

RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product: Mobile Phone

Trade Mark: Blackview

Model Name: A55 Pro

Family Model: N/A

Report No.: STR211213006001E

Prepared for

DOKE COMMUNICATION (HK) LIMITED.

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090
Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

, S 5 1E	ST RESULT CERTIFICATION
A OF	3 (34)
	DOKE COMMUNICATION (HK) LIMITED.
Address:	RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA
A STATE OF THE PARTY OF THE PAR	Shenzhen DOKE Electronic Co.,Ltd.
Address:	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China.
Product description	
Product name:	Mobile Phone
Trademark:	Blackview
Model Name:	A55 Pro
Family Model:	N/A
Standards:	ETSI EN 300 328 V2.2.2 (2019-07)
equipment under test (EUT) is in requirements. And it is applicable this report shall not be reproducted document may be altered or resulted document. Date of Test	
Testing Engine	eer: May Hu
Authorized Się	gnatory:
A Sent Sent	(Alex Li)

Table of Contents	Page
4. OFNEDAL INFORMATION	of at 1 d
1 . GENERAL INFORMATION 1.1 GENERAL DESCRIPTION OF EUT	
1.1 GENERAL DESCRIPTION OF EUT 1.2 INFORMATION ABOUT THE EUT	A 3 1
1.3 TEST CONDITIONS	13
1.4 TEST CONFIGURATION OF EUT	13
1.5 DESCRIPTION OF TEST CONDITIONS	14
1.6 DESCRIPTION OF SUPPORT UNITS	15
1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS	16
2 . SUMMARY OF TEST RESULTS	17
2.1 TEST FACILITY	<i>₫</i> ₹ 18
3 . RF OUTPUT POWER	19
3.1 LIMITS OF RF OUTPUT POWER	19
3.2 TEST PROCEDURE	19
3.3 DEVIATION FROM TEST STANDARD	19
3.4 TEST SETUP	19
3.5 TEST RESULTS	20
4 . ACCUMULATED TRANSMIT TIME, FREQUEN	CY OCCUPATION AND HOPPING
SEQUENCE	A 21
4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, I	2
HOPPING SEQUENCE	21
4.2 TEST PROCEDURE	L 21
4.3 DEVIATION FROM TEST STANDARD	21
4.4 TEST SETUP	22
4.5 TEST RESULTS	22
5 . OCCUPIED CHANNEL BANDWIDTH	23
5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	H 23
5.2 TEST PROCEDURE	23
5.3 DEVIATION FROM TEST STANDARD	24
5.4 TEST SETUP	24
5.5 TEST RESULTS	24
6 . TRANSMITTER UNWANTED EMISSIONS IN T	HE OUT-OF-BAND DOMAIN 25
6.1 LIMITS OF TRANSMITTER UNWANTED EMISS	SIONS IN THE OUT-OF-BAND

Table of Contents	Page
DOMAIN	25 🙏
6.2 TEST PROCEDURE	25
6.3 DEVIATION FROM TEST STANDARD	26
6.4 TEST SETUP	26
6.5 TEST RESULTS	26
7 . HOPPING FREQUENCY SEPARATION	27
7.1 LIMITS OF HOPPING FREQUENCY SEPARATION	27
7.2 TEST PROCEDURE	27
7.3 DEVIATION FROM TEST STANDARD	27
7.4 TEST SETUP	28
7.5 TEST RESULTS	28
8 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS [OOMAIN 29
8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSION	ONS IN THE
SPURIOUS DOMAIN	29
8.2 TEST PROCEDURE	29
8.3 DEVIATION FROM TEST STANDARD	29
8.4 TEST SETUP	30
8.5 TEST RESULTS (Radiated measurement)	31
8.6 TEST RESULTS (Conducted measurement)	32
9 . RECEIVER SPURIOUS EMISSIONS	33
9.1 LIMITS OF RECEIVER SPURIOUS RADIATION	33
9.2 TEST PROCEDURE	33
9.3 DEVIATION FROM TEST STANDARD	33
9.4 TEST SETUP	34
9.5 TEST RESULTS (Radiated measurement)	35
9.6 TEST RESULTS (Conducted measurement)	36
10. RECEIVER BLOCKING	37
10.1 PERFORMANCE CRITERIA	37
10.2 LIMITS OF RECEIVER BLOCKING	37
10.3 TEST PROCEDURE	38
10.4 DEVIATION FROM TEST STANDARD	39
10.5 TEST SETUP 10.6 TEST RESULTS	39 40
	L
11. TEST RESULTS	7 42

Table of Contents Page 11.1 ACCUMULATED TRANSMIT TIME 11.2 FREQUENCY OCCUPATION 11.3 ONE PULSE DWELL TIME 56 11.4 RF OUTPUT POWER 66 11.5 HOPPING FREQUENCY SEPARATION 68 11.6 OCCUPIED CHANNEL BANDWIDTH 72 11.7 TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN 75 11.8 TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN 78 11.9 RECEIVER SPURIOUS EMISSIONS 83 11.10 HOPPING SEQUENCE 87 12. EUT TEST PHOTO 89 SPURIOUS EMISSIONS MEASUREMENT PHOTOS 89

Page 6 of 89

of 89 Report No.: STR211213006001E

Revision History

Report No.	Version	Description	Issued Date
STR211213006001E	Rev.01	Initial issue of report	Jan 06, 2022
OF SE A	\$	1 2 3	4 30 5
4 5	į.	*	
+ 20	A A		4
Ti.		L AT V	4 5
4 3	. 5		4
\$ 8		* 5	\$ 8
+ #	ملہ	\$ 15	4
20 3	+ 50	A	ALT.
1 5		A A	4
1 B	d	Z L A	4 4 3
4	2	A C	_ 3
# 5	ملم	The state of the s	La de
d &	39		A A
, to		L P P	4 5

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone		
Trade Mark	Blackview		
Model Name.	A55 Pro		
Family Model	N/A	٨ ٩	
Model Difference	N/A	P	
	The EUT is Mobile Phone		
	Operation Frequency:	2402~2480 MHz	
	Modulatin Type:	GFSK,∏/4-DQPSK,8-DPSK	
	Modulation Technology:	FHSS	
	Adaptive/non-adaptive	Adaptive equipment	
	Receiver categories	2	
Product Description	Number Of Channel	79CH	
	Antenna Designation:	PIFA Antenna	
	Antenna Gain(Peak)	1.25 dBi	
Based on the application, features, or specification application, features, or specification, features, featur		al, the EUT is considered as an More details of EUT technical	
Channel List	Refer to below Table		
Adapter	Model: HJ-0501000N2-EU Input: 100-240V~50/60Hz 0.15A Output: 5V1.0A 5.0W		
Battery	DC 3.87V, 4780mAh		
Rating	DC 3.87V from battery or DC 5V from Adapter.		
I/O Ports	Refer to users manual	- 5	
Hardware Version	M169MB-A2	M169MB-A2	
Software Version	A55Pro_EEA_BOM201_	V1.0	
24		A 3	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

79 channels are provided to (GFSK, ∏/4-	·DQPSK, 8-DPSK)
Channel	Frequency
	(MHz
00	2402
01	2403
<i>IF</i>	
<i>5</i> ′′ , <i>≥</i> ′′	4 5 T Y
J	2 10 4
, & Ø	, 2
77	2479

1.2 INFORMATION ABOUT THE EUT a) The type of modulation used by the equipment: other forms of modulation b) In case of FHSS modulation: In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies: • In case of Adaptive Frequency Hopping Equipment: The maximum number of Hopping Frequencies: 79 The minimum number of Hopping Frequencies: 79 • The (average) Dwell Time: 299.52ms Maximum c) Adaptive / non-adaptive equipment: non-adaptive Equipment adaptive Equipment without the possibility to switch to a non-adaptive mode adaptive Equipment which can also operate in a non-adaptive mode d) In case of adaptive equipment: The maximum Channel Occupancy Time implemented by the equipment:/..... ms The equipment has implemented an LBT based DAA mechanism • In case of equipment using modulation different from FHSS: The equipment is Frame Based equipment The equipment is Load Based equipment ☐ The equipment can switch dynamically between Frame Based and Load Based equipment The CCA time implemented by the equipment:/.. µs The equipment has implemented a non-LBT based DAA mechanism

The equipment can operate in more than one adaptive mode

	Page 9 of 89	Report No.: STR211213006001E
e) In case of non-adaptive Equipment:	at .	大 · · · · · · · · · · · · · · · · · · ·
The maximum RF Output Power (e.i.r.p.):	Ser of	FA 5 E FA EA
The maximum (corresponding) Duty Cycle	1 1	5 15 6
Equipment with dynamic behaviour, that be	ehaviour is described h	ere. (e.g. the different combinations
of duty cycle and corresponding power lev	els to be declared):	# A L #
f) The worst case operational mode for ea	ch of the following te	sts:
RF Output Power	1 5	AT 2
GFSK	AT TO	L & 0
Power Spectral Density	>	D A S
N/A	at &	
Duty cycle, Tx-Sequence, Tx-gap	A ST	The state of the s
N/A	200	df 45 /k
 Accumulated Transmit time, Frequency 	Occupation & Hopping	Sequence (only for FHSS equipment)
8-DPSK	AT	at the second
Hopping Frequency Separation (only for	FHSS equipment)	4 -
GFSK	4	
Medium Utilization	A - 5	* *
N/A	14	4
Adaptivity	-	A 4 8
N/A	AT.	3 20 ,
Receiver Blocking	4 5	d L
GFSK	La Company	L 5" A
Nominal Channel Bandwidth	-	A X
8-DPSK	AT.	A T EM
Transmitter unwanted emissions in the C	OOB domain	A - X
8-DPSK	5	* > "
 Transmitter unwanted emissions in the s 	purious domain	
∏/4-DQPSK	To the second	1 3
 Receiver spurious emissions 	A 5	+ 0 +
8-DPSK	\$ 1	
g) The different transmit operating mode	s (tick all that apply):	# Z
Operating mode 1: Single Antenna	Equipment	AL S
Equipment with only one antenna	+ >	
Equipment with two diversity antenr	nas but only one antenr	na active at any moment in time
☐ Smart Antenna Systems with two or	r more antennas, but op	perating in a (legacy) mode where only
one antenna is used (e.g. IEEE 802	11™ [i.3] legacy mode	e in smart antenna systems)
Operating mode 2: Smart Antenna	Systems - Multiple Ante	ennas without beam forming
Single spatial stream / Standard thr	oughput / (e.g. IEEE 80)2.11™ [i.3] legacy mode)
☐ High Throughput (> 1 spatial strean	n) using Nominal Chanr	nel Bandwidth 1
High Throughout (> 1 spatial stream	n) using Nominal Chanr	nel Bandwidth 2

NOTE 1: Add more lines if more channel bandwidths are supported. Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode) High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1 High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2 NOTE 2: Add more lines if more channel bandwidths are supported. h) In case of Smart Antenna Systems: The number of Receive chains: The number of Transmit chains: symmetrical power distribution asymmetrical power distribution In case of beam forming, the maximum (additional) beam forming gain: dB NOTE: The additional beam forming gain does not include the basic gain of a single antenna. i) Operating Frequency Range(s) of the equipment: Operating Frequency Range 1: 2402 MHz to 2480 MHz Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported. j) Nominal Channel Bandwidth(s): Nominal Channel Bandwidth 1: 1.193MHz Nominal Channel Bandwidth 2:/..... MHz NOTE: Add more lines if more channel bandwidths are supported. k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.): Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment) Plug-in radio device (Equipment intended for a variety of host systems) The normal and the extreme operating conditions that apply to the equipment: Normal operating conditions (if applicable): Operating temperature: 15 °C ~35 °C Other (please specify if applicable): Extreme operating conditions: Operating temperature range: Minimum: -10°C Maximum 40°C Other (please specify if applicable): Minimum: Maximum . Details provided are for the: stand-alone equipment combined (or host) equipment test jig

W/	A 2	-لد	15		大 人 人 人	
m)	n) The intended combination(s) of the radio equipment power settings and one or more antenna					
1	assemblies and their corresponding e.i.r.p. levels:					
5	● Antenna Type: PIFA Antenna					
		ormation to be	provided in	case of conducted i	measurements)	
1	Antenna Gain: 1.25	dBi		A >	- 4 3 m 3	
>	If applicable, addition	al beamforming	gain (excl	uding basic antenna	gain):/ dB	
	☐ Temporary RF	connector provi	ided	大	- A	
	No temporary F	RF connector pr	ovided	1	# 3	
4	Dedicated Ante	nnas (equipme	nt with ante	enna connector)	A 5	
	☐ Single power le	vel with corresp	onding an	tenna(s)	R	
	Multiple power	settings and co	rrespondin	g antenna(s)	2	
	Number of differer	nt Power Levels	s:	4	# 5	
	Power Level 1:	dBm	. 1	47	A 5	
	Power Level 2:	dBm	4 4	·	S 1	
	Power Level 3:	A		, P	No. of the second	
		4	//	ent has more power power levels (at ant		
	120			•	s, their corresponding gains	
	L &	67			A 2	
	(G) and the resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable Power Level 1: dBm					
					T 5	
<	Number of antenn	a assemblies p	rovided for	this power level:		
	Number of antenn Assembly #	a assemblies p Gain (dBi)	rovided for	e.i.r.p. (dBm)	Part number or model name	
4	Number of antenn	a assemblies p	rovided for	(A)		
	Number of antenn Assembly #	a assemblies p Gain (dBi)	rovided for	e.i.r.p. (dBm)		
	Number of antenn Assembly # 1 2 3	a assemblies p Gain (dBi) 1.25	THE WAY	e.i.r.p. (dBm) 7.3	Part number or model name	
	Number of antenn Assembly # 1 2 3	a assemblies p Gain (dBi) 1.25	THE WAY	e.i.r.p. (dBm) 7.3		
	Number of antenn Assembly # 1 2 3 NOTE 3: Add mor	a assemblies p Gain (dBi) 1.25 e rows in case	more anter	e.i.r.p. (dBm) 7.3 nna assemblies are s	Part number or model name	
The state of the s	Number of antenn Assembly # 1 2 3 NOTE 3: Add mor Power Level 2: Number of antenn	a assemblies p Gain (dBi) 1.25 e rows in case of the c	more anter	e.i.r.p. (dBm) 7.3 nna assemblies are s	Part number or model name supported for this power level.	
The state of the s	Number of antenn Assembly # 1 2 3 NOTE 3: Add mor Power Level 2: Number of antenn Assembly #	a assemblies p Gain (dBi) 1.25 e rows in case	more anter	e.i.r.p. (dBm) 7.3 nna assemblies are s	Part number or model name	
	Number of antenn Assembly # 1 2 3 NOTE 3: Add more Power Level 2: Number of antenn Assembly # 1	a assemblies p Gain (dBi) 1.25 e rows in case of the c	more anter	e.i.r.p. (dBm) 7.3 nna assemblies are s	Part number or model name supported for this power level.	
	Number of antenn Assembly # 1 2 3 NOTE 3: Add more Power Level 2: Number of antenn Assembly # 1 2	a assemblies p Gain (dBi) 1.25 e rows in case of the c	more anter	e.i.r.p. (dBm) 7.3 nna assemblies are s	Part number or model name supported for this power level.	
	Number of antenn Assembly # 1 2 3 NOTE 3: Add more antenn Power Level 2: Number of antenn Assembly # 1 2 3	a assemblies p Gain (dBi) 1.25 e rows in case of the case of th	more anter	e.i.r.p. (dBm) 7.3 nna assemblies are s this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name	
	Number of antenn Assembly # 1 2 3 NOTE 3: Add more Power Level 2: Number of antenn Assembly # 1 2 3 NOTE 4: Add more	a assemblies p Gain (dBi) 1.25 e rows in case of the	more anter	e.i.r.p. (dBm) 7.3 nna assemblies are s this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level.	
	Number of antenn Assembly # 1 2 3 NOTE 3: Add more Number of antenn Assembly # 1 2 3 NOTE 4: Add more Power Level 3:	a assemblies p Gain (dBi) 1.25 e rows in case a semblies p Gain (dBi) Gain (dBi) e rows in case a semblies p Gain (dBi)	more anter	e.i.r.p. (dBm) 7.3 nna assemblies are s this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name supported for this power level.	
The state of the s	Number of antenn Assembly # 1 2 3 NOTE 3: Add more Number of antenn Assembly # 1 2 3 NOTE 4: Add more Power Level 3:	a assemblies p Gain (dBi) 1.25 e rows in case a semblies p Gain (dBi) Gain (dBi) e rows in case a semblies p Gain (dBi)	more anter	e.i.r.p. (dBm) 7.3 nna assemblies are s this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name supported for this power level.	
The Man I	Number of antenn Assembly # 1 2 3 NOTE 3: Add more Power Level 2: Number of antenn Assembly # 1 2 3 NOTE 4: Add more Power Level 3: Number of antenn	e rows in case Gain (dBi) 1.25 e rows in case Gain (dBi) Gain (dBi) e rows in case Gain (dBi)	more anter	e.i.r.p. (dBm) 7.3 this power level: e.i.r.p. (dBm) ana assemblies are s this power level:	Part number or model name supported for this power level. Part number or model name supported for this power level.	
The state of the s	Number of antenn Assembly # 1 2 3 NOTE 3: Add more Power Level 2: Number of antenn Assembly # 1 2 3 NOTE 4: Add more Power Level 3: Number of antenn	e rows in case Gain (dBi) 1.25 e rows in case Gain (dBi) Gain (dBi) e rows in case Gain (dBi)	more anter	e.i.r.p. (dBm) 7.3 this power level: e.i.r.p. (dBm) ana assemblies are s this power level:	Part number or model name supported for this power level. Part number or model name supported for this power level.	

NOTE 5: Add more rows in case more antenna assemblies are supported for this power level.

n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the
combined (host) equipment or test jig in case of plug-in devices:
Details provided are for the:
⊠ stand-alone equipment
combined (or host) equipment
test jig
Supply Voltage AC mains State AC voltageV
□ DC State DC voltage: DC 3.87V
In case of DC, indicate the type of power source
☐ Internal Power Supply
⊠ External Power Supply or AC/DC adapter: DC 5V
⊠ Battery: DC 3.87V
Other:
o) Describe the test modes available which can facilitate testing:
See clause 1.4
p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802.15.4™ [i.4], proprietary, etc.):
Bluetooth®
q) If applicable, the statistical analysis referred to in clause 5.4.1 q)
(to be provided as separate attachment)
r) If applicable, the statistical analysis referred to in clause 5.4.1 r)
(to be provided as separate attachment)
s) Geo-location capability supported by the equipment:
☐ Yes
The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or
clause 4.3.2.12.2 is not accessible to the user
No
t) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or clause 4.3.2.11.3):
GFSK =0.98%
GI 3K =0.96 %
A LA LA

1.3 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	-10℃ ~ 40℃ Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.87V	1 / 5

Note:

- (1) The HT 40 $^{\circ}$ C and LT -10 $^{\circ}$ C was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.
- (2) The measurements are performed at the highest, middle, lowest available channels.

1.4 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing				
Bluetooth mode	Data rate Modulation type			
BR	1Mbps	GFSK		
EDR	2Mbps	∏/4-DQPSK		
EDR	3Mbps	8-DPSK		

/4				
Test Channel Frequencies Configuration				
Test Channel	EUT Channel	Test Frequency (MHz)		
Lowest	CH00	2402		
Middle	CH39	2441		
Highest	CH78	2480		

Page 14 of 89

Report No.: STR211213006001E 1.5 DESCRIPTION OF TEST CONDITIONS E-1 EUT

1.6 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

and the second	6/3	Disc.		
Item	Equipment	Model/Type No.	Series No.	Note
E-1	Mobile Phone	A55 Pro	N/A	EUT
	4	1 5°	4	
4	÷ _	19	4 3	
	Ø	4	24	0
	* >	. 2	V 05	5
	5	AT T	. 5	
	*	5	45	*

Item	Shielded Type	Ferrite Core	Length	Note
4		4	7	L &
	*	-	19	+ 20
	_ &		4 4	图 4 法 3
A			5 4	7 3 300
5		45	4 4	at the same of the

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>FLength_</code> column.

1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS

	4		A-0.			
EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
Turn Table	EM <	SC100_1	60531	N/A	J-N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2021.03.29	2022.03.28	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2021.04.27	2022.04.26	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
Test Cable (1-18GHz)	√ N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2021.07.01	2022.06.30	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2021.04.27	2022.04.26	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2021.07.01	2022.06.30	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF79 <mark>4</mark> 101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2021.07.01	2022.06.30	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2021.04.27	2022.04.26	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2021.04.27	2022.04.26	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

		4
	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
	TRANSMITTER PARAMETERS	-
4.3.1.2	RF Output Power	Pass
4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
4.3.1.5	Hopping Frequency Separation	Pass
4.3.1.6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.1.7	Adaptivity	Not Applicable (See Note 1)
4.3.1.8	Occupied Channel Bandwidth	Pass
4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	
4.3.1.11	Receiver Spurious Emissions	Pass
4.3.1.12	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add.: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District,

Report No.: STR211213006001E

Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.:9270A-1

CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Maximum measurement uncertainty

Maximum measurement uncertainty						
No.	- Item A	Uncertainty				
1	Occupied Channel Bandwidth	± 5%				
2	RF output Power,conducted	±1.5dB				
3	Power Spectral Density, conducted	± 3dB				
4	Unwanted emissions, conducted	± 3dB				
5	All emissions,radiated	± 6dB				
6	Temperature	± 3°C				
17	Humidity	± 3%				
9	Time	± 5%				

TRANSMITTER PARAMETERS

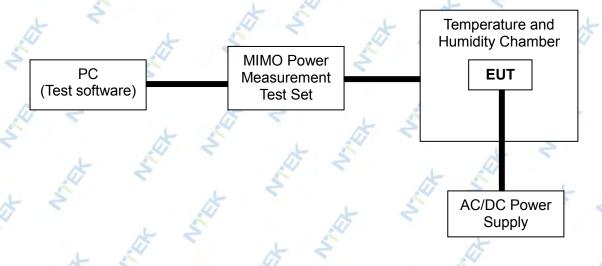
3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER

Refer to chapter 4.3.1.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER				
Condition	Limit			
	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.			
	equal to or less than 20 dBm.			

3.2 TEST PROCEDURES


Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement				
	Radiated measurement			

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

Page 20 of 89

Report No.: STR211213006001E

3.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A55 Pro
Temperature :	20°C	Relative Humidity:	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (Normal)
Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK	50	15 5

Test data reference attachment

4. ACCUMULATED	TRANSMIT TI	ME, FREQUE	NCY OCC	CUPATIO	ON AND	HOPF	JING
SEQUENCE	(I)	1	1	14	2		47

4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING

Refer to chapter 4.3.1.4.3 of ETSI EN 300 328 V2.2.2 (2019-07)

Accumulated Transmit Time			
Condition	Limit		
Non-adaptive frequency hopping systems	≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]		
Adaptive frequency hopping systems	≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]		
MINIMUM	FREQUENCY OCCUPATION TIME		
Condition	Limit		
Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not		
Adaptive frequency hopping systems	exceeding four times the product of the dwell time and the number of hopping frequencies in use.		
Н	OPPING SEQUENCE (S)		
Condition	Limit		
Non-adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum		
Adaptive frequency	Operating over a minimum of 70% of the Operating in the band 2.4 GHz to 2.4835 GHz		
hopping systems	≥15 hopping frequencies or 15/minimum		

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of ETSI EN 300 328 V2.2.2 (2019-07)

N	Measurement
	Radiated measurement

4.3 DEVIATION FROM TEST STANDARD

No deviation

4.4 TEST SETUP

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

4.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A55 Pro		
Temperature :	26°C	Relative Humidity	60 %		
Pressure :	1012 hPa	Test Voltage :	DC 3.87V		
Test Mode : BT-GFSK/∏/4-DQPSK /8-DPSK-Hopping Mode					

Test data reference attachment

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH Refer to chapter 4.3.1.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

- 34.7		_ // /			
	OCCUPIED CHANNEL BANDWIDTH				
	Condition	Limit			
All types of equipment		Shall fall completely within the band 2400 to 2483.5 MHz			
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz			
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz			

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Me	easurement		
☐ Conducted measurement ☐ Radiated measurement				4
The setting of the Spectr	um Analyzer	L \$ "	* 3	
Center Frequency	The centre frequence	cy of the channel under te	st	Q
Frequency Span	2 × Nominal Channe	el Bandwidth	+	- 5
Detector	RMS	d 3	1 1/4	
RBW	~ 1 % of the span w	rithout going below 1 %	4 4	
VBW	3 × RBW	*	5	P
Trace	Max hold	29	of.	7
Sweep time	1s	4	1 5	

5.3 DEVIATION FROM TEST STANDARD

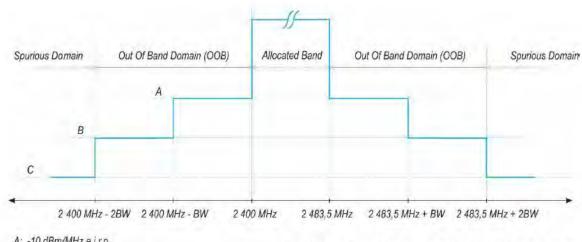
No deviation

5.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

5.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A55 Pro
Temperature :	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK-(CH00/CH78)	7 1


Test data reference attachment

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN			
Condition Limit			
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.		

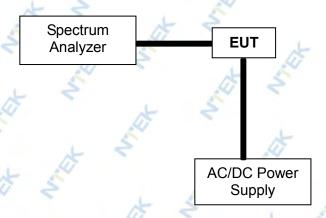
- A: -10 dBm/MHz e.i.r.p.
- B: -20 dBm/MHz e.i.r.p.
- C: Spurious Domain limits

BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

Figure 1: Transmit mask

6.2 TEST PROCEDURE

Refer to chapter 5.4.8.2of ETSI EN 300 328 V2.2.2 (2019-07)


	Measurement
⊠Conducted measure	ment Radiated measurement
The setting of the Spectrum Ana	lyzer
Span	0Hz
Filter Mode	Channel Filter
Trace Mode	Clear/Write Clear/Write
Trigger Mode	Video Trigger
Detector	RMS
Sweep Point / Sweep Mode	5000 / Continuous
RBW / VBW	1MHz / 3MHz

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

6.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A55 Pro	4
Temperature :	26°C	Relative Humidity:	60 %	5
Pressure :	1012 hPa	Test Voltage :	DC 3.87V	
Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK-(CH78)	7	*

Test data reference attachment

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of ETSI EN 300 328 V2.2.2 (2019-07)

HOPPING FREQUENCY SEPARATION			
Condition	Limit		
☐ Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.		
Adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be 100 kHz.		

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	4	117		113	*
	Me	easurement			
⊠Conducted m	neasurement	4	Radiated me	easurement	4
The setting of the Spectr	rum Analyzer	1 54		ج بار	
Center Frequency	Centre of the two ac	djacent hopping	frequencies	14	4
Frequency Span	Sufficient to see the frequencies	complete pow	er envelope o	f both hopping	- 5
Detector	Max Peak	- 4		4	
RBW 🙏 🍣	~ 1 % of the span		J .		D
VBW	3 × RBW		P	A	7
Trace	Max hold	*	7		
Sweep Time	Auto	- 8	. 4	5	حال
13%			15		130

7.3 DEVIATION FROM TEST STANDARD

No deviation

7.4 TEST SETUP

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

7.5 TEST RESULTS

EUT:	Mobile Phone	Model Name :	A55 Pro
Temperature :	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK-(CH00/CH39/CH78)	+ 2"

Test data reference attachment

Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz.

2.The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Refer to chapter 4.3.1.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN			
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth	
30 MHz to 47 MHz	-36dBm	100 kHz	
47 MHz to 74 MHz	-54dBm	100 kHz	
74 MHz to 87.5 MHz	-36dBm	100 kHz	
87.5 MHz to 118 MHz	-54dBm	100 kHz	
118 MHz to 174 MHz	-36dBm	100 kHz	
174 MHz to 230 MHz	-54dBm	100 kHz	
230 MHz to 470 MHz	-36dBm	100 kHz	
470 MHz to 694 MHz	-54dBm	100 kHz	
694 MHz to 1 GHz	-36dBm	100 kHz	
1 GHz ~ 12.75 GHz	-30dBm	1 MHz	

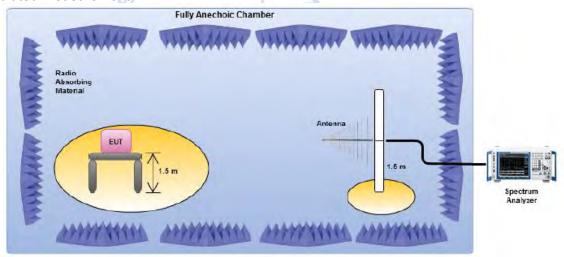
8.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

M	easurement
⊠Conducted measurement	⊠Radiated measurement

The setting of the Spectrum Analyzer

RBW 🕢	100K(<1GHz) / 1M(>1GHz)	4 5	. 4
VBW	300K(<1GHz) / 3M(>1GHz)	5	4 3


8.3 DEVIATION FROM TEST STANDARD

No deviation

8.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

8.5 TEST RESULTS (Radiated measurement)

BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)

EUT:	Mobile Phone	Model Name :	A55 Pro
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	BT-GFSK (CH00)	E	15 3

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	37.032	-73.9	10.77	-63.13	-36	-27.13	peak
V 🗷	90.66	-69.42	11.26	-58.16	-54	-4.16	peak
V	176.038	-69.95	11.22	-58.73	-36	-22.73	peak
V	409.143	-69.36	11.19	-58.17	-54	-4.17	peak
V	484.394	-68.69	9.53	-59.16	-36	-23.16	peak
V	801.72	-68.75	11.03	-57.72	-36	-21.72	peak
H	34.911	-69.02	10.45	-58.57	-54	-4.57	peak
Ŧ	114.763	-70.22	10.20	-60.02	-54	-6.02	peak
I	223.9	-72.93	10.83	-62.10	-36	-26.10	peak
Н	460.944	-70.67	11.26	-59.41	-54	-5.41	peak
Н	231.967	-73.77	11.11	-62.66	-36	-26.66	peak
ØĦ	759.681	-71.76	11.03	-60.73	-36	-24.73	peak

- Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

Report No.: STR211213006001E

EUT :	Mobile Phone	Model Name :	A55 Pro
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	GFSK (CH00/CH39/CH78)	300	15 5

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
-		ope	ration freq	uency:2402	N		
V /	4804.47	-37.30	-1.47	-38.77	-30	-8.77	peak
V	7206.82	-51.10	10.87	-40.23	-30	-10.23	peak
H	4804.47	-39.70	-1.47	-41.17	-30	-11.17	peak
Н	7206.82	-51.60	10.87	-40.73	-30	-10.73	peak
AL-		ope	ration freq	uency:2441	N		
V	4882.74	-38.80	-1.91	-40.71	-30	-10.71	peak
V	7324.89	-51.20	5.95	-45 <mark>.</mark> 25	-30	-15.25	peak
H	4882.74	-39.00	-1.91	-40.91	-30	-10.91	peak
Н	7324.89	-50.80	5.95	-44.85	-30	-14.85	peak
4	K	ope	ration freq	uency:2480	M	7	4
V	4860.61	-40.00	-1.28	-41.28	30	-11.28	peak
V	7440.63	-50.70	8.79	-41.91	-30	-11.91	peak
Н	4860.61	-39.10	-1.28	-40.38	-30	-10.38	peak
Н	7440.63	-51.30	8.79	-42.51	-30	-12.51	peak

Remark:

- Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

8.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

9. RECEIVER SPURIOUS EMISSIONS

9.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.1.11.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS				
Frequency Range	Measurement Bandwidth			
30 MHz ~ 1 GHz	-57dBm	100KHz		
1 GHz ~ 12.75 GHz	-47dBm	1MHz		

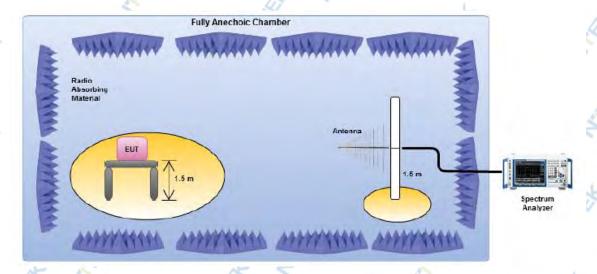
9.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Me	easurement	
	⊠Radiated measurement	

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)	A 5 6
VBW	300K(<1GHz) / 3M(>1GHz)	4


9.3 DEVIATION FROM TEST STANDARD

No deviation

9.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

9.5 TEST RESULTS (Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)

EUT :	Mobile Phone	Model Name :	A55 Pro
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	GFSK(CH00)	3	5 1

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	36.01	-77.32	12.98	-64.34	-57	-7.34	peak
V	107.367	-77.45	11.67	-65.78	-57	-8.78	peak
V	193.852	~78.86	18.94	-59.92	-57	-2.92	peak
V	436.124	-78.13	11.65	-66.48	-57	-9.48	peak
V	546.514	-80.27	11.45	-68.82	-57	-11.82	peak
V	725.721	-84.37	11.45	-72.92	-57	-15.92	peak
H	44.706	-84.45	18.60	-65.85	-57	-8.85	peak
Н	91.576	-78.51	18.11	-60.40	-57	-3.40	peak
Н	204.447	-81.31	10.30	-71.01	-57	-14.01	peak
Н	340.533	-77.94	15.00	-62.94	-57	-5.94	peak
ØĦ.	565.048	-82.56	14.63	-67.93	<u> </u>	-10.93	peak
Н	699.441	-81.25	14.63	-66.62	-57	-9.62	peak

Remark:

- Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 36 of 89

RX ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

Report No.: STR211213006001E

		a last	
EUT:	Mobile Phone	Model Name :	A55 Pro
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	GFSK (CH00)	# 5	7 1 1 2

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	1900.48	-78.91	13.20	-65.71	-47	-18.71	peak
V	2670.72	-80.38	13.08	-67.30	-47	-20.30	peak
V	3424.97	-83.28	13.28	-70.00	-47	-23.00	peak
V	4678.33	-83.35	19.39	-63.96	-47	-16.96	peak
V	4242.01	-77.05	19.42	-57.63	-47	-10.63	peak
V	4654.73	-79.07	19.45	-59.62	-47	-12.62	peak
H	2539.02	-78.91	13.37	-65.54	-47	-18.54	peak
HV	2728.22	-84.68	13.94	-70.74	-47	-23.74	peak
H	3027.36	-84.48	13.47	-71.01	-47	-24.01	peak
Н	3654.55	-84.38	14.49	-69.89	-47	-22.89	peak
Н	4196.50	-79.71	11.86	-67.85	-47	-20.85	peak
Н	5848.97	-81.49	17.82	-63.67	-47	-16.67	peak
				r, Margin= Limit- the worst data r			200

9.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

Report No.: STR211213006001E

RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

■Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal Frequency	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(see notes 1 and 4)	(MHz)	4	AT .
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less	2 380 2 504	-34	CW
(see note 2)	* -	L 14 5	d 3
(-139 dBm + 10 × log ₁₀ (OCBW))	2 300	7 3	1
or -74 dBm whichever is less	2 330 2 360	A.	
(see note 3)	2524		0
* \$ 1	2584 2674	4	* 5

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 38 of 89

	rage so or os	Report No., 51R	211213000001E

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB)	2 380	-34	CW
or (-74 dBm + 10 dB) whichever is less	2 504	- 2 2 L	A 5
(see note 2)	2 300	AT .	2
L 5	2 584	2	, A

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	* 3	1
(see note 2)	2 300	_ &	4
+	2 584	. 7	

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to P_{min} + 30 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

10.3 TEST PROCEDURE

Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)

N	Measurement
⊠Conducted measurement	Radiated measurement
	AF Z

Report No.: STR211213006001E

10.4 DEVIATION FROM TEST STANDARD No deviation 10.5 TEST SETUP Variable attenuator Performance step size ≤ 1 dB Monitoring Device Signalling Unit Companion Device Direct. Coupler Splitter/ UUT Combiner Blocking Signal Source Spectrum Analyzer Optional

Report No.: STR211213006001E

10.6 TEST RESULTS

EUT :	Mobile Phone	Model Name :	A55 Pro
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	GFSK Hopping mode (RX)	5	4 3

receiver category 2

Wanted si	gnal mean power	Blocking signal	Blocking signal	, L	PER 🦽
from com	oanion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes	1 and 3)	1 1	to the state of	-	%
ملم	7	2 380	* 5	0.68%	-100/
14	*	2 504	8	0.49%	≤10%
-	-68.85	2 300	-34	0.37%	-100 /
	4	2 584	A	0.87%	≤10%

EUT:	Mobile Phone	Model Name :	A55 Pro
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	∏/4-DQPSK Hopping mode (RX)	4 8	14

receiver category 2

Wanted signal mean power	Blocking signal	Blocking signal		PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)		AT ?	- 5	%
C 8	2 380	·	0.09%	-10
A	2 504	4 4	0.04%	≤10
-67.09	2 300	-34	0.95%	<10
W -	2 584	1	0.32%	≤10

Page 41 of 89

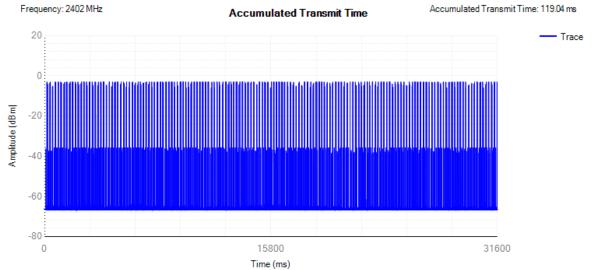
Report No.: STR211213006001E

//5	14 1 65	*	- N G A D
EUT :	Mobile Phone	Model Name :	A55 Pro
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	8-DPSK Hopping mode (RX)	. 4	F 75

receiver category 2

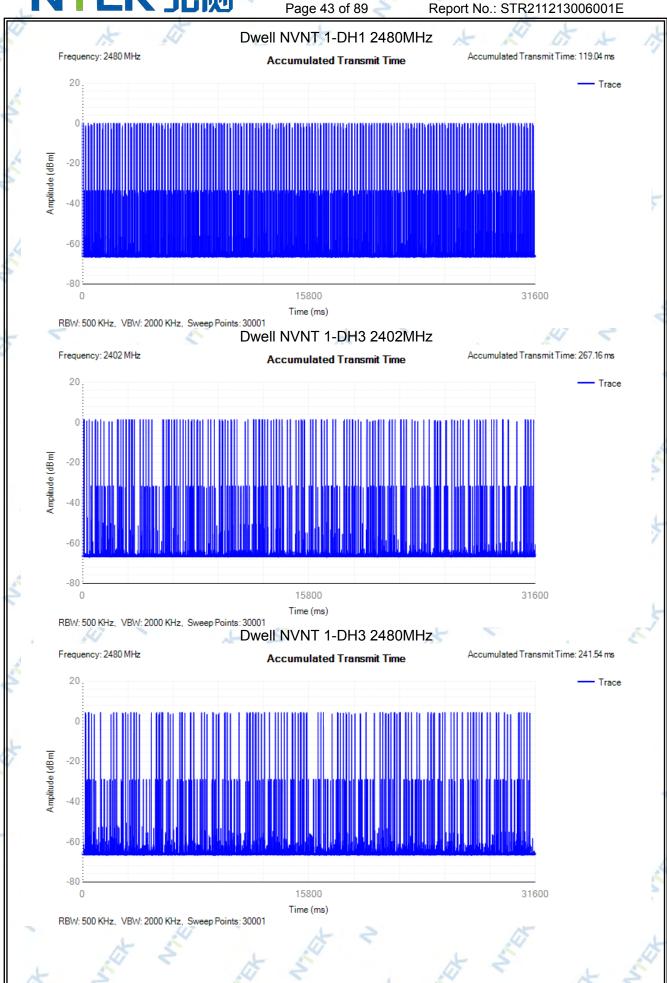
Wanted signal mean power from companion device (dE	Blocking signal	Blocking signal power(dBm) (see note 3)	PER %	PER Limit %
*	2 380	+ +	0.87%	
Let a series and a	2 504	4	0.83%	≤10
-67	2 300	-34	0.44%	-10
5 /	2 584	\$	0.28%	≤10

Note: (1) The above results were obtained from laboratory tests.

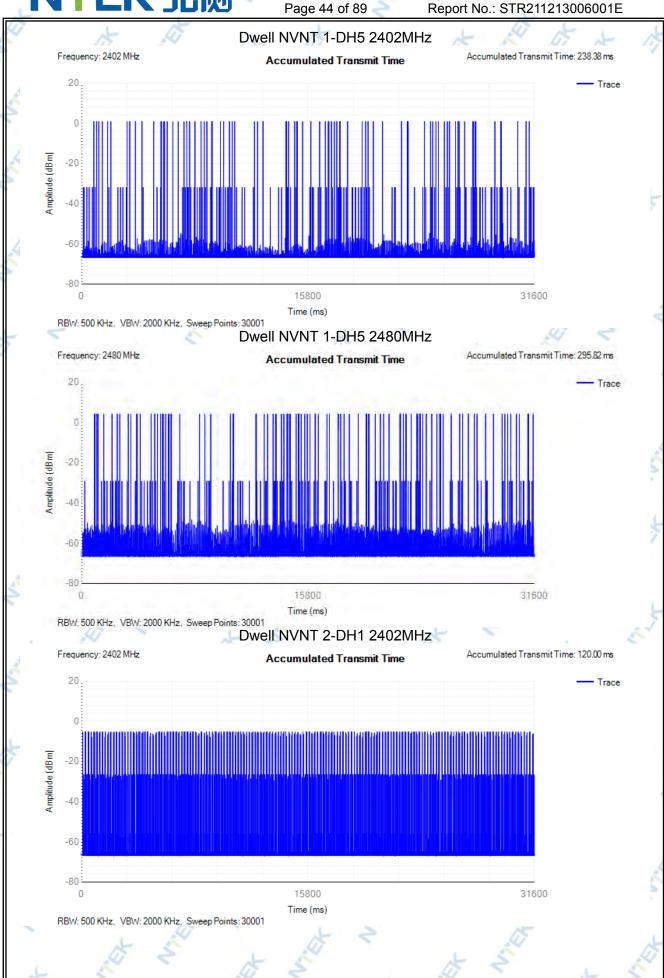

Report No.: STR211213006001E

11. TEST RESULTS

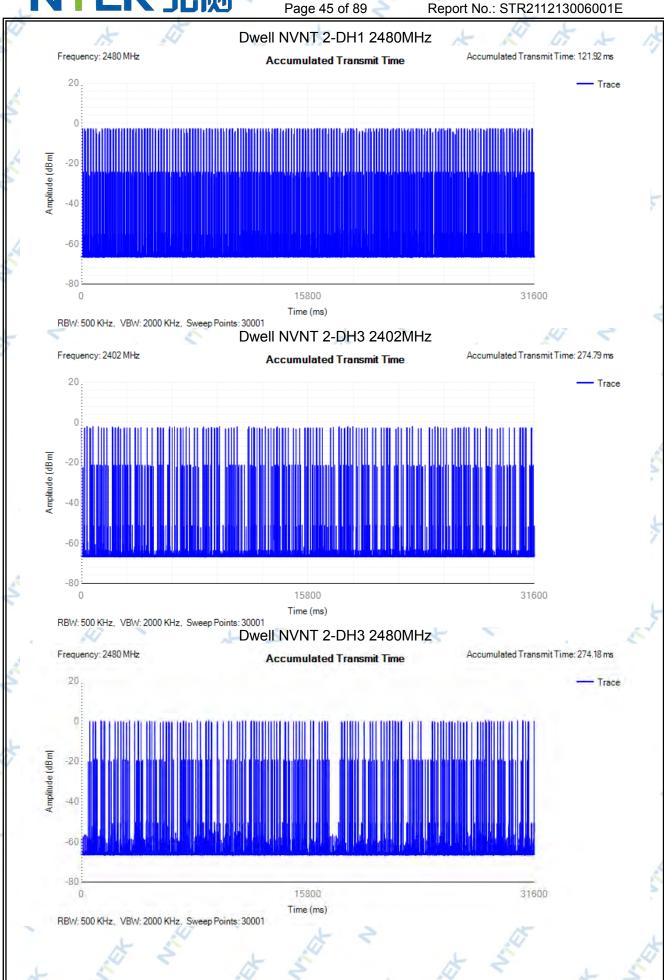
11.1 ACCUMULATED TRANSMIT TIME


Condition	Mode	Frequency	Accumulated	Limit	Sweep	Burst	Verdict
		(MHz)	Transmit Time (ms)	(ms)	Time (ms)	Number	X
NVNT	1-DH1	2402	119.04	400 🦯	31600	320	Pass
⊘NVNT ✓	1-DH1	2480	119.04	400	31600	320	Pass
NVNT	1-DH3	2402	267.156	400	31600	164	Pass
NVNT	1-DH3	2480	241.536	400	31600	148	Pass
NVNT	1-DH5	2402	238.376	400	31600	83	Pass
NVNT	1-DH5	2480	295.816	400	31600	103	Pass
NVNT	2-DH1	2402	120	400	31600	320	Pass
NVNT	2-DH1	2480	121.92	400	31600	320	Pass
NVNT	2-DH3	2402	274.794	400	31600	169	Pass
NVNT	2-DH3	2480	274.176	400	31600	168	Pass
NVNT	2-DH5	2402	249.864	400	31600	87	Pass
NVNT	2-DH5	2480	269.968	400	31600	94	Pass
NVNT	3-DH1	2402	120	400	31600	320	Pass
NVNT	3-DH1	2480	121.92	400	31600	320	Pass
NVNT	3-DH3	2402	273.168	400	31600	168	Pass
NVNT	3-DH3	2480	252.03	400	31600	155	Pass
NVNT	3-DH5	2402	256.32	400	31600	89	Pass
NVNT	3-DH5	2480	299.52	400	31600	104	Pass
l i							

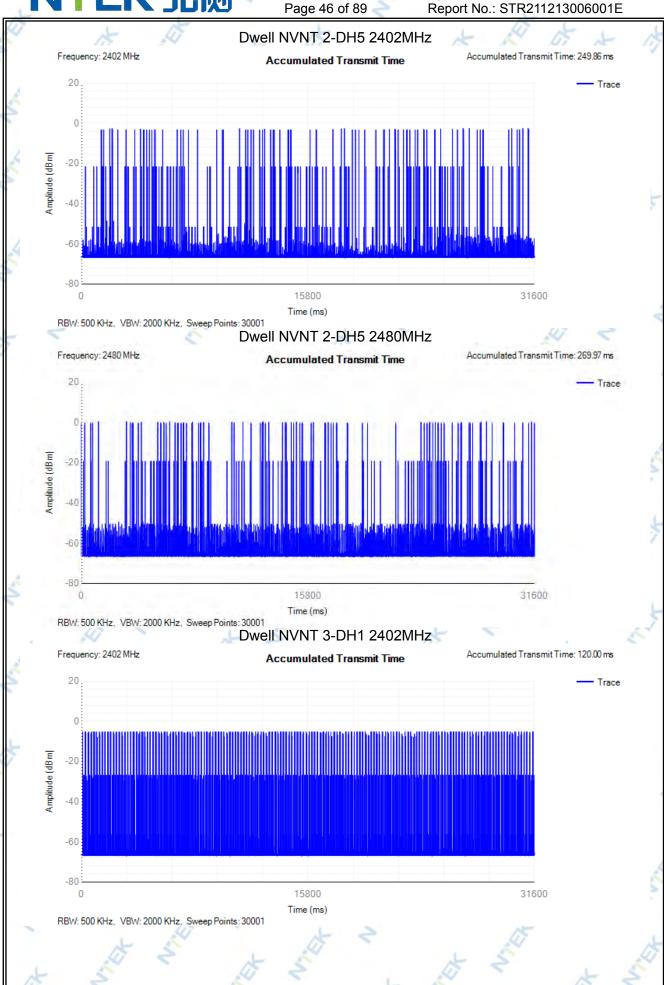
Dwell NVNT 1-DH1 2402MHz


RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

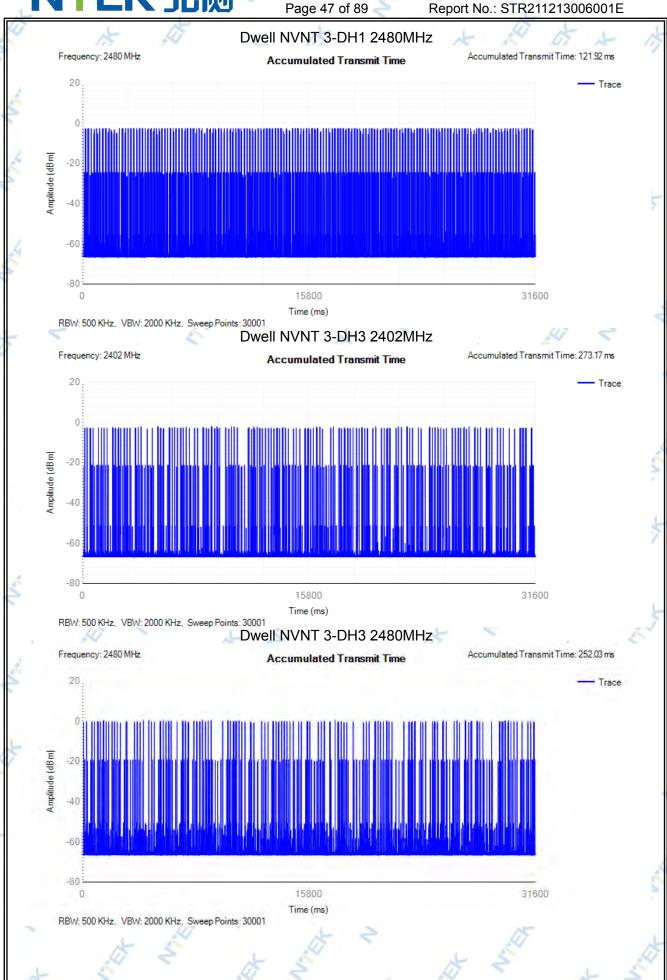
Page 43 of 89



Page 44 of 89



Page 45 of 89

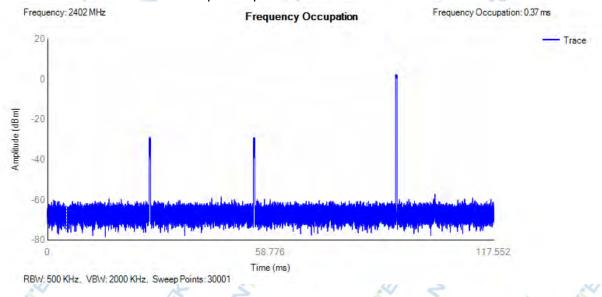


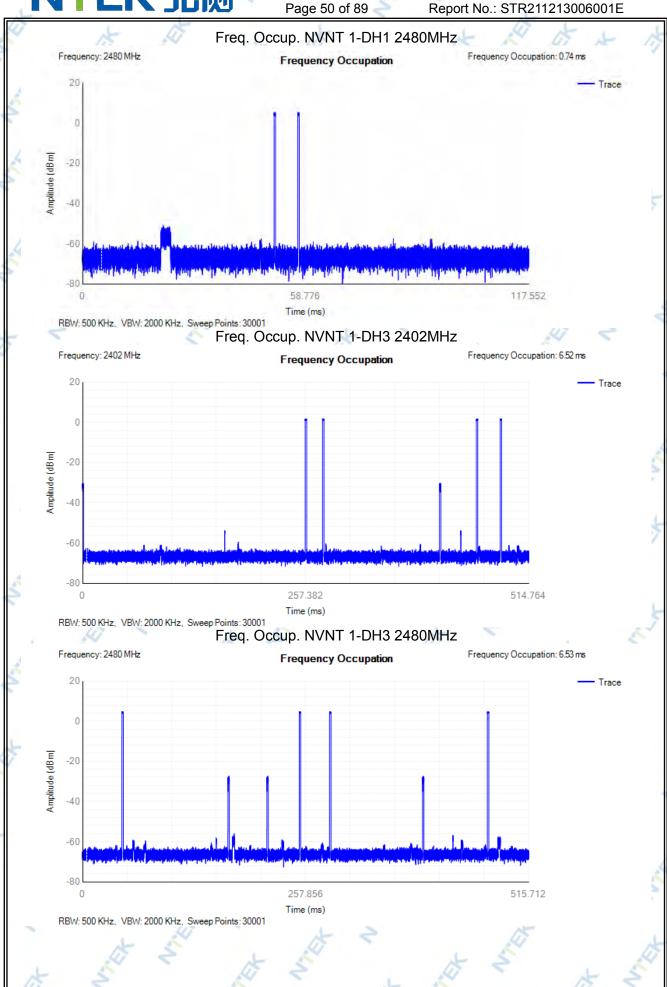
Page 46 of 89

Page 47 of 89

Page 48 of 89

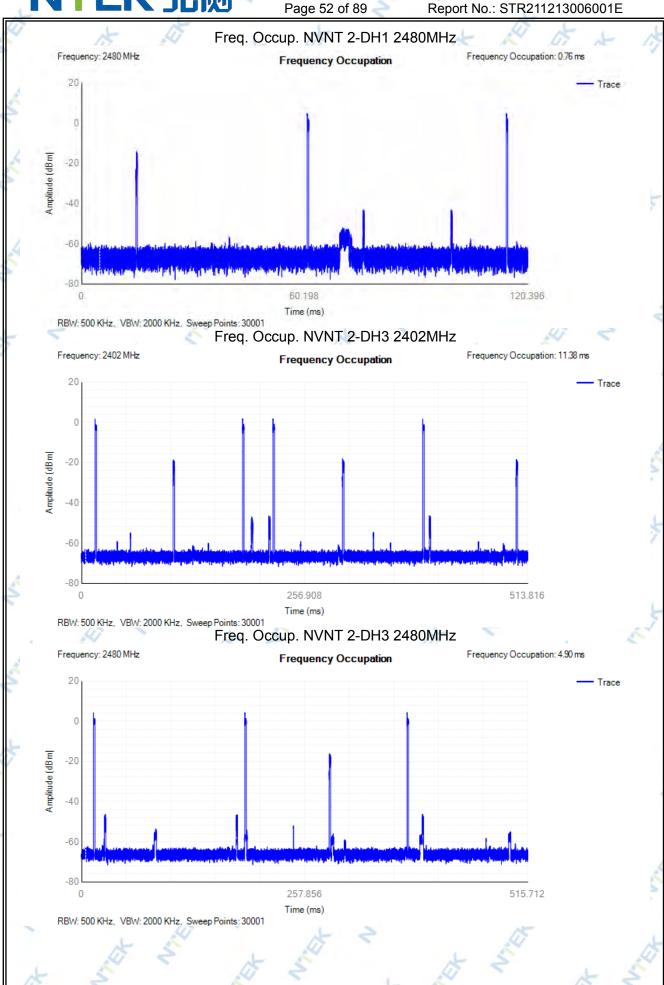
Report No.: STR211213006001E Dwell NVNT 3-DH5 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 256.32 ms **Accumulated Transmit Time** 20. Trace Amplitude (dBm) 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH5 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 299.52 ms **Accumulated Transmit Time** Trace Amplitude (dBm) Ò 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001




Report No.: STR211213006001E

-	155	14	L 65		15	47 A	F 15	
11.2 FREQUENCY OCCUPATION								
Condition	Mode	Frequency	Frequency	Limit	Sweep	Burst	Verdict	
47		(MHz)	Occupation (ms)	(ms)	Time (ms)	Number		
NVNT	1-DH1	2402	0.372	0	117.552	1	Pass	
NVNT	1-DH1	2480	0.744	0	117.552	2	Pass	
NVNT	1-DH3	2402	6.516	0	514.764	4 🙏	Pass	
ØNVNT Ø	1-DH3	2480	6.528	<i>6</i> 0	515.712	4	Pass	
NVNT	1-DH5	2402	11.488	0	907.552	4	Pass	
NVNT	1-DH5	2480	8.616	0	907.552	3	Pass	
NVNT	2-DH1	2402	0.75	0	118.5	2	Pass	
NVNT	2-DH1	2480	0.762	0 🔏	120.396	2	Pass	
NVNT	2-DH3	2402	11.382	0	513.816	7	Pass	
NVNT	2-DH3	2480	4.896	0	515.712	3	Pass	
NVNT	2-DH5	2402	8.616	0	907.552	3	Pass	
NVNT.	2-DH5	2480	5.744	0 🗷	907.552	2	Pass	
NVNT	3-DH1	2402	0.75	0	118.5	2	Pass	
NVNT	3-DH1	2480	0.762	0	120.396	2	Pass	
NVNT	3-DH3	2402	3.252	0	513.816	2	Pass	
NVNT	3-DH3	2480	6.504	0	513.816	4	Pass	
NVNT	3-DH5	2402	// 11.52	0	910.08	4	Pass	
NVNT	3-DH5	2480	8.64	0	910.08	3	Pass	

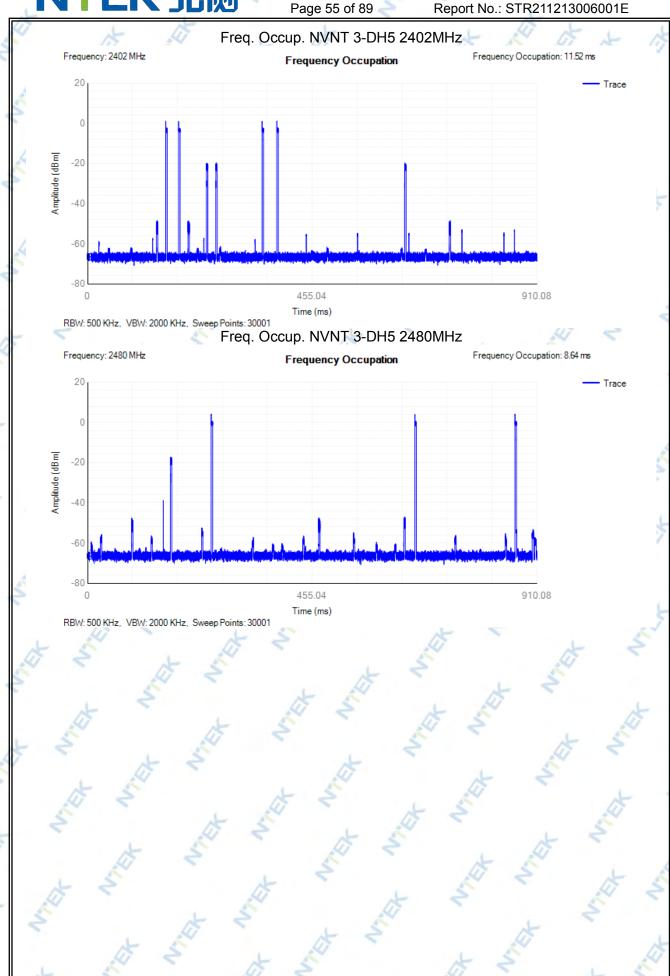
Freq. Occup. NVNT 1-DH1 2402MHz



Page 51 of 89

Report No.: STR211213006001E Freq. Occup. NVNT 1-DH5 2402MHz Frequency: 2402 MHz Frequency Occupation: 11.49 ms **Frequency Occupation** Trace Amplitude (dBm) -20 -40 -60 453.776 907.552 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Freq. Occup. NVNT 1-DH5 2480MHz Frequency: 2480 MHz Frequency Occupation: 8.62 ms **Frequency Occupation** Trace Amplitude (dBm -20 -40 -60 453.776 907.552 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Freq. Occup. NVNT 2-DH1 2402MHz Frequency: 2402 MHz Frequency Occupation: 0.75 ms **Frequency Occupation** Trace Amplitude (dBm) -20 -40 of height of larger for the probability of the formation by the firm of a steel decoration of the formation of the first per against the formation of the first per against the -80 59.25 118.5 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

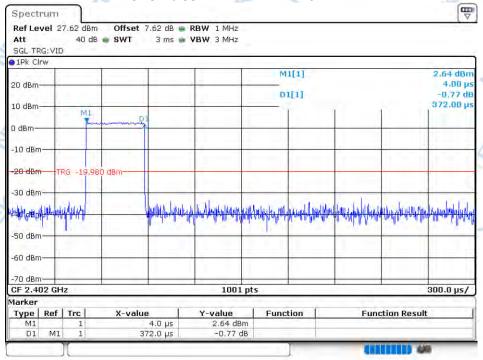
Page 53 of 89


Report No.: STR211213006001E Freq. Occup. NVNT 2-DH5 2402MHz Frequency Occupation: 8.62 ms Frequency: 2402 MHz **Frequency Occupation** Trace Amplitude (dBm) -40 453.776 907.552 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Freq. Occup. NVNT 2-DH5 2480MHz Frequency: 2480 MHz Frequency Occupation: 5.74 ms **Frequency Occupation** Trace Amplitude (dBm) -20 -40 453.776 907.552 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Freq. Occup. NVNT 3-DH1 2402MHz Frequency: 2402 MHz Frequency Occupation: 0.75 ms **Frequency Occupation** Trace Amplitude (dBm) -20 -40 Water the first transfer of traitment by the great principality in great principality in a principality for the great principality in the first prin 59.25 1185 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

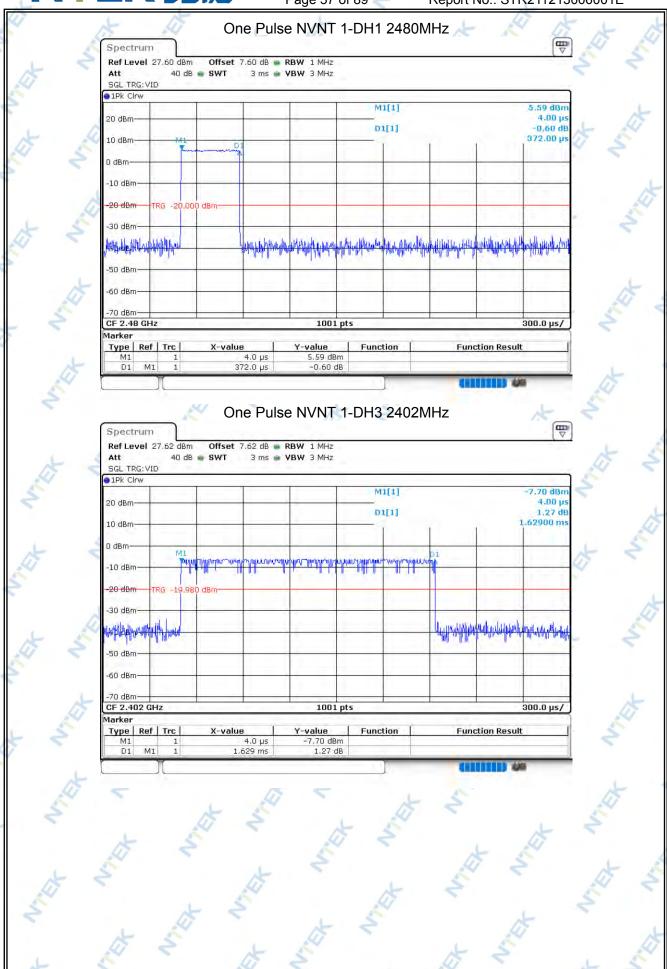
Page 54 of 89

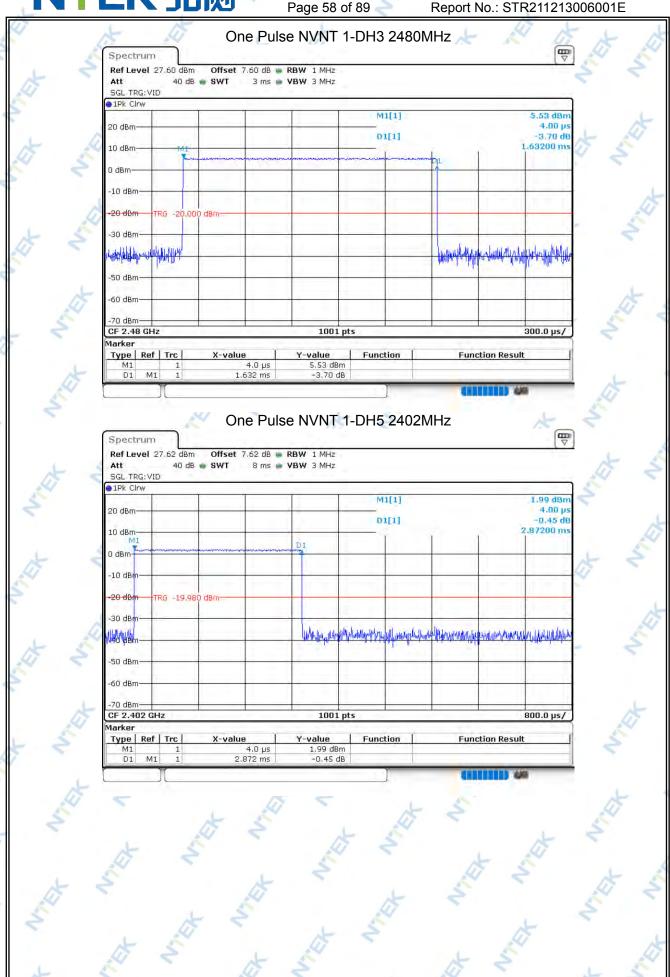
Report No.: STR211213006001E Freq. Occup. NVNT 3-DH1 2480MHz Frequency: 2480 MHz Frequency Occupation: 0.76 ms **Frequency Occupation** Trace Amplitude (dBm) -20 -40 -60 Lange and Labridge and reproductive production of the production o 60.198 120.396 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Freq. Occup. NVNT 3-DH3 2402MHz Frequency: 2402 MHz Frequency Occupation: 3.25 ms **Frequency Occupation** Trace Amplitude (dBm -20 -40 -60 256.908 513.816 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Freq. Occup. NVNT 3-DH3 2480MHz Frequency: 2480 MHz Frequency Occupation: 6.50 ms **Frequency Occupation** Trace Amplitude (dBm) -20 -40 -80 256.908 513.816 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

Page 55 of 89

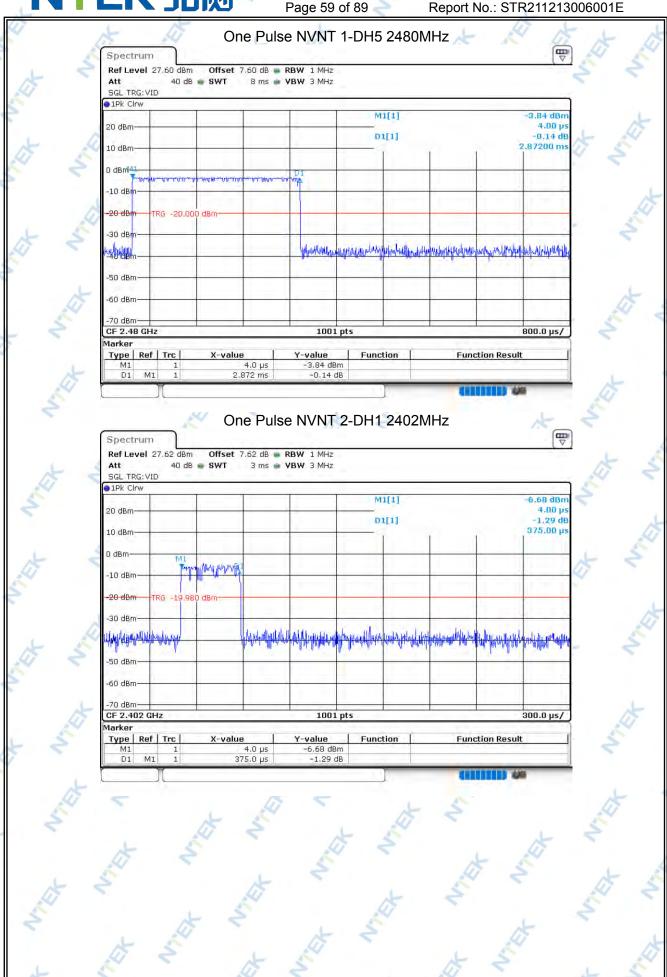

Report No.: STR211213006001E

11.3 ONE PULSE DWELL TIME

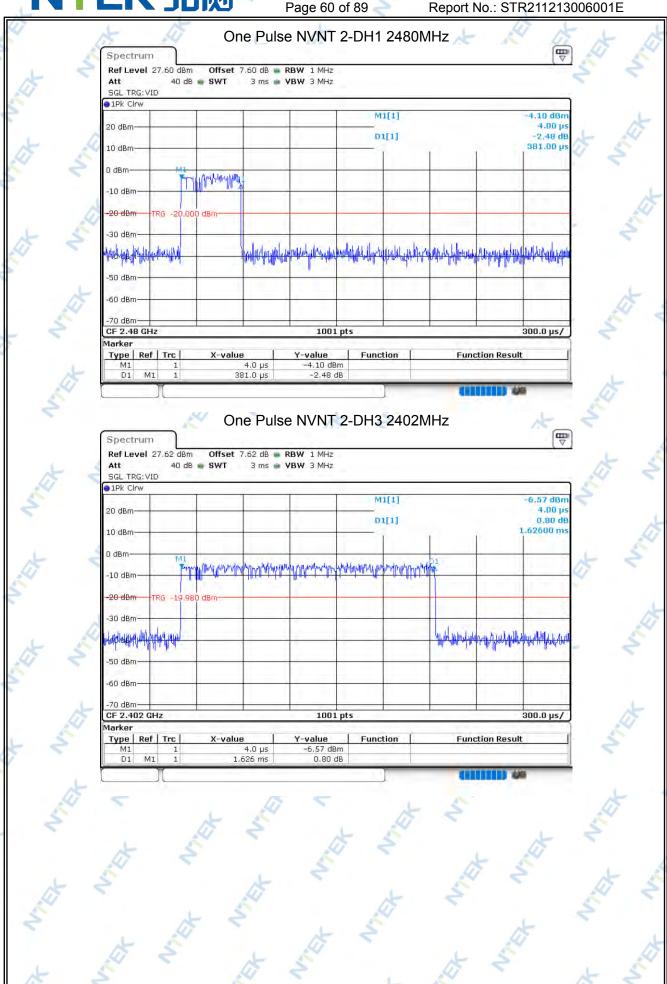

	Condition	Mode	Frequency (MHz)	Pulse Time (ms)
3	NVNT	1-DH1	2402	0.372
١	NVNT	1-DH1	2480	0.372
	NVNT	1-DH3	2402	1.629
	_ NVNT _	1-DH3	2480	1.632
Ų	NVNT	1-DH5	2402	2.872
	NVNT	1-DH5	2480	2.872
	NVNT	2-DH1	2402	0.375
	NVNT	2-DH1	2480	0.381
	NVNT	2-DH3	2402	1.626
/	NVNT	2-DH3	2480	1.632
4	NVNT	2-DH5	2402	2.872
	NVNT	2-DH5	2480	2.872
	NVNT	3-DH1	2402	0.375
	NVNT	3-DH1	2480	0.381
	NVNT	3-DH3	2402	1.626
	NVNT	3-DH3	2480	1.626
	NVNT	3-DH5	2402	2.88
	NVNT	3-DH5	2480	2.88
	24			_



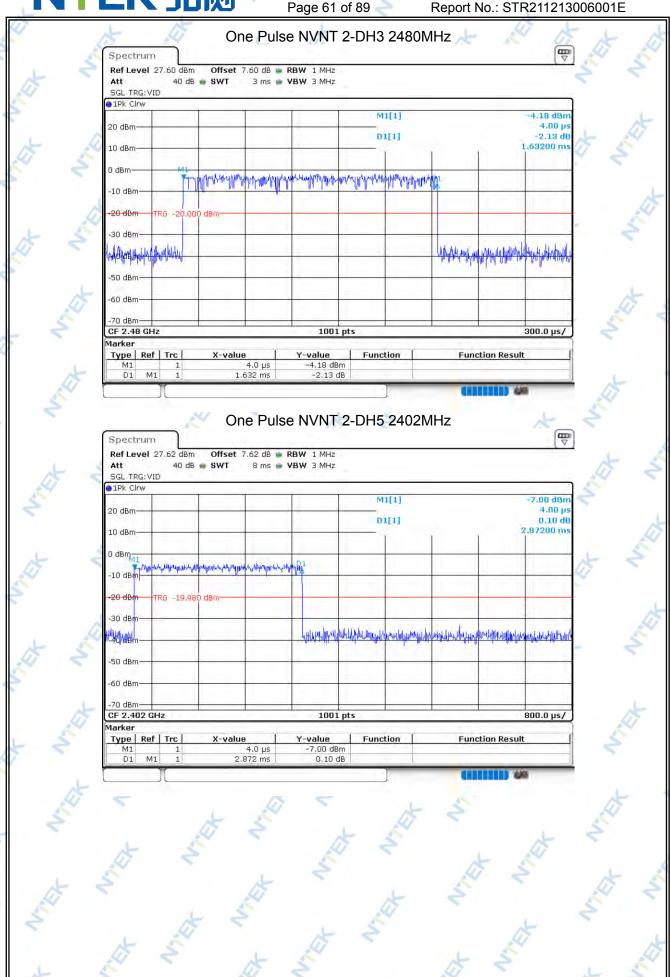
Page 57 of 89 Report No.: STR211213006001E



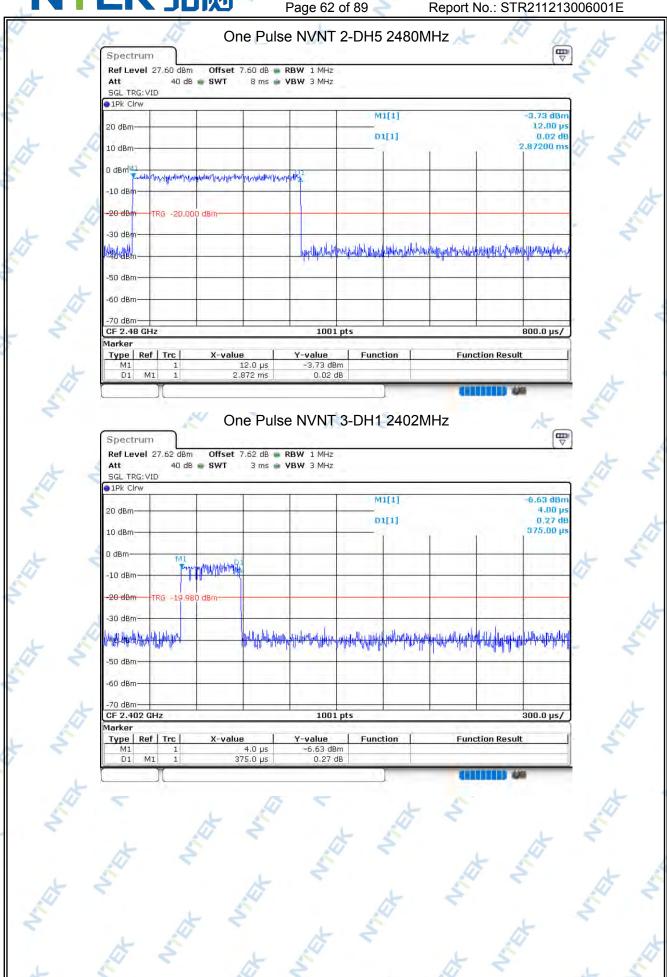
Page 58 of 89



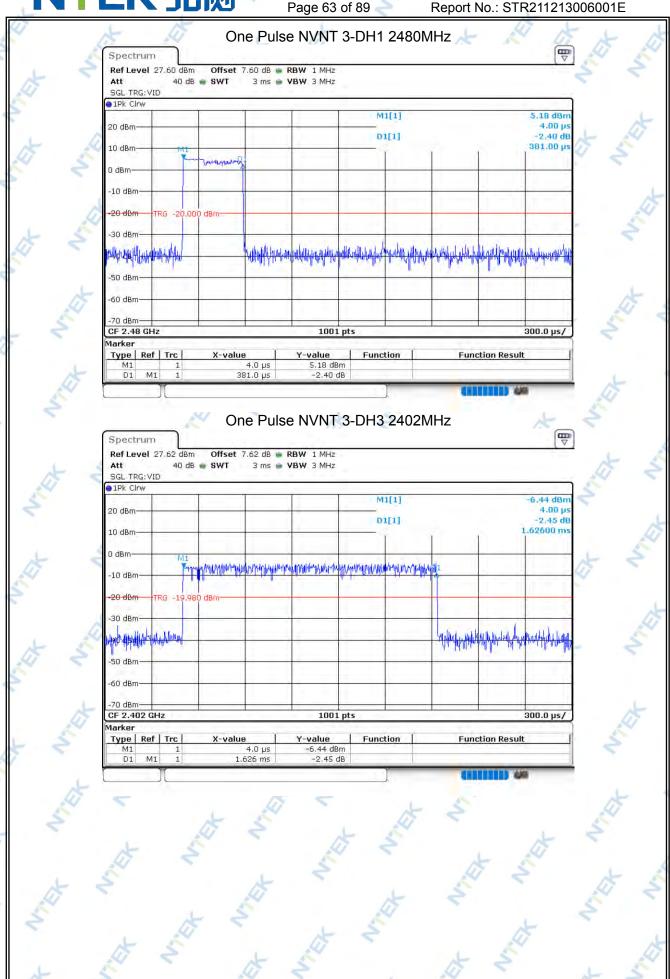
Page 59 of 89



Page 60 of 89

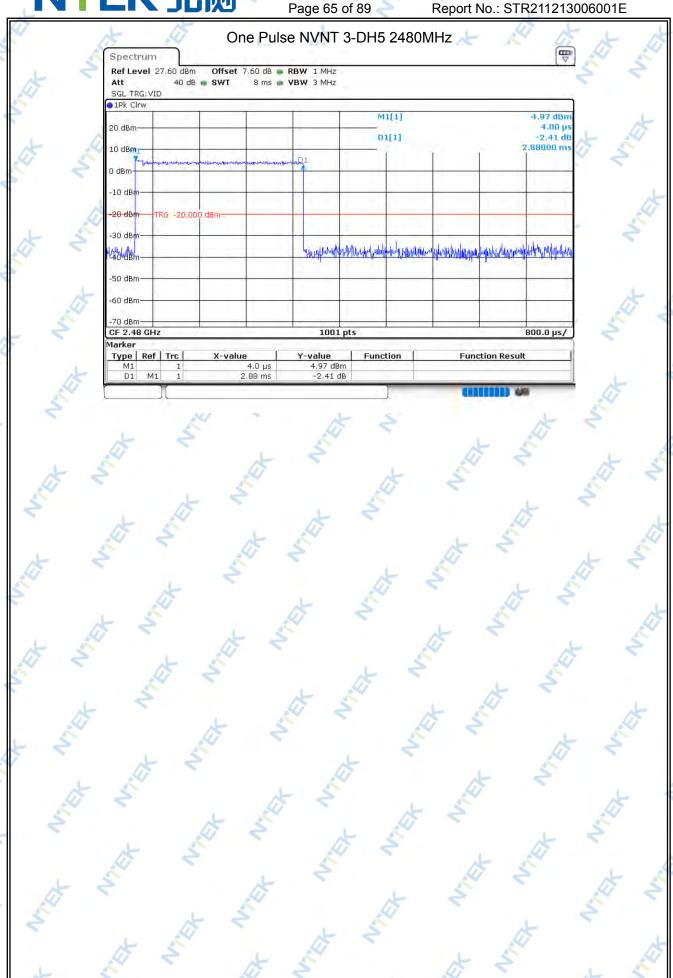


Page 61 of 89



Page 62 of 89

Page 63 of 89



Page 64 of 89

Report No.: STR211213006001E One Pulse NVNT 3-DH3 2480MHz Spectrum Ref Level 27.60 dBm Offset 7.60 dB - RBW 1 MHz Att 40 dB . SWT 3 ms 🍅 VBW 3 MHz SGL TRG: VID 1Pk Clrw M1[1] 4.18 dBn 20 dBm 01[1] 0.61 de 1.62600 m -10 dBm -50 dBm CF 2.48 GHz 1001 pts 300.0 µs/ Marker Type | Ref | Trc | Function **Function Result** X-value Y-value 4.0 µs 4.18 dBm D1 MI 1.626 ms 0.61 dB One Pulse NVNT 3-DH5 2402MHz Ref Level 27.62 dBm Offset 7.62 dB · RBW 1 MHz 40 dB . SWT 8 ms 🍙 VBW 3 MHz SGL TRG: VID 1Pk Clrw 4.00 ps -2.34 dB 01[1] 2.88000 ms 10 dBm -10 dBm -30 dBr protected a recognition over the professional property of the had bein 70 dBm-CF 2,402 GHz 1001 pts 800.0 µs/ Marker Type | Ref | Trc value 4.0 µs 7.04 dBm -2.34 dB

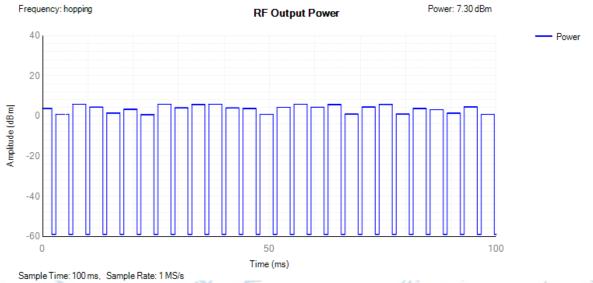
Page 65 of 89

NVHT

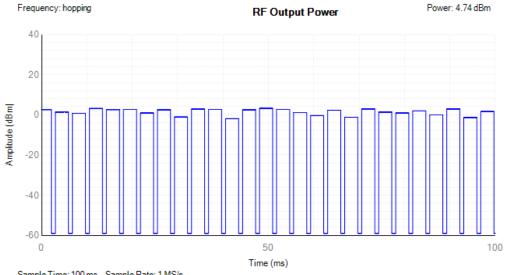
3-DH5

hopping

Report No.: STR211213006001E

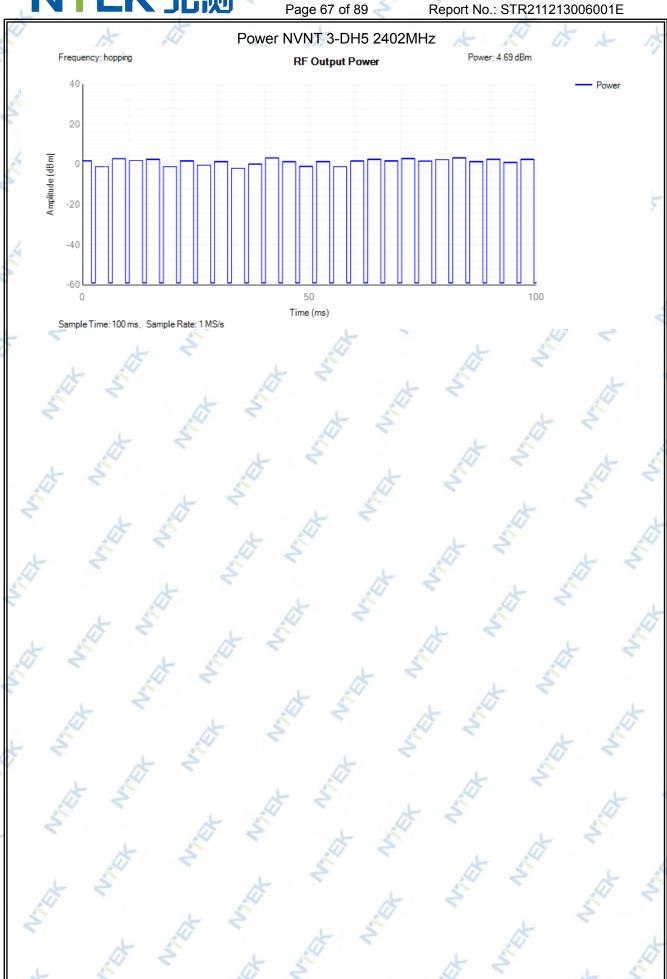

20

Pass


ш		157	24	417		1.0	41 11	E 112		
H	11.4 RF OUTPUT POWER									
I	Condition	Mode	Frequency	Max Burst RMS	Burst	Max EIRP	Limit	Verdict		
I	45		(MHz)	Power (dBm)	Number	(dBm)	(dBm)			
	NVNT	1-DH5	hopping	6.05	27	7.3	20	Pass		
۱	NVNT	2-DH5	hopping	3.49	27	4.74	20	Pass		
	NVNT	3-DH5	hopping	3.44	27	4.69	20	Pass		
	NVLT	1-DH5	hopping 🍣	5.37	27	6.62	20	Pass		
	NVLT	2-DH5	hopping	2.9	28	4.15	20	Pass		
ı	NVLT	3-DH5	hopping	2.87	27	4.12	20	Pass		
	NVHT	1-DH5	hopping	5.34	27	6.59	20	Pass		
	NVHT	2-DH5	hopping	2.8	28	4.05	20	Pass		
ш	4									

Power NVNT 1-DH5 2402MHz

2.67


Power NVNT 2-DH5 2402MHz

Sample Time: 100 ms, Sample Rate: 1 MS/s

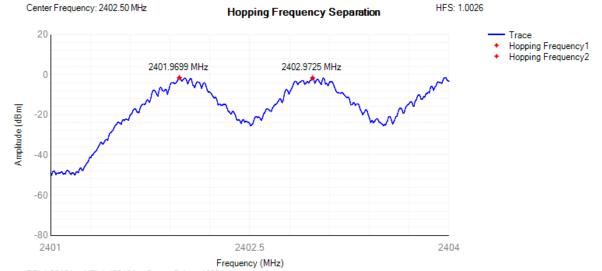
Page 67 of 89

NVNT

3-DH5

Report No.: STR211213006001E

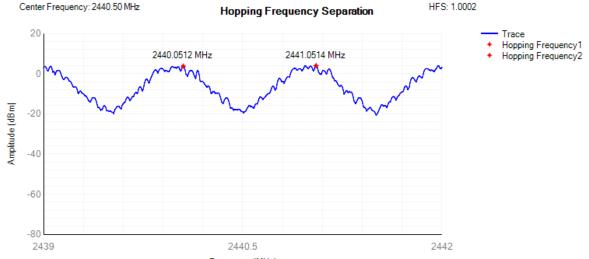
0.999


Pass

0.1

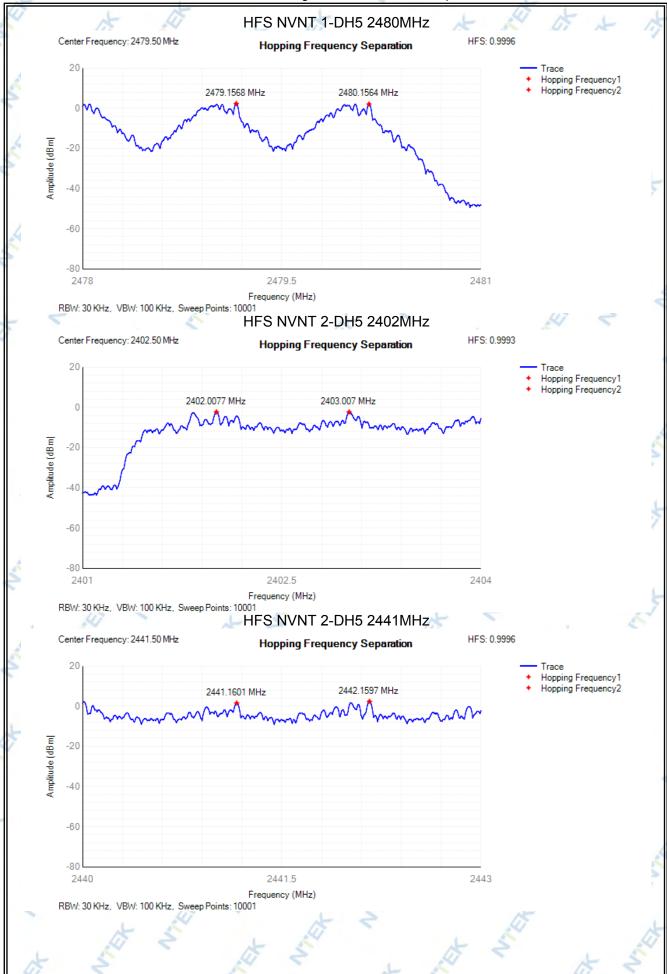
11.5 HOPPIN	G FREQU	ENCY SEPARATION	P L	AT 5	M A	FA
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
45		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.9699	2402.9725	1.0026	0.1	Pass
NVNT	1-DH5	2440.0512	2441.0514	1.0002	0.1	Pass
NVNT	1-DH5	2479.1568	2480.1564	0.9996	0.1	Pass
ØNVNT ₫	2-DH5	2402.0077	2403.007	0.9993	0.1	Pass
NVNT	2-DH5	2441.1601	2442.1597	0.9996	0.1	Pass
NVNT	2-DH5	2479.0074	2480.0079	1.0005	0.1	Pass
NVNT	3-DH5	2402.0191	2403.019	0.9999	0.1	Pass
NVNT	3-DH5	2441.1577	2442.1582	1.0005	0.1	Pass

HFS NVNT 1-DH5 2402MHz


2480.157

RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001

2479.158


HFS NVNT 1-DH5 2441MHz

Frequency (MHz

Page 69 of 89 Report No.: STR211213006001E

Page 70 of 89

Report No.: STR211213006001E HFS NVNT 2-DH5 2480MHz Center Frequency: 2479.50 MHz HFS: 1.0005 Hopping Frequency Separation 20 Trace Hopping Frequency1 Hopping Frequency2 2479.0074 MHz 2480.0079 MHz Amplitude (dBm) -20 -40 -60 2478 2479.5 2481 Frequency (MHz) RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001 HFS NVNT 3-DH5 2402MHz Center Frequency: 2402.50 MHz HFS: 0.9999 Hopping Frequency Separation Hopping Frequency1 Hopping Frequency2 2402.0191 MHz 2403.019 MHz Amplitude (dBm) -20 -40 -60 2401 2402.5 2404 Frequency (MHz) RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001 HFS NVNT 3-DH5 2441MHz Center Frequency: 2441.50 MHz HFS: 1.0005 Hopping Frequency Separation 20 Hopping Frequency1 2441.1577 MHz 2442.1582 MHz Hopping Frequency2 Amplitude (dBm) -20 -40 2440 2441.5 2443 Frequency (MHz) RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001

Page 71 of 89 Report No.: STR211213006001E HFS NVNT 3-DH5 2480MHz Center Frequency: 2479.50 MHz HFS: 0.999 Hopping Frequency Separation Trace Hopping Frequency1 Hopping Frequency2 2479.158 MHz 2480.157 MHz Amplitude (dBm) -20 -40 -60 2478 Frequency (MHz)
RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001

2480

2479.995

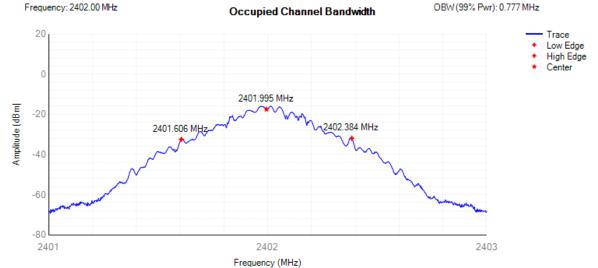
NVNT

3-DH5

Report No.: STR211213006001E

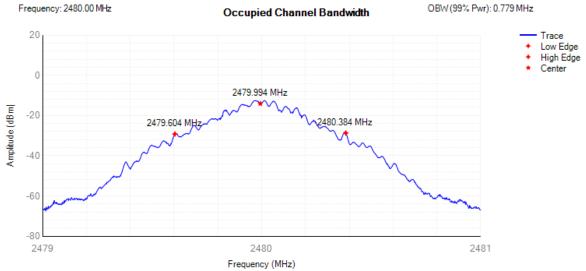
2400 - 2483.5MHz

Pass


11.6 OCCUPIED CHANNEL BANDWIDTH Condition Mode **OBW** Lower Edge Upper Edge Limit OBW (MHz) Verdict Frequency (MHz) Frequency (MHz) (MHz) (MHz) (MHz) **NVNT** 1-DH5 2402 2401.995 0.777 2401.606 2402.384 2400 - 2483.5MHz Pass **NVNT** 1-DH5 2480 2479.994 0.779 2479.604 2480.384 2400 - 2483.5MHz **Pass NVNT** 2-DH5 2402 2401.995 1.185 2401.403 2402.587 2400 - 2483.5MHz **Pass** 2479.992 **NVNT** 2480 2479.411 2400 - 2483.5MHz **Pass** 2-DH5 1.163 2480.573 2400 - 2483.5MHz NVNT 2402 2401.995 2401.399 Pass 3-DH5 1.193 2402.591

OBW NVNT 1-DH5 2402MHz

2479.401


2480.589

1.189

RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

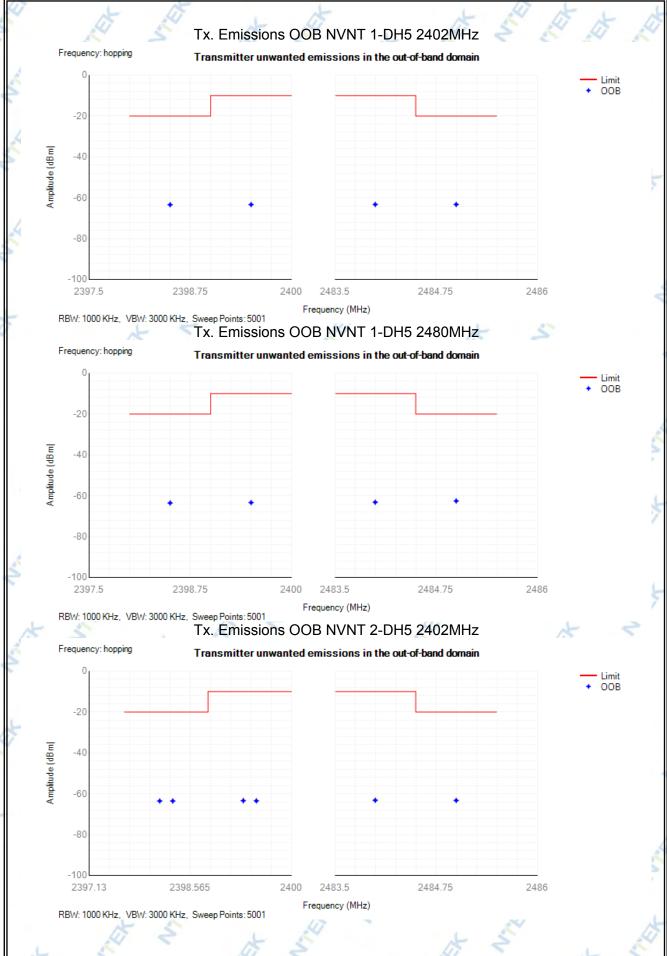
OBW NVNT 1-DH5 2480MHz

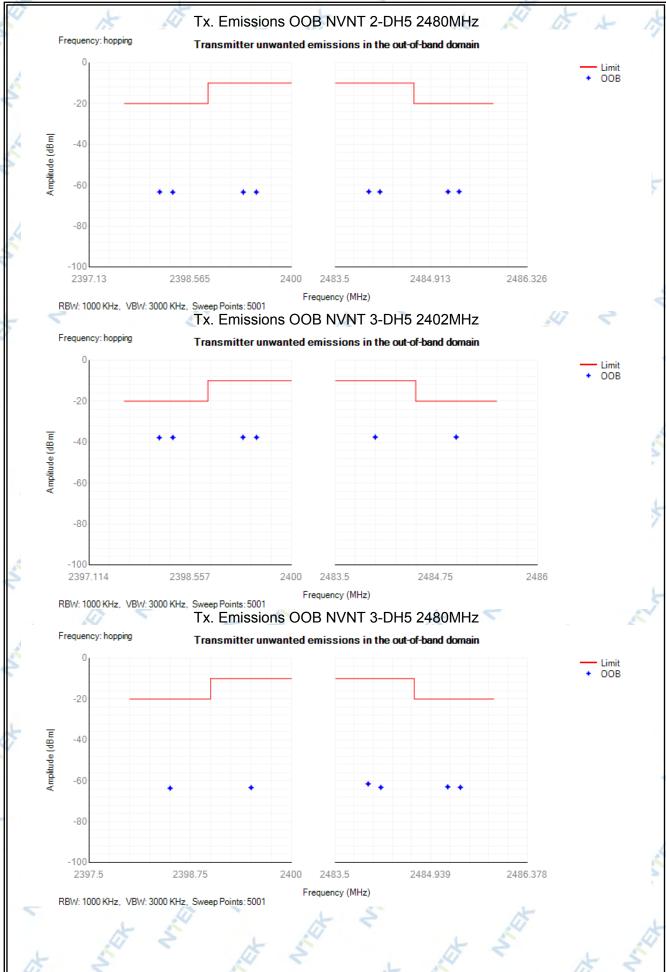
RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

Page 73 of 89

Report No.: STR211213006001E OBW NVNT 2-DH5 2402MHz Frequency: 2402.00 MHz OBW (99% Pwr): 1.185 MHz Occupied Channel Bandwidth 20 Trace Low Edge High Edge Center 2401.995 MHz Amplitude (dBm) -20 2401.403 MHz -40 -60 2401 2402 2403 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001 OBW NVNT 2-DH5 2480MHz Frequency: 2480.00 MHz OBW (99% Pwr): 1.163 MHz Occupied Channel Bandwidth 20 Trace Low Edge High Edge Center 2479.992 MHz Amplitude (dBm -20 -40 -60 2479 2480 2481 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001 OBW NVNT 3-DH5 2402MHz Frequency: 2402.00 MHz OBW (99% Pwr): 1.193 MHz Occupied Channel Bandwidth Trace Low Edge High Edge 2401.995 MHz Amplitude (dBm) -20 2402.591 MHz 2401.399 MHz -40 -80 2401 2402 2403 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

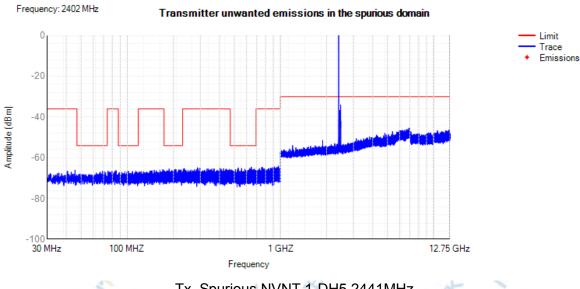
Page 74 of 89

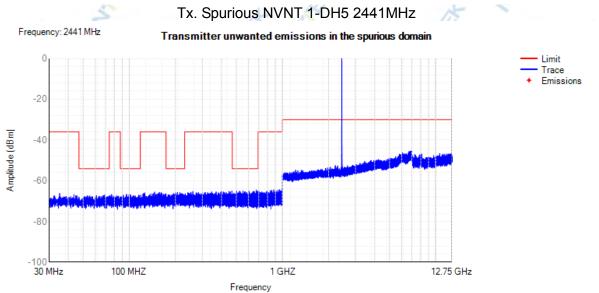

Report No.: STR211213006001E OBW NVNT 3-DH5 2480MHz Frequency: 2480.00 MHz OBW (99% Pwr): 1.189 MHz Occupied Channel Bandwidth Trace Low Edge High Edge Center 2479.995 MHz Amplitude (dBm) -20 2480.589 MHz 2479.401 MHz -40 -60 2479 2480 2481 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001



17 TRANSM	NITTER III	NWANTED EMISS	IONS IN THE OUT-O	F-RAND DOMAIN	5 4 0	FA
Condition	Mode	Frequency	OOB Frequency	Level	Limit	Verdict
45		(MHz)	(MHz)	(dBm/MHz)	(dBm/MHz)	
NVNT	1-DH5	hopping	2399.5	-63.34	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.41	-20	Pass
NVNT	1-DH5	hopping 📈	2484	-63.29	-10	Pass
NVNT 🥖	1-DH5	hopping	2485	-63.29	-20	Pass
NVNT	1-DH5	hopping	2399.5	-63.35	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.53	-20	Pass
NVNT	1-DH5	hopping	2484	-63.18	-10	Pass
NVNT	1-DH5	hopping	2485	-62.56	-20	Pass
NVNT	2-DH5	hopping	2399.5	-63.48	-10	Pass
NVNT	2-DH5	hopping	2399.315	-63.39	-10	Pass
NVNT	2-DH5	hopping	2398.315	-63.55	-20	Pass
NVNT 🙏	2-DH5	hopping	2398.13	-63.53	-20	Pass
NVNT	2-DH5	hopping	2484	-63.19	-10	Pass
NVNT	2-DH5	hopping	2485	-63.28	-20	Pass
NVNT	2-DH5	hopping	2399.5	-63.34	-10	Pass
NVNT	2-DH5	hopping	2399.315	-63.38	-10	Pass
NVNT	2-DH5	hopping	2398.315	-63.4	-20	Pass
NVNT	2-DH5	hopping	2398.13	-63.27	-20	Pass
NVNT	2-DH5	hopping	2484	-63.13	-10	Pass
NVNT	2-DH5	hopping	2484.163	-63.23	-10	Pass
NVNT	2-DH5	hopping	2485.163	-63.19	-20	Pass
NVNT	2-DH5	hopping	2485.326	-63.13	-20	Pass
NVNT	3-DH5	hopping 🧢	2399.5	-37.71	-10 🥂	Pass
NVNT	3-DH5	hopping	2399.307	-37.66	10	Pass
NVNT	3-DH5	hopping	2398.307	-37.75	-20	Pass
NVNT	3-DH5	hopping	2398.114	-37.84	-20	Pass
NVNT	3-DH5	hopping 🕢	2484	-37.59	-10	Pass
NVNT	3-DH5	hopping	2485	-37.58	-20	Pass
NVNT	3-DH5	hopping	2399.5	-63.36	-10	Pass
NVNT	3-DH5	hopping	2398.5	-63.63	-20	Pass
NVNT	3-DH5	hopping	2484	-61.54	-10	Pass
NVNT	3-DH5	hopping	2484.189	-63.26	-10	Pass
NVNT	3-DH5	hopping	2485.189	-62.98	-20	Pass
NVNT	3-DH5	hopping	2485.378	-63.24	-20	Pass

1.8 TRAN	SMITTI	ER UNWAN	ITED EMISSIONS IN TH	E SPURIO	US DOMAIN	E A	F At	A
Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	30 MHz -47 MHz	45.6	-66.02	ŇA	-36	Pass
NVNT	1-DH5	2402	47 MHz -74 MHz	68.8	-66.58	NA	-54	Pass
NVNT NVNT	1-DH5 1-DH5	2402 2402	74 MHz -87.5 MHz 87.5 MHz -118 MHz	84.7 101.75	-66.29 -66.48	NA NA	-36 -54	Pass Pass
NVNT	1-DH5	2402	118 MHz -174 MHz	170.6	-65.84	NA NA	-36	Pass
NVNT	1-DH5	2402	174 MHz -230 MHz	187.6	-65.45	NA	-54	Pass
NVNT	1-DH5	2402	230 MHz -470 MHz	287.5	-64.83	NA	-36	Pass
NVNT	1-DH5	2402	470 MHz -694 MHz	646.7	-64.55	NA	-54	Pass
NVNT	1-DH5	2402	694 MHz -1000 MHz	969.85	-64.05	NA	-36	Pass
NVNT NVNT	1-DH5 1-DH5	2402 2402	1000 MHz -2398 MHz 2485.5 MHz -12750 MHz	1886 6905.5	-51.45 -45.42	NA NA	-30 -30	Pass Pass
NVNT	1-DH5	2441	30 MHz -47 MHz	35.15	-45.42 -66.18	NA /	-36	Pass
NVNT	1-DH5	2441	47 MHz -74 MHz	69	-67.03	NA NA	-54	Pass
NVNT	1-DH5	2441	74 MHz -87.5 MHz	76.7	-66.68	NA S	-36	Pass
NVNT	1-DH5	2441	87.5 MHz -118 MHz	99.95	-66.32	NA NA	-54	Pass
NVNT	1-DH5	2441	118 MHz -174 MHz	146.5	-65.5	NA	-36	Pass
NVNT	1-DH5	2441	174 MHz -230 MHz	206.65	-65.67	NA NA	-54	Pass
NVNT NVNT	1-DH5 1-DH5	2441 2441	230 MHz -470 MHz 470 MHz -694 MHz	468.15 674.45	-64.89 -64.51	NA NA	-36 -54	Pass Pass
NVNT	1-DH5	2441	694 MHz -1000 MHz	993.5	-64.15	NA NA	-36	Pass
NVNT	1-DH5	2441	1000 MHz -2398 MHz	2211	-52.52	NA NA	-30	Pass
NVNT	1-DH5	2441	2485.5 MHz -12750 MHz	6872	-45.42	NA	-30	Pass
NVNT	1-DH5	2480	30 MHz -47 MHz	46.8	-66.03	NA	-36	Pass
NVNT	1-DH5	2480	47 MHz -74 MHz	59.95	-66.87	NA	-54	Pass
NVNT	1-DH5	2480	74 MHz -87.5 MHz	82.7	-65.78	NA NA	-36	Pass
NVNT NVNT	1-DH5 1-DH5	2480 2480	87.5 MHz -118 MHz 118 MHz -174 MHz	112.65 153.8	-66.5 -65.11	NA NA	-54 -36	Pass Pass
NVNT	1-DH5	2480	174 MHz -230 MHz	198.4	-65.63	NA NA	-54	Pass
NVNT	1-DH5	2480	230 MHz -470 MHz	300.8	-64.95	NA	-36	Pass
NVNT	1-DH5	2480	470 MHz -694 MHz	582.05	-64.56	NA	-54	Pass
NVNT	1-DH5	2480	694 MHz -1000 MHz	962.1	-64.23	NA	-36	Pass
NVNT	1-DH5	2480	1000 MHz -2398 MHz	2343	-53	NA	-30	Pass
NVNT	1-DH5	2480	2485.5 MHz -12750 MHz	6927.5	-45.02	NA NA	-30	Pass
NVNT NVNT	2-DH5 2-DH5	2402 2402	30 MHz -47 MHz 47 MHz -74 MHz	39.55 70.8	-65.95 -66.45	NA NA	-36 -54	Pass Pass
NVNT	2-DH5	2402	74 MHz -87.5 MHz	75.95	-66.35	NA	-36	Pass
NVNT	2-DH5	2402	87.5 MHz -118 MHz	90.55	-66.67	NA	-54	Pass
NVNT	2-DH5	2402	118 MHz -174 MHz	146.2	-65.42	NA	-36	Pass
NVNT	2-DH5	2402	174 MHz -230 MHz	228.45	-65.13	NA	-54	Pass
NVNT	2-DH5	2402	230 MHz -470 MHz	344.1	-64.71	NA	-36	Pass
NVNT	2-DH5	2402	470 MHz -694 MHz	692.55	-64.59	NA NA	-54	Pass
NVNT NVNT	2-DH5 2-DH5	2402 2402	694 MHz -1000 MHz 1000 MHz -2398 MHz	930.2 2340.5	-64.04 -53.47	NA NA	-36 -30	Pass Pass
NVNT	2-DH5	2402	2485.5 MHz -12750 MHz	6883	-44.14	NA NA	-30	Pass
NVNT	2-DH5	2441	30 MHz -47 MHz	44.7	-65.61	NA	-36	Pass
NVNT	2-DH5	2441	47 MHz -74 MHz	65.65	-66.9	NA 🧸	·54	Pass
NVNT	2-DH5	2441	74 MHz -87.5 MHz	75.3	-66.86	NA 🧆	-36	Pass
NVNT	2-DH5	2441	87.5 MHz -118 MHz	110.85	-64.77	NA	-54	Pass
NVNT	2-DH5	2441	118 MHz -174 MHz	160.65	-65.85	NA NA	-36	Pass
NVNT NVNT	2-DH5 2-DH5	2441 2441	174 MHz -230 MHz 230 MHz -470 MHz	175.5 410.25	-65.46 -64.61	NA NA	-54 -36	Pass
NVNT	2-DH5	2441	470 MHz -694 MHz	690.55	-64.66	NA NA	-54 d	Pass
NVNT	2-DH5	2441	694 MHz -1000 MHz	966.15	-63.65	NA /	-36	Pass
NVNT	2-DH5	2441	1000 MHz -2398 MHz	2353.5	-46.3	NA NA	-30	Pass
NVNT	2-DH5	2441	2485.5 MHz -12750 MHz	6971.5	-45.12	NA	-30	Pass
NVNT	2-DH5	2480	30 MHz -47 MHz	31.16	-66.58	NA NA	-36	Pass
NVNT	2-DH5	2480	47 MHz -74 MHz	57.65	-66.14	NA NA	-54	Pass
NVNT NVNT	2-DH5 2-DH5	2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz	74.38 100.40	-64.36 -65.44	NA NA	-36 -54	Pass Pass
NVNT	2-DH5	2480	118 MHz -174 MHz	133.62	-65.36	NA NA	-36	Pass
NVNT	2-DH5	2480	174 MHz -230 MHz	180.55	-64.43	NA NA	-54	Pass
NVNT	2-DH5	2480	230 MHz -470 MHz	409.06	-63.56	NA	-36	Pass
NVNT	2-DH5	2480	470 MHz -694 MHz	540.91	-64.46	NA	-54	Pass
NVNT	2-DH5	2480	694 MHz -1000 MHz	893.82	-63.74	NA	-36	Pass
NVNT	2-DH5	2480	1000 MHz -2398 MHz	2135.60	-53.11	NA NA	-30	Pass
NVNT NVNT	2-DH5	2480	2485.5 MHz -12750 MHz	6925.66	-44.7 -66.27	NA NA	-30 36	Pass
NVNT	3-DH5 3-DH5	2402 2402	30 MHz -47 MHz 47 MHz -74 MHz	32.2 65.6	-66.27 -65.76	NA NA	-36 -54	Pass Pass
NVNT	3-DH5	2402	74 MHz -87.5 MHz	85.5	-66.68	NA	-36	Pass
NVNT	3-DH5	2402	87.5 MHz -118 MHz	114.1	-66.83	NA	-54	Pass
NVNT	3-DH5	2402	118 MHz -174 MHz	173.2	-64.75	NA	-36	Pass
NVNT	3-DH5	2402	174 MHz -230 MHz	185	-64 58	NA	-54	Pass




Page 79 of 89

Report No.:	STR2112	13006001E
-------------	---------	-----------

П	07		A	and the same of th			120		
H	NVNT	3-DH5	2402	230 MHz -470 MHz	249.65	-64.29	NA	-36	Pass
I	NVNT	3-DH5	2402	470 MHz -694 MHz	670	-64.52	NA	-54	Pass
۱	NVNT	3-DH5	2402	694 MHz -1000 MHz	953.65	-63.85	NA	-36	Pass
I	NVNT	3-DH5	2402	1000 MHz -2398 MHz	1728.5	-50.5	NA	-30	Pass
I	NVNT	3-DH5	2402	2485.5 MHz -12750 MHz	6850.5	-45.57	NA	-30	Pass
I	NVNT	3-DH5	2441	30 MHz -47 MHz	34.1	-65.05	NA	-36	Pass
I	NVNT	3-DH5	2441	47 MHz -74 MHz	52.85	-66.62	NA	-54	Pass
11	NVNT	3-DH5	2441	74 MHz -87.5 MHz	80.2	-65.01	// NA	-36	Pass
I	NVNT	3-DH5	2441	87.5 MHz -118 MHz	102.25	-65.5	NA NA	-54	Pass
I	NVNT	3-DH5	2441	118 MHz -174 MHz	161.6	-65.88	NA	-36	Pass
I	NVNT	3-DH5	2441	174 MHz -230 MHz	225.2	-64.82	NA	-54	Pass
H	NVNT	3-DH5	2441	230 MHz -470 MHz	233.15	-64.99	NA	-36	Pass
I	NVNT	3-DH5	2441	470 MHz -694 MHz	504.2	-64.66	NA	-54	Pass
I	NVNT	3-DH5	2441	694 MHz -1000 MHz	821.85	-63.09	NA	-36	Pass
I	NVNT	3-DH5	2441	1000 MHz -2398 MHz	2303.5	-52.61	NA	-30	Pass
I	NVNT	3-DH5	2441	2485.5 MHz -12750 MHz	6835.5	-45.02	NA	-30	Pass
I	NVNT	3-DH5	2480	30 MHz -47 MHz	37.55	-66.88	NA 🏒	-36	Pass
I	NVNT	3-DH5	2480	47 MHz -74 MHz	57	-65.48	NA 🦠	-54	Pass
l	NVNT	3-DH5	2480	74 MHz -87.5 MHz	79.35	-66.62	NA	-36	Pass
ı	NVNT	3-DH5	2480	87.5 MHz -118 MHz	106	-65.76	NA NA	-54	Pass
II	NVNT	3-DH5	2480	118 MHz -174 MHz	171.9	-65.2	NA	-36	Pass
I	NVNT	3-DH5	2480	174 MHz -230 MHz	192.75	-65.39	NA	-54	Pass
I	NVNT	3-DH5	2480	230 MHz -470 MHz	274.25	-64.37	NA	-36	Pass
	NVNT	3-DH5	2480	470 MHz -694 MHz	536.25	-64.52	NA /	-54	Pass
۱	NVNT	3-DH5	2480	694 MHz -1000 MHz	818.9	-54.71	NA 🥌	-36	Pass
I	NVNT	3-DH5	2480	1000 MHz -2398 MHz	1739.5	-53.27	NA NA	-30	Pass
	NVNT	3-DH5	2480	2485.5 MHz -12750 MHz	6791	-44.11	NA	-30	Pass
п				A Service Community of the Community of		A 700			

Tx. Spurious NVNT 1-DH5 2402MHz

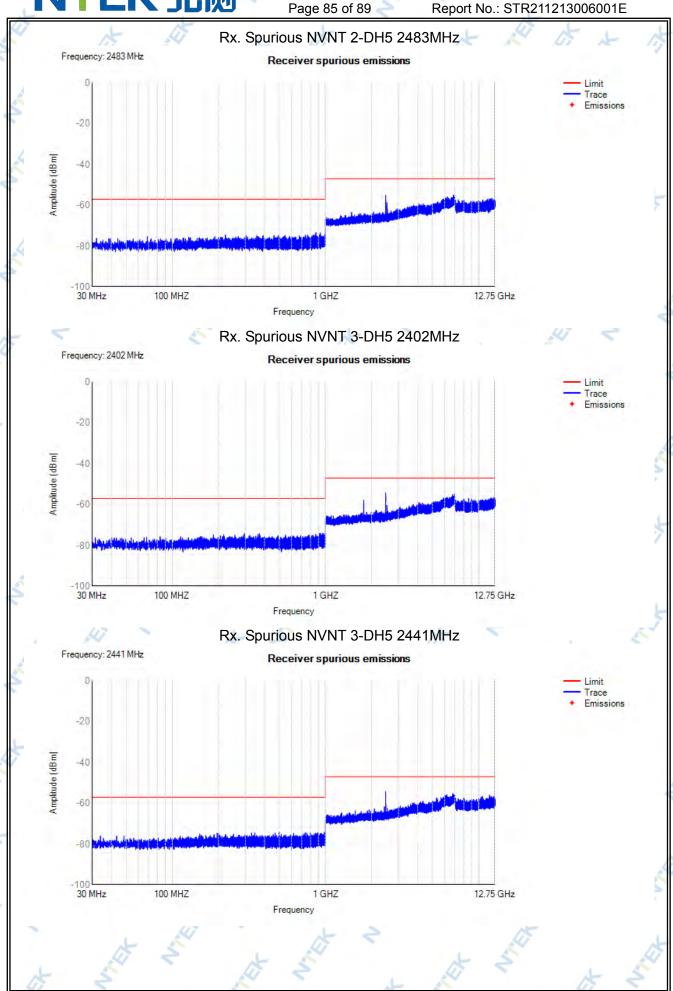
NTEK 北测® Page 80 of 89 Report No.: STR211213006001E Tx. Spurious NVNT 1-DH5 2480MHz Frequency: 2480 MHz Transmitter unwanted emissions in the spurious domain Limit Trace Emissions Amplitude (dBm) -60 -80 100 MHZ 1 GHZ 12.75 GHz Frequency Tx. Spurious NVNT 2-DH5 2402MHz Frequency: 2402 MHz Transmitter unwanted emissions in the spurious domain Limit Trace Emissions Amplitude (dBm) -60 -80 100 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency Tx. Spurious NVNT 2-DH5 2441MHz Frequency: 2441 MHz Transmitter unwanted emissions in the spurious domain Limit Trace Emissions -20 Amplitude (dBm) -60 -80 100 30 MHz 12.75 GHz 100 MHZ 1 GHZ Frequency

NTEK 北测® Page 81 of 89 Report No.: STR211213006001E Tx. Spurious NVNT 2-DH5 2480MHz Frequency: 2480 MHz Transmitter unwanted emissions in the spurious domain Limit Trace Emissions Amplitude (dBm) -60 100 L 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency Tx. Spurious NVNT 3-DH5 2402MHz Frequency: 2402 MHz Transmitter unwanted emissions in the spurious domain Limit Trace Emissions Amplitude (dBm) -60 -80 100 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency Tx. Spurious NVNT 3-DH5 2441MHz Frequency: 2441 MHz Transmitter unwanted emissions in the spurious domain Limit Trace Emissions -20 Amplitude (dBm) -60 -80 100 30 MHz 12.75 GHz 100 MHZ 1 GHZ Frequency

Page 82 of 89

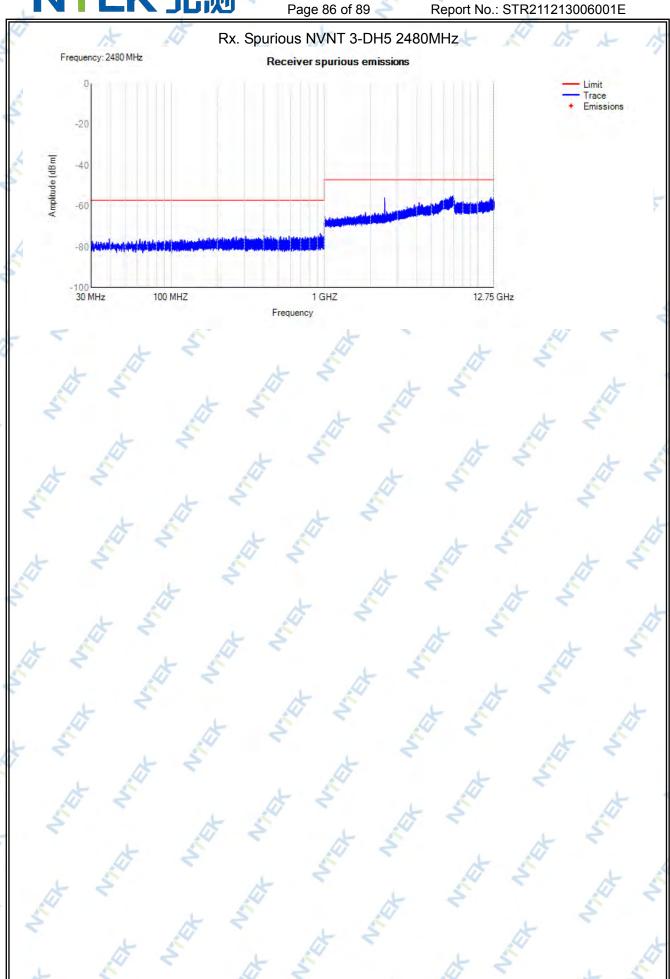
Report No.: STR211213006001E Tx. Spurious NVNT 3-DH5 2480MHz Frequency: 2480 MHz Transmitter unwanted emissions in the spurious domain Limit Trace Emissions Amplitude (dBm) -60 -100 L 30 MHz 100 MHZ 12.75 GHz Frequency

		ור אוי	JIXJ Pa	age 83 of 89	Report	No.: STR2112	1300600	1E
	de	- 45	4	de	, t	- 19 1	大大	- 1
9 RECE	IVER S	PURIOUS E	MISSIONS	C 1	_ 24	2 1	1 14	
Condition	Mode	Frequency	Range	Spur Freq	Spur Level	Spur Level	Limit	Verdic
	WIOGE	(MHz)	Nanye	(MHz)	Peak(dBm)	RMS(dBm)	(dBm)	veruit
NVNT	1-DH5	2402	30 MHz -1000 MHz		-73.52	ŇA	-57	Pass
NVNT	1-DH5	2402	1000 MHz -12750 M		-54.59	NA NA	-47	Pass
NVNT	1-DH5	2441	30 MHz -1000 MHz		-73.48	NA	-57	Pass
NVNT	1-DH5	2441	1000 MHz -12750 M		-55.58	NA NA	-47	Pass
NVNT	1-DH5	2480	30 MHz -1000 MHz		-72.76	NA	-57	Pass
NVNT	1-DH5	2480	1000 MHz -12750 M	Hz 6926	-54.67	NA	-47	Pass
NVNT	2-DH5	2402	30 MHz -1000 MHz		-73.47	NA	-57	Pass
NVNT						NA	-47	
	2-DH5	2402	1000 MHz -12750 M		-54.78			Pass
NVNT	2-DH5	2441	30 MHz -1000 MHz		-73.9	NA NA	-57	Pass
NVNT	2-DH5	2441	1000 MHz -12750 M		-55.17	NA	-47	Pass
NVNT	2-DH5	2483	30 MHz -1000 MHz	2 866.7	-73.34	NA	-57	Pass
NVNT	2-DH5	2483	1000 MHz -12750 M		-54.94	NA	-47	Pass
NVNT	3-DH5	2402	30 MHz -1000 MHz		-74.04	NA NA	-57	Pass
NVNT	3-DH5	2402	1000 MHz -12750 M		-54.25	NA S	-47	Pass
NVNT	3-DH5	2441	30 MHz -1000 MHz		-74.16	NA NA	-57	Pass
NVNT	3-DH5	2441	1000 MHz -12750 M		-54.25	NA	-47	Pass
NVNT	3-DH5	2480	30 MHz -1000 MHz		-73.31	NA NA	-57	Pass
NVNT 🦼	3-DH5	2480	1000 MHz -12750 M	Hz 6883.5	-54.87	NA	-47	Pass
Amplitude (dBml	-40 -60 -80 -80 -80 -80 -80 -80 -80 -80 -80 -80	100 MHZ		1 GHZ		12.75 GHz		
	W	-	Freque Rx. Spurious	NVNT 1-DH5	2441MHz	-		0
Fre	equency: 244	11 MHz	Receiv	er spurious emiss	ions			
	0					M B	Limit Trace	
							+ Emissio	ns
	0.0							
	-20							
E	40							
8	-40							
o o								
E C								
Amplitude (dBm	-60				and the last last last last last last last last	and the latest the lat		
¥.	- 6 5			tarle designations				
				The second second second	77-2			
	100	The state of the state of	the of the plant bearing at the second	- Make				
	-80							
				1				
	0.70							
-	100			4.000		40.75.00		
	30 MHz	100 MHZ		1 GHZ		12.75 GHz		
			Freque	ncy				
				- 2				
-								
		360	F	J		15		
		+ 14		# 3		4		
		* 5		# 3		A		



Page 84 of 89

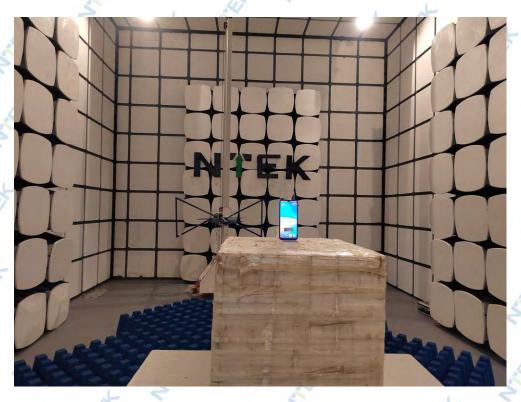
Report No.: STR211213006001E Rx. Spurious NVNT 1-DH5 2480MHz Frequency: 2480 MHz Receiver spurious emissions Limit Trace Emissions Amplitude (dBml -60 100 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency Rx. Spurious NVNT 2-DH5 2402MHz Frequency: 2402 MHz Receiver spurious emissions Limit Trace Emissions -60 100 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency Rx. Spurious NVNT 2-DH5 2441MHz Frequency: 2441 MHz Receiver spurious emissions Limit Trace Emissions -20 Amplitude (dBm) -40 -60 30 MHz 100 MHZ 12.75 GHz 1 GHZ Frequency



NTEK 北测® Page 85 of 89

Page 86 of 89

	1	اللاناك >	9	e 87 of 89	Report No.: STR2112130060	1
10 HOPPIN	NG SEQU	ENCE	+ 8	Ø .	# 5 #	5
Condition	Mode	Hopping	Limit	Band Allocation	Limit Band Allocation	Verdi
05		Number		(%)	(%)	
NVNT	1-DH5	79	15	95.2	70	Pass
NVNT	2-DH5	79	15	95.8	70	Pass
NVNT	3-DH5	79	15	95.8	70	Pass
4 5		Honni	na Sea N	NVNT 1-DH5 2441I	MHz	-
Eraguar	2400 00 MI	нz - 2483.50 MHz			Hopping Number: 79	
rrequei	icy. 2400.00 Mi	112 - 2403.30 MHz	Нор	ping Sequence	Hopping Number. 73	
20					— Tra	ce Ædge
			0000000000	000000000000000000000000000000000000000		h Edge
24013	SOUCH CONTROL OF	WWWWWWWWW	Attitution	······································	2480.828 MHz	
					2400.020 MHZ	
E -20						
) epn						
-20 -20 -40					Lava	
⋖.						
-60						
-80						
240	0		2441.7	5	2483.5	
22.12	Ew Silve		Frequency ((MHz)		
RBW: 5	UU KHZ, VBW:	2000 KHz, Sweep Points: 100		NVNT 2-DH5 2441I	МН	175
	THE THOUSAND	Порри	ng ocq. i	1111 2 0110 21111	VII 12	
Frequer	rcv: 2400.00 MH	Hz - 2483.50 MHz	1000			
	ncy: 2400.00 Mł	Hz - 2483.50 MHz	Нор	ping Sequence	Hopping Number: 79	
20	ncy: 2400.00 Mł	Hz - 2483.50 MHz	Нор		Hopping Number: 79	
20				ping Sequence	Hopping Number: 79 Trac + Low	ce / Edge h Edge
20	wwww				Hopping Number: 79 — Tra. + Low + High	Edge
0 2401.08	wwww			ping Sequence	Hopping Number: 79 Trac + Low	Edge
0 2401.08	wwww			ping Sequence	Hopping Number: 79 — Tra. + Low + High	Edge
0 2401.08	wwww			ping Sequence	Hopping Number: 79 — Tra. + Low + High	Edge
0 2401.08	wwww			ping Sequence	Hopping Number: 79 — Tra. + Low + High	Edge
20 0 2401.08 Eagp -20	wwww			ping Sequence	Hopping Number: 79 — Tra. + Low + High	Edge
0 2401.08	wwww			ping Sequence	Hopping Number: 79 — Tra. + Low + High	Edge
20 0 2401.08 [IIII 9 -20 -40 -40	wwww			ping Sequence	Hopping Number: 79 — Tra. + Low + High	Edge
20 0 2401.08 [IIII 9 -20 -40 -40	wwww		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 0 2401.08	/WWWWV√ 55 MHz			ping Sequence	Hopping Number: 79 — Tra. + Low + High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz		2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge
20 2401.08 -20 -40 -40 -60	/w/www √ 55 MHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2441.7 Frequency (ping Sequence	Hopping Number: 79 Trate Low High	Edge



NTEK 北测® Page 88 of 89 Report No.: STR211213006001E Hopping Seq. NVNT 3-DH5 2441MHz Frequency: 2400.00 MHz - 2483.50 MHz Hopping Number: 79 **Hopping Sequence** Trace Low Edge High Edge Amplitude (dBm) -20 -40 -60 2400 2441.75 2483.5 Frequency (MHz) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 1001

12. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT