RADIO TEST REPORT ETSI EN 300 440 V2.2.1 (2018-07)

Product : Smart phone Trade Mark : Blackview Model Name : A53 Family Model : N/A Report No. : STR221216001005E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Page 2 of 74

Applicant's name : DOKE COMMUNICATION (HK) LIMITED Address			
Manufacturer's Name: Shenzhen DOKE Electronic Co.,Ltd			
Address			
Product description			
Product name: Smart phone			
Trademark: Blackview			
Model and/or type reference : A53			
Family Model: N/A			
Standards : ETSI EN 300 440 V2.2.1 (2018-07)			
This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU			

requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.

Test Sample Number	T221216001R0030
Date of Test	
Date (s) of performance of tests:	Dec 16, 2022 ~ Jan 11, 2023
Date of Issue	Jan 11, 2023
Test Result:	Pass

Testing Engineer

NTEK 北测[®]

krang. Hu

(Mary Hu)

Authorized Signatory:

(Alex Li)

Table of Contents	Page
1 . SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.2 MEASUREMENT UNCERTAINTY	8
2. GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 TEST CONDITIONS	10
2.3 DESCRIPTION OF TEST CONDITIONS	11
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 12
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	13
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	14
3 . EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)	15
3.1 APPLICABILITY	15
3.2 LIMITS	15
3.3 GENERAL REQUIREMENTS	15
3.4 TEST PROCEDURES	15
3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS 3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS	15 16
3.5 TEST SETUP LAYOUT	16
3.6 EUT OPERATION DURING TEST	16
3.7 TEST RESULT FOR -6 DB BANDWIDTH	17
3.8 TEST RESULT FOR E.I.R.P	18
4 . PERMITTED RANGE OF OPERATING FREQUENCIES	19
4.1 APPLIED PROCEDURES / LIMIT	19
4.2 TEST PROCEDURES	19
4.3 TEST SETUP LAYOUT	19
4.4 EUT OPERATION DURING TEST	19
4.5 TEST RESULTS	20
5 . UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	23
5.1 APPLIED PROCEDURES / LIMIT	23
5.2 MEASURING INSTRUMENTS AND SETTING	23
5.3 TEST PROCEDURES	23
5.4 TEST SETUP LAYOUT	24

Page 3 of 74

NTEK 北测[®]

Table of Contents	Page
5.5 EUT OPERATION DURING TEST	24
5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS	24
5.7 TEST RESULTS	25
6.DUTY CYCLE	27
6.1 APPLICABILITY AND DESCRIPTION	27
6.2 LIMITS	27
6.4 METHOD OF MEASUREMENT	27
6.5 TEST SETUP	28
6.6 TEST RESULTS	28
7 . SPURIOUS EMISSIONS – RX	29
7.1 APPLIED PROCEDURES / LIMIT	29
7.2 MEASURING INSTRUMENTS AND SETTING	29
7.3 TEST PROCEDURES	29
7.5 TEST SETUP LAYOUT	29
7.6 EUT OPERATION DURING TEST	29
7.7 TEST RESULTS	30
8 . ADJACENT CHANNEL SELECTIVITY	31
8.1 APPLICABILITY	31
8.2 LIMITS	31
8.3 METHODS OF MEASUREMENT	31
8.4 TEST SETUP LAYOUT	32
8.5 TEST RESULTS	32
9. BLOCKING OR DESENSITIZATION	33
9.1 APPLICABILITY	33
9.2 LIMITS	33
9.3 TEST PROCEDURES	33
8.4 TEST SETUP LAYOUT	34
9.4 TEST RESULTS	35
10 . TEST RESULTS	42
10.1 DUTY CYCLE	42
10.2 -6DB EMISSION BANDWIDTH	50
10.3 OCCUPIED CHANNEL BANDWIDTH	58
10.4 RF OUTPUT POWER	66

Page 4 of 74

NTEK 北测[®]

Table of Contents	Page
11 . EUT TEST PHOTO	74
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	74
APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

Revision History				
Report No.	Version	Description	Issued Date	
STR221216001005E	Rev.01	Initial issue of report	Jan 11, 2023	
L	I	1		

Revision History

1. SUMMARY OF TEST RESULTS

NTEK 北测[®]

Test procedures according to the technical standards: ETSI EN 300 440 V2.2.1 (2018-07)

Clause	Description of Test Item	Remarks	Results		
	Transmitter Parameters				
4.2.2	-6 dB channel bandwidth	Conducted	Pass		
4.2.2	Effective isotropic radiated power	Conducted	Pass		
4.2.3	Permitted range of operation frequencies	Conducted	Pass		
4.2.4	Unwanted emissions in the spurious domain	Radiated	Pass		
4.2.5	Duty cycle	Conducted	Pass		
4.2.6	Additional requirements for FHSS equipment	Conducted	N/A		
	Receiver Parameters				
4.3.3 Adjacent channel selectivity(For Receiver		Conducted	N/A		
4.3.4	4.3.4 Blocking or desensitization(For Receiver category 1,2,3)		Pass		
4.3.5	Spurious emissions(For Receiver category 1,2,3)	Radiated	Pass		

Page 7 of 74

Note: The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter

1.1 TEST FACILITY

NTEK 北测

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

Page 8 of 74

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of ~k=2, providing a level of confidence of approximately 95 % $^\circ$

No.	Item	Uncertainty	
1	Radio frequency	±1 x 10-7	
2	RF power (conducted)	±2,5 dB	
3	Radiated emission of transmitter, valid to 26,5 GHz	±6 dB	
4	Radiated emission of transmitter, valid between 26,5 GHz and 66 GHz	±8 dB	
5	Radiated emission of receiver, valid to 26,5 GHz	±6 dB	
6 Radiated emission of receiver, valid between 26,5 ±8 dB GHz and 66 GHz			
7	Temperature	±1 ℃	
8	Humidity	±5 %	
9	Voltage (DC)	±1 %	
10	Voltage (AC, < 10 kHz)	±2 %	
NOTE: For radiated emissions above 26,5 GHz it may not be possible to			

achieve measurement uncertainties complying with the levels specified in this table. In these cases alone it is acceptable to employ the alternative interpretation procedure specified in EN 300440 V2.2.1 clause 5.9.1.

Report No.: STR221216001005E

2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart phone		
Trade Mark	Blackview		
Model Name	A53		
Family Model	N/A		
Model Difference	N/A		
Product Description	Operation Frequency: Data Rate: Modulation Channel No.:	5745-5825 MHz for 802.11a/n20/ac20; 5755-5795 MHz for 802.11n40/ac40; 5775MHz for 802.11 ac80; 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS7; 802.11ac(VHT20/ VHT40/VHT80): NSS1, MCS0-MCS9, NSS2 OFDM with BPSK/QPSK/16QAM/64QAM/256QAM 5 channels for 802.11a/n20/ac20 in the 5745-5825MHz band ; 2 channels for 802.11 n40/ac40 in the 5755-5795MHz band ;	
	Antenna Designation: Antenna Gain(Peak)	1 channels for 802.11 ac80 in the 5775MHz band ; PIFA Antenna 1 dBi	
Receiver category	 Category 1: Highly reliable SRD communication media; e.g. serving human life inherent systems (may result in a physical risk to a person). Category 2: Medium reliable SRD communication media e.g. causing inconvenience to persons, which cannot simply be overcome by other means. Category 3: Standard reliable SRD communication media e.g. Inconvenience to persons, which can simply be overcome by other means (e.g. manual). 		
Channel List	Refer to below		
Adapter	Model: QZ-01000EA00 Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A (10.0W)		
Battery	DC 3.87V, 5080mAh, 19.66Wh		
Rating	DC 3.87V from	n battery or DC 5V from adapter	
Hardware Version	HCT-M659MB-A2		
Software Version	A53_EEA_M659_V1.0		

Page 9 of 74

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Channel list:

NTEK北测[®]

Frequency and Channel list for 802.11a/n/ac(20 MHz) band IV (5745-5825MHz):

Page 10 of 74

	802.11a/n/ac(20 MHz) Carrier Frequency Channel						
Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-

Frequency and Channel list for 802.11n/ac(40MHz) band IV (5755-5795MHz):

802.11n/ac 40MHz Carrier Frequency Channel					
Channel Frequency (MHz) Channel Frequency (MHz) Channel (MHz) Channel (MHz)					
151 5755 159 5795					

Frequency and Channel list for 802.11ac(80MHz) band IV (5775MHz):

802.11ac 80MHz Carrier Frequency Channel		
Channel Frequency (MHz)		
155	5775	

2.2 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15°C - 35°C	-10°C ~ 40°C _{Note1}
Relative Humidity	20% - 75%	N/A
Power Rating	DC 3.87V	N/A
Test voltage	DC 3.87V	DC 4.2V-DC 3.4V Note2

Note:

(1) The temperature range as declared by the manufacturer; or one of the following specified temperature ranges:

- Temperature category I (General): -20 °C to +40 °C;

- Temperature category II (Portable): -10 °C to +40 °C;

- Temperature category III (Equipment for normal indoor use): 5 °C to +35 °C.

(2) The High Voltage 4.2V and Low Voltage 3.4V was declarated by manufacturer.

2.3 DESCRIPTION OF TEST CONDITIONS

NTEK 北测[®]

For Conducted Test				
Pretest Mode Description				
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165			
Mode 2	802.11n/ ac40 CH 151 / CH 159			
Mode 3	802.11 ac80 CH 155			

Page 11 of 74

For Radiated Test				
Final Test Mode Description				
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165			
Mode 2	802.11n/ ac40 CH 151 / CH 159			
Mode 3	802.11 ac80 CH 155			

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Page 13 of 74

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Smart phone	A53	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength _l column.
- (3) "YES" means "shielded" or "with ferrite core";"NO" means "unshielded" or "without ferrite core"

Page 14 of 74

Report No.: STR221216001005E

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

NTEK 北测[®]

EQUIPMENT TYPE	Manufacturer	Type No. Serial No.		Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
Turn Table	EM	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.01	2023.03.31	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01	2023.03.31	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	Wideband Radio Communication R&S CMW500		148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

NTEK 北视[®] Page 15 of 74

Report No.: STR221216001005E

3. EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)

3.1 APPLICABILITY

The equivalent isotropically radiated power requirement shall apply to all transmitters.

3.2 LIMITS

Table 2: Maximum radiated peak power (e.i.r.p.)

Frequency Bands	Power	Application	Notes
2 400 MHz to 2 483,5 MHz	10 mW e.i.r.p.	Non-specific short range devices	
2 400 MHz to 2 483,5 MHz	25 mW e.i.r.p.	Radio determination devices	
(a) 2 446 MHz to 2 454 MHz	500 mW e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
(b) 2 446 MHz to 2 454 MHz	4 W e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
5 725 MHz to 5 875 MHz	25 mW e.i.r.p.	Non-specific short range devices	
9 200 MHz to 9 500 MHz	25 mW e.i.r.p.	Radio determination devices	
9 500 MHz to 9 975 MHz	25 mW e.i.r.p.	Radio determination devices	
10,5 GHz to 10,6 GHz	500 mW e.i.r.p.	Radio determination devices	
13,4 GHz to 14,0 GHz	25 mW e.i.r.p.	Radio determination devices	
17,1 GHz to 17,3 GHz	400 mW e.i.r.p.	Radio determination devices	See annex F
24,00 GHz to 24,25 GHz	100 mW e.i.r.p.	Non-specific short range devices and	
		Radio determination devices	

3.3 GENERAL REQUIREMENTS

1. To measure e.i.r.p. it is first necessary to determine the appropriate method of measurement: see EN 300440 V2.2.1 clauses 4.2.2.3.1 and 4.2.2.3.2. The -6 dB transmitter bandwidth shall be determined using a 100 kHz measuring bandwidth in order to establish which measurement method is applicable:

Со	Condition			
Non spread spectrum transmitters with a -6 dB bandwidth of up to 20 MHz and spread	Non spread spectrum equipment with a -6 dB bandwidth of 20 MHz or less and a duty cycle above 50 %;	Refer to section 3.4.1		
spectrum transmitters with channel bandwidth of up to 1 MHz;	Spread spectrum equipment with a -6 dB channel bandwidth of 1 MHz or less.			
	☐equipment with a -6 dB bandwidth greater than 20 MHz, and equipment with a duty cycle below 50 %;; ⊠spread spectrum equipment with a channel bandwidth above 1 MHz	Refer to section 3.4.2		

2. Measurements shall be performed at normal test conditions.

3.4 TEST PROCEDURES

3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS

The measurement shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded. **Equipment measured as constant envelope modulation equipment**

NTEK 北视[®] Page 16 of 74

Report No.: STR221216001005E

For practical reasons, measurements shall be performed only at the highest power level at which the transmitter is intended to operate. The measurement arrangement in figure 2 shall be used. The measurement shall be performed preferably in the absence of modulation.

When it is not possible to measure it in the absence of modulation, this fact shall be stated in test reports.

The transmitter shall be set in continuous transmission mode. If this is not possible, the measurements shall be carried

out in a period shorter than the duration of the transmitted burst. It may be necessary to extend the duration of the burst.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

Equipment measured as non-constant envelope modulation equipment

The measurement shall be performed with test signals D-M2 or D-M3 as appropriate. The transmitter shall be preferably set in continuous transmission mode. If this is not possible, the measurement can be performed in discontinuous mode.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured. The measuring instrument shall have a measurement bandwidth not less than sixteen times the channel bandwidth.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS

Step 1:

• using a suitable means, the output of the transmitter shall be coupled to a matched diode detector;

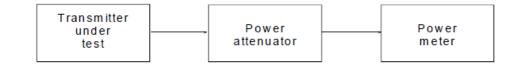
• the output of the diode detector shall be connected to the vertical channel of an oscilloscope;

• the combination of the diode detector and the oscilloscope shall be capable of faithfully

reproducing the envelope peaks and the duty cycle of the transmitter output signal;

• the observed duty cycle of the transmitter (Tx on/(Tx on + Tx off)) shall be noted as x, (0 < x < 1)And recorded.

Step 2:


• the average output power of the transmitter shall be determined using a wideband, calibrated RF power meter with a matched thermocouple detector or an equivalent thereof and, where applicable, with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);

• the e.i.r.p. shall be calculated from the above measured power output A, the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

 $-P = A + G + 10 \log (1/x);$

- P should be EIRP POWER.

3.5 TEST SETUP LAYOUT

3.6 EUT OPERATION DURING TEST

Where possible, the equipment shall be able to operate in a continuous transmit mode for testing purposes.

3.7 TEST RESULT FOR -6 DB BANDWIDTH

EUT :	Smart phone	Model Name :	A53
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

3.8 TEST RESULT FOR E.I.R.P

EUT :	Smart phone	Model Name :	A53
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

4. PERMITTED RANGE OF OPERATING FREQUENCIES

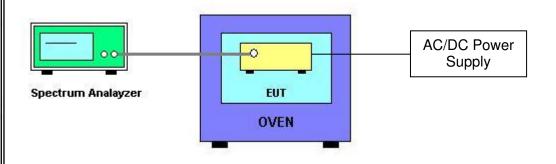
4.1 APPLIED PROCEDURES / LIMIT

The Permitted range of operating frequencies shall apply to all transmitters.

Limits: The width of the power spectrum envelope is fH -fL for a given operating frequency. In equipment that allows adjustment or selection of different operating frequencies, the power envelope takes up different positions in the allowed band. The frequency range is determined by the lowest value of fL and the highest value of fH resulting from the adjustment of the equipment to the lowest and highest operating frequencies.

The occupied bandwidth (i.e. the bandwidth in which 99 % of the wanted emission is contained) of the transmitter shall fall within the assigned frequency band.

For all equipment the frequency range shall lie within the frequency band given by section 3.2, table 2. For non-harmonized frequency bands the available frequency range may differ between national administrations.


4.2 TEST PROCEDURES

These measurements shall be performed under both normal and extreme operating conditions except for the occupied bandwidth assessment for which measurement at normal operating conditions is sufficient.

The measurement procedure shall be as follows:

- a) put the spectrum analyser in video averaging mode with a minimum of 50 sweeps selected;
- b) select the lowest operating frequency of the equipment under test and activate the transmitter with modulation applied. The RF emission of the equipment shall be displayed on the spectrum analyser;
- c) using the marker of the spectrum analyser, find the lowest frequency below the operating frequency at which the spectral power density drops below the level given in clause 4.2.3. This frequency shall be recorded in the test report;
- d) select the highest operating frequency of the equipment under test and find the highest frequency at which the spectral power density drops below the value given in clause 4.2.3. This frequency shall be recorded in the test report;
- e) the difference between the frequencies measured in steps c) and d) is the operating frequency range. It shall be recorded in the test report.

4.3 TEST SETUP LAYOUT

4.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

NTEK Lin[®] Page 20 of 74

Report No.: STR221216001005E

4.5 TEST RESULTS

EUT :	Smart phone	Model Name :	A53
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	ТХ		

802.11a

Extreme condition			Frequency	range (MHz)	
			F _L CH149	F _н CH165	
		V max (V)	4.2	5736.745	5833.247
T min (°C)	-10	V nom (V)	3.87	5736.746	5833.249
		V min (V)	3.4	5736.742	5833.245
		V max (V)	4.2	5736.743	5833.246
T max (°C)	40	V nom (V)	3.87	5736.744	5833.247
		V min (V)	3.4	5736.745	5833.248
T normal (°C)	24	V nom (V)	3.87	5736.745	5833.247
Min. f_L / Max. f_H Band Edges			5736.742	5833.249	
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
	Result			Con	nplies

802.11n20

Extreme condition				Frequency range (MHz)		
	Extreme condition				F _н CH165	
		V max (V)	4.2	5736.149	5833.835	
T min (°C)	-10	V nom (V)	3.87	5736.150	5833.836	
		V min (V)	3.4	5736.146	5833.832	
		V max (V)	4.2	5736.147	5833.834	
T max (°C)	40	V nom (V)	3.87	5736.148	5833.835	
		V min (V)	3.4	5736.149	5833.836	
T normal (°C)	24	V nom (V)	3.87	5736.149	5833.835	
Min. f	Min. f_L / Max. f_H Band Edges			5736.146	5833.836	
Indoor Use Limits			F _L > 5725.0 MHz	$\mathbf{F_L}~<~5875.0~\text{MHz}$		
	Result			Complies		

Report No.: STR221216001005E

					range (MHz)
ľ	Extreme condition			F _L CH151	F _н CH159
		V max (V)	4.2	5736.922	5813.142
T min (°C)	-10	V nom (V)	3.87	5736.923	5813.144
			V min (V)	3.4	5736.919
		V max (V)	4.2	5736.920	5813.141
T max (°C)	40	V nom (V)	3.87	5736.921	5813.142
		V min (V)	3.4	5736.922	5813.143
T normal (°C)	24	V nom (V)	3.87	5736.922	5813.142
Min. f _L / Max. f _H Band Edges			5736.919	5813.144	
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
	Result			Con	nplies

Page 21 of 74

802.11ac20

Extreme condition				Frequency range (MHz)		
				F _L CH149	F _н CH165	
		V max (V)	4.2	5736.153	5833.835	
T min (°C)	-10	V nom (V)	3.87	5736.154	5833.837	
		V min (V)	3.4	5736.150	5833.833	
		V max (V)	4.2	5736.151	5833.834	
T max (°C)	40	V nom (V)	3.87	5736.152	5833.835	
		V min (V)	3.4	5736.153	5833.836	
T normal (°C)	24	V nom (V)	3.87	5736.153	5833.835	
Min. f_L / Max. f_H Band Edges				5736.150	5833.837	
Indoor Use Limits			F _L > 5725.0 MHz	$\mathbf{F}_{L}~<~5875.0~MHz$		
	R	esult		Complies		

NTEK LM Page 22 of 74

Report No.: STR221216001005E

802.11ac40					
	Extreme condition				range(MHz)
Ľ	ztrem	econdition		F _L CH151	F _н CH159
		V max (V)	4.2	5736.938	5813.134
T min (°C)	-10	V nom (V)	3.87	5736.939	5813.136
		V min (V)	3.4	5736.935	5813.132
		V max (V)	4.2	5736.936	5813.133
T max (°C)	40	V nom (V)	3.87	5736.937	5813.134
		V min (V)	3.4	5736.938	5813.135
T normal (°C)	24	V nom (V)	3.87	5736.938	5813.134
Min. f_L / Max. f_H Band Edges			5736.935	5813.136	
	Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$
	Result			Con	nplies

802.11ac80

-	Extreme condition				range (MHz)	
					F _н CH155	
		V max (V)	4.2	5737.164	5813.06	
T min (°C)	-10	V nom (V)	3.87	5737.165	5813.062	
		V min (V)	3.4	5737.161	5813.058	
		V max (V)	4.2	5737.162	5813.059	
T max (°C)	40	V nom (V)	3.87	5737.163	5813.060	
		V min (V)	3.4	5737.164	5813.061	
T normal (°C)	24	V nom (V)	3.87	5737.164	5813.06	
Min. f _L / Max. f _H Band Edges				5737.161	5813.062	
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$		
	R	esult		Complies		

NTEK 北视[®] Page 23 of 74

5. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

5.1 APPLIED PROCEDURES / LIMIT

The unwanted emissions in the spurious domain requirement shall apply to all transmitters.

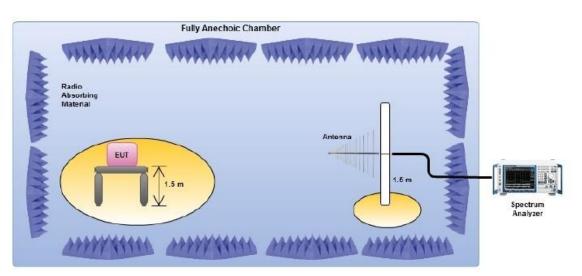
	47 MHz to 74 MHz		
State	87.5 MHz to 118 MHz	Other frequencies	Frequencies
Sidle	174 MHz to 230 MHz	≤□ 1 000 MHz	> 1 000 MHz
	470 MHz to 862 MHz		
Operating	4 nW /-54dBm	250 nW/-36dBm	1 µW /-30dBm
Standby	2 nW /-57dBm	2 nW /-57dBm	20 nW /-47dBm

5.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz
	For frequency above 1G:1MHz

5.3 TEST PROCEDURES


- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable. For above 1G, using Horn antenna .
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

NTEK 北测

Report No.: STR221216001005E

5.4 TEST SETUP LAYOUT

Radiated Emission Test Set-Up

Page 24 of 74

5.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS

For the initial investigation on standby mode and receiving mode, no significant differences in spurious emissions were observed between these 2 modes. So test data for standby mode was omitted in this section.

NTEK LM[®] Page 25 of 74

Report No.: STR221216001005E

5.7 TEST RESULTS

EUT:	Smart phone	Model Name :	A53
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V (NORMAL)
Test Mode :	TX-802.11n20 mode		

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	49.53	-72.36	14.74	-57.62	-36	-21.62	peak
V	113.01	-76.57	8.68	-67.89	-54	-13.89	peak
V	231.70	-71.35	11.24	-60.11	-54	-6.11	peak
V	368.96	-72.49	12.73	-59.76	-36	-23.76	peak
V	487.33	-79.09	11.81	-67.28	-54	-13.28	peak
V	780.21	-71.35	17.15	-54.20	-36	-18.20	peak
Н	47.32	-74.05	13.48	-60.57	-36	-24.57	peak
Н	103.64	-74.36	6.39	-67.97	-54	-13.97	peak
Н	211.63	-70.67	11.04	-59.63	-54	-5.63	peak
Н	271.58	-71.53	12.80	-58.73	-36	-22.73	peak
Н	372.78	-73.52	14.03	-59.49	-36	-23.49	peak
Н	718.89	-75.36	20.18	-55.18	-36	-19.18	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Page 26 of 74

Report No.: STR221216001005E

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
		ор	eration frequenc	y:5755 MHz			
V	1232.63	-51.45	13.64	-37.81	-30	-7.81	peak
V	1732.68	-54.60	15.03	-39.57	-30	-9.57	peak
V	2233.35	-57.20	11.57	-45.63	-30	-15.63	peak
V	5794.92	-63.25	16.82	-46.43	-30	-16.43	peak
Н	1731.66	-53.55	14.82	-38.73	-30	-8.73	peak
Н	3857.52	-68.84	16.54	-52.30	-30	-22.30	peak
Н	5794.26	-61.56	17.17	-44.39	-30	-14.39	peak
Н	9417.07	-65.81	19.52	-46.29	-30	-16.29	peak
		ор	eration frequenc	y:5785 MHz			
V	1231.36	-52.44	13.64	-38.80	-30	-8.80	peak
V	1733.93	-44.85	15.03	-29.82	-30	0.18	peak
V	2232.18	-54.30	11.57	-42.73	-30	-12.73	peak
V	3920.36	-67.85	15.98	-51.87	-30	-21.87	peak
Н	1733.39	-54.43	14.82	-39.61	-30	-9.61	peak
Н	2231.72	-59.76	16.65	-43.11	-30	-13.11	peak
Н	5857.57	-63.01	16.88	-46.13	-30	-16.13	peak
Н	9422.39	-63.42	19.51	-43.91	-30	-13.91	peak
		ор	eration frequenc	y:5825 MHz			
V	1730.74	-56.59	15.03	-41.56	-30	-11.56	peak
V	2231.75	-56.35	15.74	-40.61	-30	-10.61	peak
V	2668.78	-69.87	16.74	-53.13	-30	-23.13	peak
V	5857.77	-58.54	16.58	-41.96	-30	-11.96	peak
Н	1732.14	-51.76	14.82	-36.94	-30	-6.94	peak
Н	2233.04	-61.61	16.65	-44.96	-30	-14.96	peak
Н	2670.04	-68.05	17.93	-50.12	-30	-20.12	peak
Н	5857.62	-64.66	19.70	-52.51	-30	-22.51	peak

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Note: Only the worst case 802.11n20 mode recorded in the report.

NTEK 北视 Page 27 of 74

Report No.: STR221216001005E

6. DUTY CYCLE

6.1 APPLICABILITY AND DESCRIPTION

Duty Cycle (DC) shall apply to all transmitting equipment except those which utilize Listen Before Talk (LBT) clause 4.4.2, or Detect And Avoid (DAA), clause 4.4.3. RFID transmitters operating in the 2 446 MHz to 2 454 MHz frequency band that transmit at a maximum radiated peak power level of less than 500 mW e.i.r.p. are also excluded.

Duty cycle is the ratio expressed as a percentage, of the cumulative duration of transmissions T_{on_cum} within an observation interval T_{obs} .

$$DC = \left(\frac{T_{on_cum}}{T_{obs}}\right)F_{obs}$$

on an observation bandwidth Fobs.

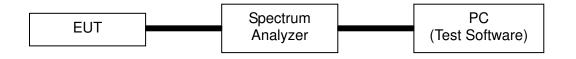
Unless otherwise specified, $T_{\mbox{\tiny obs}}$ is 1 hour and the observation bandwidth $F_{\mbox{\tiny obs}}$ is the operational frequency band

Each transmission consists of an RF emission, or sequence of RF emissions separated by intervals $< T_{Dis}$.

6.2 LIMITS

Table 4 defines the maximum duty cycle within a 1 hour period. Table 4: Duty cycle limits

Frequency Band	Duty cycle	Application	Notes
2 400 MHz to 2 483,5 MHz	No Restriction	Generic use	
2 400 MHz to 2 483,5 MHz	No Restriction	Detection, movement and alert	
		applications	
(a) 2 446 MHz to 2 454 MHz	No Restriction	RFID	Limits shown in
			annex D shall apply
(b) 2 446 MHz to 2 454 MHz	≤ 15 %	RFID	Limits shown in
			annex D shall apply
5 725 MHz to 5 875 MHz	No Restriction	Generic use	
9 200 MHz to 9 500 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
9 500 MHz to 9 975 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
10,5 GHz to 10,6 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
13,4 GHz to 14,0 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
17,1 GHz to 17,3 GHz	DAA or	Radiodetermination:	Limits shown in
	equivalent	GBSAR detecting and movement	annex F shall apply
	techniques	and alert applications	
24,00 GHz to 24,25 GHz	No Restriction	Generic use and for	
		Radiodetermination:	
		radar, detection, movement and	
		alert applications	


For devices with a 100 % duty cycle transmitting an unmodulated carrier most of the time, a time-out shut-off facility shall be implemented in order to improve the efficient use of spectrum. The method of implementation shall be declared by the manufacturer.

6.4 METHOD OF MEASUREMENT

Please refer to EN 300440 V2.2.1 Clause 4.2.5.3.

Report No.: STR221216001005E

6.5 TEST SETUP

Page 28 of 74

6.6 TEST RESULTS

EUT:	Smart phone	Model Name:	A53
Temperature:	26°C	Relative Humidity:	53 %
Pressure:	1012 hPa	Test Voltage:	DC 3.87V (NORMAL)
Test Mode:	Mode 1/2/3		

Test data reference attachment

7. SPURIOUS EMISSIONS - RX

7.1 APPLIED PROCEDURES / LIMIT

Clause	Test Item	Frequency(MHz)	Limit	
4.3.5.4	Spurious emissions	30-1000	-57dBm	
	(radiated)	Above 1000	-47dBm	

7.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

7.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.For above 1G, using Horn antenna .
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

7.5 TEST SETUP LAYOUT

This test setup layout is the same as that shown in section 5.4.

7.6 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously receiving mode.

NTEK 北测[®] Page 30 of 74

Report No.: STR221216001005E

7.7 TEST RESULTS

EUT :	Smart phone	Model Name :	A53
Temperature :	26°C	Relative Humidity :	53 %
Pressure :	1012 hPa	Test Power :	DC 3.87V (NORMAL)
Test Mode :	RX-802.11n20 mode		

Below 1G :

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	47.07	-86.33	18.60	-67.73	-57	-10.73	peak
V	60.62	-78.94	9.62	-69.32	-57	-12.32	peak
V	126.97	-77.00	10.28	-66.72	-57	-9.72	peak
V	175.86	-76.26	12.06	-64.20	-57	-7.20	peak
V	245.09	-77.03	11.56	-65.47	-57	-8.47	peak
V	380.54	-77.83	14.99	-62.84	-57	-5.84	peak
Н	60.17	-73.72	9.91	-63.81	-57	-6.81	peak
Н	101.31	-76.03	10.70	-65.33	-57	-8.33	peak
Н	182.67	-76.92	12.77	-64.15	-57	-7.15	peak
Н	211.76	-74.57	12.34	-62.23	-57	-5.23	peak
Н	402.63	-85.38	15.31	-70.07	-57	-13.07	peak
Н	568.58	-87.09	18.55	-68.54	-57	-11.54	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Above 1G :

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	1210.10	-81.47	11.69	-69.78	-47	-22.78	peak
V	1711.27	-82.04	13.80	-68.24	-47	-21.24	peak
V	2212.06	-86.27	18.53	-67.74	-47	-20.74	peak
V	2646.92	-89.43	19.39	-70.04	-47	-23.04	peak
V	8461.33	-97.55	26.28	-71.27	-47	-24.27	peak
Н	1210.45	-78.78	12.08	-66.70	-47	-19.70	peak
Н	1710.66	-78.96	13.64	-65.32	-47	-18.32	peak
Н	2210.53	-84.44	18.77	-65.67	-47	-18.67	peak
Н	3835.43	-91.43	18.93	-72.50	-47	-25.50	peak
Н	6708.69	-98.65	23.64	-75.01	-47	-28.01	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

8. ADJACENT CHANNEL SELECTIVITY

NTEK 北测

8.1 APPLICABILITY

This requirement applies to channelized Category 1 receivers..

8.2 LIMITS

The adjacent channel selectivity of the equipment under specified conditions shall not be less than -30 dBm + k.

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

8.3 METHODS OF MEASUREMENT

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.

Signal generator B shall be unmodulated and shall be adjusted to the adjacent channel centre frequency immediately

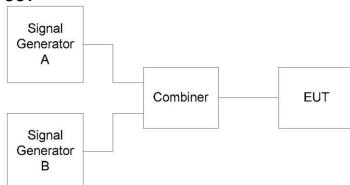
above that of the wanted signal.

Initially signal generator B shall be switched off and using signal generator A the level that still gives sufficient

response shall be established. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurements shall be repeated with signal generator B unmodulated and adjusted to the adjacent channel centre immediately below the wanted signal.

The adjacent channel selectivity shall be recorded for the upper and lower adjacent channels as the level in dBm of the unwanted signal.


For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres.

In this case, the adjacent selectivity shall be recorded as the level in dBm of lowest level of the unwanted signal

(generator B) resulting in a non-read of the tag.

Report No.: STR221216001005E

8.4 TEST SETUP LAYOUT

Page 32 of 74

8.5 TEST RESULTS

EUT :	Smart phone	Model Name :	A53
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	N/A
Test Mode :	N/A		

Not applicable.

9. BLOCKING OR DESENSITIZATION

9.1 APPLICABILITY

This requirement applies to all Category 1, 2, and 3 SRD communication media receivers.

9.2 LIMITS

The blocking level, for any frequency within the specified ranges, shall not be less than the values given in table 6, except at frequencies on which spurious responses are found.

Receiver category	Limit
1	-30 dBm + k
2	-45 dBm + k
3	-60 dBm + k

The correction factor, k, is as follows:

 $k = \Box$ -20log f -10log BW

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

9.3 TEST PROCEDURES

This measurement shall be conducted under normal conditions.

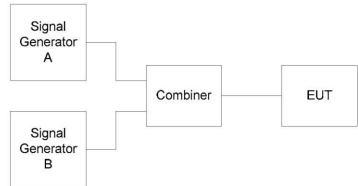
Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or

b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.Signal generator B shall be unmodulated and shall be adjusted to a test frequency at approximately 10 times, 20 times and 50 times of the occupied bandwidth above upper band edge of occupied bandwidth.Initially signal generator B shall be switched off and using signal generator A the level which still gives sufficient response shall be established. The output level of generator A shall then be increased by 3 dB.Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.


The measurement shall be repeated with the test frequency for signal generator B at 10 times, 20 times and 50 times of the occupied bandwidth below the lower band edge of the occupied bandwidth The blocking or desensitization shall be recorded as the level in dBm of lowest level of the unwanted signal(generator B).

For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres. In this case, the blocking or desensitization shall be recorded as the ratio in dB of lowest level of the unwanted signal (generator B) resulting in a non-read of the tag. to the declared sensitivity of the receiver +3 dB.

Page 34 of 74

Report No.: STR221216001005E

8.4 TEST SETUP LAYOUT

NTEK LM[®] Page 35 of 74

9.4 TEST RESULTS

EUT:	Smart phone	Model Name :	A53
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	RX		

802.11a

5745 MHz

Flow= 5736.745MHz; Fhigh= 5753.203MHz, occupied bandwidth=16.458MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.47	-	-
3	10 times lower band edge of the occupied bandwidth	5572.165	-	-29.81	-87.35(Note1)
	20 times lower band edge of the occupied bandwidth	5407.585	-	-30.92	-87.35
	50 times lower band edge of the occupied bandwidth	4913.845	-	-29.77	-87.35
	10 times upper band edge of the occupied bandwidth	5917.783	-	-29.81	-87.35
	20 times upper band edge of the occupied bandwidth	6082.363	-	-29.6	-87.35
	50 times upper band edge of the occupied bandwidth	6576.103	-	-32.89	-87.35

Note1:

The limit : -60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.35

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

Report No.: STR221216001005E

802.11a

5825 MHz

Flow= 5816.728MHz; Fhigh= 5833.246MHz, occupied bandwidth=16.518MHz

Page 36 of 74

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	\geq Limit(dB)
	5825 MHz	5745	-65.47	-	-
3	10 times lower band edge of the occupied bandwidth	5651.548	-	-30.51	-87.49(Note1)
	20 times lower band edge of the occupied bandwidth	5486.368	-	-31.91	-87.49
	50 times lower band edge of the occupied bandwidth	4990.828	-	-31.89	-87.49
	10 times upper band edge of the occupied bandwidth	5998.426	-	-29.54	-87.49
	20 times upper band edge of the occupied bandwidth	6163.606	-	-32.93	-87.49
	50 times upper band edge of the occupied bandwidth	6659.146	-	-32.23	-87.49

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.49

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

NTEK 比测[®] Page 37 of 74

Report No.: STR221216001005E

802.11n20

5745 MHz

Flow= 5736.149MHz; Fhigh= 5753.799MHz, occupied bandwidth=17.65MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5559.649	-	-32.89	-87.65(Note1)
	20 times lower band edge of the occupied bandwidth	5383.149	-	-31.04	-87.65
3	50 times lower band edge of the occupied bandwidth	4853.649	-	-31.31	-87.65
	10 times upper band edge of the occupied bandwidth	5930.299	-	-32.22	-87.65
	20 times upper band edge of the occupied bandwidth	6106.799	-	-31.9	-87.65
	50 times upper band edge of the occupied bandwidth	6636.299	_	-29.5	-87.65

Note1 :

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.65

Where:

- f is the frequency in GHz;

Report No.: STR221216001005E

802.11n20

5825 MHz

Flow= 5816.137MHz; Fhigh= 5833.835MHz, occupied bandwidth=17.698MHz

Page 38 of 74

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	\geq Limit(dB)
	5825 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5639.157	-	-31.87	-87.67(Note1)
	20 times lower band edge of the occupied bandwidth	5462.177	-	-32.85	-87.67
3	50 times lower band edge of the occupied bandwidth	4931.237	-	-29.53	-87.67
	10 times upper band edge of the occupied bandwidth	6010.815	-	-31.18	-87.67
	20 times upper band edge of the occupied bandwidth	6187.795	-	-31.75	-87.67
	50 times upper band edge of the occupied bandwidth	6718.735	-	-31.84	-87.67

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.67

Where:

- f is the frequency in GHz;

Report No.: STR221216001005E

802.11n40

5755 MHz

Flow= 5736.922MHz; Fhigh= 5773.038MHz, occupied bandwidth=36.116MHz

Page 39 of 74

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5755 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5375.762	-	-32.95	-90.78(Note1)
	20 times lower band edge of the occupied bandwidth	5014.602	-	-29.85	-90.78
3	50 times lower band edge of the occupied bandwidth	3931.122	-	-32.53	-90.78
	10 times upper band edge of the occupied bandwidth	6134.198	-	-29.7	-90.78
	20 times upper band edge of the occupied bandwidth	6495.358	-	-30.03	-90.78
	50 times upper band edge of the occupied bandwidth	7578.838	-	-29.68	-90.78

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.78

Where:

- f is the frequency in GHz;

Report No.: STR221216001005E

802.11n40

5795 MHz

Flow= 5777.93MHz; Fhigh= 5814.142MHz, occupied bandwidth=36.212MHz

Page 40 of 74

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5415.81	-	-30.25	-90.85(Note1)
	20 times lower band edge of the occupied bandwidth	5053.69	-	-30.56	-90.85
3	50 times lower band edge of the occupied bandwidth	3967.33	-	-30	-90.85
	10 times upper band edge of the occupied bandwidth	6176.262	-	-31.13	-90.85
	20 times upper band edge of the occupied bandwidth	6538.382	-	-32.01	-90.85
	50 times upper band edge of the occupied bandwidth	7624.742	-	-31.58	-90.85

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.85

Where:

- f is the frequency in GHz;

Report No.: STR221216001005E

802.11ac80

5775 MHz

Flow= 5737.164MHz; Fhigh= 5813.06MHz, occupied bandwidth=75.896MHz

Page 41 of 74

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5775	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	4978.204	-	-30.17	-94.06(Note1)
	20 times lower band edge of the occupied bandwidth	4219.244	-	-30.71	-94.06
3	50 times lower band edge of the occupied bandwidth	1942.364	-	-30.16	-94.06
	10 times upper band edge of the occupied bandwidth	6572.02	-	-30.37	-94.06
	20 times upper band edge of the occupied bandwidth	7330.98	-	-32.85	-94.06
	50 times upper band edge of the occupied bandwidth	9607.86	-	-29.69	-94.06

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

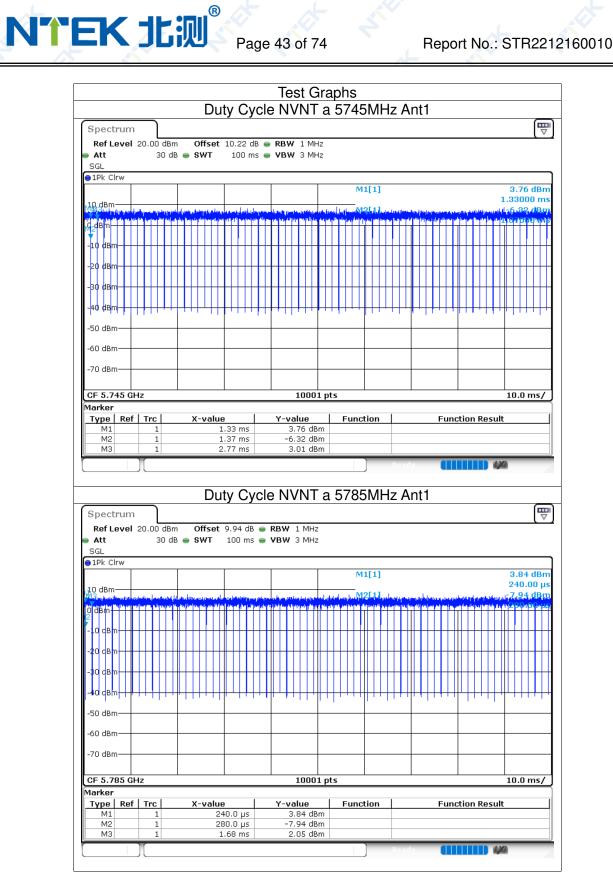
 $k = -20 \log f - 10 \log BW$

k = -34.06

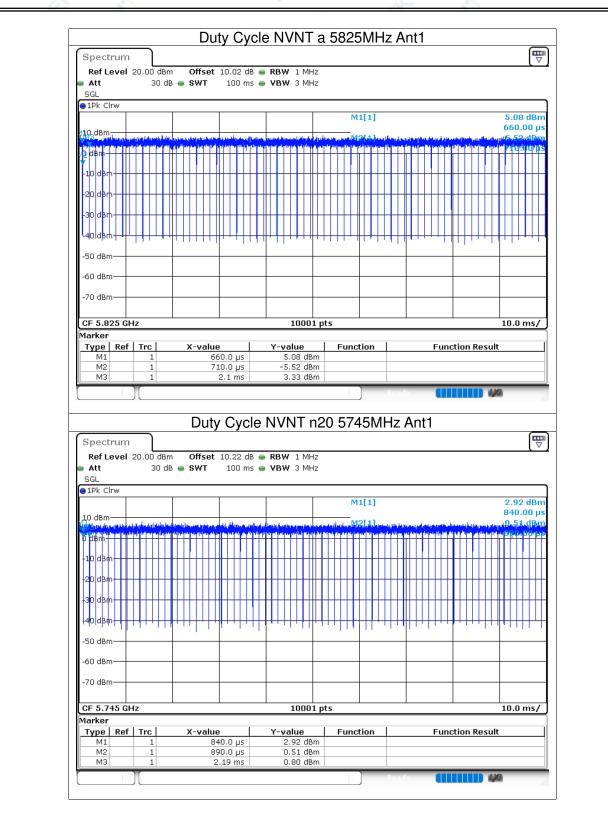
Where:

- f is the frequency in GHz;

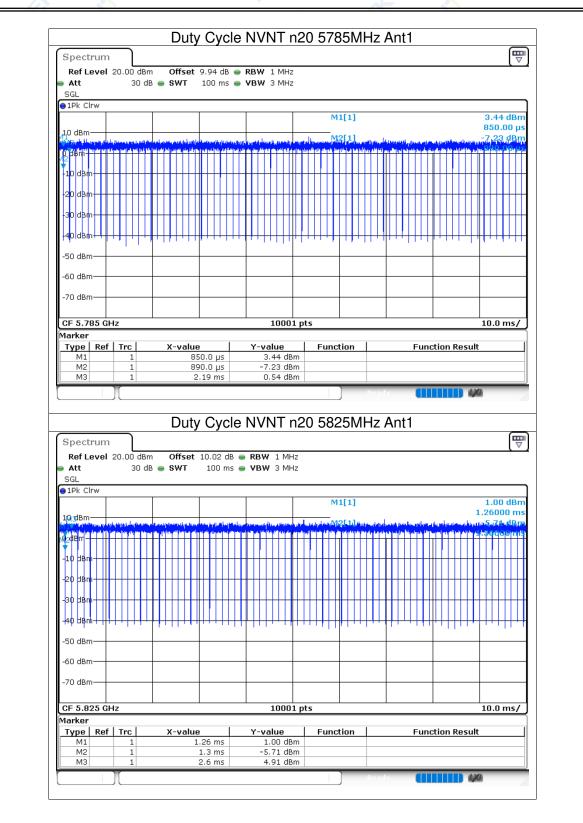
NTEK LM[®] Page 42 of 74

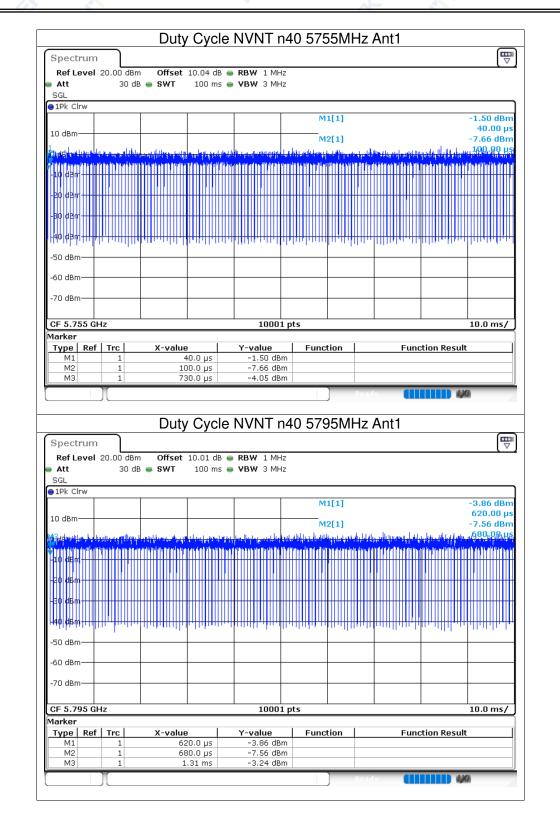

Report No.: STR221216001005E

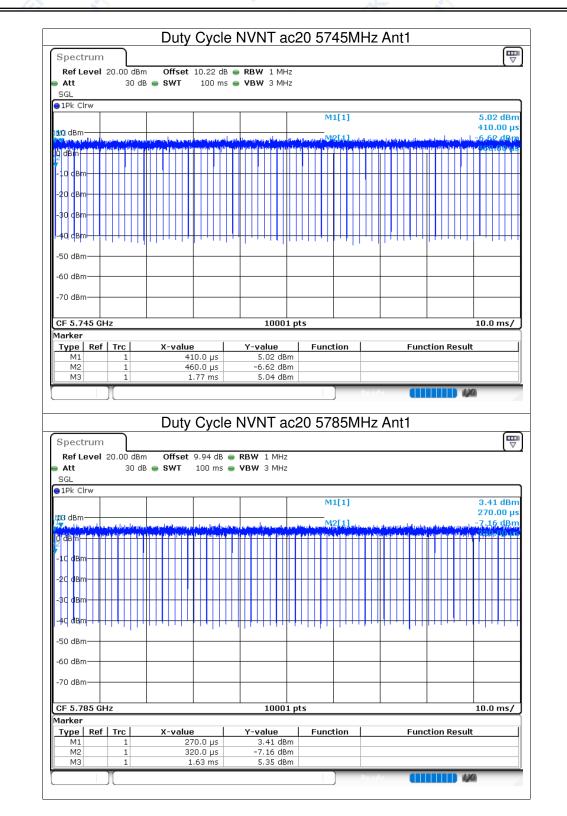
10. TEST RESULTS

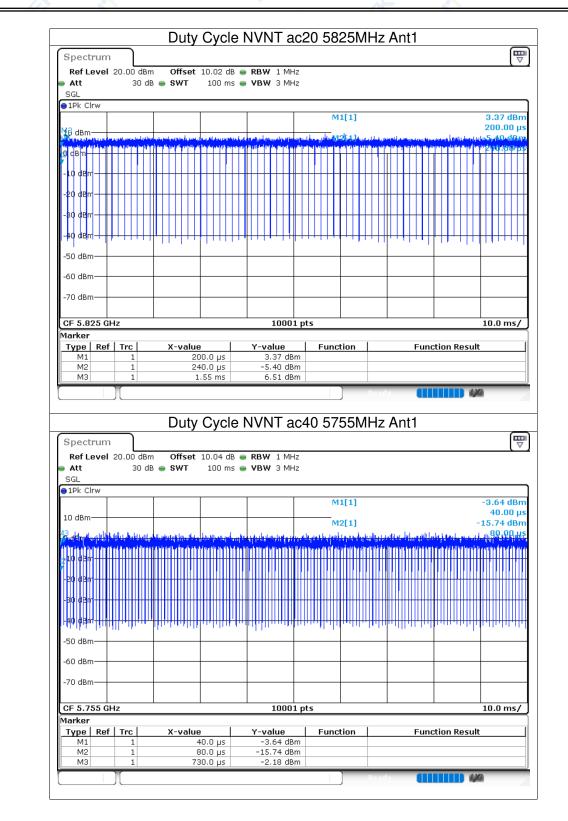

10.1 DUTY CYCLE

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	а	5745	Ant1	97.68	0.1	0.71
NVNT	а	5785	Ant1	97.63	0.1	0.71
NVNT	а	5825	Ant1	97.64	0.1	0.72
NVNT	n20	5745	Ant1	97.45	0.11	0.77
NVNT	n20	5785	Ant1	97.45	0.11	0.77
NVNT	n20	5825	Ant1	97.47	0.11	0.77
NVNT	n40	5755	Ant1	92.72	0.33	1.59
NVNT	n40	5795	Ant1	92.77	0.33	1.59
NVNT	ac20	5745	Ant1	97.49	0.11	0.76
NVNT	ac20	5785	Ant1	97.51	0.11	0.76
NVNT	ac20	5825	Ant1	97.5	0.11	0.76
NVNT	ac40	5755	Ant1	95.18	0.21	1.54
NVNT	ac40	5795	Ant1	95.18	0.21	1.54
NVNT	ac80	5775	Ant1	90.83	0.42	3.13

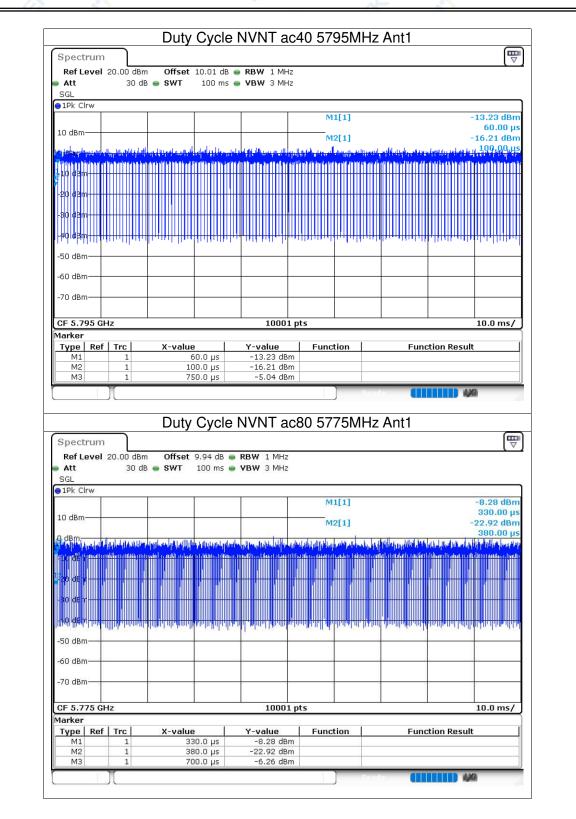

Page 43 of 74


NTEK 北视® Page 44 of 74


NTEK 北视® Page 45 of 74


NTEK 北视® Page 46 of 74

NTEK 北视® Page 47 of 74



Report No.: STR221216001005E

Page 48 of 74

Report No.: STR221216001005E

Page 49 of 74

Report No.: STR221216001005E

10.2 -6DB EMISSION BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	а	5745	Ant1	15.42	0.5	Pass
NVNT	а	5785	Ant1	16.32	0.5	Pass
NVNT	а	5825	Ant1	12.96	0.5	Pass
NVNT	n20	5745	Ant1	14.4	0.5	Pass
NVNT	n20	5785	Ant1	11.97	0.5	Pass
NVNT	n20	5825	Ant1	15.06	0.5	Pass
NVNT	n40	5755	Ant1	35.1	0.5	Pass
NVNT	n40	5795	Ant1	35.1	0.5	Pass
NVNT	ac20	5745	Ant1	17.58	0.5	Pass
NVNT	ac20	5785	Ant1	14.19	0.5	Pass
NVNT	ac20	5825	Ant1	14.13	0.5	Pass
NVNT	ac40	5755	Ant1	34.44	0.5	Pass
NVNT	ac40	5795	Ant1	25.08	0.5	Pass
NVNT	ac80	5775	Ant1	75.12	0.5	Pass

Page 50 of 74

Page 51 of 74

NTEK 北视[®] Page 52 of 74

Report No.: STR221216001005E

		El	BW N	VVNT a 5	825MH				
Spectrum									(
Ref Level			02 dB 🥌	RBW 100 kH	z	N. CONTRACT			
Att	30 dB	3 SWT 75	i.9 µs 🥯	VBW 300 kH	z Mode A	uto FFT			
SGL Count 1 1Pk Max	00/100								
JIPK Max		<u> </u>		T T	M1[1]			0.90 d
					WIT	-1		5.8	237110 0
10 dBm				M1	M2[1]			-4.01 di
0 dBm		64.2					110	5.8	186400 G
o ubili		- These	land	monadary /	whenterman	annumber	INIS		
-10 dBm		mannon	00.1	W N			war when		
				1 ľ			4		
-20 dBm	(+			4	MARCHINE	
ARABAYORA	anno							www.	Malan
Machilde Hara									
-40 dBm				_				-	
-50 dBm				-				-	
-60 dBm									
-70 dBm									
CF 5.825 GH	17			1001	nts			- Cro	n 30.0 MH
der 5.825 GF Marker	14			1001				oha	n 30.0 MF
Type Ref		X-value	1	Y-value	Functio	nn I	Euro	ction Resu	It
M1	1	5.823711	GHz	0.90 dBm			Fun	COULTEST	
M2	1	5.81864		-4.01 dBm					
MЗ	1	5.8316	GHz	-5.07 dBm	1				
	л	EB	WN	VNT n20		Hz Ant	••• 1	IIIIIID 4) ()
Spectrum					5745MI	Hz Ant	:1	INNING 4	jila (
Ref Level		n Offset 10.3	22 dB 🥃	RBW 100 kH	5745MI	N. CONSTRUCT	1	(11111) 4	
Ref Level Att	20 dB	n Offset 10.3	22 dB 🥃		5745MI	N. CONSTRUCT	1		(M)
Ref Level Att SGL Count 1	20 dB	n Offset 10.3	22 dB 🥃	RBW 100 kH	5745MI	N. CONSTRUCT	1		
Ref Level Att	20 dB	n Offset 10.3	22 dB 🥃	RBW 100 kH	5745MI z z Mode A	uto FFT	1		
Ref Level Att SGL Count 1 1Pk Max	20 dB	n Offset 10.3	22 dB 🥃	RBW 100 kH	5745MI	uto FFT	× (1)	5.7	0.70 di
Ref Level Att SGL Count 1	20 dB	n Offset 10.3	22 dB 🥃	RBW 100 kH	5745MI z z Mode A	uto FFT	.1		0.70 di 437110 G -5.11 di
Ref Level Att SGL Count 1 1Pk Max	20 dB	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm	20 dB	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di
Ref Level Att SGL Count 1 1Pk Max 10 dBm	20 dB	n Offset 10.3	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	5745MI z Mode A m1[uto FF T		5.7	0.70 di 437110 G -5.11 di
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -10 dBm	20 dE	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di 381000 G
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -10 dBm	20 dE	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di 381000 G
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -10 dBm	20 dE	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di 381000 G
Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm	20 dE	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -10 dBm	20 dE	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di 381000 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm	20 dE	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di 381000 G
Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm	20 dE	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di 381000 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm	20 dE	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di 381000 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm	20 dE	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di 381000 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm	20 dE	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di 381000 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm -50 dBm	20 dE	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FF T		5.7	0.70 di 437110 G -5.11 di 381000 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm -50 dBm	20 de 000/1000	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	 RBW 100 kH VBW 300 kH M1 	2 2 2 3 3 4 5745MI 4 2 3 4 5745MI 4 4 5 7 4 5 7 4 5 4 5 4 5 4 5 4 5 4 5 4	uto FF T		5.7	0.70 dl 437110 C -5.11 dl 381000 C
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -300,dBn/co.ml -50 dBm -60 dBm	20 de 000/1000	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	M1	2 2 2 3 3 4 5745MI 4 2 3 4 5745MI 4 4 5 7 4 5 7 4 5 4 5 4 5 4 5 4 5 4 5 4	uto FF T		5.7	0.70 dl 437110 C -5.11 dl 381000 C
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -60 dBm -70 dBm -70 dBm -70 dBm	20 de 000/1000	n Offset 10.3 3 SWT 75	22 dB 🖷 .9 µs 🖷	M1	2 2 2 3 3 4 5745MI 4 2 3 4 5745MI 4 4 5745MI 4 5745MI 4 5745MI 4 5745MI 4 5745MI 4 5745MI 4 5 7 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	uto FFT 1] 1] Ummulman	Mantmen	5.7	0.70 dl 437110 G -5.11 dl 381000 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -60 dBm -60 dBm -70 dBm	20 de 000/1000	M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	22 dB .9 μs .9 μs	RBW 100 kH VBW 300 kH M1 M2 M2	5745MI	uto FFT 1] 1] Ummulman	Mantmen	5.7	0.70 dl 437110 G -5.11 dl 381000 G
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm	20 de 000/1000	M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M	22 dB .9 μs .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	RBW 100 kH. VBW 300 kH. M1 M1 <td>5745MI</td> <td>uto FFT 1] 1] Ummulman</td> <td>Mantmen</td> <td>5.7</td> <td>0.70 dl 437110 G -5.11 dl 381000 G</td>	5745MI	uto FFT 1] 1] Ummulman	Mantmen	5.7	0.70 dl 437110 G -5.11 dl 381000 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -60 dBm -60 dBm -70 dBm	20 de 000/1000	M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	22 dB .9 μs .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	RBW 100 kH VBW 300 kH M1 M2 M2	5745MI	uto FFT 1] 1] Ummulman	M3 Mon Mueur Fun	5.7	0.70 di 437110 G -5.11 di 381000 G Marright Marright n 30.0 MH It

12

¥

NTEK 北视[®] Page 53 of 74

10 dBm				M1	M2	[1]			37110 0 -5.45 di 86400 0
0 dBm		mannah	inhamb	multing	manna	manha	munum	3.77	80400 0
oo dom	1			Y				1	
	mont		-					WWWWW	ar Woll
-40 dBm							2	2	- C
-50 dBm									
-70 dBm									0
CF 5.785 GHz				1001	nts			Snan	30.0 MH
				and the second	2			100 -	
	Trc 1	X-value 5.78371 5.7786	1 GHz	Y-value -0.02 dBm -5.45 dBm		ion	Fun	ction Result	
Marker Type Ref M1	1	5,78371	.1 GHz 64 GHz	-0.02 dBm	1	ion Pea	Fun	iction Result	
Marker Type Ref M1 M2	1	5.78371 5.7786 5.7906	1 GHz 94 GHz 91 GHz	-0.02 dBn -5.45 dBn -5.49 dBn		Rea	^{tv} (1	ction Result	2
Marker Type Ref M1 M2	1	5.78371 5.7786 5.7906	1 GHz 94 GHz 91 GHz	-0.02 dBm -5.45 dBm		Rea	^{tv} (1	ction Result	<u> </u>
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2 Att	1 1 1 0.00 dBm 20 dB	5.78371 5.7786 5.7906 EI	1 GHz 4 GHz 1 GHz BW N 0.02 dB	-0.02 dBn -5.45 dBn -5.49 dBn	5825M	Rea	^{tv} (1	ction Result	0
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2	1 1 1 0.00 dBm 20 dB	5.78371 5.7786 5.7906 EI	1 GHz 4 GHz 1 GHz BW N 0.02 dB	-0.02 dBm -5.45 dBm -5.49 dBm VNT n20 RBW 100 kH	5825M	Providence in the second secon	^{tv} (1	ction Result	0
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2 Att SGL Count 10 1Pk Max	1 1 1 0.00 dBm 20 dB	5.78371 5.7786 5.7906 EI	1 GHz 4 GHz 1 GHz BW N 0.02 dB	-0.02 dBm -5.45 dBm -5.49 dBm VNT n20 RBW 100 kH	5825M	Providence in the second secon	^{tv} (1		1.43 di
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2 Att SGL Count 10	1 1 1 0.00 dBm 20 dB 00/1000	5.78371 5.7786 5.7906 EI Offset 1 SWT	1 GHz 4 GHz 11 GHz BW Ν ¹ 0.02 dB 75.9 μs	-0.02 dBm -5.45 dBm -5.49 dBm VNT n20 RBW 100 kH VBW 300 kH	z z Mode M1	Hz An Auto FFT	t1	5.82	1.43 dl 37110 C -4.28 dl
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2 Att SGL Count 10 1Pk Max	1 1 1 0.00 dBm 20 dB 00/1000	5.78371 5.7786 5.7906 EI Offset 1 SWT	1 GHz 4 GHz 11 GHz BW Ν ¹ 0.02 dB 75.9 μs	-0.02 dBm -5.45 dBm -5.49 dBm VNT n20 RBW 100 kH VBW 300 kH	z z Mode M1	Hz An Auto FFT	t1	5.82	1.43 di 37110 G
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm	1 1 1 0.00 dBm 20 dB 00/1000	5.78371 5.7786 5.7906 EI Offset 1 SWT	1 GHz 4 GHz 11 GHz BW Ν ¹ 0.02 dB 75.9 μs	-0.02 dBm -5.45 dBm -5.49 dBm VNT n20 RBW 100 kH VBW 300 kH	z z Mode M1	Hz An Auto FFT	^{tv} (1	5.82	1.43 dl 37110 C -4.28 dl
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm	1 1 1 0.00 dBm 20 dB 00/1000	5.78371 5.7786 5.7906 EI Offset 1 SWT	1 GHz 4 GHz 11 GHz BW Ν ¹ 0.02 dB 75.9 μs	-0.02 dBm -5.45 dBm -5.49 dBm VNT n20 RBW 100 kH VBW 300 kH	z z Mode M1	Hz An Auto FFT	t1	5.82	1.43 dl 37110 C -4.28 dl 74400 C
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm	1 1 1 0.00 dBm 20 dB 00/1000	5.78371 5.7786 5.7906 EI Offset 1 SWT	1 GHz 4 GHz 11 GHz BW Ν ¹ 0.02 dB 75.9 μs	-0.02 dBm -5.45 dBm -5.49 dBm VNT n20 RBW 100 kH VBW 300 kH	z z Mode M1	Hz An Auto FFT	t1	5.82	1.43 dl 37110 C -4.28 dl 74400 C
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm	1 1 1 0.00 dBm 20 dB 00/1000	5.78371 5.7786 5.7906 EI Offset 1 SWT	1 GHz 4 GHz 11 GHz BW Ν ¹ 0.02 dB 75.9 μs	-0.02 dBm -5.45 dBm -5.49 dBm VNT n20 RBW 100 kH VBW 300 kH	z z Mode M1	Hz An Auto FFT	t1	5.82	1.43 dl 37110 C -4.28 dl 74400 C
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm	1 1 1 0.00 dBm 20 dB 00/1000	5.78371 5.7786 5.7906 EI Offset 1 SWT	1 GHz 4 GHz 11 GHz BW Ν ¹ 0.02 dB 75.9 μs	-0.02 dBm -5.45 dBm -5.49 dBm VNT n20 RBW 100 kH VBW 300 kH	z z Mode M1	Hz An Auto FFT	t1	5.82	1.43 dl 37110 C -4.28 dl 74400 C
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	1 1 1 0.00 dBm 20 dB 00/1000	5.78371 5.7786 5.7906 EI Offset 1 SWT	1 GHz 4 GHz 11 GHz BW Ν ¹ 0.02 dB 75.9 μs	-0.02 dBm -5.45 dBm -5.49 dBm VNT n20 RBW 100 kH VBW 300 kH	z z Mode M1	Hz An Auto FFT	t1	5.82	1.43 dl 37110 C -4.28 dl 74400 C
Marker Type Ref M1 M2 M3 Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm	1 1 1 0.00 dBm 20 dB 00/1000	5.78371 5.7786 5.7906 EI Offset 1 SWT	1 GHz 4 GHz 11 GHz BW Ν ¹ 0.02 dB 75.9 μs	-0.02 dBm -5.45 dBm -5.49 dBm VNT n20 RBW 100 kH VBW 300 kH	z z Mode M1	Hz An Auto FFT	t1	5.82	1.43 dl 37110 C -4.28 dl 74400 C

NTEK 北视[®] Page 54 of 74

	_	E		VNT n40	10100		LI		~
Spectrum]								[5
Ref Level 20				RBW 100 k		an an anna an			
Att	20 dB	SWT 1	.32.7 µs 🧉	VBW 300 k	Hz Mode	Auto FFT			
SGL Count 100 1Pk Max	JO/1000								
JIPK Max	- Î			T	N	11[1]			-2.58 dB
10 10-						11[1]		5.7	7524830 Gł
10 dBm					N	12[1]			-7.17 dB
0 dBm	M2			M1	CA (2) 24	1	M		7374200 GI
	Y	1114	1. Marcharley	alf mburbarbury	melinhal	Muchishindown	1	2.1	
-10 dBm	P	AN CONTRACTOR					Start Hat Had based based based based based based based based by the second second second second second second		
-20 dBm			-		WC.				
	. 1							May .	00 2022 P
130 ABOUNT ANY	Walland					1		moun	Mothurhyhaddu
-40 dBm				-				100	
-50 dBm							·		
-60 dBm									
-70 dBm			1	-			-		
CF 5.755 GHz	i.			1001	L pts			Spa	n 60.0 MH
Marker	T [V I-	1	V	1 -				.14
Type Ref M1	1	X-value 5.75248		<u>Y-value</u> -2.58 dB		tion	Fund	tion Resu	IIC
M2	1		12 GHz	-7.17 dB	3m				
M3	1	5.7725	52 GHz	-6.90 dB	3m				
)	·] Pen	i al)A
		F		VNT n4() 57951) Pen	•• ••• +1		NA.
		E	BW N'	VNT n4() 57951) MHz An	• 💷 t1)A)
Spectrum		E	BW N'	VNT n4() 57951) MHz An	1		
Ref Level 20		Offset 1	0.01 dB 🦷	RBW 100 k	Hz		t1		, L
Ref Level 20 Att	20 dB	Offset 1	0.01 dB 🦷		Hz		t1		
Ref Level 20	20 dB	Offset 1	0.01 dB 🦷	RBW 100 k	Hz		t1		
Ref Level 20 Att SGL Count 100	20 dB	Offset 1	0.01 dB 🦷	RBW 100 k	Hz Hz Mode		t1		
Ref Level 20 Att SGL Count 100 1Pk Max	20 dB	Offset 1	0.01 dB 🦷	RBW 100 k	Hz Hz Mode	• Auto FFT	t1	5.7	-2.60 dB 7999750 GF
Ref Level 20 Att SGL Count 100	20 dB	Offset 1	0.01 dB 🦷	RBW 100 k	Hz Hz Mode	• Auto FFT 11[1] 12[1]	t1		-2.60 dB 7999750 GF -7.58 dB
Ref Level 20 Att SGL Count 100 1Pk Max	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Hz Mode M M1	Auto FFT			-2.60 dB 7999750 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Hz Mode M M1	• Auto FFT 11[1] 12[1]			-2.60 dB 7999750 GF -7.58 dB
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k	Hz Hz Mode M M1	Auto FFT			-2.60 dB 7999750 GF -7.58 dB
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Hz Mode M M1	Auto FFT		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Hz Mode M M1	Auto FFT		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Hz Mode M M1	Auto FFT		5.7	-2.60 dB 7999750 GF -7.58 dB
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Hz Mode M M1	Auto FFT		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Hz Mode M M1	Auto FFT		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Hz Mode M M1	Auto FFT		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Hz Mode M M1	Auto FFT		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -60 dBm	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Hz Mode M M1	Auto FFT		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20 dB 00/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Hz Mode M M1	Auto FFT		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20 dB 30/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k	Hz Mode	Auto FFT		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20 dB 30/1000	Offset 1 SWT 1	0.01 dB 🖷 32.7 µs 🖷	RBW 100 k VBW 300 k	Hz Mode	Auto FFT		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	20 dB 30/1000	Offset 1 SWT 1	0.01 dB 32.7 μs	RBW 100 k VBW 300 k	Hz Mode	Auto FFT 11[1] 12[1] 12[1]		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm Type Ref	20 dB 30/1000	Offset 1 SWT 1	0.01 dB 32.7 μs 	RBW 100 k	Hz Mode	Auto FFT 11[1] 12[1] 12[1]		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	20 dB 30/1000	Offset 1 SWT 1	0.01 dB 32.7 μs	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT 11[1] 12[1] 12[1]		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -50 dBm -60 dBm -70 dBm	20 dB 30/1000	Offset 1 SWT 1	0.01 dB 32.7 μs	RBW 100 k VBW 300 k	Hz Hz Mode	Auto FFT 11[1] 12[1] 12[1]		5.7	-2.60 dB 7999750 GF -7.58 dB 7774200 GF

NTEK 北视[®] Page 55 of 74

Report No.: STR221216001005E

Spectrum		VNT ac20 57	101111271			ſ
Ref Level 20.00 Att 3	30 dB SWT 75.9 µs	 RBW 100 kHz VBW 300 kHz 	Mode Auto FFT			
SGL Count 100/10	10					
1Pk Max	<u> </u>	- i i i	A41543			2.32 dE
			M1[1]			2.32 at 5420 G
10 dBm			M2[1]			7.99 dE
0 dBm		M1			5.736	1800 G
o doni	M2 Torrage and have have	wanter have been potent	and maken by and and	mannen	2	
-10 dBm	There a company and a company of the		and the second second	manund		
oo doo					5.1	
-20 dBm	1				Your IV	
-39 dBranner	utr .				Marshar	th On the A
					17	and all A
-40 dBm				-		
-50 dBm						
-60 dBm				-		
-70 dBm					-	
						Alex 1 mater
CF 5.745 GHz Marker		1001 pts			Span 3	80.0 MH
M2 1 M3 1		-2.32 dBm -7.99 dBm -7.51 dBm				
Π						_
	FBW N	VNT ac20 57	785MHz A	nt1		
	EBW N	VNT ac20 57	785MHz A	nt1		G
Spectrum			785MHz A	nt1		["
Ref Level 20.00	dBm Offset 9.94 dB •	RBW 100 kHz		nt1		[¹
Ref Level 20.00 Att 3	dBm Offset 9.94 dB 30 dB SWT 75.9 µs (• RBW 100 kHz	785MHz A	nt1		ſ
Ref Level 20.00 Att 3 SGL Count 100/10	dBm Offset 9.94 dB 30 dB SWT 75.9 µs (RBW 100 kHz		nt1		["
Ref Level 20.00 Att 3 SGL Count 100/10	dBm Offset 9.94 dB 30 dB SWT 75.9 µs (RBW 100 kHz	lode Auto FFT	nt1		
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 3	dBm Offset 9.94 dB 30 dB SWT 75.9 µs (RBW 100 kHz		nt1		0.73 dE
Ref Level 20.00 Att 3 SGL Count 100/10	dBm Offset 9.94 dB 30 dB SWT 75.9 µs (RBW 100 kHz VBW 300 kHz M	lode Auto FFT	nt1	5.783	0.73 dE 7110 G 6.42 dE
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 3 10 dBm 0	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	Node Auto FFT	M3	5.783	0.73 dE 7110 G 6.42 dE
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 3 10 dBm 0	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]		5.783	0.73 dE 7110 G 6.42 dE
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 3 10 dBm 0 -10 dBm -10 dBm	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 3 10 dBm 0 -10 dBm	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 3 10 dBm 0 -10 dBm	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 3 10 dBm - -10 dBm - -20 dBm - -30 dBm -	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 3	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 3 10 dBm 0 -10 dBm	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 3 10 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm -	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 3 10 dBm - -10 dBm - -20 dBm - -30 dBm -	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 3 10 dBm - 0 dBm - -20 dBm - -20 dBm - -30 dBm - -40 dBm - -50 dBm -	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 3 10 dBm - 0 dBm - -20 dBm - -20 dBm - -30 dBm - -40 dBm - -50 dBm -	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 3 10 dBm - 0 dBm - -20 dBm - -20 dBm - -40 dBm - -50 dBm - -60 dBm -	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	M1	N1[1] M2[1]	M3	5.783 5.777	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 3 10 dBm - 0 dBm - -10 dBm - -20 dBm - -40 dBm - -50 dBm - -60 dBm - -70 dBm - -70 dBm - -70 dBm - -70 dBm -	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 0	RBW 100 kHz VBW 300 kHz M1	N1[1] M2[1]	M3	5.783 5.777	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 3 10 dBm 0 -10 dBm -0 -20 dBm -0 -50 dBm -0 -60 dBm -0 -70 dBm -0 -70 dBm -0 -70 dBm -0	dBm Offset 9.94 dB 30 dB SWT 75.9 μs 0 M2 M2 M2 M2 M2 M3 M3 M3 M3 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	RBW 100 kHz VBW 300 kHz M1 M2 M2 M3 M3 M4 <td>Iode Auto FFT M1[1] M2[1] Multi-upple Interview</td> <td></td> <td>5.783 5.777</td> <td>0.73 dE 7110 G 6.42 dE 4400 G</td>	Iode Auto FFT M1[1] M2[1] Multi-upple Interview		5.783 5.777	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -40 dBm - -50 dBm -	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 00 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	M1	N1[1] M2[1]		5.783 5.777	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 100/10 IPk Max 100/10 IPk Max 100/10 IPk Max 100/10 IO dBm	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 00 M2 ммм ммм ммм ммм ммм ммм ммм	RBW 100 kHz VBW 300 kHz M1 M1 M4 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M2 M3 M3 M3 M3 M3 M3 M3 M3 M4 M3 M3 M4 M3 M4 M3 M4 M4 <td>Iode Auto FFT M1[1] M2[1] Multi-upple Interview</td> <td></td> <td>5.783 5.777</td> <td>0.73 dE 7110 G 6.42 dE 4400 G</td>	Iode Auto FFT M1[1] M2[1] Multi-upple Interview		5.783 5.777	0.73 dE 7110 G 6.42 dE 4400 G
Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 3 10 dBm - 0 dBm - -20 dBm - -20 dBm - -30 dBm - -60 dBm - -60 dBm - -70 dBm -	dBm Offset 9.94 dB 30 dB SWT 75.9 µs 00 M2 ммм ммм ммм ммм ммм ммм ммм	RBW 100 kHz VBW 300 kHz M1 M1 M00 kHz M1 M00 kHz M1 M00 kHz M1 M1 M00 kHz M1 M00 kHz M1 M2 M1 M2 M3 M4 M3 M4 M3 M4 M3 M3 M4 M3 M4 M4 M3 M4 M4 M4 M4 M4 M4 M4	Iode Auto FFT M1[1] M2[1] Multi-upple Interview	Func	5.783 5.777	0.73 dE 7110 G 6.42 dE 4400 G

S.C.

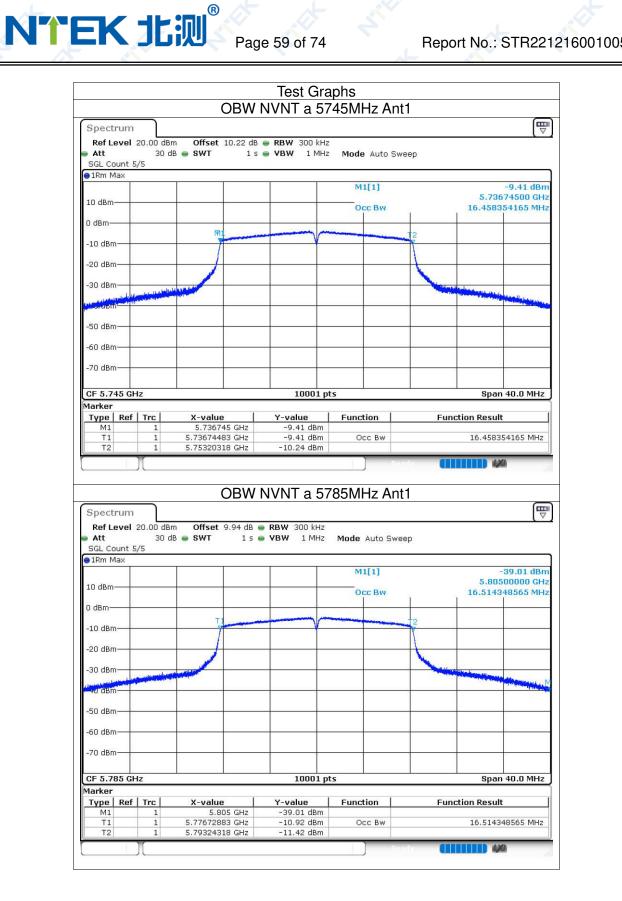
Report No.: STR221216001005E

Spectrum Ref Level 20.00				5825MH		
)					['
Att	dBm Offse	et 10.02 dB	• RBW 100 kH:	2		
	30 dB SWT	75.9 µs	VBW 300 kH:	Mode Auto	FFT	
SGL Count 100/1	00					
●1Pk Max		T				1.04
				M1[1]		1.06 di 5.8262290 G
10 dBm				M1 M2[1]		-4.86 di
		1973		TWIT .		5 8187300 G
0 dBm		manne	A MANNALAM I	mater almost	when han the	
-10 dBm	Manana	municio	Mara Contra la	1 10 MOD - HU	an more sile when	n
20.0011			1			
-20 dBm	- surf					<u> </u>
1200 de Alexanne	and					Moundanso
Gaorden Assance						a a a a a a a a a a a a a a a a a a a
-40 dBm						
-40 ubiii						
-50 dBm						
-60 dBm						
-70 dBm		-				3
CF 5.825 GHz			1001 p	its		Span 30.0 MH
Marker				7		
Type Ref Trc			Y-value	Function	Fu	nction Result
		26229 GHz	1.06 dBm -4.86 dBm			
		33286 GHz	-4.59 dBm			
			/NT ac40	5755MH	z Anti	
Spectrum	1		VINT ac40	5755MH	z Ant1	ſ
Spectrum					z Anti	['
Ref Level 20.00	0 dBm Offse	et 10.04 dB 📢	• RBW 100 kH:	2	Service.	[
Ref Level 20.00	D dBm Offse 30 dB SWT	et 10.04 dB 📢		2	Service.	[
Ref Level 20.00 Att SGL Count 100/1	D dBm Offse 30 dB SWT	et 10.04 dB 📢	• RBW 100 kH:	2	Service.	[1
Ref Level 20.00 Att SGL Count 100/1	D dBm Offse 30 dB SWT	et 10.04 dB 📢	• RBW 100 kH:	2	Service.	-4.82 dt
Ref Level 20.00 Att SGL Count 100/10 1Pk Max	D dBm Offse 30 dB SWT	et 10.04 dB 📢	• RBW 100 kH:	2 2 Mode Auto	Service.	
Ref Level 20.00 Att SGL Count 100/10 1Pk Max	D dBm Offse 30 dB SWT	et 10.04 dB 📢	• RBW 100 kH:	2 2 Mode Auto	Service.	-4.82 dt 5.7599750 G -9.12 dt
Ref Level 20.00 Att SGL Count 100/11 1Pk Max 10 dBm	D dBm Offse 30 dB SWT	et 10.04 dB 📢	• RBW 100 kH:	2 Mode Auto M1[1]	Service.	-4.82 df 5.7599750 G
Ref Level 20.00 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm	D dBm Offse 30 dB SWT	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/11 1Pk Max 10 dBm	D dBm Offse 30 dB SWT	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/11 IPk Max 10 dBm 0 dBm -10 dBm	D dBm Offse 30 dB SWT	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm	D dBm Offse 30 dB SWT	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm Offse 30 dB SWT 00	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm Offse 30 dB SWT 00	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm Offse 30 dB SWT 00	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offse 30 dB SWT 00	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offse 30 dB SWT 00	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0 dBm Offse 30 dB SWT 00	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offse 30 dB SWT 00	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0 dBm Offse 30 dB SWT 00	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/11 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0 dBm Offse 30 dB SWT 00	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1]	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/11 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0 dBm Offse 30 dB SWT 00	at 10.04 dB 132.7 μs	RBW 100 kHz	2 Mode Auto M1[1] M2[1] M2 M1 M2 M2 M1 M2 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/11 SGL Count 100/11 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	0 dBm Offse 30 dB SWT 00	at 10.04 dB 132.7 μs	RBW 100 kH; VBW 300 kH;	2 Mode Auto M1[1] M2[1] M2 M1 M2 M2 M1 M2 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	FFT	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	D dBm Offse 30 dB SWT 00	et 10.04 dB 132.7 μs	RBW 100 kH2 VBW 300 kH2	2 Mode Auto M1[1] M2[Manada Janana M	-4.82 dl 5.7599750 G -9.12 dl 5.7374200 G 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Ref Level 20.00 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	D dBm Offse 30 dB SWT 00 M12 M12 M12 M12 M12 M12 M12 M12	et 10.04 dB 132.7 µs	RBW 100 kH; VBW 300 kH;	Mode Auto	Manada Janana M	-4.82 dt 5.7599750 G -9.12 dt 5.7374200 G
Ref Level 20.00 Att SGL Count 100/11 SGL Count 100/11 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	0 dBm Offse 0 dBm Offse 00 12 12 1 5.75 X-va 1 5.75	et 10.04 dB 132.7 μs	RBW 100 kH2 VBW 300 kH2	2 Mode Auto M1[1] M2[Manada Janana M	-4.82 dl 5.7599750 G -9.12 dl 5.7374200 G 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Ref Level 20.00 Att SGL Count 100/11 SGL Count 100/11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 5.755 GHz Marker Type Ref Trc M1	20 dBm Offse 30 dB SWT 00 M12 M12 M12 M12 M12 M12 M12 M12	et 10.04 dB 132.7 µs 	RBW 100 kHz VBW 300 kHz VBW 300 kHz Image: state	Mode Auto	Manada Janana M	-4.82 dl 5.7599750 G -9.12 dl 5.7374200 G 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

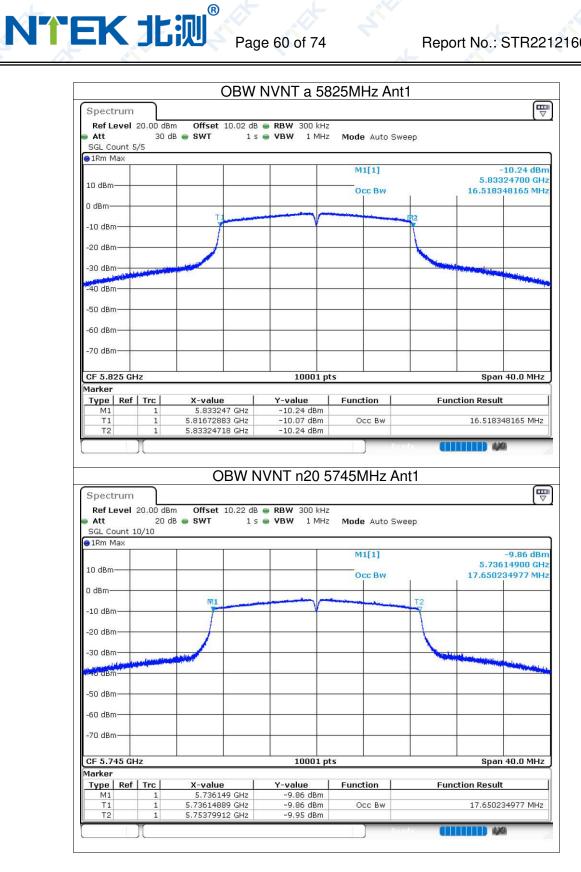
Page 56 of 74

NTEK 北视[®] Page 57 of 74

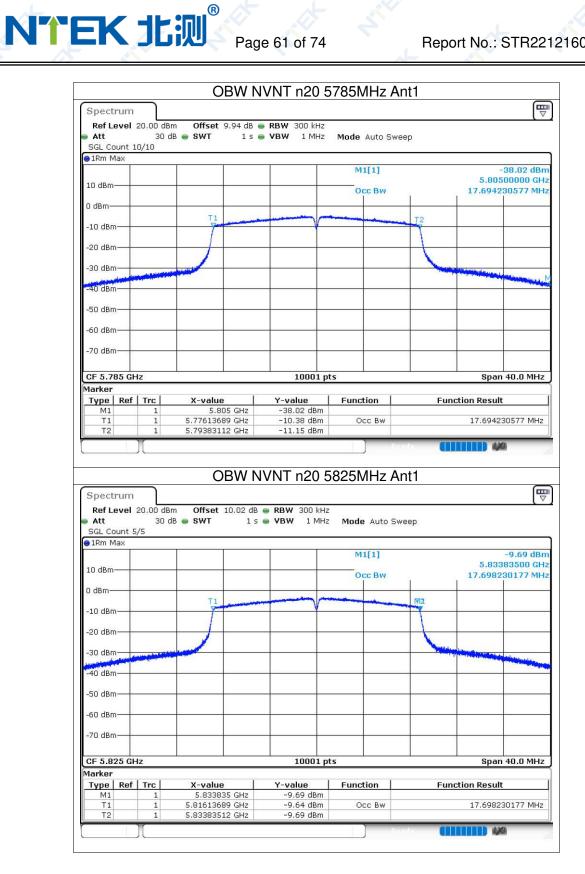
Spectrum		EDV		NT ac40	57951		1111			P
Ref Level		Offset 10.	01 dB 🥃	RBW 100 kH	łz					
Att	30 dB	SWT 132	2.7 µs 🥃	VBW 300 kH	lz Mode	Auto FF	т			
SGL Count 1 1Pk Max	100/100									
TEK Max	1				M	1[1]				-2.56 dB
10 dBm						+[+]			5.79	999750 Gł
TO UBIII						2[1]				-7.03 dB
0 dBm		M2	,	14.15	M1		140		5.78	336600 GI
10 40		Ţ	malister	relationshipping	preservation	haspidium	M3			
-10 dBm	1	with more and prover					An Al Aller	www.white		
-20 dBm					<u>()</u>					
	int							6	What	T TO A
-30 dBm	Munk								Whataland	human
-40 dBm							-			-
-50 dBm										
-60 dBm										
-70 dBm										15
	•				10 • 10				and the second second	
CF 5.795 GI	IZ			1001	pts				Spar	60.0 MH
Marker Type Ref	Tro	X-value	1	Y-value	Func	tion 1		Eunetic	n Result	F
	11									
) •	eady.	CIIII		a
) •	e adv	am		0
][EB	W NV	NT ac80) 5775) MHz /	ant1			8
Spectrum		EB	W NV	NT ac80) 57751) MHz /	odv Ant1	am		۵ ۹
Spectrum Ref Level				NT ac8() MHz /	oody Ant1			0
Ref Level Att	20.00 dBm 30 dB	Offset 9.4	94 dB 🥌		łz) MHz / Auto FF				•
Ref Level Att SGL Count 1	20.00 dBm 30 dB	Offset 9.4	94 dB 🥌	RBW 100 k⊦	łz	10 - 100 - Sector				۵ ب
Ref Level Att	20.00 dBm 30 dB	Offset 9.4	94 dB 🥌	RBW 100 k⊦	łz łz Mode	Auto FF				
Ref Level Att SGL Count 1 1Pk Max	20.00 dBm 30 dB	Offset 9.4	94 dB 🥌	RBW 100 k⊦	łz łz Mode	10 - 100 - Sector			5.7	-5.82 dB
Ref Level Att SGL Count 1	20.00 dBm 30 dB	Offset 9.4	94 dB 🥌	RBW 100 k⊦	łz łz Mode M	Auto FF			5.7	-5.82 dB 778720 Gł
Ref Level Att SGL Count 1 1Pk Max 10 dBm	20.00 dBm 30 dB	Offset 9.4	94 dB 🥌	RBW 100 k⊦	¹² ¹² Mode M	Auto FF				
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm	20.00 dBm 30 dB 100/100	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	iz Hz Mode M M1	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 778720 GF -9.90 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm	20.00 dBm 30 dB 100/100	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	¹² ¹² Mode M	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 778720 GF -9.90 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dB 100/100	Offset 9.4	94 dB 🖷	RBW 100 k⊦	iz Hz Mode M M1	Auto FF 1[1] 2[1]			5.7	-5.82 dB 778720 GF -9.90 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm	20.00 dBm 30 dB 100/100	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	iz Hz Mode M M1	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 778720 GF -9.90 dB
Ref Level Att SGL Count 1 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB 100/100 M2	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	iz Hz Mode M M1	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 778720 Gł -9.90 dB 737440 Gł
Ref Level Att SGL Count 1 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB 100/100 M2	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	iz Hz Mode M M1	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 778720 Gł -9.90 dB 737440 Gł
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB 100/100 M2	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	iz Hz Mode M M1	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 778720 Gł -9.90 dB 737440 Gł
Ref Level Att SGL Count 1 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB 100/100 M2	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	iz Hz Mode M M1	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 778720 GF -9.90 dB
Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 30 dB 100/100 M2	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	iz Hz Mode M M1	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 778720 Gł -9.90 dB 737440 Gł
Ref Level Att SGL Count 1 D dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	20.00 dBm 30 dB 100/100 M2	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	iz Hz Mode M M1	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 778720 Gł -9.90 dB 737440 Gł
Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 30 dB 100/100 M2	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	iz Hz Mode M M1	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 778720 Gł -9.90 dB 737440 Gł
Ref Level Att SGL Count 12 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dB 100/100 M2	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	iz Hz Mode M M1	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 778720 GI -9.90 dB 737440 GI
Ref Level Att SGL Count 12 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dB 100/100	Offset 9. SWT 265	94 dB 🖷	RBW 100 k⊦	iz Mode M M	Auto FF 1[1] 2[1]	T		5.7	-5.82 dB 78720 G -9.90 dB 37440 G 7440 G
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.775 G Marker	20.00 dBm 30 dB 100/100	Offset 9. SWT 265	94 dB 🖷	RBW 100 kH YBW 300 kH	tz Mode M M M M M	Auto FF 1[1] 2[1]	T	Jurtuk	S.T.	-5.82 dB 778720 G -9.90 dB 737440 G 737440 G
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	20.00 dBm 30 dB 100/100 M2 12 12	Offset 9. SWT 265	94 dB • 5.5 µs •	RBW 100 kF VBW 300 kF	12 12 Mode M M M M M M M M M M M M M	Auto FF 1[1] 2[1]	T	Jurtuk	5.7	-5.82 dB 778720 G -9.90 dB 737440 Gł
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.775 G Marker	20.00 dBm 30 dB 100/100	Offset 9. SWT 265	94 dB • 5.5 µs •	RBW 100 kH YBW 300 kH	tz Mode M M M M M M M M M M M M M	Auto FF 1[1] 2[1]	T	Jurtuk	S.T.	-5.82 dB 778720 G -9.90 dB 737440 Gł
Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 30 dB 100/100 M2 M2 M4 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	Offset 9, SWT 265	94 dB 5.5 µs mord didd	RBW 100 kH YBW 300 kH April 100	iz iz Mode M M M M M M M M M M M M M	Auto FF 1[1] 2[1]	T	Jurtuk	S.T.	-5.82 dB 778720 G -9.90 dB 737440 Gł

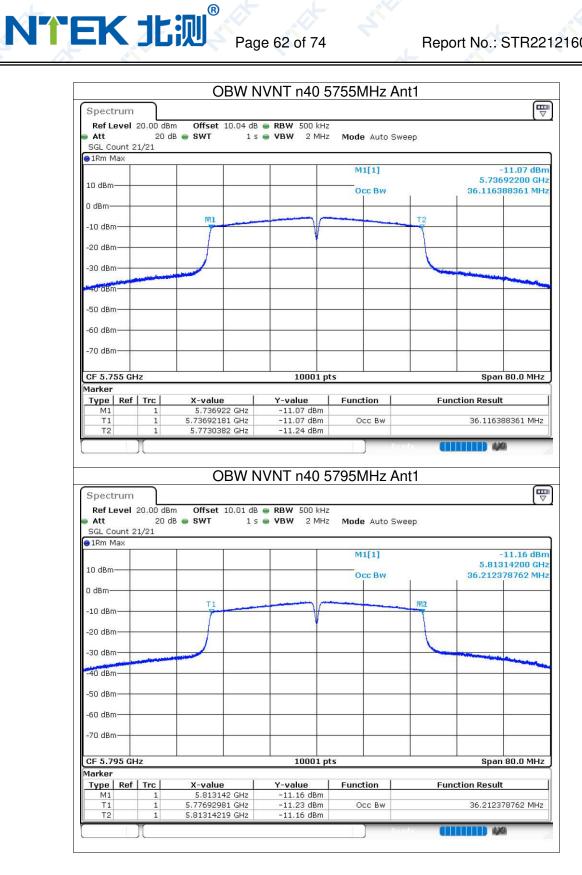

Report No.: STR221216001005E

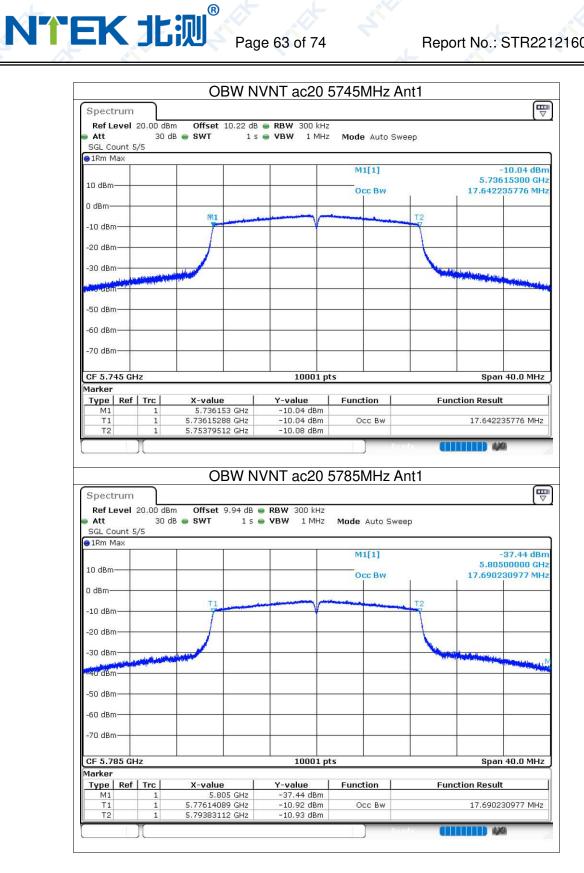
10.3 OCCUPIED CHANNEL BANDWIDTH

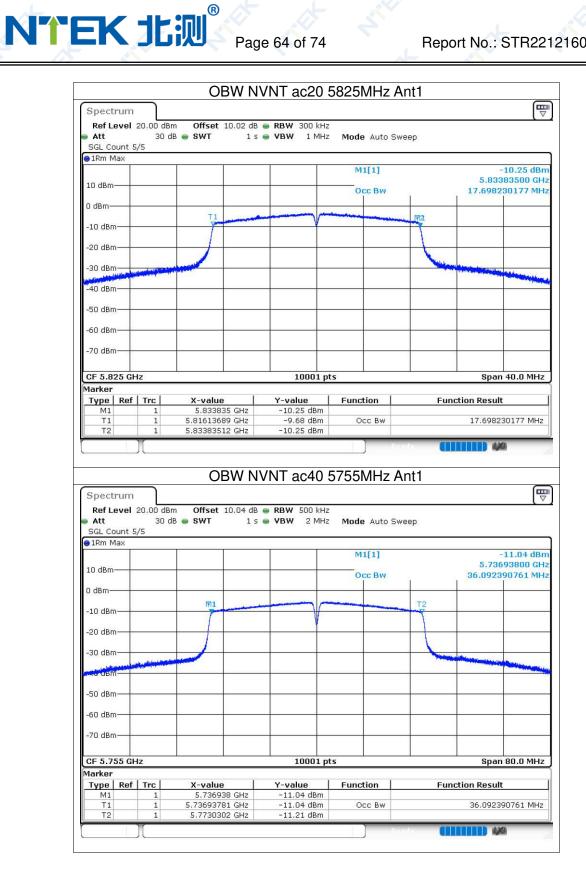

Condition	Mode	Mode Frequency (MHz)		Center Frequency (MHz)	OBW (MHz)	Verdict		
NVNT	a	5745	Ant1	5744.974	16.458	Pass		
NVNT	a	5785	Ant1	5784.986	16.514	Pass		
NVNT	а	5825	Ant1	5824.988	16.518	Pass		
NVNT	n20	5745	Ant1	5744.974	17.65	Pass		
NVNT	n20	5785	Ant1	5784.984	17.694	Pass		
NVNT	n20	5825	Ant1	5824.986	17.698	Pass		
NVNT	n40	5755	Ant1	5754.98	36.116	Pass		
NVNT	n40	5795	Ant1	5795.036	36.212	Pass		
NVNT	ac20	5745	Ant1	5744.974	17.642	Pass		
NVNT	ac20	5785	Ant1	5784.986	17.69	Pass		
NVNT	ac20	5825	Ant1	5824.986	17.698	Pass		
NVNT	ac40	5755	Ant1	5754.984	36.092	Pass		
NVNT	ac40	5795	Ant1	5795.036	36.196	Pass		
NVNT	ac80	5775	Ant1	5775.112	75.896	Pass		

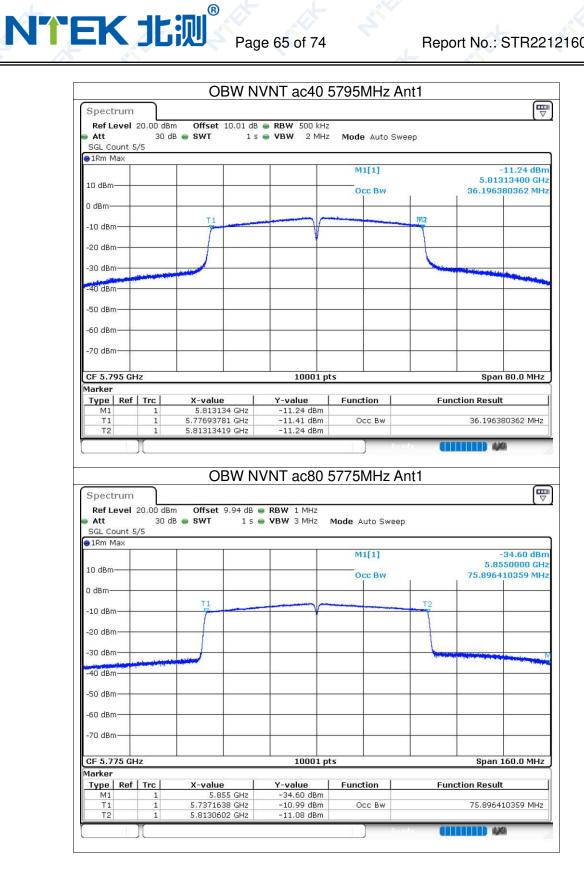
Page 58 of 74


Page 59 of 74


Page 60 of 74

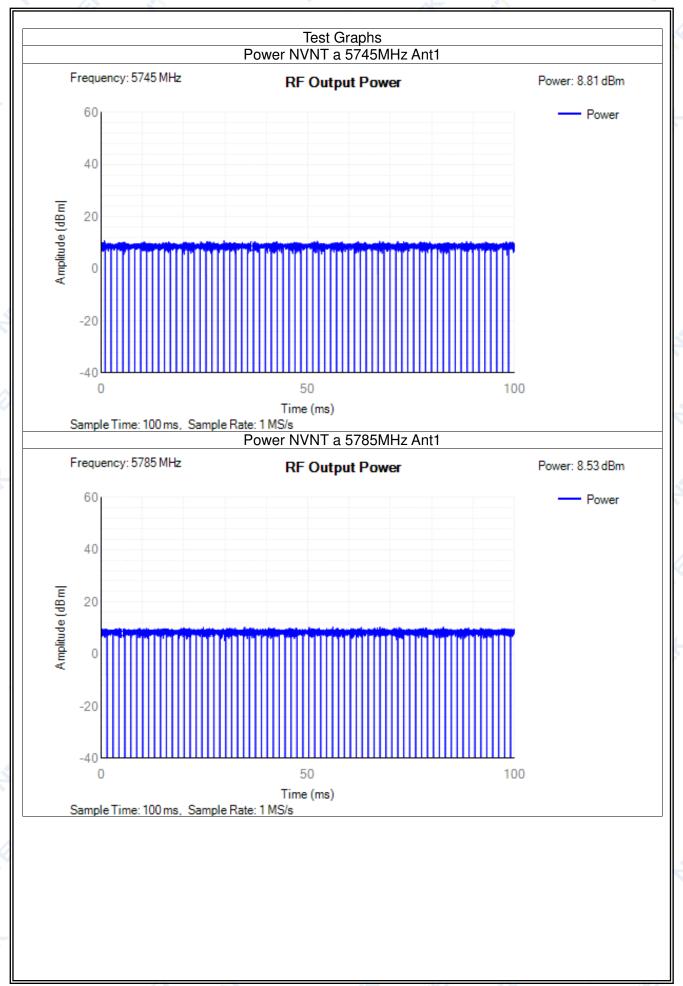

Page 61 of 74


Page 62 of 74


Page 63 of 74

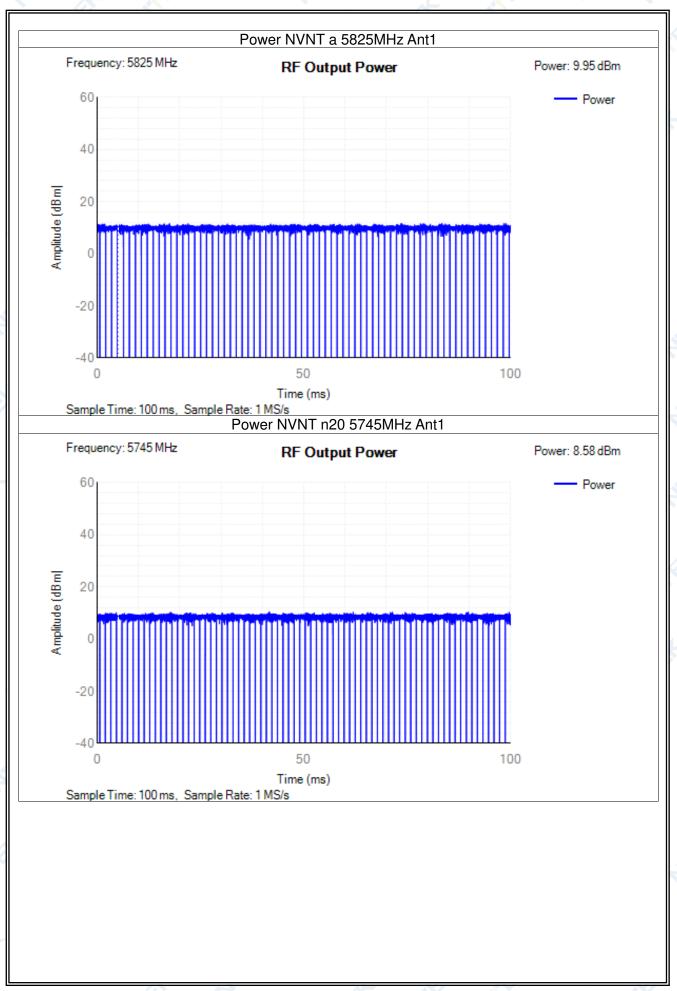
Page 64 of 74

Page 65 of 74

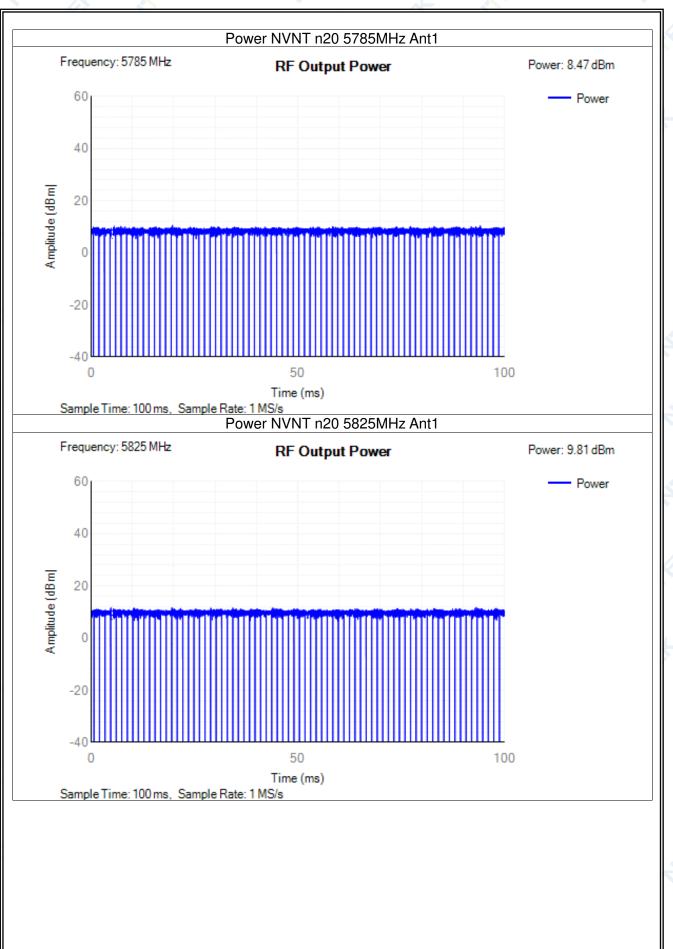

Page 66 of 74

Report No.: STR221216001005E

10.4 RF OUTPUT POWER

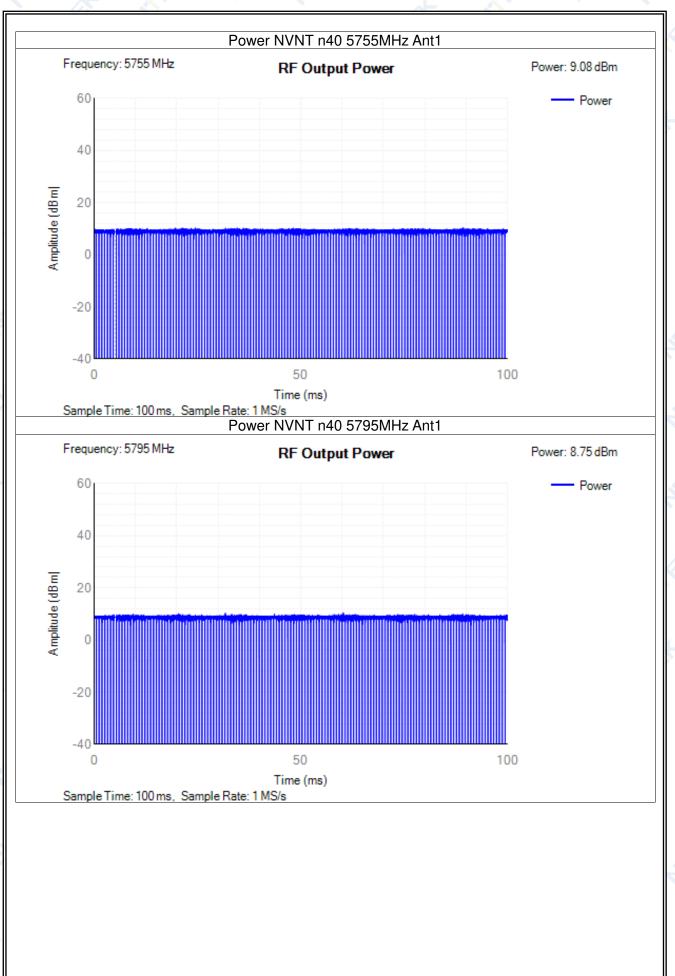

10.4 RF OUTPUT POWER								
Condition	Mode	Frequency (MHz)	Antenna	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	а	5745	Ant1	8.81	70	9.81	13.98	Pass
NVNT	а	5785	Ant1	8.53	70	9.53	13.98	Pass
NVNT	а	5825	Ant1	9.95	71	10.95	13.98	Pass
NVNT	n20	5745	Ant1	8.58	75	9.58	13.98	Pass
NVNT	n20	5785	Ant1	8.47	75	9.47	13.98	Pass
NVNT	n20	5825	Ant1	9.81	75	10.81	13.98	Pass
NVNT	n40	5755	Ant1	9.08	145	10.08	13.98	Pass
NVNT	n40	5795	Ant1	8.75	145	9.75	13.98	Pass
NVNT	ac20	5775	Ant1	8.69	75	9.69	13.98	Pass
NVNT	ac20	5745	Ant1	8.49	74	9.49	13.98	Pass
NVNT	ac20	5785	Ant1	9.77	74	10.77	13.98	Pass
NVNT	ac40	5825	Ant1	9.04	145	10.04	13.98	Pass
NVNT	ac40	5755	Ant1	8.63	145	9.63	13.98	Pass
NVNT	ac80	5795	Ant1	8.9	272	9.9	13.98	Pass
HVLT	а	5745	Ant1	8.79	70	9.79	13.98	Pass
HVLT	а	5785	Ant1	8.82	70	9.82	13.98	Pass
HVLT	а	5825	Ant1	8.79	71	9.79	13.98	Pass
HVLT	n20	5745	Ant1	8.74	75	9.74	13.98	Pass
HVLT	n20	5785	Ant1	8.17	75	9.17	13.98	Pass
HVLT	n20	5725	Ant1	8.20	75	9.2	13.98	Pass
HVLT	n40	5755	Ant1	8.17	145	9.17	13.98	Pass
HVLT	n40	5795	Ant1	8.12	145	9.12	13.98	Pass
HVLT	ac20	5775	Ant1	8.09	75	9.09	13.98	Pass
HVLT	ac20	5745	Ant1	8.04	74	9.04	13.98	Pass
HVLT	ac20	5785	Ant1	8.01	74	9.01	13.98	Pass
HVLT	ac40	5825	Ant1	7.96	145	8.96	13.98	Pass
HVLT	ac40	5755	Ant1	7.93	145	8.93	13.98	Pass
HVLT	ac80	5795	Ant1	7.90	272	8.9	13.98	Pass
LVHT	а	5745	Ant1	7.79	70	8.79	13.98	Pass
LVHT	а	5785	Ant1	7.82	70	8.82	13.98	Pass
LVHT	а	5825	Ant1	7.79	71	8.79	13.98	Pass
LVHT	n20	5745	Ant1	7.74	75	8.74	13.98	Pass
LVHT	n20	5785	Ant1	8.17	75	9.17	13.98	Pass
LVHT	n20	5825	Ant1	8.20	75	9.2	13.98	Pass
LVHT	n40	5755	Ant1	8.17	145	9.17	13.98	Pass
LVHT	n40	5795	Ant1	8.12	145	9.12	13.98	Pass
LVHT	ac20	5775	Ant1	8.09	75	9.09	13.98	Pass
LVHT	ac20	5745	Ant1	8.04	74	9.04	13.98	Pass
LVHT	ac20	5785	Ant1	8.01	74	9.01	13.98	Pass
LVHT	ac40	5825	Ant1	7.96	145	8.96	13.98	Pass
LVHT	ac40	5755	Ant1	7.93	145	8.93	13.98	Pass
LVHT	ac80	5795	Ant1	7.90	272	8.9	13.98	Pass

Report No.: STR221216001005E

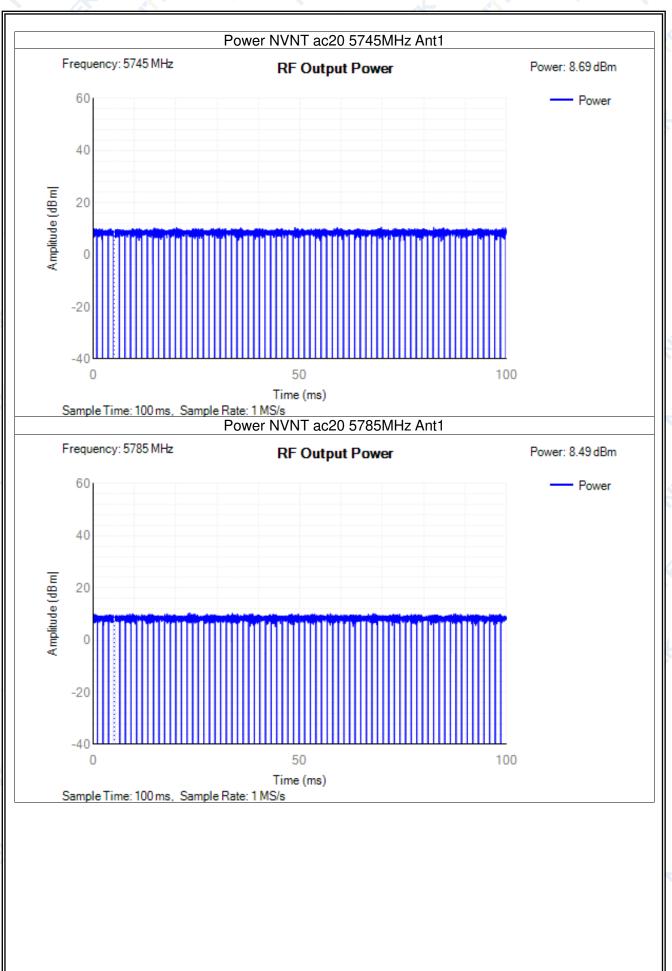


Page 67 of 74

Report No.: STR221216001005E

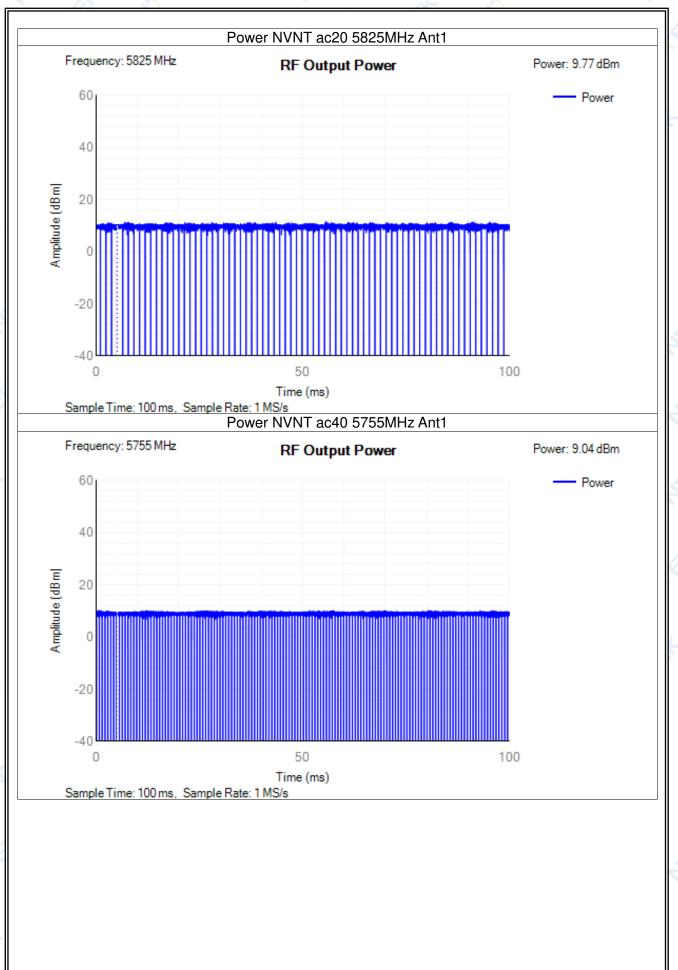


Page 68 of 74

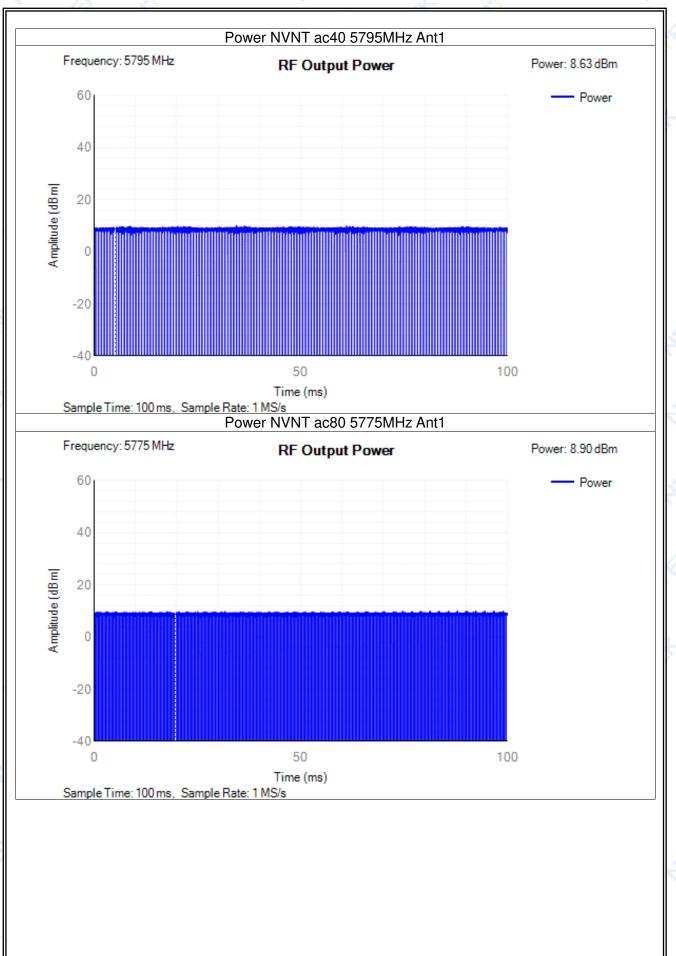


Page 69 of 74

NTEK 北视[®] Page 70 of 74

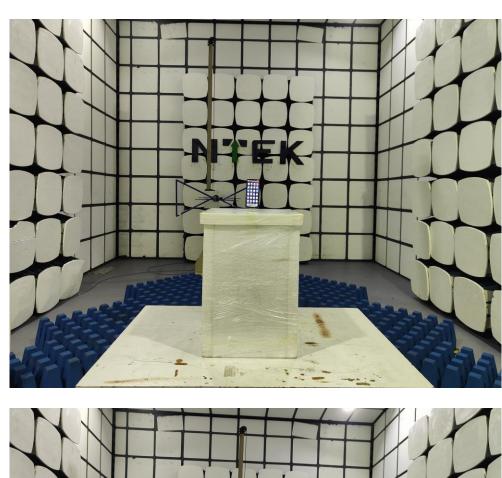


NTEK 北视® Page 71 of 74



NTEK 北视® Page 72 of 74

Report No.: STR221216001005E


NTEK 北视® Page 73 of 74

NTEK LM Page 74 of 74

Report No.: STR221216001005E

11. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT