	0.04 dB 🥃	/NT ac4	0 5755 Hz Mode	e Auto F				-3.66.0
Ref Level 20 Att SGL Count 100 1Pk Max	30 dB	Offset 1	0.04 dB 🥃	/NT ac4	0 5755 Hz Mode	10 AV 03			5	-3.66 (.7524830
Ref Level 20 Att SGL Count 100	30 dB	Offset 1	0.04 dB 🥃	/NT ac4	0 5755	e Auto F				.7524830 -9.63 (
Ref Level 20 Att SGL Count 100 1Pk Max	30 dB	Offset 1	0.04 dB 🥃	/NT ac4	0 5755	e Auto F 41[1]				.7524830
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT	M		.7524830 -9.63 (
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🥃	/NT ac4 RBW 100 k VBW 300 k	0 5755	a Auto F 41[1] 42[1]	FT	Ma		.7524830 -9.63 (
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 10 0 dBm -10 dBm -10	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT			.7524830 -9.63 (
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT			.7524830 -9.63 (
Ref Level 20 Att 30 SGL Count 100 IPk Max 100 0 dBm 100 -100 dBm -200 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT		5	.7524830 -9.63 (.7386800
Ref Level 20 Att 30 SGL Count 100 IPk Max 100 00 dBm 100 -100 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT		5	.7524830 -9.63 (.7386800
Ref Level 20 Att 30 SGL Count 100 IPk Max 100 00 dBm 100 -100 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT		5	.7524830 -9.63 (
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -20 dBm -30 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT		5	.7524830 -9.63 (.7386800
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -20 dBm -30 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT		5	.7524830 -9.63 (.7386800
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 10 0 dBm -10 dBm -10	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT		5	.7524830 -9.63 (.7386800
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -60 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT		5	.7524830 -9.63 (.7386800
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -60 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT		5	.7524830 -9.63 (.7386800
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -60 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT		5	.7524830 -9.63 .7386800
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	30 dB 0/100	Offset 1 SWT 1	0.04 dB 🖷 32.7 µs 🖷	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT		5	.7524830 -9.63 (.7386800
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm -0 dBm -20 dBm -30 dBm -30 dBm -70 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm	30 dB 0/100	M2	0.04 dB 32.7 μs	/NT ac4	0 5755	Auto F	FT	raturant	5 Vinne Sp	.7524830 -9.63 .7386800
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB 3/100	Offset 11 SWT 1	0.04 dB 32.7 μs	/NT ac4	0 5755	a Auto F 41[1] 42[1]	FT	raturant	5	.7524830 -9.63 .7386800
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm -0 dBm -20 dBm -30 dBm -30 dBm -70 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm	30 dB 0/100	M2	0.04 dB 32.7 µs	/NT ac4	0 5755	Auto F	FT	raturant	5 Vinne Sp	.7524830 -9.63 .7386800
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB 3/100	Offset 11 SWT 1 M2 440 5.75248	0.04 dB 32.7 μs	/NT ac4	0 5755	Auto F	FT	raturant	5 Vinne Sp	.7524830 -9.63 .7386800

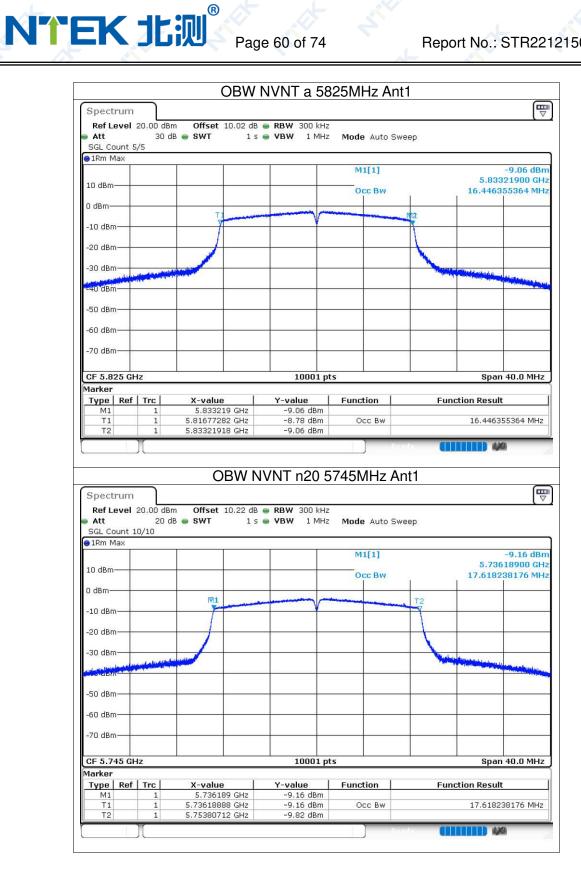
S.C.

NTEK 北视[®] Page 57 of 74

		FRM N	VNT ac40	5795M	HZ AN	[]		
Spectrum	ר							Ę
Ref Level 20.0	DO dBm Of	fset 10.01 dB	🖷 RBW 100 kH	z				
Att 🛛		ντ 132.7 μs	🕳 VBW 300 kH.	z Mode A	uto FFT			
SGL Count 100/	100							
●1Pk Max		Ĩ	- T - T		13			4.44.40
				M1[1]		5.7	-4.41 dBi 999750 GH
10 dBm				M2[1]			-8.38 dB
0 dBm				M1.	110		5.7	774200 GH
o abiii	M2	202 1200		Contract To b		M3	1	
-10 dBm	light	to In manual marked	un funder purple produce of	mountingability	monunty	the share of soil		
-20 dBm			- I - V				1	
-20 dBm				÷.	· · · · · · · · · · · · · · · · · · ·		1	
-30 dBm	- JV		-				W.	
- ABrabanter Martin Martin	Nº1						nyulath	number
-40/08/11	r							
-50 dBm								
-60 dBm								
-70 dBm								
-/U UDIII						2		0
			1001	otc			0	
CF 5.795 GHz Marker			1001	pts			spa	n 60.0 MHz
Type Ref Tr	n v	-value	Y-value	Functio		Fund	tion Resu	14
M1		5.799975 GHz	-4.41 dBm		111	Func	tion kesu	it.
M2	1	5.77742 GHz	-8.38 dBm					
M3	1	5.81258 GHz	-8.81 dBm					
110	*	ororeoo drie	0.01 001					
		EBW N	VNT ac80	5775M	Pead Hz An	1		Kî.
Spectrum	<u>ן</u>	EBW N	VNT ac80	5775M	Bood Hz Ant	1		MA T
Spectrum					Prof Hz Ant	t1		¥0
Spectrum Ref Level 20.0		fset 9,94 dB	e RBW 100 kH:	z		t1		
Ref Level 20.0	30 dB 🛛 SV	fset 9,94 dB		z		t1	4	
Ref Level 20.0 Att SGL Count 100/	30 dB 🛛 SV	fset 9,94 dB	e RBW 100 kH:	z		an t1		
Ref Level 20.0 Att SGL Count 100/	30 dB 🛛 SV	fset 9,94 dB	e RBW 100 kH:	z	uto FFT	t1		-6.16 dB
Ref Level 20.0 Att SGL Count 100/	30 dB 🛛 SV	fset 9,94 dB	e RBW 100 kH:	z Mode A M1[uto FFT 1]	u t1		-6.16 dB) 778720 GF
Ref Level 20.0 Att SGL Count 100/ 1Pk Max	30 dB 🛛 SV	fset 9,94 dB	e RBW 100 kH:	z z Mode A	uto FFT 1]	t1		-6.16 dB) 778720 GF -10.86 dB)
Ref Level 20.0 Att SGL Count 100/ 1Pk Max	30 dB 🛛 SV	fset 9,94 dB	e RBW 100 kH:	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB) 778720 GF
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0 dBm	30 dB SV 100	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB) 778720 GF -10.86 dB)
Ref Level 20.0 Att SGL Count 100/ 1Pk Max	30 dB SV 100	fset 9,94 dB	RBW 100 kH; VBW 300 kH;	z Mode A 	uto FFT 1] 1]		5.	-6.16 dB) 778720 GF -10.86 dB)
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0 dBm	30 dB SV 100	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB) 778720 GF -10.86 dB)
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	30 dB SV 100	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB) 778720 GF -10.86 dB)
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	30 dB SV 100 M2	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB/ 778720 GH -10.86 dB/ 737440 GH
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	30 dB SV 100 M2	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB) 778720 GF -10.86 dB)
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	30 dB SV 100 M2	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB/ 778720 GH -10.86 dB/ 737440 GH
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	30 dB SV 100 M2	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB/ 778720 GH -10.86 dB/ 737440 GH
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	30 dB SV 100 M2	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB/ 778720 GH -10.86 dB/ 737440 GH
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB SV 100 M2	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB/ 778720 GH -10.86 dB/ 737440 GH
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	30 dB SV 100 M2	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB/ 778720 GH -10.86 dB/ 737440 GH
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	30 dB SV 100 M2	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	z Mode A M1[uto FFT 1] 1]		5.	-6.16 dB/ 778720 GH -10.86 dB/ 737440 GH
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB SV 100 M2	ffset 9.94 dB WT 265.5 μs	RBW 100 kHz VBW 300 kHz	2 Mode A M1[M2[M1	uto FFT 1] 1]		5. M3 Mul	-6.16 dB/ 778720 GF -10.86 dB/ 737440 GF
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	30 dB SV 100 M2	ffset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	2 Mode A M1[M2[M1	uto FFT 1] 1]		5. M3 Mul	-6.16 dB/ 778720 GH -10.86 dB/ 737440 GH
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm CF 5.775 GHz Marker	30 dB SV 100 M2 M2	fset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	Z Mode A	uto FFT		5. M3 U U U U U U U U U U U U U U U U U U	-6.16 dB 778720 GH -10.86 dB 737440 GH
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	30 dB SV 100 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	fset 9.94 dB WT 265.5 μs	RBW 100 kH3 VBW 300 kH3 VBW 300 kH3	Z Mode A M1[M2[M1 M2[M1 M2[M1 M2[M1 M2[M1 M2[M2] M2[M2] M2[M2] M2[M2] M2[M2] M2[M2] M2[M2] M2] M2[M2] M2] M2[M2] M2] M2] M2] M2] M2] M2] M2]	uto FFT		5. M3 Mul	-6.16 dB 778720 GH -10.86 dB 737440 GH
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm CF 5.775 GHz Marker	30 dB SV 100 M2 M2	fset 9.94 dB WT 265.5 μs	RBW 100 kH; VBW 300 kH;	2 Mode A M1[M2[M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	uto FFT		5. M3 U U U U U U U U U U U U U U U U U U	-6.16 dB 778720 GH -10.86 dB 737440 GH
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm -0 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB SV 100 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	fset 9.94 dB WT 265.5 μs	RBW 100 kHz VBW 300 kHz VBW 300 kHz 100 kHz 1001 1001 Y-value -6.16 dBm	Z Mode A	uto FFT		5. M3 U U U U U U U U U U U U U U U U U U	-6.16 dB 778720 GH -10.86 dB 737440 GH


Report No.: STR221215001005E

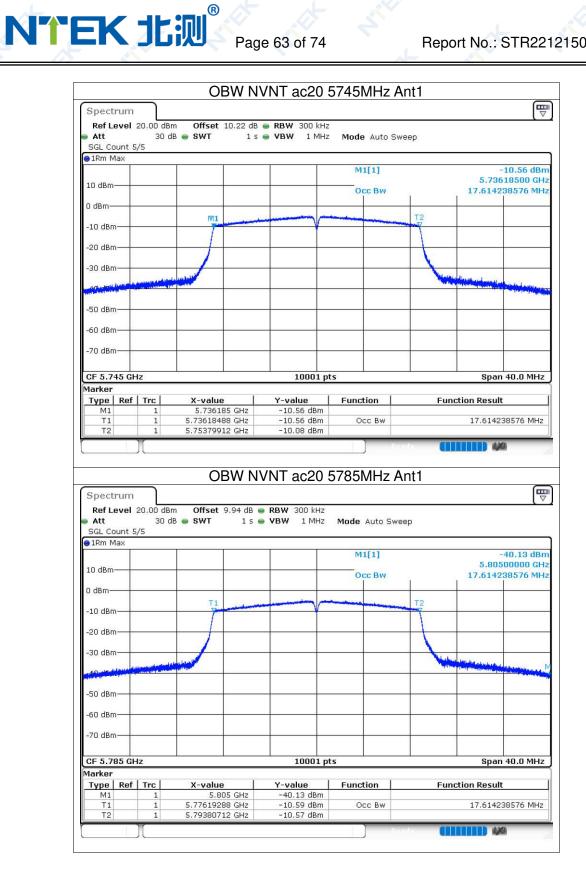
10.3 OCCUPIED CHANNEL BANDWIDTH

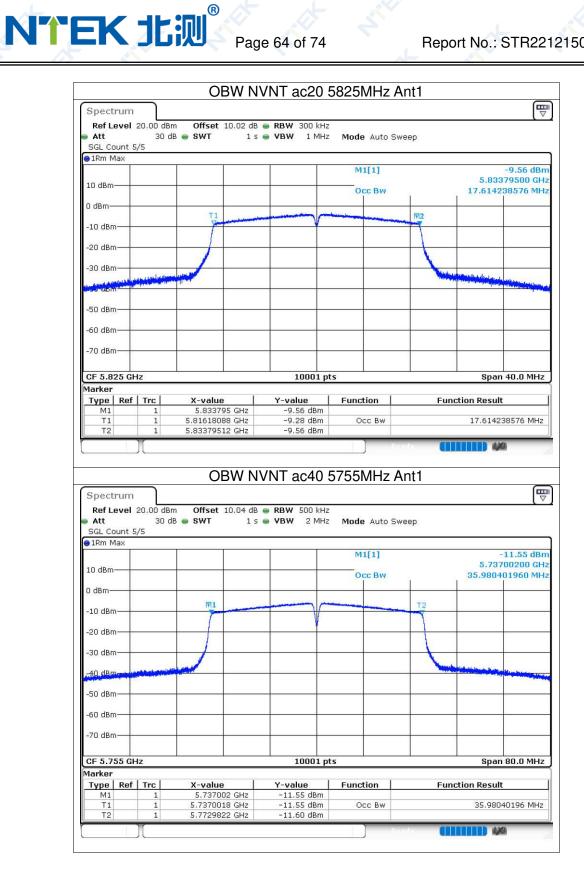

Condition	Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Verdict
NVNT	а	5745	Ant1	5745.004	16.422	Pass
NVNT	а	5785	Ant1	5785.012	16.446	Pass
NVNT	а	5825	Ant1	5824.996	16.446	Pass
NVNT	n20	5745	Ant1	5744.998	17.618	Pass
NVNT	n20	5785	Ant1	5785.008	17.63	Pass
NVNT	n20	5825	Ant1	5824.992	17.638	Pass
NVNT	n40	5755	Ant1	5754.996	36.036	Pass
NVNT	n40	5795	Ant1	5795.044	36.036	Pass
NVNT	ac20	5745	Ant1	5744.992	17.614	Pass
NVNT	ac20	5785	Ant1	5785	17.614	Pass
NVNT	ac20	5825	Ant1	5824.988	17.614	Pass
NVNT	ac40	5755	Ant1	5754.992	35.98	Pass
NVNT	ac40	5795	Ant1	5795.036	36.004	Pass
NVNT	ac80	5775	Ant1	5775.096	75.672	Pass

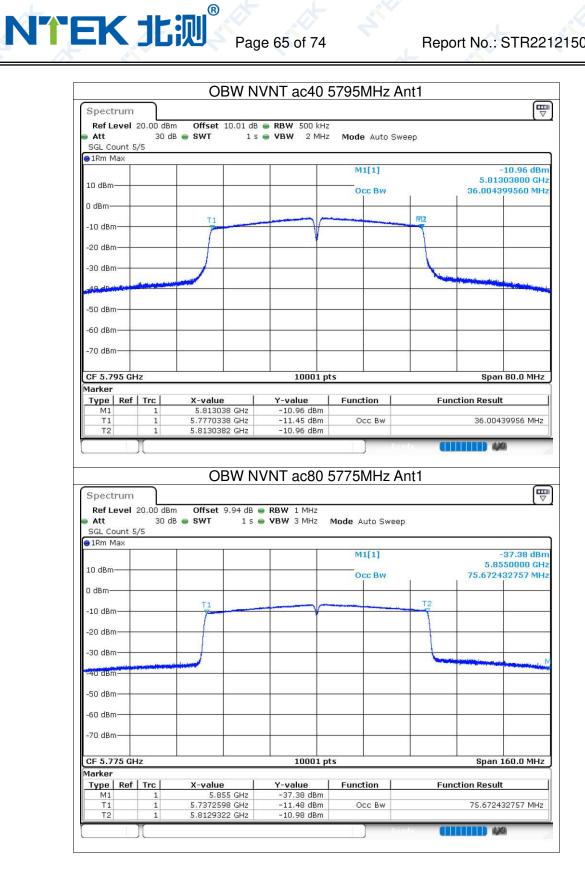
Page 58 of 74


Page 59 of 74

Page 60 of 74

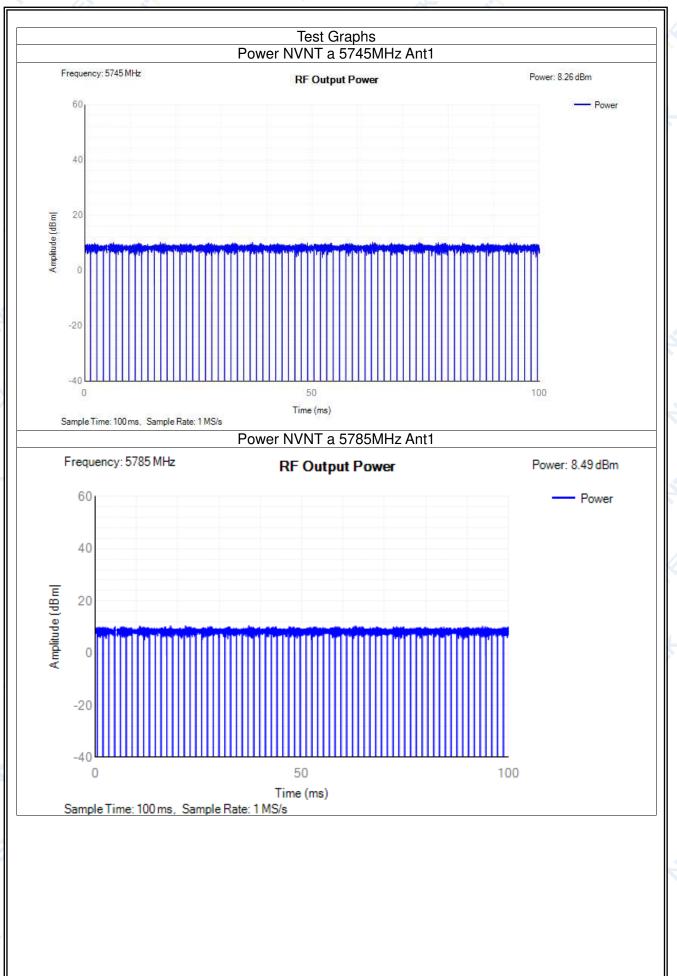

Page 61 of 74


Page 62 of 74


Page 63 of 74

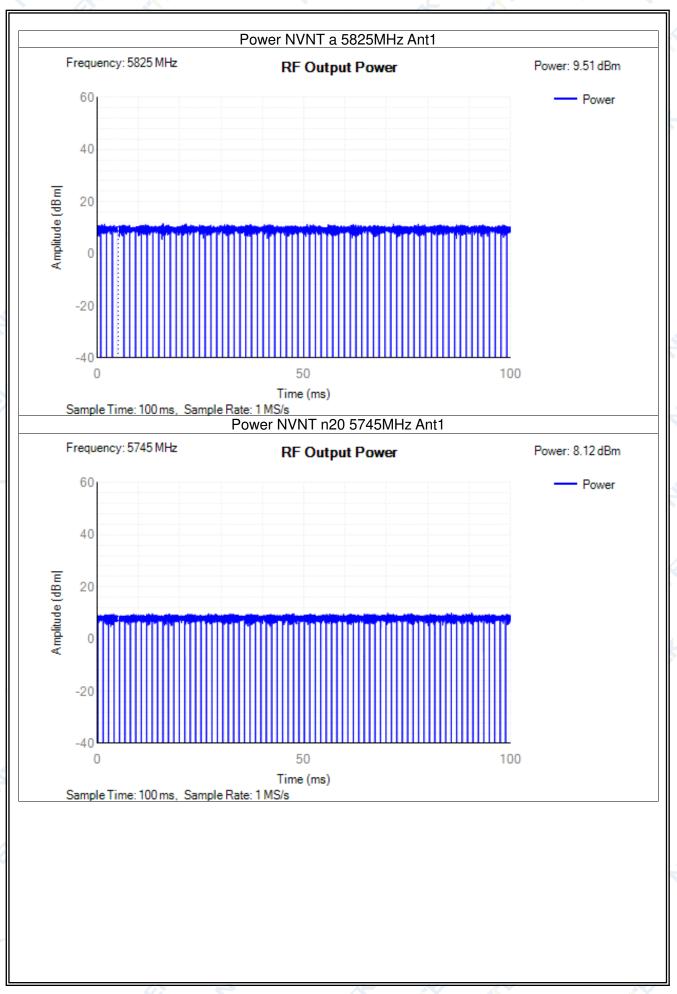
Page 64 of 74

Page 65 of 74

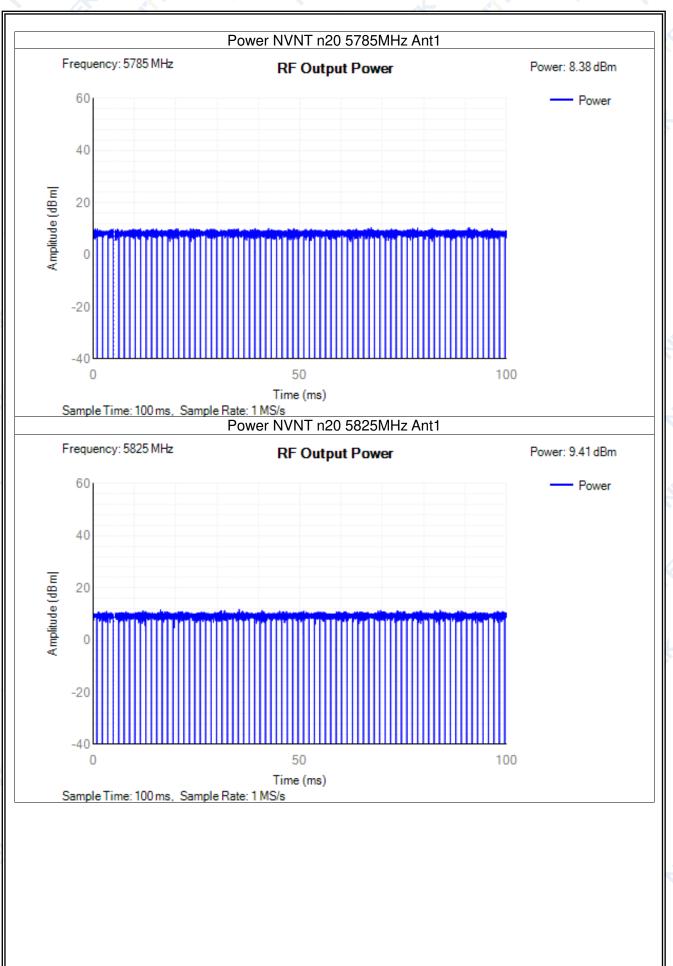


Report No.: STR221215001005E

Condition	Mode	Frequency	Antenna	Max Burst RMS	Burst	Max EIRP	Limit	Verdi
		(MHz)		Power (dBm)	Number	(dBm)	(dBm)	
NVNT	а	5745	Ant1	8.26	72	9.26	13.98	Pass
NVNT	a	5785	Ant1	8.49	72 72	9.49	13.98	Pass
NVNT	a = 20	5825	Ant1	9.51		10.51 9.12	13.98	Pass
NVNT NVNT	n20 n20	5745 5785	Ant1 Ant1	<u>8.12</u> 8.38	77	9.12	13.98	Pas
NVNT	n20	5785	Ant1	<u> </u>	77	9.38	13.98 13.98	Pas Pas
NVNT	n20 n40	5755	Ant1	8.35	149	9.35	13.98	Pas
NVNT	n40	5795	Ant1	8.52	149	9.52	13.98	Pas
NVNT	ac20	5775	Ant1	7.5	77	8.5	13.98	Pas
NVNT	ac20	5745	Ant1	7.92	76	8.92	13.98	Pas
NVNT	ac20	5785	Ant1	8.9	77	9.9	13.98	Pas
NVNT	ac40	5825	Ant1	7.9	147	8.9	13.98	Pas
NVNT	ac40	5755	Ant1	8.08	147	9.08	13.98	Pas
NVNT	ac80	5795	Ant1	8.1	278	9.1	13.98	Pas
HVLT	a	5745	Ant1	7.99	72	8.99	13.98	Pas
HVLT	a	5785	Ant1	8.02	72	9.02	13.98	Pas
HVLT	a	5825	Ant1	7.99	72	8.99	13.98	Pas
HVLT	n20	5745	Ant1	7.94	77	8.94	13.98	Pas
HVLT	n20	5785	Ant1	8.17	77	9.17	13.98	Pas
HVLT	n20	5725	Ant1	8.20	77	9.2	13.98	Pas
HVLT	n40	5755	Ant1	8.17	149	9.17	13.98	Pas
HVLT	n40	5795	Ant1	8.12	149	9.12	13.98	Pas
HVLT	ac20	5775	Ant1	8.09	77	9.09	13.98	Pas
HVLT	ac20	5745	Ant1	8.04	76	9.04	13.98	Pas
HVLT	ac20	5785	Ant1	8.01	77	9.01	13.98	Pas
HVLT	ac40	5825	Ant1	7.96	147	8.96	13.98	Pas
HVLT	ac40	5755	Ant1	7.93	147	8.93	13.98	Pas
HVLT	ac80	5795	Ant1	7.90	278	8.9	13.98	Pas
LVHT	а	5745	Ant1	7.79	72	8.79	13.98	Pas
LVHT	а	5785	Ant1	7.82	72	8.82	13.98	Pas
LVHT	a	5825	Ant1	7.79	72	8.79	13.98	Pas
LVHT	n20	5745	Ant1	7.74	77	8.74	13.98	Pas
LVHT LVHT	n20 n20	5785 5825	Ant1 Ant1	<u>8.17</u> 8.20	77 77	9.17 9.2	13.98	Pas
LVHT	n20 n40	5755	Ant1	8.17	149	9.2	13.98 13.98	Pas Pas
LVHT	n40	5795	Ant1	8.12	149	9.17	13.98	Pas
LVHT	ac20	5775	Ant1	8.09	77	9.09	13.98	Pas
LVHT	ac20	5745	Ant1	8.04	76	9.04	13.98	Pas
LVHT	ac20	5785	Ant1	8.01	77	9.01	13.98	Pas
LVHT	ac40	5825	Ant1	7.96	147	8.96	13.98	Pas
LVHT	ac40	5755	Ant1	7.93	147	8.93	13.98	Pas
LVHT	ac80	5795	Ant1	7.90	278	8.92	13.98	Pas
HVHT	a	5745	7.79	72	8.79	13.98	Pass	HVH
HVHT	a	5785	7.82	72	8.82	13.98	Pass	HVF
HVHT	а	5825	7.79	72	8.79	13.98	Pass	HVF
HVHT	n20	5745	7.74	77	8.74	13.98	Pass	HVF
HVHT	n20	5785	8.17	77	9.17	13.98	Pass	HVH
HVHT	n20	5825	8.20	77	9.2	13.98	Pass	HVH
HVHT	n40	5755	8.17	149	9.17	13.98	Pass	HVH
HVHT	n40	5795	8.12	149	9.12	13.98	Pass	HVH
HVHT	ac20	5775	8.09	77	9.09	13.98	Pass	HVH
HVHT	ac20	5745	8.04	76	9.04	13.98	Pass	HVF
HVHT	ac20	5785	8.01	77	9.01	13.98	Pass	HVF
HVHT	ac40	5825	7.96	147	8.96	13.98	Pass	HVF
HVHT	ac40	5755	7.93	147	8.93	13.98	Pass	HVH
HVHT	ac80	5795	7.90	278	8.9	13.98	Pass	HVF
	a	5745	7.79	72	8.79	13.98	Pass	LVL
	a	5785	7.82	72	8.82	13.98	Pass	LVH
	a n20	5825	7.79	72 77	8.79	13.98	Pass	LVH
	n20	5745	7.74		8.74	13.98	Pass	LVH
	n20	5785	8.17	77	9.17	13.98	Pass	LVH
	n20	5825	8.20	77	9.2	13.98	Pass	LVH
	n40	5755	8.17	149	9.17	13.98	Pass	LVH
LVHT LVHT	n40	5795	8.12 8.09	149	9.12 9.09	13.98	Pass	LVH
LVHT	ac20 ac20	5775 5745	8.09	77 76	9.09	13.98 13.98	Pass Pass	LVH LVH
LVHT		5745		76 77		13.98		LVH
LVHT	ac20 ac40	5785	8.01 7.96	147	9.01 8.96	13.98	Pass	LVH
LVHT	ac40 ac40	5755	7.96	147	8.96	13.98	Pass Pass	LVH
LVHT	ac40 ac80	5795	7.93	278	8.92	13.98	Pass	LVH

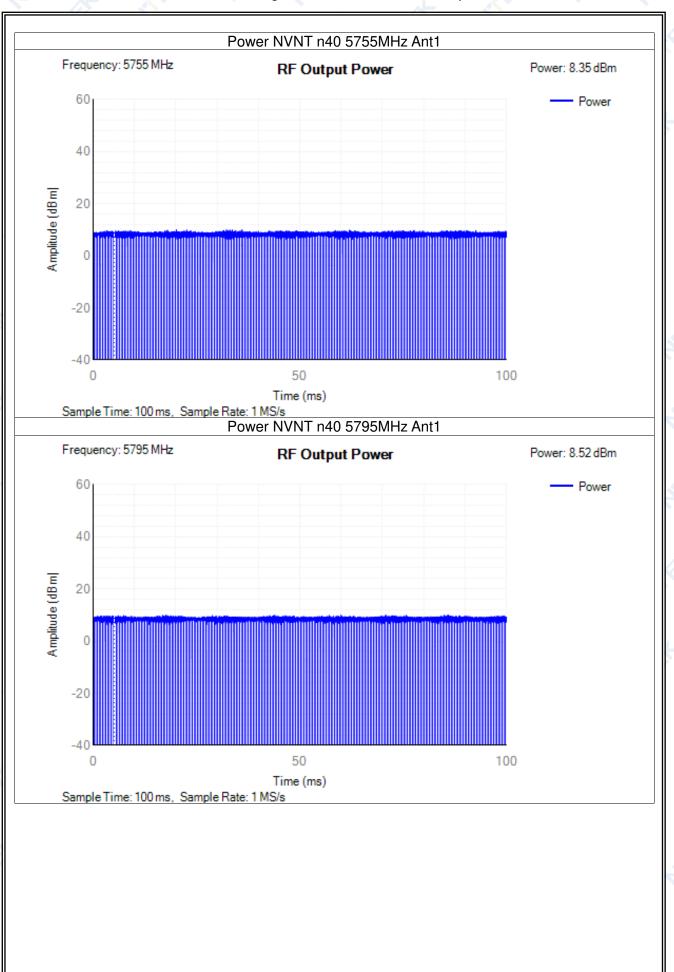

Page 66 of 74

Report No.: STR221215001005E

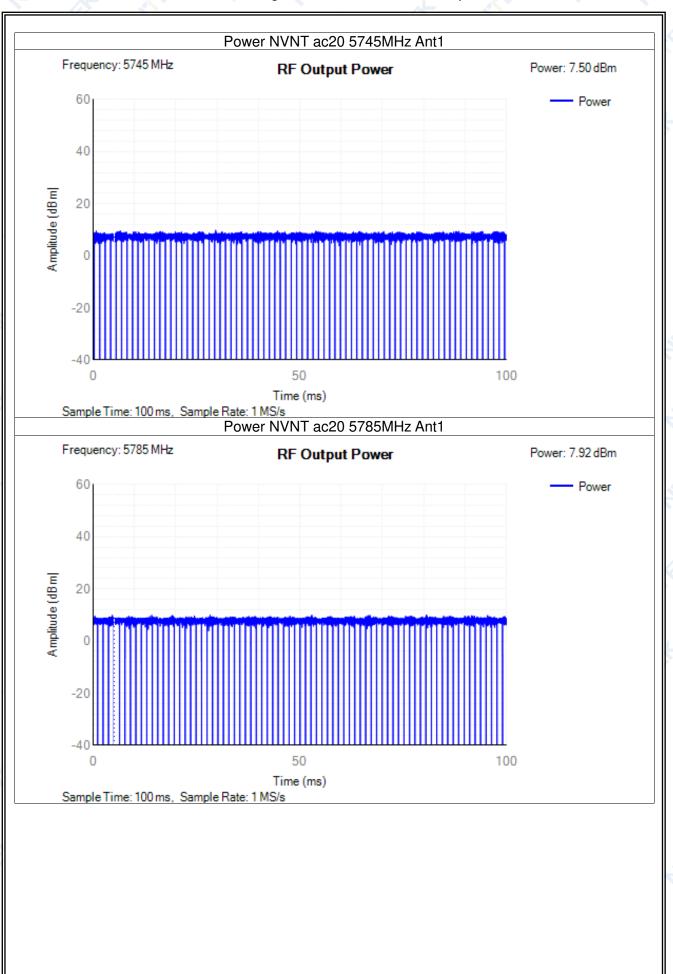


Page 67 of 74

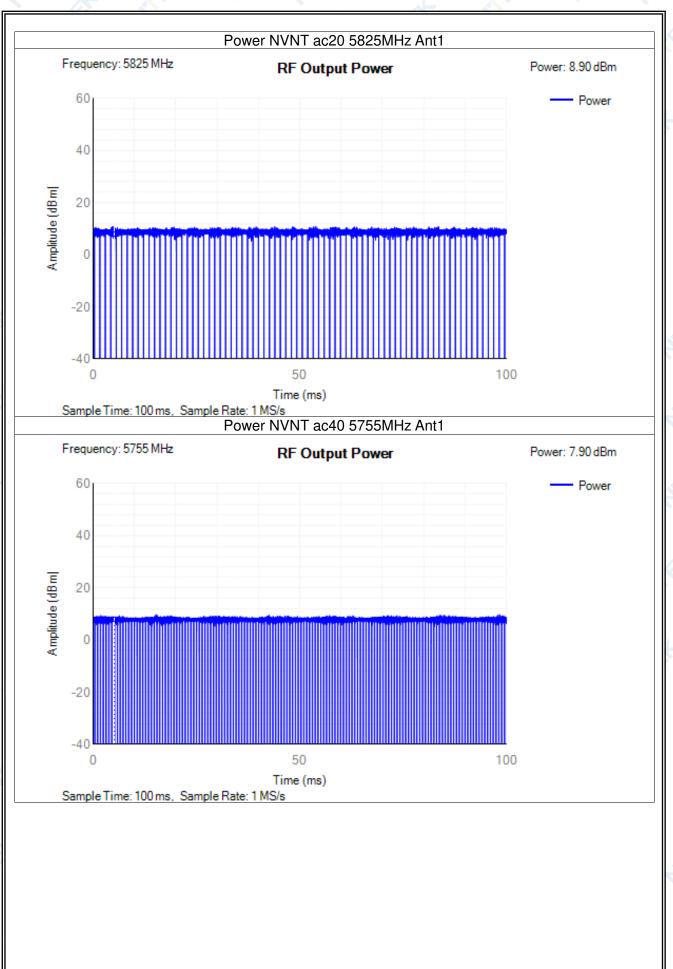
Report No.: STR221215001005E

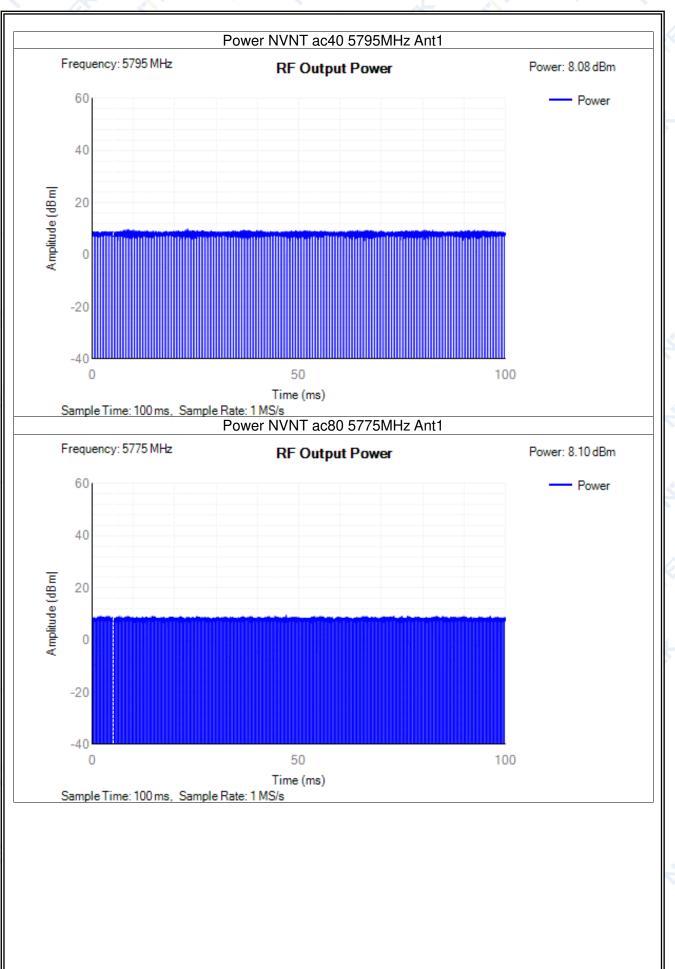


Page 68 of 74



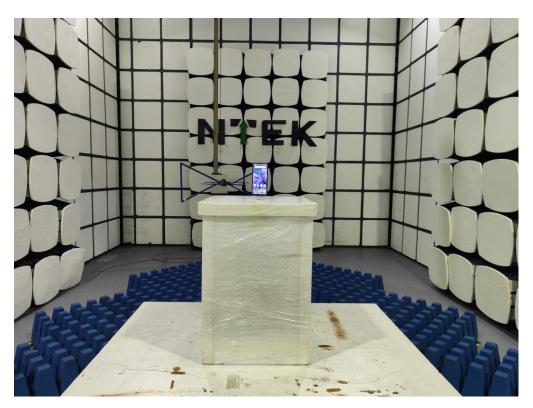
Page 69 of 74

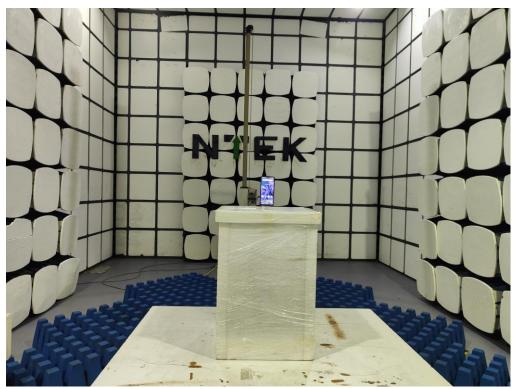

NTEK 北视[®] Page 70 of 74


NTEK 北视® Page 71 of 74

NTEK 北视® Page 72 of 74

NTEK 北视® Page 73 of 74




NTEK LM Page 74 of 74

Report No.: STR221215001005E

11. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT