RADIO TEST REPORT-BLE ETSI EN 300 328 V2.2.2 (2019-07)

Product : Mobile Phone Trade Mark : Blackview Model Name : A95 Family Model : N/A Report No. : STR211122001002E

Prepared for

DOKE COMMUNICATION (HK) LIMITED RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

Page 2 of 56 Report No.: STR211122001002E

TEST RESULT CERTIFICATION

E E	AS X B R S R S
Applicant's name DOKE	COMMUNICATION (HK) LIMITED
/ 1001 000	02 EASEY COMM BLDG 253-261 HENNESSY ROAD
Manufacturer's Name Shenz	
Address	uilding3, 7th Industrial Zone, Yulv Community, Yutang Road, gming District, Shenzhen, China.
Product description	
Product name Mobile	Phone / /
Trademark Blacky	riew 🖌 🍝 🦉
Model Name A95	A S A S
Family Model N/A	ST AT ST AT
Standards ETSI E	EN 300 328 V2.2.2 (2019-07)
This device described above has the equipment under test (EUT) i	been tested by Shenzhen NTEK, and the test results show that s in compliance with the 2014/53/EU RED Directive Art.3.2 e only to the tested sample identified in the report.
This report shall not be reproduc	ed except in full, without the written approval of Shenzhen NTEK,
	revised by Shenzhen NTEK, personnel only, and shall be noted in
the revision of the document.	X X AX X
Date of Test	
	Nov 22. 2021 ~ Dec 28. 2021
Date of Issue	Dec 28. 2021
Test Result	Pass S
A Contraction	X S P
A. A	
Testing Enginee	er : Knam. Hu
to S + P	(Mary Hu)
S 1 2 2	
Authorized Sigr	natory : Alex A
the the the	(Alex Li)
the the	
5 t	R K E
the states	T AT A LAT T
	L & D & K
THE STREET	A X X X X
E A	F L S A F

イ

Ne	E & A E & E & E	A A
	Table of Contents	age
-	1. GENERAL INFORMATION	6
	1.1 GENERAL DESCRIPTION OF EUT	6
4	1.2 INFORMATION ABOUT THE EUT	7
	1.3 TEST CONDITIONS AND CHANNEL	12
	1.4 DESCRIPTION OF TEST CONDITIONS	13
	1.5 DESCRIPTION OF SUPPORT UNITS	14
-	1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	15
	2 . SUMMARY OF TEST RESULTS	16
	2.1 TEST FACILITY	17
4	2.2 MEASUREMENT UNCERTAINTY	17
	3. TEST PROCEDURES AND RESUTLS	18
	3.1 EQUIVALENT ISOTROPIC RADIATED POWER	<u></u> 18
	3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER	18
	3.1.2 TEST PROCEDURE 3.1.3 TEST SETUP	18
	3.1.4 TEST RESULTS	19
~	3.2 . PEAK POWER DENSITY	20
	3.2.1 LIMITS OF POWER SPECTRAL DENSITY	20 🏑
	3.2.2 TEST PROCEDURE	20
	3.2.3 TEST SETUP 3.2.4 TEST RESULTS	20 21
	3.3 . OCCUPIED CHANNEL BANDWIDTH	22 🔎
	3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	22 🖉
	3.3.2 TEST PROCEDURE	22
	3.3.3 DEVIATION FROM TEST STANDARD 3.3.4 TEST SETUP	22 22
1	3.3.5 TEST RESULTS	23
	3.4 . TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAII	N 24
	3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF	-BAND
Ż	DOMAIN	24
-	3.4.2 TEST PROCEDURE 3.4.3 DEVIATION FROM TEST STANDARD	24 25
	3.4.4 TEST SETUP	25
Ļ	3.4.5 TEST RESULTS	26
-	3.5 . ADAPTIVE (CHANNEL ACCESS MECHANISM)	27
	3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR WIE	41 -
-	MODULATION TECHNIQUES	27
	3.5.2 TEST PROCEDURE	28
	AT & LA LE	15

x

 \mathcal{L}

A A LA BEA	of the
Table of Contents	Page
3.5.3 TEST SETUP CONFIGURATION	28
3.5.4 LIST OF MEASUREMENTS	29 30
3.5.5 TEST RESULTS	
3.6 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	31
3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURI DOMAIN	31
3.6.2 TEST PROCEDURE	31
3.6.3 DEVIATION FROM TEST STANDARD	31
3.6.4 TEST SETUP	32
3.6.5 TEST RESULTS(Radiated measurement)	33
3.6.6 TEST RESULTS (Conducted measurement)	35
3.7 . RECEIVER SPURIOUS RADIATION	36
3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION	36
3.7.2 TEST PROCEDURE	36
3.7.3 DEVIATION FROM TEST STANDARD	36
3.7.4 TEST SETUP	37
3.7.5 TEST RESULTS(Radiated measurement)	38 40
3.7.6 TEST RESULTS (Conducted measurement)	1 1
3.8 . RECEIVER BLOCKING	41
3.8.1 PERFORMANCE CRITERIA 3.8.2 LIMITS OF RECEIVER BLOCKING	41
3.8.3 TEST PROCEDURE	43
3.8.4 DEVIATION FROM TEST STANDARD	43
3.8.5 TEST SETUP	43
3.8.6 TEST RESULTS	44
4. TEST RESULTS	45
4.1 RF Output Power	45
4.2 Power Spectral Density	47
4.3 Occupied Channel Bandwidth	49
4.4 Transmitter unwanted emissions in the out-of-band domain	51
4.5 Transmitter unwanted emissions in the spurious domain	52
4.6 Receiver spurious emissions	54
5 . EUT TEST PHOTO	56
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	56
the start start to the start to the	WEIT

NTEK 北测®

Page 5 of 56 Report No.: STR211122001002E

Report No.	Version	Description		ssued Date	
		47			_
STR211122001002E	Rev.01	Initial issue of report	D D	ec 28. 2021	۶
T S L	1	A A A	t	2 2	
L. L.	4		S		~
LE T	4 5	AT .		A S	4
the state	5	AT N	+ -	5	
+ 5	A	A A A	8		
R A	5 5	5		+ E	_
- + - F	-	The second	-	4 2	
to S	de la	5 6		d-	
		L. A		4	
t S		AT ?	A		
× ×	At	< _ A	2	t	-
Le t	2	A A		5	
to S		the t	A		1
t f	AL A	Į.	7	A Z	
X	~	1 4	A	S.	
A E	to the		S.	the the	4
A 5 1	1 5	LE .		4 5	,
E.	S.	At 2	4	AT S	
At P	A	F & A	9	A	
S A	5 2	Str F		A S	
4 3		the start	- 4	5	
AT &	t	\$ 1 5		t	
2	5 5	X		- 5	
AT X		5 T	- 2		
A X	A	t the		AT .	V
S It	5	- 5	A	2	
of S	L	AT L	4		4

Page 6 of 56 Report No.: STR211122001002E

Equipment	Mobile Phone
Trade Mark	Blackview
Model Name.	A95
Family Model	N/A 💉 🔶
Model Difference	N/A
	The EUT is Mobile Phone
	Operation Frequency: 2402~2480 MHz
	Modulation Type: GFSK
	Adaptive/non-adaptive Adaptive equipment
Product Description	Receiver categories 3
	Number Of Channel Please see Note 2.
	Antenna Designation: PIFA Antenna
	Antenna Gain(Peak) 1.28 dBi
	R K S
Channel List	Refer to below
Adapter	Model: HJ-FC001K7-EU Input: 100-240V~50/60Hz 0.6A Output: 5V3.0A 15.0W 9V2.0A 18.0W 12V1.5A 18.0W
Battery type&specification	Battery 1: Model: Li426483PUJLY DC 3.85V, 4280mAh,16.48Wh Battery 2: Model: LiSP426483SHHTT DC 3.85V, 4380mAh,16.863Wh
Rating	DC 3.85V from battery or DC 5V from Adapter.
I/O Ports	Refer to users manual
Hardware Version	TE855-A2-PCB-V1.0

Page 7 of 56 Report No.: STR211122001002E

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.	Channel	Frequency (MHz)
10	00	2402
2	01	2404
	····· *	<
15		*
14	38	2478
2	39	2480
		47

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

- FHSS
- other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment:
- The maximum number of Hopping Frequencies:
- The minimum number of Hopping Frequencies:
- The (average) Dwell Time:

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- \boxtimes adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

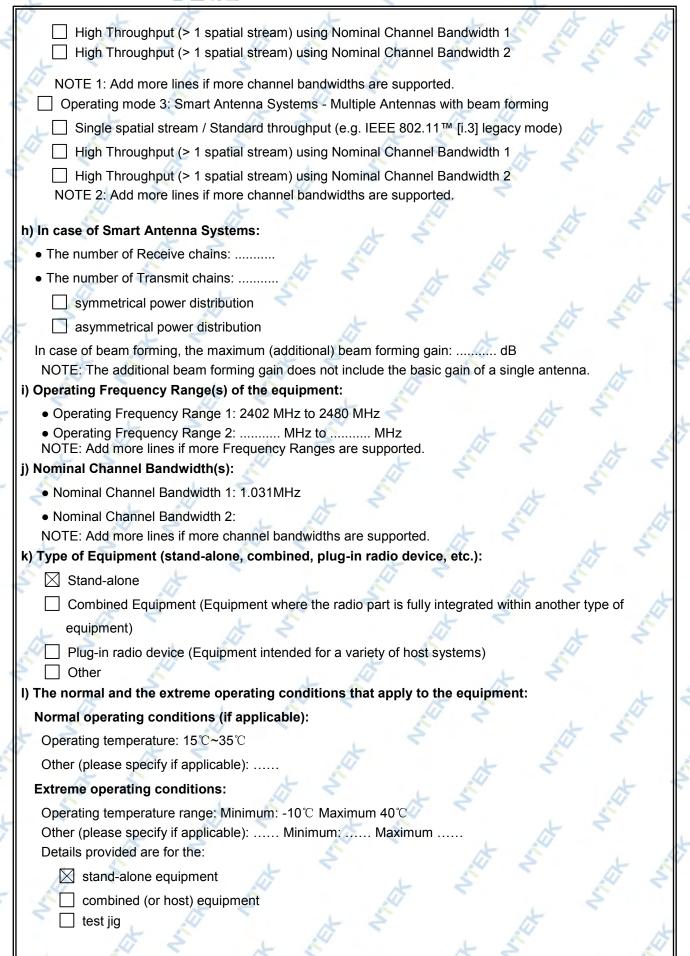
The maximum Channel Occupancy Time implemented by the equipment: ./. ms

- The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - The equipment can switch dynamically between Frame Based and Load Based equipment
 - The CCA time implemented by the equipment: / μ s
- The equipment has implemented a non-LBT based DAA mechanism
- The equipment can operate in more than one adaptive mode

e) In case of non-adaptive Equipment:

- The maximum RF Output Power (e.i.r.p.):
- The maximum (corresponding) Duty Cycle:

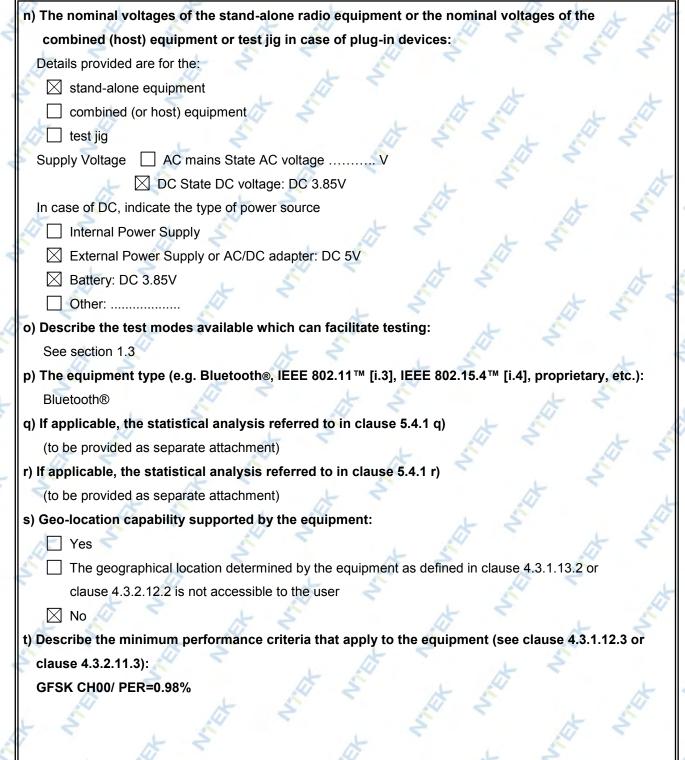
Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):


f) The worst case operational mode for each of the following tests:

- RF Output Power
- GFSK
- Power Spectral Density GFSK
- Duty cycle, Tx-Sequence, Tx-gap N/A
- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
 N/A
- Hopping Frequency Separation (only for FHSS equipment)
 N/A
- Medium Utilization
 N/A
- Adaptivity
- N/A
- Receiver Blocking
- GFSK
- Nominal Channel Bandwidth
- GFSK
- Transmitter unwanted emissions in the OOB domain
- GFSK
- Transmitter unwanted emissions in the spurious domain GFSK
- Receiver spurious emissions
 GFSK

g) The different transmit operating modes (tick all that apply):

- Operating mode 1: Single Antenna Equipment
 - Equipment with only one antenna
 - Equipment with two diversity antennas but only one antenna active at any moment in time
 - Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one antenna is used (e.g. IEEE 802.11[™] [i.3] legacy mode in smart antenna systems)
- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
 - Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)


Page 9 of 56 Report No.: STR211122001002E

Page 10 of 56 Report No.: STR211122001002E

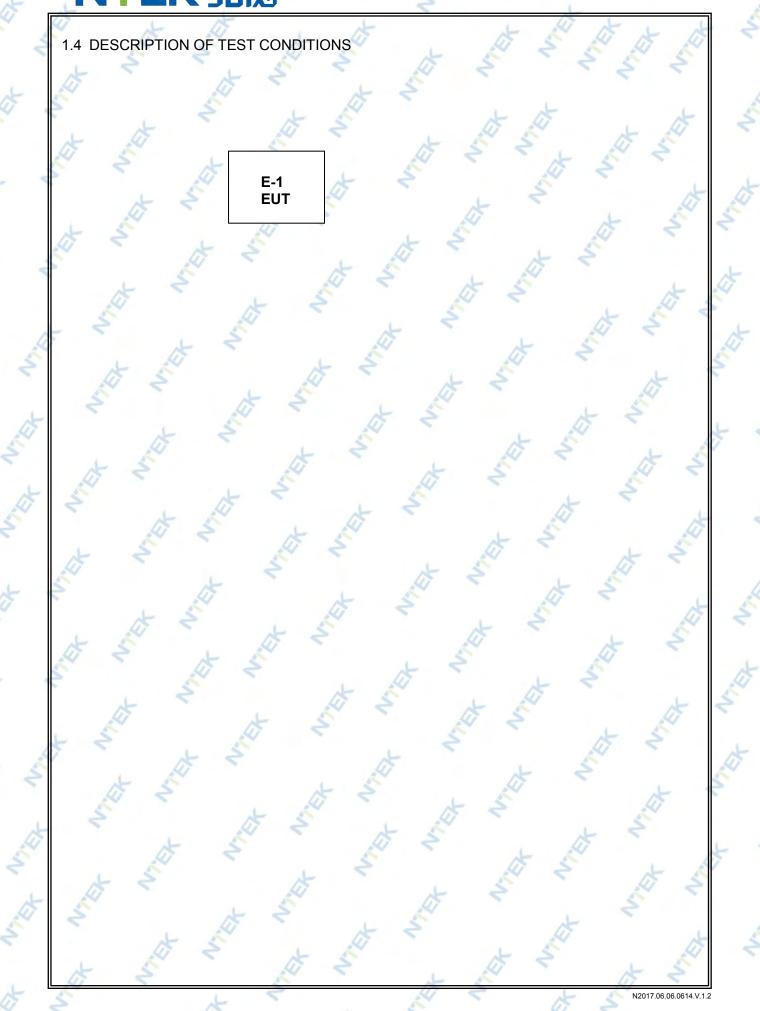
-		ation(s) of the radio ec	quipment power settin	gs and one or more antenna
) T	The intended combina			
а	assemblies and their o	corresponding e.i.r.p.	levels:	8 5 8 8
٠	Antenna Type: PIFA A	ntenna	E	5
[🛛 Integral Antenna (ir	nformation to be provide	ed in case of conducted	measurements)
	Antenna Gain:1.2	8 dBi 🛛 🖉 🍣		5 8 4
☞	If applicable, additio	nal beamforming gain (excluding basic antenna	a gain): dB 🧹 🦂
	Temporary RF	- connector provided	5	15 2
	No temporary	RF connector provided	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Dedicated Antenna	s (equipment with ante	nna connector)	t i
7		level with corresponding		
		r settings and correspo	-	AT T
		ent Power Levels:		E I
	Power Level 1:	X V	5	A E
	Power Level 2:	£	A	+ 5 5
	Power Level 3:		5	2 5
	NOTE 1: Add mo	ore lines in case the equ	uipment has more powe	er levels.
	NOTE 2: These	power levels are condu	cted power levels (at ar	ntenna connector).
●F	For each of the Power I	Levels, provide the inte	nded antenna assembli	es, their corresponding gains
	G) and the resulting e.i.r	r.p. levels also taking in	A	es, their corresponding gains ming gain (Y) if applicable
	G) and the resulting e.i.r Power Level 1:	r.p. levels also taking in dBm	to account the beamfor	ming gain (Y) if applicable
(G	G) and the resulting e.i.r Power Level 1: Number of anten	r.p. levels also taking in dBm ina assemblies provider	to account the beamfor d for this power level:	ming gain (Y) if applicable
(G	G) and the resulting e.i.r Power Level 1:	r.p. levels also taking in dBm ina assemblies provider Gain (dBi)	to account the beamfor d for this power level: e.i.r.p. (dBm)	ming gain (Y) if applicable
(G	G) and the resulting e.i.r Power Level 1: . Number of anten Assembly # 1	r.p. levels also taking in dBm ina assemblies provider	to account the beamfor d for this power level:	ming gain (Y) if applicable
(G	G) and the resulting e.i.r Power Level 1: . Number of anten Assembly # 1 2	r.p. levels also taking in dBm ina assemblies provider Gain (dBi)	to account the beamfor d for this power level: e.i.r.p. (dBm)	ming gain (Y) if applicable
(G	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3	r.p. levels also taking in 	to account the beamfor d for this power level: e.i.r.p. (dBm) -0.04	ming gain (Y) if applicable Part number or model name
(G	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3	r.p. levels also taking in 	to account the beamfor d for this power level: e.i.r.p. (dBm) -0.04	ming gain (Y) if applicable
(G	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3 NOTE 3: Add mo Power Level 2:	r.p. levels also taking in ma assemblies provider Gain (dBi) 1.28 pre rows in case more a	to account the beamfor <u>d for this power level:</u> <u>e.i.r.p. (dBm)</u> -0.04 antenna assemblies are	ming gain (Y) if applicable Part number or model name
	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3 NOTE 3: Add mo Power Level 2: Number of anten	r.p. levels also taking in ma assemblies provider Gain (dBi) 1.28 Dre rows in case more a ma assemblies provider	to account the beamfor <u>d for this power level:</u> <u>e.i.r.p. (dBm)</u> -0.04 antenna assemblies are <u>d for this power level:</u>	ming gain (Y) if applicable Part number or model name supported for this power level.
(G	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3 NOTE 3: Add mo Power Level 2:	r.p. levels also taking in ma assemblies provider Gain (dBi) 1.28 pre rows in case more a	to account the beamfor <u>d for this power level:</u> <u>e.i.r.p. (dBm)</u> -0.04 antenna assemblies are	ming gain (Y) if applicable Part number or model name
	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3 NOTE 3: Add mo Power Level 2: Number of anten	r.p. levels also taking in ma assemblies provider Gain (dBi) 1.28 Dre rows in case more a ma assemblies provider	to account the beamfor <u>d for this power level:</u> <u>e.i.r.p. (dBm)</u> -0.04 antenna assemblies are <u>d for this power level:</u>	ming gain (Y) if applicable Part number or model name supported for this power level.
	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3 NOTE 3: Add mo Power Level 2: Number of anten	r.p. levels also taking in ma assemblies provider Gain (dBi) 1.28 Dre rows in case more a ma assemblies provider	to account the beamfor <u>d for this power level:</u> <u>e.i.r.p. (dBm)</u> -0.04 antenna assemblies are <u>d for this power level:</u>	ming gain (Y) if applicable Part number or model name supported for this power level.
	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3 NOTE 3: Add mo Power Level 2: Number of anten Assembly # 1 2 3 3	r.p. levels also taking in 	to account the beamfor d for this power level: e.i.r.p. (dBm) -0.04 antenna assemblies are d for this power level: e.i.r.p. (dBm)	ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name Part number or model name
	Assembly # A	r.p. levels also taking in ma assemblies provider Gain (dBi) 1.28 Dre rows in case more a ma assemblies provider Gain (dBi) Gain (dBi)	to account the beamfor d for this power level: e.i.r.p. (dBm) -0.04 antenna assemblies are d for this power level: e.i.r.p. (dBm)	ming gain (Y) if applicable Part number or model name supported for this power level.
	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3 NOTE 3: Add mo Power Level 2: Number of anten Assembly # 1 2 3 NOTE 4: Add mo Power Level 3:	r.p. levels also taking in 	to account the beamfor d for this power level: e.i.r.p. (dBm) -0.04 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are	ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name Part number or model name supported for this power level.
	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3 NOTE 3: Add mo Power Level 2: Number of anten Assembly # 1 2 3 NOTE 4: Add mo Power Level 3: NUTE 4: Add mo	r.p. levels also taking in 	to account the beamfor d for this power level: e.i.r.p. (dBm) -0.04 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are d for this power level:	ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.
	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3 NOTE 3: Add mo Power Level 2: Number of anten Assembly # 1 2 3 NOTE 4: Add mo Power Level 3: NUMber of anten Assembly #	r.p. levels also taking in 	to account the beamfor d for this power level: e.i.r.p. (dBm) -0.04 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are	ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name Part number or model name supported for this power level.
	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3 NOTE 3: Add mo Power Level 2: Number of anten Assembly # 1 2 3 NOTE 4: Add mo Power Level 3: NUTE 4: Add mo	r.p. levels also taking in 	to account the beamfor d for this power level: e.i.r.p. (dBm) -0.04 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are d for this power level:	ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.
	G) and the resulting e.i.r Power Level 1: Number of anten Assembly # 1 2 3 NOTE 3: Add mo Power Level 2: Number of anten Assembly # 1 2 3 NOTE 4: Add mo Power Level 3: NUMber of anten Assembly #	r.p. levels also taking in 	to account the beamfor d for this power level: e.i.r.p. (dBm) -0.04 antenna assemblies are d for this power level: e.i.r.p. (dBm) antenna assemblies are d for this power level:	ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.

Page 11 of 56 Report No.: STR211122001002E

Page 12 of 56 Report No.: STR211122001002E

1.3 TEST CONDITIONS AND CHANNEL

15	X Y		_
	Normal Test Conditions	Extreme Test Conditions	
Temperature	15 🖸 - 35 ເປັ	40℃ ~ -10℃ Note: (1)	
Relative Humidity	20% - 75%	N/A 🏑 🍼 🦟	A
Supply Voltage	DC 3.85V	$1 < 1 \neq 1$	2


	347		(13)
-	Test Channel	EUT Channel	Test Frequency (MHz)
7	Lowest	СН00	2402
	Middle 💉	CH19	2440
	Highest	CH39	2480

Note:

(1) The HT 40 $^\circ\!\mathrm{C}$ and LT -10 $^\circ\!\mathrm{C}$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

Page 13 of 56 Report No.: STR211122001002E

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	A.	4 <		No.
Item	Equipment	Model/Type No.	Series No.	Note
E-1	Mobile Phone	A95 🔶	N/A	EUT
	4 2	1 5	A	~
x	5	A	L 5	4
1	The second secon	2	14	7 4
	+ 2	A.	2 4 3	
	2	4 2	5	
			The second secon	
	L A	1	S A	2 1

	N.				
Item	Туре	Shielded Type	Ferrite Core	Length	Note
5		A.	1	4	1
	at -	5	A A		AT I
4	H	X	2	4	t t
A	2	14	A		2
5		to l	4		t

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\]$ column.

Page 15 of 56 Report No.: STR211122001002E

1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

	5	5	× 5	A	5	2	5 5
	EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
E	MI Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
	Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
	Turn Table	EM	SC100_1	60531	<u>N/A</u>	N/A	N/A
67	Antnna Mast	EM 🔎	SC100	N/A	N/A	N/A	N/A
	Horn Antenna	EM	EM-AH-10180	2011071402	2021.03.29	2022.03.28	1 year
	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2021.04.27	2022.04.26	1 year
	Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
k	Test Cable (1-18GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
	Pre-Amplifier	EMC	EMC051835S E	980246	2021.07.01	2022.06.30	1 year
S	pectrum Analyzer	Agilent	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
	Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
	Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
	Attenuator	Weinschel	24-20-34	V BP4485	2020.04.07	2023.04.06	3 year
	MXA Signal 🔨 Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
	ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2021.04.27	2022.04.26	1 year
ę	PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2021.07.01	2022.06.30	1 year
	Power Splitter	Mini-Circuits/U SA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
SV	Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
	Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
A	Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
14	Power Meter	DARE	RPR3006W	15I00041SNO 84	2021.07.01	2022.06.30	1 year
Μ	IXG Vector Signal Generator	Agilent	N5182A	MY47070317	2021.04.27	2022.04.26	1 year
d'	Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2021.04.27	2022.04.26	1 year
te	emporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
Note		×	Ś		5 5		A

Note: 🔨

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Page 16 of 56 Report No.: STR211122001002E

Clause	Test Item	Results
- 4		to be
4.3.2.2	RF Output Power	Pass
4.3.2.3	Power Spectral Density	Pass
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.2.5	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.2.6	Adaptivity	Not Applicable (See Note 1)
4.3.2.7	Occupied Channel Bandwidth	Pass
4.3.2.8	Transmitter unwanted emission in the OOB domain	Pass
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	
4.3.2.10	Receiver Spurious Emissions	Pass
4.3.2.11	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

NTEK北测

Page 17 of 56 Report No.: STR211122001002E

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.: 9270A-1

CNAS Registration No.:L5516

2.2 MEASUREMENT UNCERTAINTY

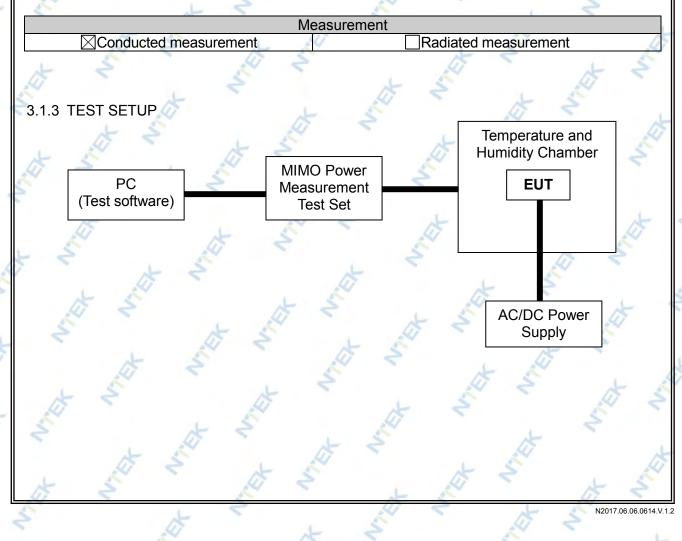
For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively 95 % and 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

	Measurement uncertai	nty
No.	Item 🗡	Uncertainty (P=95)
1	Occupied Channel Bandwidth	± 4.7%
2	RF output Power,conducted	± 0.9dB
3	Power Spectral Density, conducted	± 2.6dB
4	Unwanted emissions, conducted	± 2.2dB
5	All emissions, radiated	± 5.3dB
6	Temperature	🔷 ± 0.5℃
7	Mumidity	± 2.0%
8	Time Time	± 1.0%

Page 18 of 56 Report No.: STR211122001002E

3. TEST PROCEDURES AND RESUTLS

3.1 EQUIVALENT ISOTROPIC RADIATED POWER


3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER

Refer to chapter 4.3.2.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

Condition	Limit
5 5 5	Equal to or less than the value declared
Non-adaptive wide band modulations	by the supplier.
systems <	This declared value shall be equal to or
	less than 20 dBm.
1 2 4	t S
Adaptive wide band modulations systems	≤20dBm
A S A	* ~ /

3.1.2 TEST PROCEDURE

Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Page 19 of 56 Report No.: STR211122001002E

3.1.4 TEST RESULTS

	2 8 8	DE S	2 2 2
EUT :	Mobile Phone	Model Name :	A95
Temperature :	20°C	Relative Humidity:	55 %
Pressure :	1012 hPa 🛛 📉 👘	Test Voltage :	DC 3.85V
Test Mode :	TX Low channel / Middle Chan	nel / High Channel	NY NY

Test data reference attachment

3.2. PEAK POWER DENSITY

3.2.1 LIMITS OF POWER SPECTRAL DENSITY

Refer to chapter 4.3.2.3.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT	POWER	
Condition	Limit	
For equipment using wide band modulations other than FHSS	≤10 dBm/MHz	A

3.2.2 TEST PROCEDURE

Refer to chapter 5.4.3.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	the second secon	A A
	Measurement	P. 4 2 1
Conducted measure	ementRa	diated measurement
The setting of the Spectrum An	alvzer	- <u>H</u>
Start Frequency	2400MHz	
Stop Frequency	2483.5MHz	at at
Detector	RMS	A F K
1	> 8 350; for spectrum analysers	not supporting this number of
Sweep Point	sweep points, the	+ 7
A A	frequency band may be segmen	ited
		ns: 2 × Channel Occupancy Time
かべ	× number of sweep points	
Sweep time:	For continuous transmissions: 1	
the second	increased further until a value w	here the sweep time has no
at as	further impact anymore on the R	MS value of the signal.
RBW / VBW	10KHz / 30KHz	147
<u> </u>		4 2
3.2.3 TEST SETUP	15 5 1	- P
AT I	t S 2	E P
$k \geq 1$	1 N	A A
EUT	Spectrum	PC
EOI	Analyzer	(Test Software)
14 ×	H t	A A
2	FS L H	5
t S	4 2	and the second sec
H S	5	AT S L
t t	de la	5 4 5
K	E D	5 5
< 1	× + 5	A
at S	14	L & D
t S	AT &	AT T I S
41 5	2 4 2	N2017.06.06.0614.V.1
2 4	No. All Contractions of the second seco	

Page 21 of 56 Report No.: STR211122001002E

3.2.4 TEST RESULTS

	6 3	2 8 8	A S	5 2 7
1	EUT :	Mobile Phone	Model Name :	A95
	Temperature :	26°C	Relative Humidity:	60 %
	Pressure :	1012 hPa 🛛 🏹 👘	Test Voltage :	DC 3.85V
ć	Test Mode :	TX-GFSK(CH00/CH19/CH39)	11	13

Test data reference attachment

Page 22 of 56 Report No.: STR211122001002E

3.3. OCCUPIED CHANNEL BANDWIDTH 3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH Refer to chapter 4.3.2.7.3 of ETSI EN 300 328 V2.2.2 (2019-07) OCCUPIED CHANNEL BANDWIDTH Condition Limit All types of equipment using wide band modulations Shall fall completely within the band other than FHSS 2400 to 2483.5 MHz For non-adaptive using wide band modulations other than FHSS Less than 20 MHz system and E.I.R.P >10 dBm Additional requirement For non-adaptive frequency hopping system and E.I.R.P >10 Less than 5 MHz dBm 3.3.2 TEST PROCEDURE Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07) Measurement Conducted measurement Radiated measurement The setting of the Spectrum Analyzer The centre frequency of the channel under test Center Frequency 2 × Nominal Channel Bandwidth Frequency Span RMS Detector RBW \sim 1 % of the span without going below 1 % VBW $3 \times RBW$ Trace Max hold Sweep time 1s 3.3.3 DEVIATION FROM TEST STANDARD

No deviation

3.3.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software has been activated to set the EUT on specific status.

Page 23 of 56 Report No.: STR211122001002E

3.3.5 TEST RESULTS

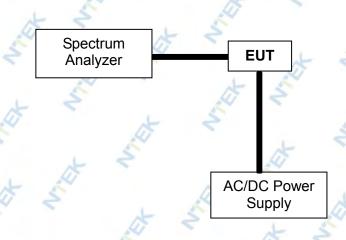
	6 2	1 8 3		AT S	<	5	2
1	EUT :	Mobile Phone	×	Model Name :	A95		
	Temperature :	26°C 🧹 📜 🏅	Y Y	Relative Humidity :	60 %		x
	Pressure :	1012 hPa 🛛 🖉 🕤		Test Voltage :	DC 3.85V	A.	N.
Ś	Test Mode :	TX-GFSK(CH00/CH39)		14	E.	S	

Test data reference attachment

Page 24 of 56 Report No.: STR211122001002E

3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.2.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)


	TR/	ANSMITTER UN	WANTED	EMISSIONS IN	THE OUT-C	JE-DAND DOI	
de-		Condition			Limit		~
	Under	all test conditions	s dom	e transmitter unv ain but outside the values provi	the allocated	d band, shall n	not exceed
the state	WE	* *	4 A		MA	ک ۱	the state
purious	s Domain	Out Of Band Doma	ain (OOB)	Allocated Band	Out Of Band	d Domain (OOB)	Spurious Do
		A				1	
0	В	-					
6							
		z - 2BW 2 400 MHz -	BW 24	00 MHz 2 483,5	MHz 2 483,5	MHz + BW 2 483	3,5 MHz + 2BW
: -20 d : Spur 3.4.2	dBm/MHz e.i. dBm/MHz e.i. rious Domain 2 TEST P	r.p. r.p. limits ROCEDURE	2	BW = Occup	ied Channel Band		3,5 MHz + 2BW MHz whichever is gre
: -20 d : Spur 3.4.2	dBm/MHz e.i. dBm/MHz e.i. rious Domain 2 TEST P	r.p. r.p. limits	2	BW = Occup	ied Channel Band		
: -20 d : Spur 3.4.2	dBm/MHz e.i. dBm/MHz e.i. rious Domain 2 TEST P r to chapt	r.p. r.p. limits ROCEDURE	SI <u>EN 300</u>	BW = Occup 328 V2.2.2 (20	ied Channel Band		MHz whichever is gre
: -20 d : Spur 3.4.2 Refer	Bm/MHz e.i. Bm/MHz e.i. rious Domain 2 TEST P r to chapt ⊠Co etting of t	r.p. r.p. limits ROCEDURE er 5.4.8.2 of ETS	SI EN 300 ment	BW = Occup 328 V2.2.2 (20	ied Channel Band	lwidth in MHz or 1 N	MHz whichever is gre
: -20 d : Spur 3.4.2 Refer The se Spa	dBm/MHz e.i. dBm/MHz e.i. rious Domain 2 TEST P r to chapt ∑Co etting of t an	r.p. Imits ROCEDURE er 5.4.8.2 of ETS	SI EN 300 ment alyzer 0Hz	BW = Occup 328 V2.2.2 (20 Measurement	ied Channel Band	lwidth in MHz or 1 N	MHz whichever is gre
: -20 d : Spur 3.4.2 Refer The so Spa Filt	dBm/MHz e.i. dBm/MHz e.i. rious Domain 2 TEST P r to chapt ⊠Co etting of t an ter Mode	r.p. Imits ROCEDURE er 5.4.8.2 of ETS nducted measure he Spectrum Ana	SI EN 300 ment alyzer 0Hz Channel	BW = Occup 328 V2.2.2 (20 Measurement	ied Channel Band	lwidth in MHz or 1 N	MHz whichever is gre
: -20 d : Spur 3.4.2 Refer The spa Filt Tra	dBm/MHz e.i. dBm/MHz e.i. rious Domain 2 TEST P r to chapt ∑Co etting of t an	r.p. Imits ROCEDURE er 5.4.8.2 of ETS nducted measure he Spectrum Ana	SI EN 300 ment alyzer 0Hz Channel Max Hold Video trig	BW = Occup 328 V2.2.2 (20 Measurement	ied Channel Band 19-07)	twidth in MHz or 1 M	MHz whichever is green in the second se
: -20 d : Spur 3.4.2 Refer The spa Filt Tra Trig	Bm/MHz e.i. Bm/MHz e.i. rious Domain 2 TEST P r to chapt ∑Co etting of t an ter Mode ace Mode	r.p. Imits ROCEDURE er 5.4.8.2 of ETS nducted measure he Spectrum Ana	SI EN 300 ment alyzer 0Hz Channel Max Hold Video trig	BW = Occup 328 V2.2.2 (20 Measurement Filter	ied Channel Band 19-07)	twidth in MHz or 1 M	MHz whichever is green in the second se
: -20 d : Spur 3.4.2 Refer The spa Filt Tra Trig	Bm/MHz e.i. Bm/MHz e.i. rious Domain 2 TEST P r to chapt	r.p. Imits ROCEDURE er 5.4.8.2 of ETS nducted measure he Spectrum Ana	SI EN 300 ment 0Hz 0Hz Channel Max Hold Video trig trigger so RMS	BW = Occup 328 V2.2.2 (20 Measurement Filter	ied Channel Band 19-07)	d measureme	MHz whichever is gre nt ole, an external

Page 25 of 56 Report No.: STR211122001002E

3.4.3 DEVIATION FROM TEST STANDARD

No deviation

3.4.4 TEST SETUP

According to the EN 300 328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

Page 26 of 56 Report No.: STR211122001002E

3.4.5 TEST RESULTS

	6 3	1 8 3	A S	2 2 2
1	EUT :	Mobile Phone	Model Name :	A95
11	Temperature :	24°C	Relative Humidity :	54%
	Pressure :	1010 hPa 🛛 🔨 👘	Test Power :	DC 3.85V 💦 💉
Ś	Test Mode :	TX-GFSK(CH00/CH39)	1	N. S.

Test data reference attachment

3.5. ADAPTIVE (CHANNEL ACCESS MECHANISM)

3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR WIDE BAND MODULATION TECHNIQUES Refer to chapter 4.3.2.6 of ETSI EN 300 328 V2.2.2 (2019-07)

		Operational Mode				
		LBT based Detect and Av				
Requirement	Non-LBT based Detect and Avoid	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as note 2)		
Minimum Clear Channel Assessment (CCA) Time	NA	not less than 18 us (see note 1)	(see note 2)	not less than 18 us (see note 1)		
Maximum Channel Occupancy (COT) Time	<40 ms	1ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)		
Minimum Idle Period	5 % minimum of 100 μs	5% of COT	(see note 2)	NA		
Extended CCA check	<u>SNA</u>	NA	(see note 2)	R*CCA (see note 4)		
Short Control Signalling Transmissions	Maximur	n duty cycle of 10% (within an observations within an observation see note 5)	on period of 50 ms		

Note 1: The CCA time used by the equipment shall be declared by the supplier.

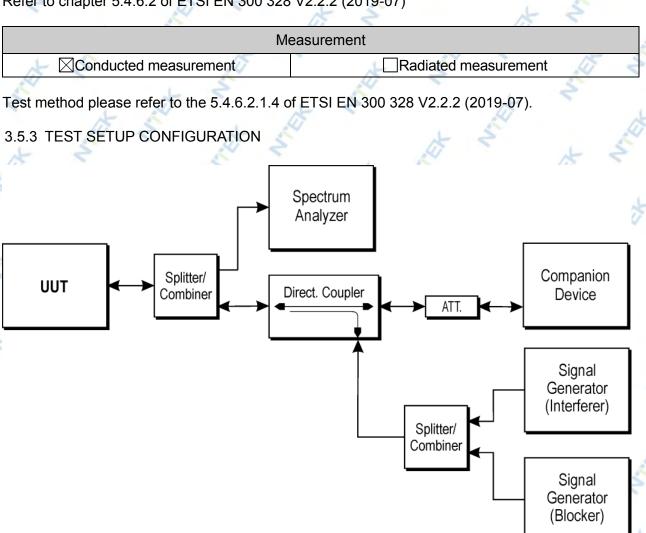
Note 2: Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect as described in IEEE 802.11[™]-2012 [i.3], clause 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in IEEE 802.15.4[™]-2011 [i.4], clause 4, clause 5 and clause 8 providing the equipment complies with the conformance requirements referred to in clause 4.3.2.6.3.4. Note 3: g is selected by the manufacturer in the range [4...32]

Note 4: The value of R shall be randomly selected in the range [1...g]

Note 5: Adaptive equipment may or may not have Short Control Signaling Transmissions.

Interference threshold level

The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:


TL = -70 dBm/MHz + 10 × log10 (100 mW / Pout) (Pout in mW e.i.r.p.)

1	Table S	9: Unwanted Signal parameters	25
9	Wanted signal mean power from companion device (dBm)	Unwanted signal frequency (MHz)	Unwanted CW signal power (dBm)
3	-30/ sufficient to maintain the link(see note 2)	2 395 or 2 488,5 (see note 1)	-35 (see note 2)

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1. NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz. NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.

3.5.2 TEST PROCEDURE

Refer to chapter 5.4.6.2 of ETSI EN 300 328 V2.2.2 (2019-07)

3.5.4 LIST OF MEASUREMENTS

		A	
ų		UUT operational Mode	
¥	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced)
	r t	V	19 2

1 8	AT I I	5	
Clause	Test Parameter	Remarks	PASS/FAIL
4.3.2.5.2.2.1	Adaptive (Frame Based Equipment)	Not Applicable	N/A
4.3.2.5.2.2.2	Adaptive (Load Based Equipment)	N/A	SN/A
4.3.2.5.3	Short Control Signaling Transmissions	N/A	N/A

Page 30 of 56 Report No.: STR211122001002E

3.5.5 TEST RESULTS

		5 8 2	E S	252
1	EUT :	Mobile Phone	Model Name :	A95
	Temperature :	24 °C	Relative Humidity :	54%
	Pressure :	1010 hPa 🛛 🖉 👘	Test Power :	N/A 🖉 🖉
ć	Test Mode :	N/A	1	4 5

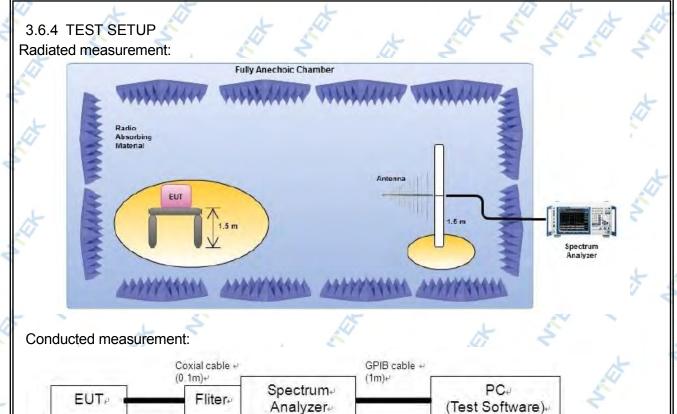
Note: Not applicable

3.6. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Refer to chapter 4.3.2.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANT	ED EMISSIONS IN THE SPURIO	US DOMAIN
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm 💉	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz		100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	54dBm 🛛 🖉	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz 🔬
470 MHz to 694 MHz	-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm 🛛 📩	100 kHz
🗧 🗧 GHz ~ 12.75 GHz 🖉	-30dBm	1 MHz 💉

3.6.2 TEST PROCEDURE


Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	M	easurement				
⊠Con	ducted measurement		Radia	ited measu	rement	5
The setting of th	e Spectrum Analyzer	t	N.S.		AL.	
RBW	100K(<1GHz) / 1N	l(>1GHz)		5	~	
VBW 🖉	300K(<1GHz) / 3N	l(>1GHz)	15	5		E.
5	44 4		5		×	5

3.6.3 DEVIATION FROM TEST STANDARD

No deviation

Page 32 of 56 Report No.: STR211122001002E

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

Page 33 of 56 Report No.: STR211122001002E

3.6.5 TEST RESULTS(Radiated measurement)

	LT .	BELOW 1 GHz WOF	RST- CA	ASE DATA(30 MHz	~ 1GHz)
S	EUT :	Mobile Phone	4	Model Name :	A95
	Temperature :	26° C		Relative Humidity :	60 %
ć	Pressure :	1012 hPa		Test Voltage :	DC 3.85V
	Test Mode :	TXGFSK(CH19)	5	~	5

0	~	1 5					
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	42.90	-73.25	10.77	-62.48	-36	-26.48	peak
V	112.70	-73.67	11.26	-62.41	-54	-8.41	peak
V	217.80	<i></i> -71.24	11.22 🗸	-60.02	-54	-6.02	peak
V	316.90	-77.24	11.19	-66.05	-36	-30.05	peak
V	619.31	-71.67 🥖	9.53	-62.14	54	-8.14	peak
V	747.99	-76.76 🔨	11.03	-65.73	-36	-29.73	peak
F	34.43	-68.11	10.45 🔬	-57.66	-36	-21.66	peak
Н	97.45		10.2	-66.83	-54	-12.83	peak
Н	193.91	-73.58	10.83	-62.75	-54		peak
Н	284.94	-76.87	11.11	-65.76	<u> </u>	-29.76	peak
AH.	> 379.19	-73.23	11.11	-62.12	-36	-26.12	peak
Η	775.82	-75.39	11.03	-64.36	-36	-28.36	peak

Remark:

1. Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit 2.All the modes had been tested, but only the worst data recorded in the report.

Page 34 of 56 Report No.: STR211122001002E

EUT : Mobile Phor		ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)									
	ne 🤝 🔔	Model Name :	A95								
Temperature : 26°C	the second	Relative Humidity :	60 %								
Pressure : 1012 hPa	A TH	Test Voltage :	DC 3.85V								
Test Mode : TX-GFSK (0	CH00/CH19/CH39)	N. V.	A ST								

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)		
	K	ор	eration free	quency:2402	14			
V	4804.62	-38.20	<u> </u>	-39.67	-30	-9.67	peak	
V	7206.68	-51.60	11.09	-40.51	-30	-10.51	peak	
Đ.	4804.62	-38.10	-1.47	-39.57	-30	-9.57	peak	
Ĥ	7206.68	-51.30	11.09 🏑	-40.21	-30	-10.21	peak	
1	H	ор	eration free	quency:2440	A	2		
V	4880.83	-39.30 🏒	-1.86	-41.16	30	-11.16	peak	
V	7320.22	-50.80 <	5.26	-45.54	-30	-15.54	peak	
H	4880.83	-39.50	-1.86 📈	-41.36	-30	-11.36	peak	
Н	7320.22	-51.70	5.26	-46.44	-30	-16.44	peak	
operation frequency:2480								
V	4860.81	-39.00	-1.28	-40.28	30	-10.28	peak	
<u> </u>	7440.82	-50.10	8.79	-41.31	-30	-11.31	peak	
Н	4860.81	-39.10	-1.28	_40.38	-30	-10.38	peak	
Н	7440.82	-52.00	8.79	-43.21	-30	-13.21	peak	
Remark	c 🥂 🤜	1×	E		+ 2		1	

Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
 All the modes had been tested, but only the worst data recorded in the report

Page 35 of 56 Report No.: STR211122001002E

3.6.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

Page 36 of 56 Report No.: STR211122001002E

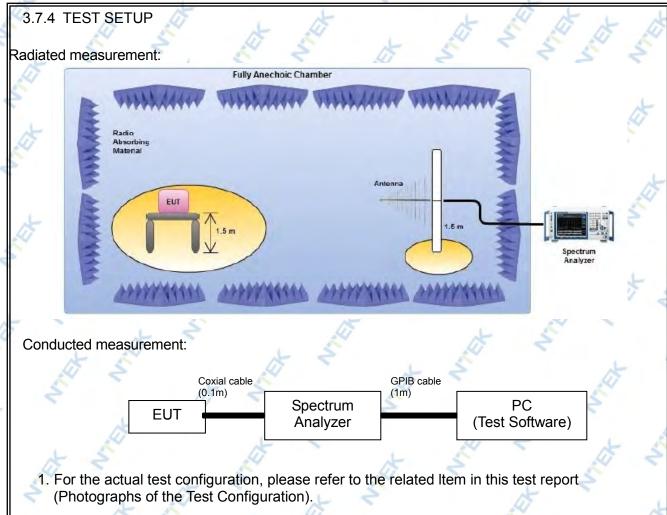
3.7. RECEIVER SPURIOUS RADIATION

3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION

Refer to chapter 4.3.2.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS					
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth			
30 MHz ~ 1 GHz	-57dBm 🖉	100KHz			
1 GHz ~ 12.75 GHz	-47dBm	1MHz			
		11			

3.7.2 TEST PROCEDURE


Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Me	easurement				
d measurement		Radiated measu	irement	5	
ectrum Analyzer	S. C.	t.	S.	-	
100K(<1GHz) / 1M	(>1GHz) 📈	5		A	-
300K(<1GHz) / 3M	(>1GHz)		4	2	
	ed measurement ectrum Analyzer 100K(<1GHz) / 1M	E RE	ectrum Analyzer 100K(<1GHz) / 1M(>1GHz)	ectrum Analyzer 100K(<1GHz) / 1M(>1GHz)	ectrum Analyzer 100K(<1GHz) / 1M(>1GHz)

3.7.3 DEVIATION FROM TEST STANDARD

No deviation

Page 37 of 56 Report No.: STR211122001002E

- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

Report No.: STR211122001002E Page 38 of 56

3.7.5 TEST RESULTS(Radiated measurement)

	L 5	RX BELOW 1 GHz WORST	CASE DATA(30 MH	z ~ 1GHz)	S	5
4	EUT :	Mobile Phone	Model Name :	A95		
	Temperature :	26°C 🗧 🔶 📈	Relative Humidity :	60 %		X
	Pressure :	1012 hPa 🛛 🚿 👘	Test Voltage :	DC 3.85V	4	172
S.	Test Mode :	RX Mode-GFSK(CH19)	1	4 2		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	40.80	-79.26	12.98	-66.28	-57	-9.28	peak
V	95.41	-81.95	<u>11.67</u>	-70.28	-57	-13.28	peak
V	222.53	-78.45	18.94	-59.51	-57	-2.51	peak
V	315.25	-84.08	11.65	-72.43	-57	-15.43	peak
V	519.45	~ -84.93	11.45	-73.48	-57	-16.48	peak
V	712.43	-84.01	11.45	-72.56	-57	-15.56	peak
H	35.02	-78.37 📈	18.6	-59.77	-57	-2.77	peak
H	89.39	-80.79	18.11	-62.68	-57	-5.68	peak
Н	196.83	-79.40	10.3 🧷	-69.10	-57	-12.10	peak
Н	359.04	-83.52	15	-68.52	-57	-11.52	peak
Н	587.62	-77.40 🙏	14.63	-62.77	-57	-5.77	peak
A.T.	739.13	-79.56	14.63	-64.93	57	-7.93	peak

Remark:

Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
 All the modes had been tested, but only the worst data recorded in the report.

Page 39 of 56 Report No.: STR211122001002E

G

15	E t	45	1	51	4 4	FR
1 5	RX ABOVE 1 GHz WC	ORST- CASE	DATA(1GHz ~	12.75GHz)	18	5
EUT :	Mobile Phone	Mod	del Name :	A95		
Temperature :	24 °C	Rela	ative Humidity	54%		t
Pressure :	1010 hPa	Test	t Power :	DC 3.85V	A	The second
Test Mode :	RX Mode-GFSK(CH19)	. 1	A A	15	5	-
	R. I	チャ		5		1

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	1411.06	-83.37	-3.93	-87.30	-47	-40.30	peak
V 🙏	2971.77	-78.65	~- 0.19	-78.84 🍼	-47	-31.84	peak
V	3905.76	-82.72	0.04	-82.68	-47	-35.68	peak
V	4599.91	~79.95	9.02	-70.93	-47	-23.93	peak
V	4164.07	-83.04	9.99 📈	-73.05	-47	-26.05	peak
V	4901.60	-77.76	11.02	-66.74	-47	-19.74	peak
HO.	2131.56	-78.75 📈	-4.23	-82.98	<u> </u>	-35.98	peak
- H	2802.56	-79.61	0.01	-79.60	-47	-32.60	peak
Н	3421.00	-78.19	4.78	-73.41	-47	-26.41	peak
Н	3717.16	-80.31	6.61	-73.70	-47	-26.70	peak
Н	4115.57	-80.70 🔔	11.33	-69.37	-47	-22.37	peak
H	5062.02	-83.61	18.69	-64.92	<u></u> 47	-17.92	peak
1 En	nission Level	= Meter Reading	r + Factor	Margin= Emiss	ion Level	- Limit	2

Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
 All the modes had been tested, but only the worst data recorded in the report.

Page 40 of 56 Report No.: STR211122001002E

B.7.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

N2017.06.06.0614.V.1.2

3.8. RECEIVER BLOCKING

3.8.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t).

3.8.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less	2 380 2 504	-34	CW
(see note 2) (-139 dBm + 10 × log ₁₀ (OCBW))	2 300	t to a	4 4
or -74 dBm whichever is less	2 330 2 360	t	2
(see note 3)	2524 2584 2674	the way	+ S

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 42 of 56 Report No.: STR211122001002E

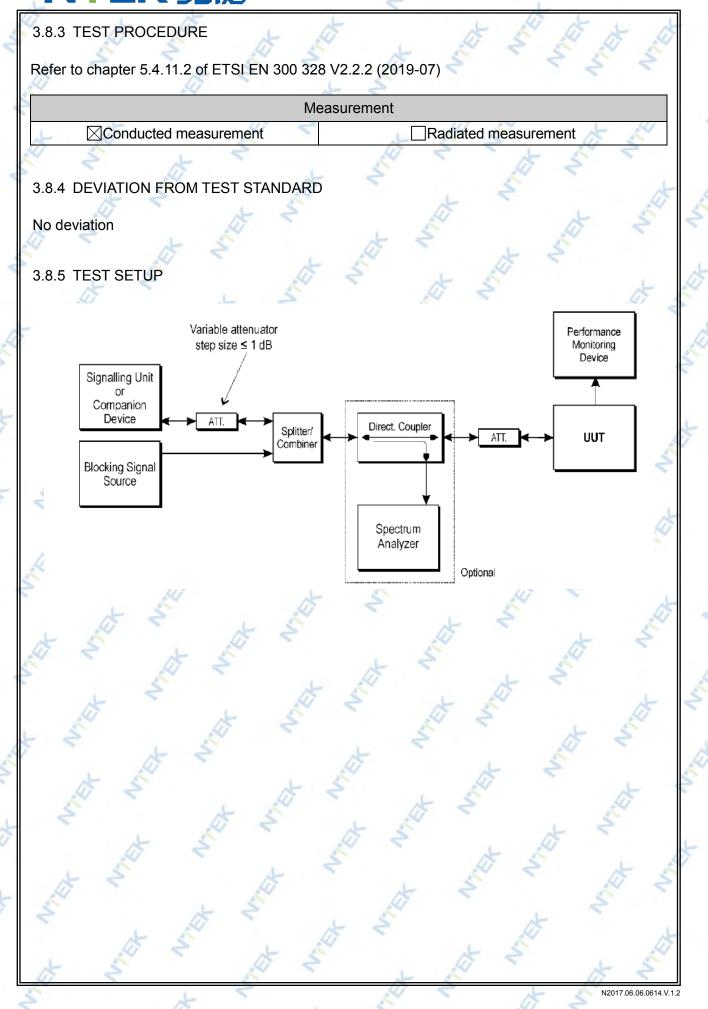
9	Table 15: Receiver I	Blocking parameters	receiver category 2 equip	ment
	Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
	companion device (dBm)	Frequency (MHz)	(dBm) (see note 3)	signal
2	(see notes 1 and 3)	A V		
	(-139 dBm + 10 × log₁₀(OCBW) + 10 dB)	2 380	-34	CW 5
-	or (-74 dBm + 10 dB) whichever is less	2 504	- 5 8 .	A S
Ś	(see note 2)	2 300	15	~
		2 584	5	- Ar

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 16: Receiver Blocking parameters receiver category 3 equipment


Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz) 💉	(dBm) (see note 2)	signal
(-139 dBm + 10 × log₁₀(OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	+ 5	P
(see note 2)	2 300	A	A Y
	2 584 🧷	5 2	R

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 43 of 56 Report No.: STR211122001002E

Page 44 of 56 Report No.: STR211122001002E

3.8.6 TEST RESULTS

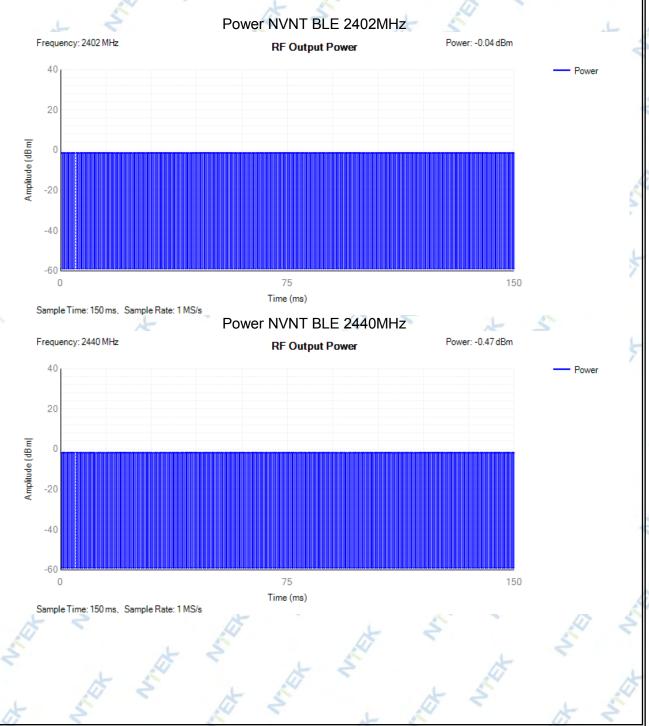
2	S & K	A A	SKAK
EUT :	Mobile Phone	Model Name :	A95 🗧 🍣 <
Temperature :	24 °C 🧹	Relative Humidity	54%
Pressure :	1010 hPa 🥂 🍝	Test Power :	DC 3.85V
Test Mode :	GFSK-RX Mode (CH00/CH39)	A S	2 4 4 2

CH00:

	55	rece	eiver category 3		1
4	Wanted signal mean	Blocking signal	Blocking signal	PER	PER Limit
	power from companion	Frequency (MHz)	power	% _{Note(3)}	%
	device (dBm) Note(1)	20	(dBm)	N	
	47	2 380	41	0.50%	1100
	E.	2 504	5	0.76%	≤10%
-	-57.6	2 300	-34	0.28%	
	+	2 584	5	0.98%	≤10%

CH39:

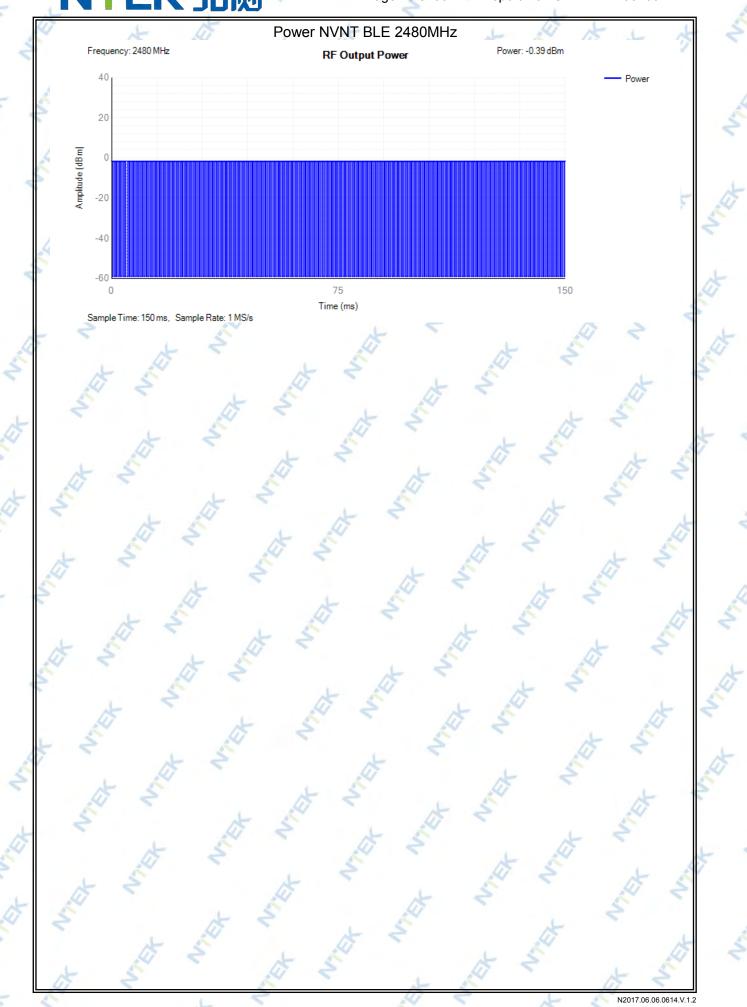
	rece	eiver category 3	A	~ ~
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER % Note(3)	PER Limit
× + ×	2 380	* *	0.62%	-100/
19 2	2 504		0.09%	≤10%
-57.59	2 300	-34	0.06%	5. 2
the state of the s	2 584	45	0.02%	≤10%

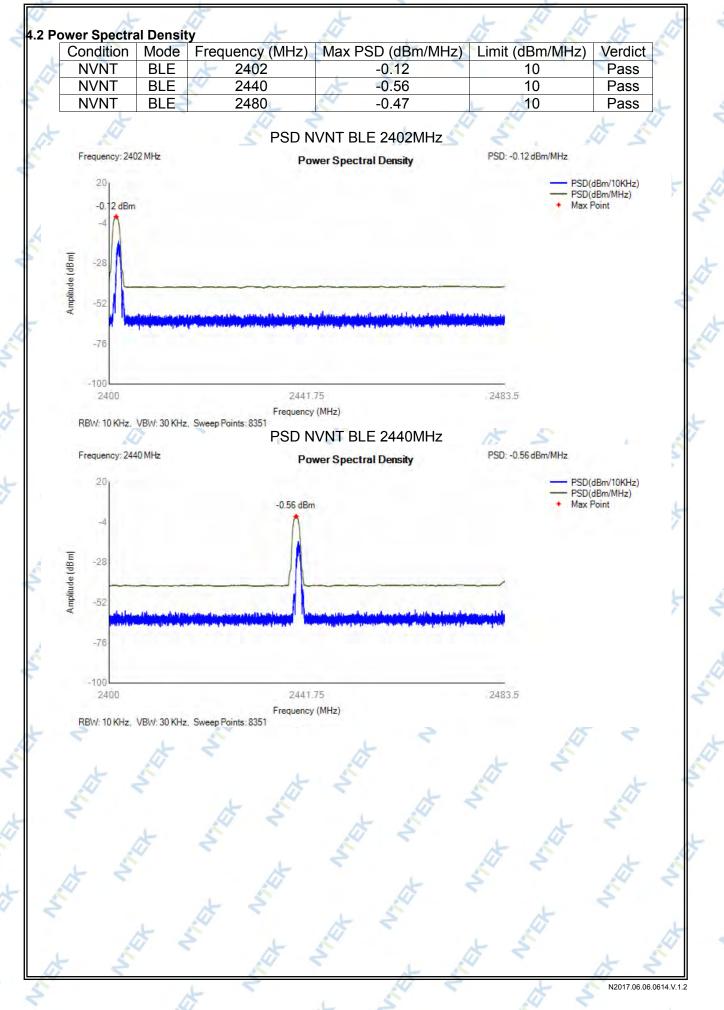

Note: (1) The above results were obtained from laboratory tests.

Page 45 of 56 Report No.: STR211122001002E

4. TEST RESULTS

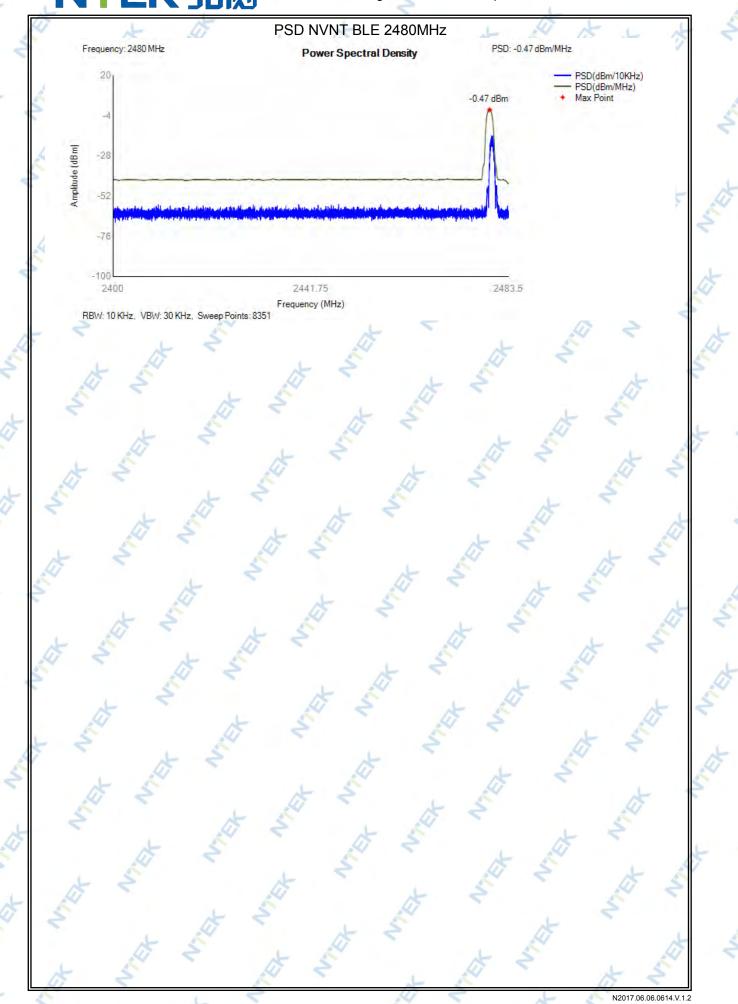
4.1 RF Output Power


r. i Ki Output	I OWEI						
Condition	Mode	Frequency	Max Burst RMS	Burst	Max EIRP	Limit	Verdict
Condition	MOUE	(MHz)	Power (dBm)	Number	(dBm)	(dBm)	veruici
NVNT	BLE	2402	-1.32	240 🖉	-0.04	20	Pass
NVNT	BLE	2440 💉	-1.75	241	-0.47	20	Pass
🖉 NVNT 🚫	BLE	2480 🥏	-1.67	241	-0.39	20	Pass
NVLT	BLE	2402	-2.17 🔍	240	-0.89	20	Pass
NVLT	BLE	2440	-2.53	241	-1.25	20	Pass
NVLT	BLE	2480	<u> </u>	241 🔔	-0.93	20	Pass
NVHT	BLE	2402 🦟	-2.23	240	-0.95	20	Pass
NVHT	BLE	2440	-2.43	241	-1.15	20	Pass
VHT 📉	BLE	2480	-2.01 🥢	241	-0.73	20	Pass

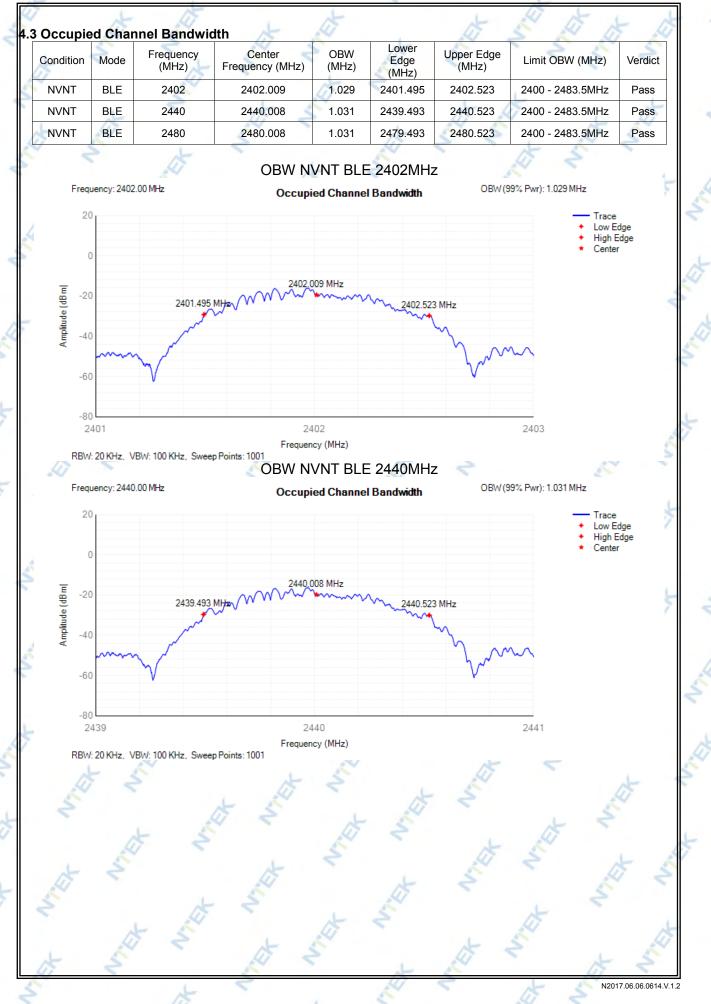

N2017.06.06.0614.V.1.2

Page 46 of 56 Report

Report No.: STR211122001002E

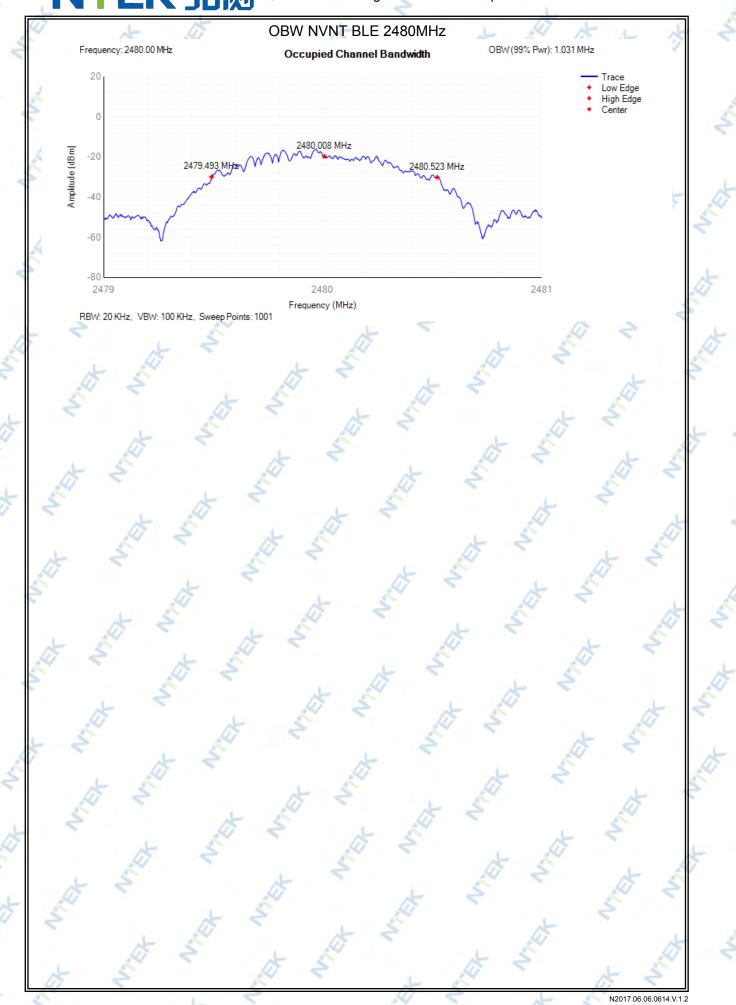


Page 47 of 56 Report No.: STR211122001002E



Page 48 of 56

Report No.: STR211122001002E



Page 49 of 56 Report No.: STR211122001002E

Page 50 of 56

Report No.: STR211122001002E

-80

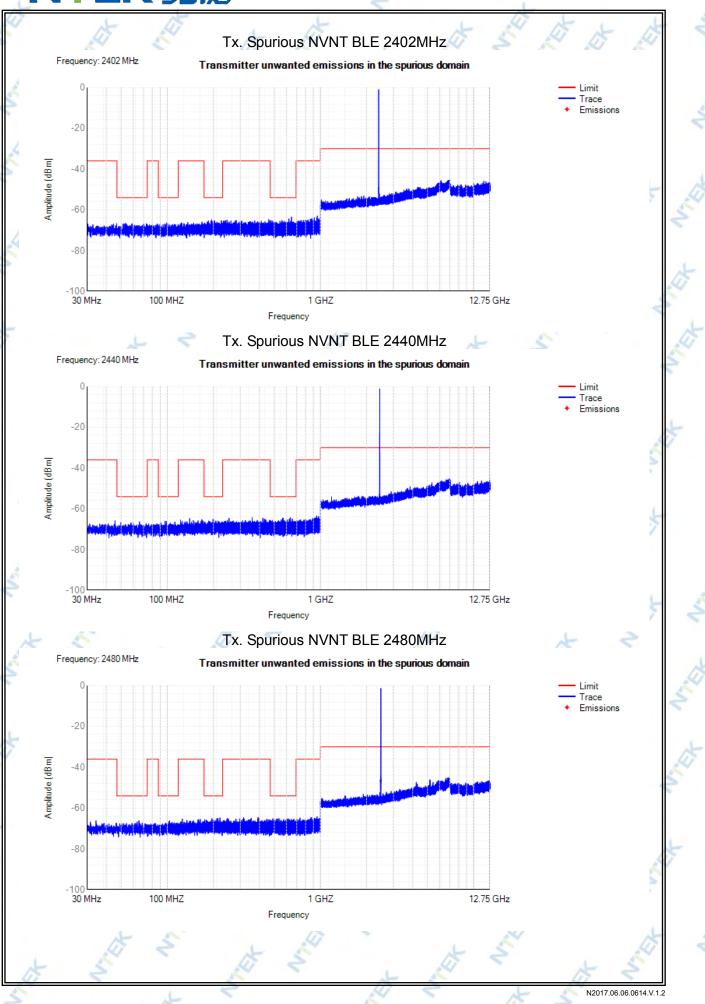
-100 2483.5

RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001

N		EK	(北测》	Page 51	of 56 Repor	rt No.: STR211122	:001002
		x	15	the the second s	at-	AX	1
				the out-of-band dom		SXI	5
Cond	ition	Mode	Frequency	OOB Frequency	Level	Limit	Verdic
			(MHz)	(MHz)	(dBm/MHz)	(dBm/MHz)	_
NV		BLE	2402	2399.5	-58.65	-10	Pass
NVI		BLE	2402	2399.471	-59.53	-10	Pass
NVI		BLE	2402	2398.471	-62.94	-20	Pass
NVI		BLE	2402 🔊	2398.442	-62.56	-20 🖉	Pass
NVI		BLE	2480	2484 💉	-62.72	<u></u>	Pass
NVI		BLE	2480	2484.031 🥏	-62.43	-10	Pass
NVI		BLE	\$ 2480	2485.031	-62.21	-20	Pass
NVI	NT	BLE	2480	2485.062	-62.75	-20	Pass
ar -	5		41		8	(A)	~
			🙏 🛛 🕺 Tx. Emis	ssions OOB NVNT E	LE 2402MHz	1 5	
F	requenc	y: 2402 MHz	Transmitter	unwanted emissions in th	e out-of-band domain		
	0.		Tunomitor	ullwanted enhaatona in th	e out of baile domain		
	Ŭ					•	 Limit OOB
							005
	-20						
E B	-40						
e (d							
Amplitude (dBm							
Amp	-60			++	+*		
	-80						
	120						
	-100L 2397.4	442		2398.721		2400	
	2007.	112		Frequency (MHz)		2400	
F	RBW: 100	0 KHz, VBW	/: 3000 KHz, Sweep Points: 50	001		-	
6.00		5	Tx. Emis	ssions OOB NVNT E	LE 2480MHz		1
F	requenc	;y: 2480 MHz	Transmitter	unwanted emissions in th	e out-of-band domain		
	0						- 1 :;+
						•	 Limit OOB
	-20						
	-						
	-						
Bm	-40						
le (dBm)	-40						
Amplitude (dBm	-40						

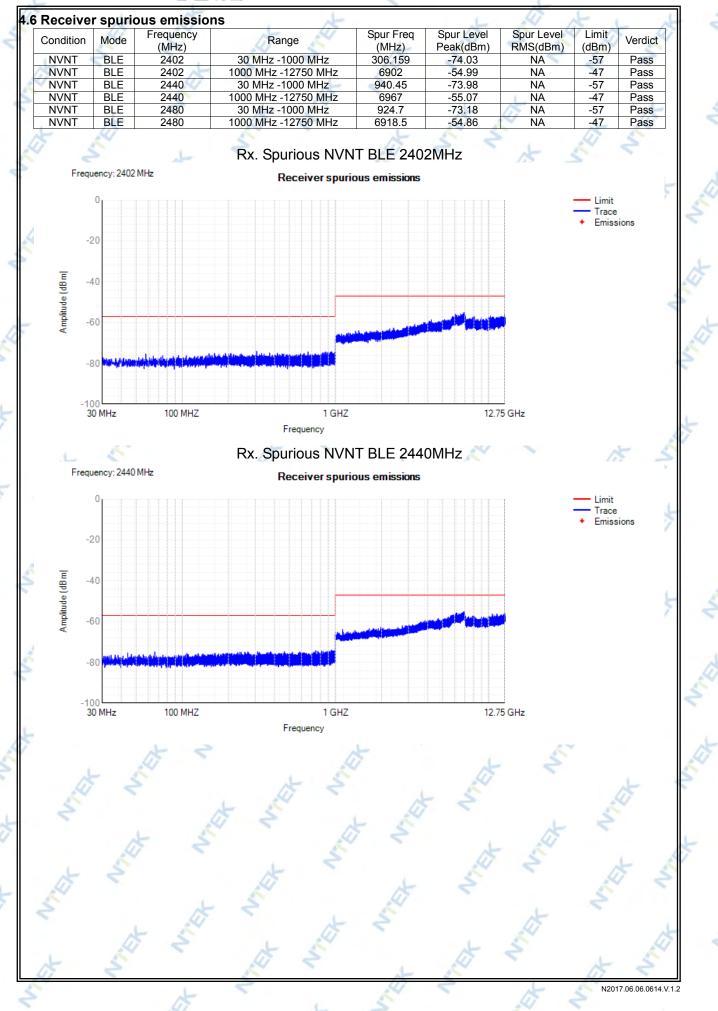
2484.781

Frequency (MHz)

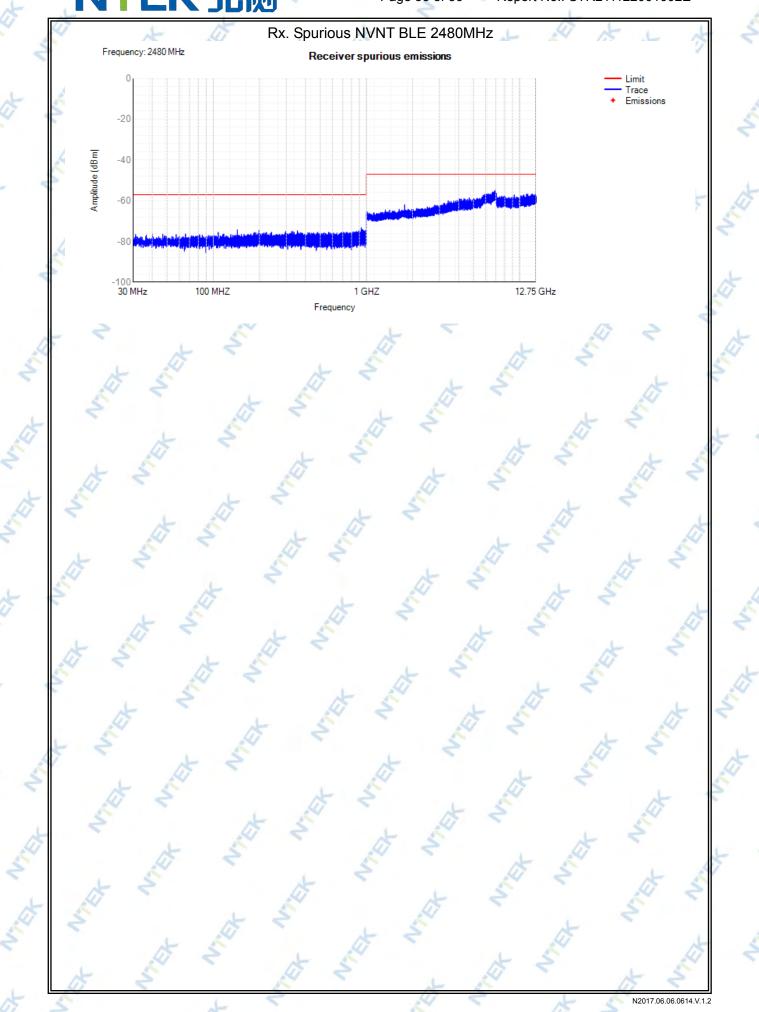

N2017.06.06.0614.V.1.2

2486.062

Page 52 of 56 Report No.: STR211122001002E


Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
NVNT	BLE	2402	30 MHz -47 MHz	46.7	-66.74	ŇĂ	-36	Pass
NVNT	BLE	2402	47 MHz -74 MHz	53.6	-66.61	NA	-54	Pass
NVNT	BLE	2402	74 MHz -87.5 MHz	86.1	-66.89	NA	-36	Pass
NVNT	BLE	2402	87.5 MHz -118 MHz	99.45	-66.29	NA	-54	Pass
NVNT	BLE	2402	118 MHz -174 MHz	168.6	-65.94	NA NA	-36	Pass
NVNT	BLE	2402	174 MHz -230 MHz	194.55	-64.85	NA	-54	Pass
NVNT	BLE	2402	230 MHz -470 MHz	459.8	-64.77	NA	-36	Pass
NVNT 🐬	BLE	2402	470 MHz -694 MHz	647.25	-63.51	NA	-54	Pass
NVNT	BLE	2402	694 MHz -1000 MHz	954.05	-62.95	NA NA	-36	Pass
NVNT	BLE	2402	1000 MHz -2398 MHz	1916	-53.22	NA	-30	Pass
NVNT	BLE	2402	2485.5 MHz -12750 MHz	6997	-44.55	NA	-30	Pass
NVNT	BLE	2440	30 MHz -47 MHz	45.6	-65.87	NA	-36	Pass
NVNT	BLE	2440	47 MHz -74 MHz	65.85	-66.38	NA	-54	Pass
NVNT	BLE	2440	74 MHz -87.5 MHz	85.4	-67.35	NA 🌊	-36	Pass
NVNT	BLE	2440	87.5 MHz -118 MHz	96.7	-66.02	NA	-54	Pass
NVNT	BLE	2440	118 MHz -174 MHz	140.1	-64.75	NA NA	-36	Pass
NVNT	BLE	2440	174 MHz -230 MHz	198.8	-65.17	NA	-54	Pass
NVNT 🥖	BLE	2440	230 MHz -470 MHz	358.15	-64.37	NA	-36	Pass
NVNT	BLE	2440	470 MHz -694 MHz	635.9	-64.39	NA	-54	Pass
NVNT	BLE	2440	694 MHz -1000 MHz	944.3	-63.57	NA	-36	Pass
NVNT	BLE	2440	1000 MHz -2398 MHz 🥢	2270	-53.79	NA 🏒	-30	Pass
NVNT	BLE	2440	2485.5 MHz -12750 MHz	6904.5	-45.31 📈	NA S	-30	Pass
NVNT	BLE	2480	30 MHz -47 MHz 🛸	34.25	-66.21	NA	-36	Pass
NVNT	BLE	2480	47 MHz -74 MHz	65.35	-66.14	NA	-54	Pass
NVNT	BLE	2480	74 MHz -87.5 MHz	83.25	-67.51	NA	-36 🧹	Pass
NVNT	BLE	2480	87.5 MHz -118 MHz	103.55	-66.21	NA	-54 🔍	Pass
NVNT	BLE	2480 📈	🚺 118 MHz -174 MHz	125.4	-65.33	NA	-36	Pass
NVNT	BLE	2480 🔬	174 MHz -230 MHz 🏑	220.6	-64.74	NA 🅢	-54	Pass
NVNT	BLE	2480	230 MHz -470 MHz 🔨	391.5	-64.5	NA	-36	Pass
NVNT	BLE	2480	470 MHz -694 MHz	536.25	-65.14	NA	-54	Pass
NVNT	BLE	2480	694 MHz -1000 MHz	950.45	-64.22	NA	-36 🏑	Pass
NVNT	BLE	2480	1000 MHz -2398 MHz	1904.5	-53.25	NA	-30	Pass
NVNT	BLE	2480	2485.5 MHz -12750 MHz	6996.5	-44.64	NA	-30	Pass

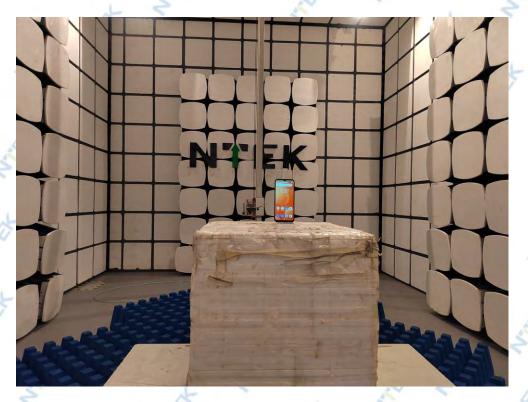
Page 53 of 56 Report No.: STR211122001002E



NTEK 北测®

Page 54 of 56 Report No.: STR211122001002E

Page 55 of 56 Report No.: STR211122001002E



Page 56 of 56 Report No.: STR211122001002E

5. EUT TEST PHOTO

END OF REPORT

N2017.06.06.0614.V.1.2