

Test Report No. C221121025001-1 Date: Dec 01, 2022 Page 1 of 28

Applicant: DOKE COMMUNICATION (HK) LIMITED

Applicant address: RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

The following samples were submitted and identified on behalf of the clients as

Sample Name: Mobile Phone

A85 Model:

Trademark: Blackview

Shenzhen DOKE Electronic Co., Ltd Manufacturer:

801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming Manufacturer Address:

District, Shenzhen, China.

CPST Internal Reference No.: C221121025

Sample Received Date: Nov 21, 2022

Test Period: Nov 21, 2022 to Dec 01, 2022

Test Method: Please refer to next page(s). Test Result:

Please refer to next page(s).

per alf of Eurones (Dongguan) Collsumer Pro Testing Service Co., Ltd

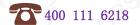
WRITTEN BY:

REVIEWED BY:

APPROVED BY:

Lu Jian Fei, Fair

Report writer


Liu Xiao Fang, Sunshine

Report Reviewer

Pan Jian Ding, Will **Technical Supervisor**

Test Report No. C221121025001-1 Date: Dec 01, 2022 Page 2 of 28 **CONCLUSION: TESTED SAMPLES TEST ITEM RESULT** 1. RoHS Directive 2011/65/EU Annex II amending Directive (EU)2015/863 Lead, Cadmium, Mercury, Hexavalent Chromium, PBBs **PASS** Mobile Phone and PBDEs Content —Di-(2-ethylhexyl) phthalate(DEHP), Benzylbutyl phthalate(BBP), **PASS** Dibutyl phthalate (DBP), Diisobutyl phthalate(DIBP) Content

No. C221121025001-1

Date: Dec 01, 2022

Page 3 of 28

2. Test Item Description And Photo List

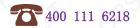
Sample No.	Description	Photograph	
001	Transparent glass with colored plating	Waiv	
002	Black glue	3 2	
003	Grey plastic		
004	Silvery metal with black plating	5	
005	Black plastic	and Andrews	
006	Silvery textile	7	
007	Black plastic		

No. C221121025001-1

Date: Dec 01, 2022

Page 4 of 28

Sample No.	Description	Photograph	
008	Yellow FPC	8	
009	Silvery metal		
010	Silvery metal foil with black plating	10 11	
011	Transparent plastic		
012	Black plastic	.12 13 14	
013	Coppery metal		
014	Silvery metal		
015	Silvery magnet	15	

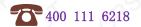


No. C221121025001-1

Date: Dec 01, 2022

Page 5 of 28

Sample No.	Description	Photograph
016	Black foam	
017	Silvery metal	17 18 19
018	Silvery magnet	
019	Yellow FPC	
020	Silvery metal	
021	Green PCB	20 21
022	Coppery metal	22 23
023	Golden metal	
024	Silvery metal	

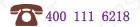


No. C221121025001-1

Date: Dec 01, 2022

Page 6 of 28

Sample No.	Description	Photograph
025	Silvery metal	25 26
026	Grey plastic	
027	Silvery metal with golden plating	27
028	Silvery metal with golden plating	28 (28) (2
029	Black PCB	SPK+ III H 629
030	Silvery solder	30
031	Black PCB	31 32
032	Silvery solder	2-88 (G. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1

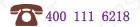


No. C221121025001-1

Date: Dec 01, 2022

Page 7 of 28

Sample No.	Description	Photograph	
033	Golden metal	33	
034	Black plastic	34	
035	Black soft plastic	37 36 35	
036	Silvery metal		
037	White soft plastic		
038	White paper with blue printing	39	
039	White paper with red printing	38	
040	Silvery metal	41 10 0	
041	Silvery metal		
042	Black plastic	42 43 45 47	
043	Coppery metal		
044	Black plastic		
045	Transparent glass	<u>abipbob</u>	
046	Silvery metal with black plating		
047	Transparent glass		
048	Transparent glass	44 46 4	

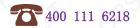


No. C221121025001-1

Date: Dec 01, 2022

Page 8 of 28

Sample No.	Description	Photograph
049	Black plastic	49 50 51 52 53
050	Black plastic	
051	Transparent glass	6666
052	Black plastic	
053	Transparent glass	
054	Black FPC	54 54 8-9-9 8-9-9
055	Silvery solder	
056	Silvery metal	
057	Black plastic	57 58 59 60 62
058	Black plastic	
059	Black plastic	
060	Silvery metal with black plating	
061	Transparent glass	
062	Black plastic	61

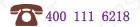


No. C221121025001-1 Da

Date: Dec 01, 2022

Page 9 of 28

Sample No.	Description	Photograph
063	Transparent glass	63 64 65 66 67
064	Black plastic	
065	Transparent glass	6666
066	Transparent glass	
067	Black plastic	
068	Black plastic	68 69 70
069	Black FPC	THE WAST
070	Silvery solder	
071	Black plastic	
072	Transparent glass	72 73 74 75 77 78
073	Black soft plastic	
074	Black plastic	
075	Transparent glass	
076	Transparent glass	
077	Transparent glass	
078	Transparent glass	7 6



No. C221121025001-1

Date: Dec 01, 2022

Page 10 of 28

Sample No.	Description	Photograph
079	Black plastic	79 80 81 82
080	Black plastic	
081	Silvery metal with black plating	0 6 0 6
082	Black plastic	
083	Yellow FPC	83
084	Silvery solder	84
085	Black soft plastic	
086	Black plastic	86 87 88
087	Silvery metal with golden plating	
088	Silvery metal	



No. C221121025001-1

Date: Dec 01, 2022

Page 11 of 28

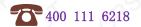
Sample No.	Description	Photograph
089	Silvery metal foil	89
090	Black body	90 91
091	Black body	
092	Silvery body (crystal)	
093	Brown body	92 93
094	Black body	96 94 95
095	Black PCB	
096	Silvery solder	
097	Silvery metal	97 98
098	Yellow FPC	

No. C221121025001-1

Date: Dec 01, 2022

Page 12 of 28

Sample No.	Description	Photograph
099	Black plastic	99 100
100	Golden metal	
101	Black plastic	101 101 101 101
102	Coppery metal	102 105 106
103	Silvery metal	
104	White textile	
105	Black plastic	
106	Silvery metal	
107	Silvery magnet	103 104 107
108	Black FPC	108



No. C221121025001-1

Date:	Dec 01	2022	Page	13 of 28
Daic.	DCC 01	, 2022	i agc	13 01 20

Sample No.	Description	Photograph
109	Black FPC	109 110
110	Silvery solder	# 1000 - 20003 Sandy Jrc. NO 1200 - 200 3245 23 10 5
S 111 (S	Silvery metal	111
112	Transparent glass	112
113	Yellow plastic	1113
114	Transparent plastic	114 115 117 118
115	Black glue	
116	White plastic	
117	Silvery plastic	
118	Silvery metal	
119	Transparent plastic	116 119

Note: This Test report shall be invalid if it is not stamped with the special seal for testing. Only responsible for the tested samples, invalid if rewritten, added and deleted. This test report cannot be reproduced, except in full, without prior written permission of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. Any demurral to the content of test report, please propose in 15 days after the report's sending out, it will not be accepted after this date.

Http://www.cpstlab.com

No. C221121025001-1

Date: Dec 01, 2022

Page 14 of 28

Sample No.	Description	Photograph
120	Yellow FPC	121, 120
121	Silvery solder	
122	White plastic	122 123
123	White body	
124	Yellow FPC	
125	Silvery solder	125 124
126	Silvery metal	
127	Transparent plastic	128 127 128
128	Black soft plastic	
129	Black plastic	

No. C221121025001-1

Date: Dec 01, 2022

Page 15 of 28

Sample No.	Description	Photograph
130	Silvery metal	
131	Orange soft plastic	131
132	Transparent glass with colored plating	133
133	Transparent glass with black plating	
134	Silvery metal	134

No. C221121025001-1

Date: Dec 01, 2022 Page 16 of 28

Sample No.	Description	Photograph
135	Silvery plastic	135
136	Transparent glass with gray plating	Majvobsila wajvobsila
137	Transparent glass with purple plating	137
138	Silvery metal	138

No. C221121025001-1

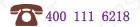
Date: Dec 01, 2022 Page 17 of 28

Http://www.cpstlab.com

Test Results

3.1 Screening test for the specified hazardous substances of RoHS for the selected materials of the submitted sample:

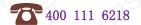
- Heavy Metal (Cadmium, Chromium, Mercury, Lead) Content Test
- Bromine Content Test


According to IEC 62321-3-1:2013, and Quantification analyzed with Energy Dispersive X-ray Fluorescence Spectrometers.

Sample No.	Total Cadmium	Total Lead	Total Mercury	Total Chromium	Total Bromine
Sample 001	BL	BL	BL	BL	BL
Sample 002	BL	BL	BL	BL	BL
Sample 003	BL	BL S	BL	BL	BL
Sample 004	BL	BL	S BL	BL	N.A.
Sample 005	BL	BL	BL	BL	BL
Sample 006	BL	BL	BL	BL	BL
Sample 007	BL	BL	BL	BL	BL
Sample 008	BL	BL	BL	BL	BL
Sample 009	BL	BL	BL S	Inconclusive^	N.A.
Sample 010	BL	SBL (BL	BL O	N.A.
Sample 011	BL	BL	BL	BL	BL
Sample 012	BL	BL	BL	BL	BL
Sample 013	BL	BL	BL	BL	N.A.
Sample 014	BL	BL	BL	BL	N.A.
Sample 015	BL O	BL	BL	BL	BL
Sample 016	BL	BL	BL	BL) BL
Sample 017	BL	BL	BL	BL	N.A.
Sample 018	BL	BL	BL	BL	BL
Sample 019	BL	BL	BL	BL	BL
Sample 020	S BL	BL	BL	Inconclusive^	N.A.
Sample 021	BL	BL O	BL	BL	BL
Sample 022	BL	BL	BL	BL	N.A.
Sample 023	BL	BL	BL	BL	N.A.
Sample 024	BL	BL	BL	Inconclusive^	N.A.
Sample 025	BL	BL	BL	Inconclusive^	N.A.
Sample 026	BL	S BL	BL	BL	BL

No. C221121025001-1 Date: Dec 01, 2022 Page 18 of 28

Sample No.	Total Cadmium	Total Lead	Total Mercury	Total Chromium	Total Bromine
Sample 027	9 BL	BL	BL	BL BL	N.A.
Sample 028	BL	BL	BL	BL	∞9 N.A. G
Sample 029	BL	BL	BL	BL	BL
Sample 030	BL	BL	BL	BL	N.A.
Sample 031	BL	BL	BL	BL	Inconclusive^
Sample 032	BL S	BL	BL	Inconclusive^	N.A.
Sample 033	BL	S BL	BL	BL	N.A.
Sample 034	BL	BL	BL	BL	BL
Sample 035	BL	BL	BL	G BL	BL
Sample 036	BL	BL	BL	BL	N.A.
Sample 037	BL	BL	BL	BL	BL
Sample 038	BL	G BL	BL	BL	BL
Sample 039	SBL C	BL	S BL	BL	BL
Sample 040	BL	BL	BL	BL	N.A.
Sample 041	BL	BL	BL	BL	N.A.
Sample 042	BL S	BL	BL	Inconclusive^	BL
Sample 043	BL	BL	BL	BL	N.A.
Sample 044	BL	BL	G BL	BL	BL
Sample 045	BL	BL	BL	BL O	BL
Sample 046	BL	BL	BL	BL	N.A.
Sample 047	BL	BL	BL	BL	BL
Sample 048	BL	BL	BL	BLO	BL
Sample 049	BL	BL	BL	BL	BL
Sample 050	BL O	BL	BL	S BL	BL
Sample 051	BL	BL	SBL (BL	BL O
Sample 052	BL	BL	BL	BL	BL
Sample 053	BL	BL	BL	BL	BL
Sample 054	BL	BL	BL	BL	BL
Sample 055	S BL	BL	BLO	BL	N.A.
Sample 056	BL	BL O	BL	Inconclusive^	S N.A.
Sample 057	BL	BL	BL	BL (BL
Sample 058	BL	BL	BL	BL	BL
Sample 059	BL	BL	BL	BL	BL
Sample 060	BL	BL	BL	BL	N.A.
Sample 061	BL	S BL	BL	BLO	BL

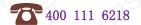


CPST

Test Report

No. C221121025001-1 Date: Dec 01, 2022 Page 19 of 28

Sample No.	Total Cadmium	Total Lead	Total Mercury	Total Chromium	Total Bromine
Sample 062	9 BL	BL	BL	BL S	BL
Sample 063	BL	BL	BL	BL	S BL
Sample 064	BL	BL	BL	BL	BL
Sample 065	BL	BL	BL	BL	BL
Sample 066	BL	BL	BL	BL	BL
Sample 067	BL	BL	BL	BL	BL
Sample 068	BL	BL O	BL	BL	BL C
Sample 069	BL	BL	BL	BL	BL
Sample 070	BL	BL	BL	BL	N.A.
Sample 071	BL	BL	BL	BL	BL
Sample 072	BL	BL	BL	BL S	BL
Sample 073	BL	S BL	BL	BL	BL
Sample 074	SBL C	BL	BL C	BL	BL
Sample 075	BL	BL	BL	BL	BL
Sample 076	BL	BL	BL	BL	BL
Sample 077	BL	BL	BL	BL	BL
Sample 078	BL	BL	BL	BL	BL
Sample 079	BL	BL	BL S	BL	BL
Sample 080	BL	BL	BL	BL O	BL
Sample 081	BL	BL	BL	BL	N.A.
Sample 082	BL	BL	BL	BL	BL
Sample 083	BL	BL	BL	BL	BL
Sample 084	BL	BL	BL	BL	N.A.
Sample 085	BL O	BL	BL	BL C	BL
Sample 086	BL	BL	BL	BL	BL
Sample 087	BL	BL	BL	BL	N.A.
Sample 088	BL	BL	BL	BLS	N.A.
Sample 089	BL	BL	BL	Inconclusive^	N.A.
Sample 090	S BL	BL	BL	BL BL	BL
Sample 091	BL	BL O	BL	BL	S BL
Sample 092	BL	BL	BL	BL C	BL
Sample 093	BLS	○ BL	BL	Inconclusive^	BL
Sample 094	BL	BL	BL	BL	BLS
Sample 095	BL	BL	BL	BL 9	BL
Sample 096	BL	S BL	BL	BL	N.A.



CPST

Test Report

No. C221121025001-1 Date: Dec 01, 2022 Page 20 of 28

Sample No.	Total Cadmium	Total Lead	Total Mercury	Total Chromium	Total Bromine
Sample 097	BL C	BL	BL	Inconclusive^	N.A.
Sample 098	BL	BL	BL	BL	S BL
Sample 099	BL	BL	BL	BL	BL
Sample 100	BL	BL	BL	BL	N.A.
Sample 101	BL	BL	BL	BL	BL
Sample 102	BL	BL	BL	BL	N.A.
Sample 103	BL	BL O	BL	BL	N.A.
Sample 104	BL	BL	BL	BL	BL
Sample 105	BL	BL	BL	Inconclusive^	BL
Sample 106	BL	BL	BL	BL	N.A.
Sample 107	BL	BL	BL	BL S	BL
Sample 108	BL	S BL	BL	BL	BL
Sample 109	BL	BL	S BL C	BL	BL
Sample 110	BL	BL	BL	Inconclusive^	N.A.
Sample 111	BL	BL	BL	Inconclusive^	N.A.
Sample 112	BL	BL	BL	BL	BL
Sample 113	BL	BL	BL	BL	BL
Sample 114	BL	BL	BL S	BL	BL
Sample 115	BL	BL	BL	BL O	BL
Sample 116	BL	BL	BL	BL	BL
Sample 117	BL	BL	BL	BL	BL
Sample 118	BL	BL	BL	Inconclusive^	N.A.
Sample 119	BL	BL	BL	BL	BL
Sample 120	BL O	BL	BL	BL C	BL
Sample 121	BL	BL	BL	BL	N.A.
Sample 122	BL	BL	BL	BL	BL
Sample 123	BL	BL	BL	BLS	BL
Sample 124	BL	BL	BL	BL	BL
Sample 125	S BL	BL	BL	BL	N.A.
Sample 126	BL	BL O	BL	Inconclusive^	S N.A.
Sample 127	BL	BL	BL	BL C	BL
Sample 128	BL	○ BL	BL	BL	BL
Sample 129	BL	BL	BL	BL	BLS
Sample 130	BL	BL	BL	BL 9	N.A.
Sample 131	BL	S BL	BL	BLO	BL

No. C221121025001-1 Date: Dec 01, 2022 Page 21 of 28

Sample No.	Total Cadmium	Total Lead	Total Mercury	Total Chromium	Total Bromine
Sample 132	9 BL C	BL	BLO	BL S	BL
Sample 133	BL	BL	BL	BL	9 BL
Sample 134	BL	BL	BL	Inconclusive^	N.A.
Sample 135	BL	BL	BL	BL	BL
Sample 136	BL	BL	BL	BL	BL
Sample 137	BL S	BL	BL	BL	BL
Sample 138	BL	Inconclusive^	BL	Inconclusive^	N.A.

Note:

- 1. All Concentrations express in "mg/kg" (milligram per kilogram), mg/kg ~ ppm
- 2. "OL" denotes "over limit"
- 3. "BL" denotes "below limit"
- 4. "N.A." denotes "Not Applicable"
- 5. "Inconclusive" denotes result is intermediate between "OL" and "BL"
- 6. "A"denotes the screening result was inconclusive(X) or over limit (OL), thus further confirmation test was conducted, results are listed in 3.2 and 3.3.

XRF screening limits for different materials:

	Concentration (mg/kg)					
Materials	Cd	Cr	Pb	Hg	Br	
Motel	BL≤(70-3σ) <x<< td=""><td>DI <!--700 2~\<</td--><td>BL≤(700-3σ)<x<< td=""><td>BL≤(700-3σ)<x<< td=""><td>) NAC</td></x<<></td></x<<></td></td></x<<>	DI 700 2~\<</td <td>BL≤(700-3σ)<x<< td=""><td>BL≤(700-3σ)<x<< td=""><td>) NAC</td></x<<></td></x<<></td>	BL≤(700-3σ) <x<< td=""><td>BL≤(700-3σ)<x<< td=""><td>) NAC</td></x<<></td></x<<>	BL≤(700-3σ) <x<< td=""><td>) NAC</td></x<<>) NAC	
Metal	(130+3σ)≤OL	BL≤(700-3σ) <x< td=""><td>(1300+3σ)≤OL</td><td>(1300+3σ)≤OL</td><td colspan="2">N.A.</td></x<>	(1300+3σ)≤OL	(1300+3σ)≤OL	N.A.	
Dalimana A	BL≤(70-3σ) <x<< td=""><td>DI 4/700 0-) 4V</td><td>BL≤(700-3σ)<x<< td=""><td>BL≤(700-3σ)<x<< td=""><td>BL≤(300-3σ)<</td></x<<></td></x<<></td></x<<>	DI 4/700 0-) 4V	BL≤(700-3σ) <x<< td=""><td>BL≤(700-3σ)<x<< td=""><td>BL≤(300-3σ)<</td></x<<></td></x<<>	BL≤(700-3σ) <x<< td=""><td>BL≤(300-3σ)<</td></x<<>	BL≤(300-3σ)<	
Polymers	(130+3σ)≤OL	BL≤(700-3σ) <x< td=""><td>(1300+3σ)≤OL</td><td>(1300+3σ)≤OL</td><td>X</td></x<>	(1300+3σ)≤OL	(1300+3σ)≤OL	X	
Composite	BL≤(50-3σ) <x<< td=""><td>DI <!--500 2~\<</td--><td>BL≤(500-3σ)<x<< td=""><td>BL≤(500-3σ)<x<< td=""><td>BL≤(250-3σ)<</td></x<<></td></x<<></td></td></x<<>	DI 500 2~\<</td <td>BL≤(500-3σ)<x<< td=""><td>BL≤(500-3σ)<x<< td=""><td>BL≤(250-3σ)<</td></x<<></td></x<<></td>	BL≤(500-3σ) <x<< td=""><td>BL≤(500-3σ)<x<< td=""><td>BL≤(250-3σ)<</td></x<<></td></x<<>	BL≤(500-3σ) <x<< td=""><td>BL≤(250-3σ)<</td></x<<>	BL≤(250-3σ)<	
material	(150+3σ)≤OL	BL≤(500-3σ) <x< td=""><td>(1500+3σ)≤OL</td><td>(1500+3σ)≤OL</td><td>X</td></x<>	(1500+3σ)≤OL	(1500+3σ)≤OL	X	

No. C221121025001-1

Date: Dec 01, 2022

Page 22 of 28

3. 2 Test for Heavy Metals

 Lead, Cadmium, Hexavalent Chromium and Mercury Tests according to IEC 62321-4:2013+A1:2017 &IEC 62321-5:2013 & IEC 62321-7-1:2015& IEC 62321-7-2:2017, Analysis was conducted by ICP-OES, UV-VIS.

Element	Total Cadmium [mg/kg]	Total Lead [mg/kg]	Total Mercury [mg/kg]	Hexavalent Chromium [µg/cm²]	Hexavalent Chromium [mg/kg]
Detection Limit	5	5	5	0.10	5
Limit	100	1000	1000	0.10	1000
Sample 009	GY 3	1,00	10	N.D.	1
Sample 020	1.0	× 10	51	N.D.	291
Sample 024	× 1	91 C	1	N.D.	0 16
Sample 025	691 C	L	OP	N.D.	-9
Sample 032		-QP	1,6	N.D.	× 1 5
Sample 042	-81 ×	1,5	1	X 1 0°	N.D.
Sample 056	1 09		_ / /	N.D.	61
Sample 089		61/	10	N.D.	8 1
Sample 093	616	1/2	9	CX / X	N.D.
Sample 097	R K	9	G / <	N.D.	016
Sample 105	07	016	10	Vi s	N.D.
Sample 110	016	12	7	N.D.	1
Sample 111	1	XY a	5 / C	N.D.	09 1 (
Sample 118	X I	2, 1 C.	1	N.D.	d
Sample 126	0 1 0	<u> </u>	871 x	N.D.	CNT X
Sample 134	cl	C37 X	15	N.D.	100
Sample 138	CX 1 X	398	CF.	N.D.	P

Note:

- 1. All Concentrations express in "mg/kg" (milligram per kilogram), mg/kg ~ ppm.
- 2. "N.D." = "Not Detected".
- 3. Boiling-water-extraction:

Negative = Absence of Cr(VI) coating / surface layer: the detected concentration in boiling-water-extraction solution is less than 0.10µg with 1cm² sample surface area.

Positive = Presence of Cr(VI) coating / surface layer: the detected concentration in

boiling-water-extraction solution is greater than 0.13µg with 1cm² sample surface area.

Inconclusive =the detected concentration in boiling-water-extraction solution is greater than 0.10µg and less than 0.13µg with 1cm² sample surface area.

- 4. Positive = result be regarded as not comply with RoHS requirement Negative = result be regarded as comply with RoHS requirement
- 5. "-" =Not regulated

No. C221121025001-1

Date: Dec 01, 2022 Page 23 of 28

3. 3 Test for Flame retardants

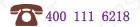
- Test method: According to IEC 62321-6:2015, extracted by toluene and analyzed by Gas Chromatography and Mass Spectrometry (GC-MS). [Reporting Limit: 5mg/kg]

CY -	×	Result [mg/kg]	RoHS
	Test Item	Sample 031	Requirement [mg/kg]
Α .	Monobromobiphenyl	0 < 5	87 × 0 × 5
	Dibromobiphenyl	< 5	9 CY
	Tribromobiphenyl	< 5	0 6
	Tetrabromobiphenyl	< 5	3 3
	Pentabromobiphenyl	< 5	6 (000
PBBs	Hexabromobiphenyl	< 5	Sum of PBBs < 1000
	Heptabromobiphenyl	< 5	
	Octabromobiphenyl	< 5	0, 22, 38
	Nonabromobiphenyl	< 5	- 08° X
	Decabromobiphenyl	< 5	3
	Sum of PBBs	< 5	7 7 95
0	Monobromodiphenyl Ether	< 5	83, O,
	Dibromodiphenyl Ether	< 5	0 60 68
	Tribromodiphenyl Ether	< 5	CY CX
	Tetrabromodiphenyl Ether	< 5	5 68° X
	Pentabromodiphenyl Ether	< 5	Our of DDDE
PBDEs	Hexabromodiphenyl Ether	S C<5	Sum of PBDEs < 1000
,75\ C,75\	Heptabromodiphenyl Ether	< 5	1000
	Octabromodiphenyl Ether	< 5	DY 67 6
	Nonabromodiphenyl Ether	< 5	CR X
	Decabromodiphenyl Ether	< 5	K ~ 65°
	Sum of PBDEs	< 5	87 , U' S'

Note:

- 1. All Concentrations express in "mg/kg" (milligram per kilogram), mg/kg ~ ppm.
- 2. "<" denotes less than

No. C221121025001-1


Date: Dec 01, 2022

Page 24 of 28

3.4 <u>Di-(2-ethylhexyl) phthalate(DEHP), Benzylbutyl phthalate(BBP), Dibutyl phthalate (DBP), Diisobutyl phthalate (DIBP) Content—RoHS Directive 2011/65/EU Annex II amending Directive (EU)2015/863</u>

Test method: According to IEC 62321-8:2017; Analysis was conducted by GC-MS&LC-MS.

Element	Di-(2-ethylhexyl) phthalate (DEHP) [mg/kg]	Benzylbutyl phthalate (BBP) [mg/kg]	Dibutyl phthalate (DBP) [mg/kg]	Diisobutyl phthalate(DIBP) [mg/kg]	
Detection Limit	50	50	50	50	
Limit	1000	1000	1000	1000	
Sample 001	N.D.	N.D.	N.D.	N.D.	
Sample 002	N.D.	N.D.	N.D.	N.D.	
Sample 003	N.D.	N.D.	N.D.	N.D.	
Sample 005	N.D.	N.D.	N.D.	N.D.	
Sample 006	N.D.	N.D.	N.D.	N.D.	
Sample 007	N.D.	N.D.	N.D.	N.D.	
Sample 008	N.D.	N.D.	N.D.	N.D.	
Sample 011	N.D.	N.D.	N.D.	N.D.	
Sample 012	N.D.	N.D.	N.D.	N.D.	
Sample 015	N.D.	N.D.	N.D.	N.D.	
Sample 016	N.D.	N.D.	N.D.	N.D.	
Sample 018	N.D.	N.D.	N.D.	N.D.	
Sample 019	N.D.	N.D.	N.D.	N.D.	
Sample 021	N.D.	N.D.	N.D.	N.D.	
Sample 026	N.D.	N.D.	N.D.	N.D.	
Sample 029	N.D.	N.D.	N.D.	N.D.	
Sample 031	N.D.	N.D.	N.D.	N.D.	
Sample 034	N.D.	N.D.	N.D.	N.D.	
Sample 035	N.D.	N.D.	N.D.	N.D.	
Sample 037	N.D.	N.D.	N.D.	N.D.	
Sample 038	N.D.	N.D.	N.D.	N.D.	
Sample 039	N.D.	N.D.	N.D.	N.D.	
Sample 042	N.D.	N.D.	N.D.	N.D.	
Sample 044	N.D.	N.D.	N.D.	N.D.	
Sample 045	N.D.	N.D.	N.D.	N.D.	
Sample 047	N.D.	N.D.	N.D.	N.D.	
Sample 048	N.D.	N.D.	N.D.	N.D.	
Sample 049	N.D.	N.D.	N.D.	N.D.	
Sample 050	N.D.	N.D.	N.D.	N.D.	

No. C221121025001-1 Date: Dec 01, 2022 Page 25 of 28

Element Detection Limit Limit	Di-(2-ethylhexyl) phthalate (DEHP) [mg/kg] 50 1000	Benzylbutyl phthalate (BBP) [mg/kg] 50 1000	Dibutyl phthalate (DBP) [mg/kg] 50 1000	Diisobutyl phthalate(DIBP) [mg/kg] 50 1000					
					Sample 051	N.D.	N.D.	N.D.	N.D.
					Sample 052	N.D.	N.D.	N.D.	N.D.
Sample 053	N.D.	N.D.	N.D.	N.D.					
Sample 054	N.D.	N.D.	N.D.	N.D.					
Sample 057	N.D.	N.D.	N.D.	N.D.					
Sample 058	N.D.	N.D.	N.D.	N.D.					
Sample 059	N.D.	N.D.	N.D.	N.D.					
Sample 061	N.D.	N.D.	N.D.	N.D.					
Sample 062	N.D.	N.D.	N.D.	N.D.					
Sample 063	N.D.	N.D.	N.D.	N.D.					
Sample 064	N.D.	N.D.	N.D.	N.D.					
Sample 065	N.D.	N.D.	N.D.	N.D.					
Sample 066	N.D.	N.D.	N.D.	N.D.					
Sample 067	N.D.	N.D.	N.D.	N.D.					
Sample 068	N.D.	N.D.	N.D.	N.D.					
Sample 069	N.D.	N.D.	N.D.	N.D.					
Sample 071	N.D.	N.D.	N.D.	N.D.					
Sample 072	N.D.	N.D.	N.D.	N.D.					
Sample 073	N.D.	N.D.	N.D.	N.D.					
Sample 074	N.D.	N.D.	N.D.	N.D.					
Sample 075	N.D.	N.D.	N.D.	N.D.					
Sample 076	N.D.	N.D.	N.D.	N.D.					
Sample 077	N.D.	N.D.	N.D.	N.D.					
Sample 078	N.D.	N.D.	N.D.	N.D.					
Sample 079	N.D.	N.D.	N.D.	N.D.					
Sample 080	N.D.	N.D.	N.D.	N.D.					
Sample 082	N.D.	N.D.	N.D.	N.D.					
Sample 083	N.D.	N.D.	N.D.	N.D.					
Sample 085	N.D.	N.D.	N.D.	N.D.					
Sample 086	N.D.	N.D.	N.D.	N.D.					
Sample 090	N.D.	N.D.	N.D.	N.D.					
Sample 091	N.D.	N.D.	N.D.	N.D.					
Sample 092	N.D.	N.D.	N.D.	N.D.					

Note: This Test report shall be invalid if it is not stamped with the special seal for testing. Only responsible for the tested samples, invalid if rewritten, added and deleted. This test report cannot be reproduced, except in full, without prior written permission of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. Any demurral to the content of test report, please propose in 15 days after the report's sending out, it will not be accepted after this date.

Room 1092, No.12, East of Houjie Avenue, Houjie, Dongguan, Guangdong, China

No. C221121025001-1 Date: Dec 01, 2022 Page 26 of 28

Element Detection Limit	Di-(2-ethylhexyl) phthalate (DEHP) [mg/kg] 50	Benzylbutyl phthalate (BBP) [mg/kg] 50	Dibutyl phthalate (DBP) [mg/kg] 50	Diisobutyl phthalate(DIBP) [mg/kg] 50
Sample 093	N.D.	N.D.	N.D.	N.D.
Sample 094	N.D.	N.D.	N.D.	N.D.
Sample 095	N.D.	N.D.	N.D.	N.D.
Sample 098	N.D.	N.D.	N.D.	N.D.
Sample 099	N.D.	N.D.	N.D.	N.D.
Sample 101	N.D.	N.D.	N.D.	N.D.
Sample 104	N.D.	N.D.	N.D.	N.D.
Sample 105	N.D.	N.D.	N.D.	N.D.
Sample 107	N.D.	N.D.	N.D.	N.D.
Sample 108	N.D.	N.D.	N.D.	N.D.
Sample 109	N.D.	N.D.	N.D.	N.D.
Sample 112	N.D.	N.D.	N.D.	N.D.
Sample 113	N.D.	N.D.	N.D.	N.D.
Sample 114	N.D.	N.D.	N.D.	N.D.
Sample 115	N.D.	N.D.	N.D.	N.D.
Sample 116	N.D.	N.D.	N.D.	N.D.
Sample 117	N.D.	N.D.	N.D.	N.D.
Sample 119	N.D.	N.D.	N.D.	N.D.
Sample 120	N.D.	N.D.	N.D.	N.D.
Sample 122	N.D.	N.D.	N.D.	N.D.
Sample 123	N.D.	N.D.	N.D.	N.D.
Sample 124	N.D.	N.D.	S N.D.	N.D.
Sample 127	N.D.	N.D.	N.D.	N.D.
Sample 128	N.D.	N.D.	N.D.	N.D.
Sample 129	N.D.	N.D.	N.D.	N.D.
Sample 131	N.D.	N.D.	N.D.	N.D.
Sample 132	N.D.	N.D.	N.D.	N.D.
Sample 133	N.D.	N.D.	N.D.	N.D.
Sample 135	N.D.	N.D.	N.D.	N.D.
Sample 136	N.D.	N.D.	N.D.	N.D.
Sample 137	N.D.	N.D.	N.D.	N.D.

No. C221121025001-1 Date: Dec 01, 2022 Page 27 of 28

Note:

- 1. All Concentrations express in "mg/kg" (milligram per kilogram), mg/kg ~ ppm.
- 2. "N.D." = "Not Detected".

Remark: As specified by applicant, to test content in the selected materials of the submitted samples. The test results are only responsible for the submitted sample. The test report is only for customer research, teaching, internal quality control, product development and other purposes, for reference only.

No. C221121025001-1

Photo of the Submitted Sample

Date: Dec 01, 2022

Page 28 of 28

End of Report ***

