RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product : Mobile Phone Trade Mark : Blackview Model Name : A95 Family Model : N/A Report No. : STR211122001001E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community,Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

Page 2 of 93

Report No.: STR211122001001E

TEST RESULT CERTIFICATION

* * * * * * * * *
Applicant's name: DOKE COMMUNICATION (HK) LIMITED
Address
Manufacturer's Name: Shenzhen DOKE Electronic Co.,Ltd.
Address
Product description
Product name Mobile Phone
Trademark Blackview
Model Name: A95
Family Model N/A
Standards ETSI EN 300 328 V2.2.2 (2019-07)
This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document. Date of Test
Date (s) of performance of tests Nov 22. 2021 ~ Dec 28. 2021
Date of Issue
Test Result Pass
Testing Engineer : May Hu
(Mary Hu)
Authorized Signatory :

(Alex Li)

Report No.: STR211122001001E

	S & A S & B & S S	8 5
A	Table of Contents	Page
2		-05
A		
5	1.1 GENERAL DESCRIPTION OF EUT	7 8
	1.2 TEST CONDITIONS	13
L	1.3 TEST CONFIGURATION OF EUT	13
4	1.4 DESCRIPTION OF TEST CONDITIONS	14
	1.5 DESCRIPTION OF SUPPORT UNITS	15
	1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	16
- 2	2. SUMMARY OF TEST RESULTS	17
er i	2.1 TEST FACILITY	18
	3. RF OUTPUT POWER	19
	3.1 LIMITS OF RF OUTPUT POWER	<u> </u>
	3.2 TEST PROCEDURE	19
	3.3 DEVIATION FROM TEST STANDARD	19 🔬
A	3.4 TEST SETUP	<u> </u>
2	3.5 TEST RESULTS	20
4	4 . ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND H	OPPING
4	SEQUENCE	21
5	4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION	N AND
	HOPPING SEQUENCE	21 🔊
A	4.2 TEST PROCEDURE	21
E	4.3 DEVIATION FROM TEST STANDARD	21
	4.4 TEST SETUP	22
-	4.5 TEST RESULTS	23
1 ·	5. OCCUPIED CHANNEL BANDWIDTH	24
	5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	24
	5.2 TEST PROCEDURE 5.3 DEVIATION FROM TEST STANDARD	24 25
	5.4 TEST SETUP	25
	5.5 TEST RESULTS	26
6	6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOM	A A
1	6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAN	0
5		,L
		65

Page 3 of 93

Report No.: STR211122001001E

	7	to	The second secon	t A	*	to a	A A A
	A	S.	24	Table of Co	ntents	5 5	Page 🗧
2		DOMAIN	5	LA	5 3	LA	27 🔎
	J.	6.2 TEST	PROCEDUR	e 🖉 🗧	-	A L	27
2	9	6.3 DEVIA	TION FROM	I TEST STANDA	RD 🖉 🦿	N T A	28
P		6.4 TEST	SETUP	t	2	S.	28
		6.5 TEST	RESULTS	at and		*	29 🖉
	7	. HOPPING	G FREQUE	NCY SEPARAT	ion 🔔 🍼	×	30
Ś	Č.,	7.1 LIMITS	S OF HOPPI	NG FREQUENC	Y SEPARATION	t	30
		7.2 TEST	PROCEDUR	E 🖉	2 0	+ 5	30
		7.3 DEVIA	TION FROM	I TEST STANDA	RD 🖉		30
2		7.4 TEST	SETUP ≲		The second secon	-	31
		7.5 TEST	RESULTS	t	S.	A.	32
	8	. TRANSM	ITTER UN	VANTED EMIS	SIONS IN THE S	SPURIOUS DO	MAIN 33
	5	8.1 LIMITS	OF TRANS	MITTER TRANS	MITTER UNWAN	ITED EMISSION	S IN THE
		SPURIOU	S DOMAIN		8	A S	33
		2 3	PROCEDUR			2 5	33
	E			I TEST STANDA	RD 🖉	~	\$ 33
	4	8.4 TEST		0	4 4	45	34
		2		Radiated measure		A X	35
	4			Conducted measu	1	E.	36
100	9		47	US EMISSION	5	t.	\$ 37
		~	2	VER SPURIOUS	RADIATION	L S	37
	x	2	PROCEDUF	47	/	ET T	37
2	5		07	TEST STANDA	RD 🗶 🍣		37
		9.4 TEST	2	Dedicted measure	mont	to the	 38 30
		47	•	Radiated measure	4.	5 5	39 40
K	10	2		×			41
Y	IC		ER BLOCK FORMANCE		AT .	t.	41
		47 2		EIVER BLOCKING	Š	E.	41
	-	2		5 5		~	42
				M TEST STANDA	ARD	L A	43
		10.4 DEVI			~	A S	43
	A		RESULTS	A.	at	2	44
	-11	. TEST RE	1 A	5	+ 5	A	46
				at at	7	at St	4
	A	5		4 5		A	t S

Page 4 of 93

NTEK 北测®

Report No.: STR211122001001	1E
-----------------------------	----

	Table of Contents	Page
4		age
	11.1 Accumulated Transmit Time	46 🔶
t	11.2 Frequency Occupation	53
4	11.3 One Pulse Dwell Time	60
	11.4 RF Output Power	70 🔎
	11.5 Hopping Frequency Separation	72 🏑
×	11.6 Occupied Channel Bandwidth	76
× .	11.7 Transmitter unwanted emissions in the out-of-band domain	79
	11.8 Transmitter unwanted emissions in the spurious domain	82
	11.9 Receiver spurious emissions	87
	11.10 Hopping Sequence	91
1	2. EUT TEST PHOTO	93
S	SPURIOUS EMISSIONS MEASUREMENT PHOTOS	93
		S

Page 5 of 93

Page 6 of 93

Report No.: STR211122001001E

ALL AND	Rev	ision History	the star	ALL ALL	ALLA
Report No.	Version	Description		Issued Date	
STR211122001001E	Rev.01	Initial issue of report	The state	Dec 28. 2021	A
a se t	5	A A	2 A	. 5	-
to and the	15	~ +	5		A
+ -	A K	+ -		A	Ś
A. A	R A	A L	At	2	
V La	* \$	<u> </u>	2	- A	di la
1		AT Y	1	A 2	
to Sta	t	S L	19	7	_
5	+ 5	X S		* *	
The second secon	·	E T	1 3	4	
THE SALES	5	A.	*	LE S	~
S to A		* ~	4		/
the second secon	A P		the state	×	S
A A	~ .	A E	A	- 5	
A A	to the	A. A.	2	7	ALL N
the state	ALL Y	5		A	2
1	A	A.	to	2	
The second secon	to an	The second second	5	4	EF.
t t		AT F	L.	AL S	
AT A	. A	£ +	AT I	-	7
2	AT &	4 5		A F	
L 5 2	d-	E I	1 2	N. A.	
A L		the second	5	E.	7
T A A		4 5	A	E.	1
to a to	AT S	at at	5 2	A	2º
a de	<	14 8	4	N2017.0	6.06.0614.\

Page 7 of 93

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone	AT A L
Trade Mark	Blackview	S X L R X
Model Name.	A95 🔔 🍼 🍧	1 2
Family Model	N/A	+ 7
Model Difference	N/A	R E
	The EUT is Mobile Phon	e
	Operation Frequency:	2402~2480 MHz
	Modulatin Type:	GFSK,∏/4-DQPSK,8-DPSK
	Modulation Technology:	FHSS 🔬 🔬
	Adaptive/non-adaptive	Adaptive equipment
	Receiver categories	2
Product Description	Number Of Channel	79CH
	Antenna Designation:	PIFA Antenna 🔔 🍝
	Antenna Gain(Peak)	1.28 dBi
		al, the EUT is considered as an More details of EUT technical
		er to the User's Manual.
Channel List	Refer to below Table	er to the User's Manual.
Channel List Adapter	Refer to below Table Model: HJ-FC001K7-EU Input: 100-240V~50/60H Output: 5V3.0A 15.0 9V2.0A 18.0V	Iz 0.6A W V
	Refer to below Table Model: HJ-FC001K7-EU Input: 100-240V~50/60H Output: 5V3.0A 15.0V	Iz 0.6A W V W 48Wh TT
Adapter	Refer to below Table Model: HJ-FC001K7-EU Input: 100-240V~50/60H Output: 5V3.0A 15.0V 9V2.0A 18.0V 12V1.5A 18.0C Battery 1: Model: Li426483PUJLY DC 3.85V, 4280mAh,16. Battery 2: Model: LiSP426483SHH	Iz 0.6A W V W 48Wh TT 863Wh
Adapter Battery	Refer to below Table Model: HJ-FC001K7-EU Input: 100-240V~50/60H Output: 5V3.0A 15.0V 9V2.0A 18.0V 12V1.5A 18.0V Battery 1: Model: Li426483PUJLY DC 3.85V, 4280mAh,16. Battery 2: Model: LiSP426483SHH DC 3.85V, 4380mAh,16.	Iz 0.6A W V W 48Wh TT 863Wh
Adapter Battery Rating	Refer to below Table Model: HJ-FC001K7-EU Input: 100-240V~50/60H Output: 5V3.0A 15.0V 9V2.0A 18.0V 12V1.5A 18.0V Battery 1: Model: Li426483PUJLY DC 3.85V, 4280mAh,16. Battery 2: Model: LiSP426483SHH DC 3.85V from battery o	Iz 0.6A W V W 48Wh TT 863Wh

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page 8 of 93

Report No.: STR211122001001E

70 sharrala are reavided to (OFOK EV		A
79 channels are provided to (GFSK, ∏/-	4-DQPSK, 8-DPSK) Frequency	8
Channel	(MHz	5
00	2402	
🤜 01 📜 🚫	2403	
A X <		1
5	A 2 5 4	. 12
L	5 4	1
	·····	
77	2479	
78 🖉	2480	15

INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

FHSS

other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment:
 - The maximum number of Hopping Frequencies: 79
 - The minimum number of Hopping Frequencies: 79
- The (average) Dwell Time: 334.08ms Maximum

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The maximum Channel Occupancy Time implemented by the equipment:/..... ms

- The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - The equipment can switch dynamically between Frame Based and Load Based equipment

The CCA time implemented by the equipment:/.. µs

] The equipment has implemented a non-LBT based DAA mechanism

The equipment can operate in more than one adaptive mode

Page 9 of 93

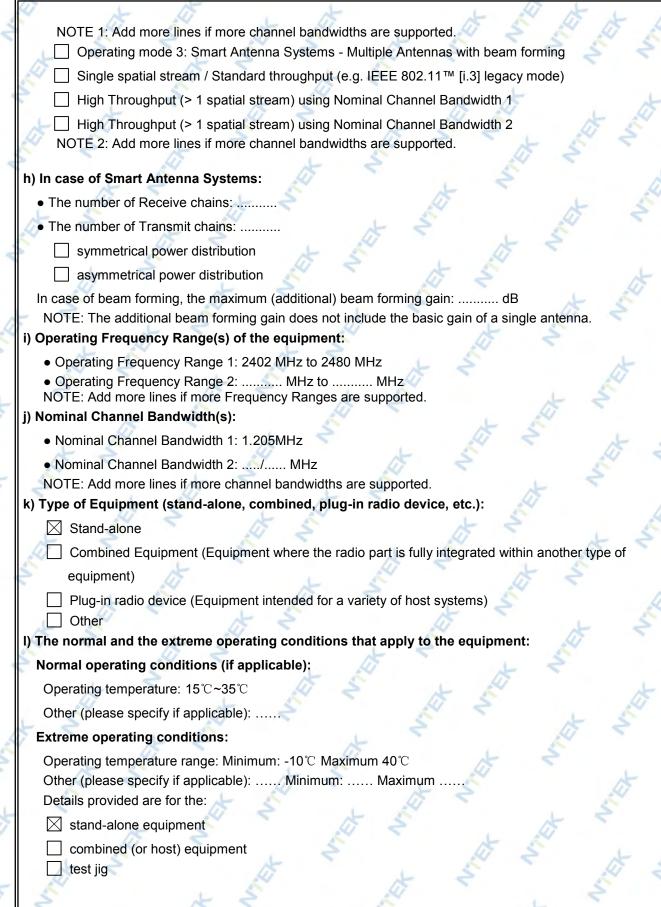
Report No.: STR211122001001E

e) In case of non-adaptive Equipment:

- The maximum RF Output Power (e.i.r.p.):
- The maximum (corresponding) Duty Cycle:

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:


- RF Output Power
 - GFSK
- Power Spectral Density
- N/A
- Duty cycle, Tx-Sequence, Tx-gap N/A
- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
 8-DPSK
- Hopping Frequency Separation (only for FHSS equipment)
 8-DPSK
- Medium Utilization
- N/A
- Adaptivity
 N/A
- Receiver Blocking
 8-DPSK
- Nominal Channel Bandwidth
- 8-DPSK
- Transmitter unwanted emissions in the OOB domain
 8-DPSK
- Transmitter unwanted emissions in the spurious domain
- 8-DPSK
- Receiver spurious emissions
- 8-DPSK

g) The different transmit operating modes (tick all that apply):

- Operating mode 1: Single Antenna Equipment
- Equipment with only one antenna
- Equipment with two diversity antennas but only one antenna active at any moment in time
- Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only
 - one antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
- Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2

Page 10 of 93

Report No.: STR211122001001E

Report No.: STR211122001001E

a to	A +	t l	* 2 4 4 4		
m) The intended combination(s) of the radio equipment power settings and one or more antenna					
assemblies and their corresponding e.i.r.p. levels:					
Antenna Type: PIFA Antenna					
Integral Antenna (information to be provided in case of conducted measurements)					
Antenna Gain: 1.28 dBi					
If applicable, additional beamforming gain (excluding basic antenna gain):/ dB					
Temporary RF connector provided					
No tempor	ary RF connector provided	L 5	A 2		
Dedicated	Antennas (equipment with	antenna connector)	t S		
Single pow	ver level with corresponding	g antenna(s)	E L		
Multiple po	ower settings and correspor	nding antenna(s)	< I		
	fferent Power Levels:		AT E		
Power Level	1: dBm	K	to a s		
	2: dBm 🔬 📈	F 1 2	t t		
	3: dBm	A State			
	I more lines in case the equ se power levels are conduc				
		2 · · · · · · · · · · · · · · · · · · ·	, their corresponding gains		
	e.i.r.p. levels also taking int				
	1: dBm				
Number of ar	ntenna assemblies provided	for this power level:	- A		
Assembly #	Gain (dBi) 🚽 🔥	e.i.r.p. (dBm)	Part number or model name		
1 2	1.28	9.79	4 2		
2	t .	4 4	XS		
3 🖵 🔮	E II	2	6 1		
NOTE 3: Add	more rows in case more a	ntenna assemblies are su	pported for this power level.		
Power Level	2: dBm	E S	AT T		
	tenna assemblies provided	for this power level:			
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name		
1 🖉	A S	A A	8 1		
2	5	6 2	14 2		
3		10	X X		
	more rows in case more a	ntenna assemblies are su	upported for this power level.		
	3: dBm	4			
Number of ar	ntenna assemblies provided	for this power level:			
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name		
1/1 2	45	+ 3			
2	1 5	4	~		
3	A	4 2	45		

NOTE 5: Add more rows in case more antenna assemblies are supported for this power level.

Page 12 of 93

n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined (host) equipment or test jig in case of plug-in devices: Details provided are for the: stand-alone equipment combined (or host) equipment test jig Supply Voltage AC mains State AC voltage V DC State DC voltage: DC 3.85V In case of DC, indicate the type of power source Internal Power Supply External Power Supply or AC/DC adapter: DC 5V Battery: DC 3.85V Other: o) Describe the test modes available which can facilitate testing: See clause 1.4 p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802.15.4™ [i.4], proprietary, etc.): Bluetooth® q) If applicable, the statistical analysis referred to in clause 5.4.1 q) (to be provided as separate attachment) r) If applicable, the statistical analysis referred to in clause 5.4.1 r) (to be provided as separate attachment) s) Geo-location capability supported by the equipment: Yes The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user No No t) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or clause 4.3.2.11.3): 8-DPSK(CH78) =0.94%

Report No.: STR211122001001E

1.2 TEST CONDITIONS

N S	E	
Normal Test Conditions	Extreme Test Conditions	
15℃ - 35℃	-10°C ~ 40°C Note: (1)	
20% - 75%	- <u>N/A</u>	1
DC 3.85V	A THE	5
	15℃ - 35℃ 20% - 75%	15°C - 35°C -10°C ~ 40°C Note: (1) 20% - 75% N/A

Page 13 of 93

Note:

(1) The HT 40 $^\circ\!\!\!C$ and LT -10 $^\circ\!\!\!C$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

1.3 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing				
Bluetooth mode	Data rate	Modulation type		
BR	1Mbps	GFSK		
EDR	2Mbps 🖉 🦷	∏/4-DQPSK		
EDR	3Mbps	8-DPSK		

	And Andrews and				
ź	Test Channel Frequencies Configuration				
•	Test Channel	EUT Channel	Test Frequency (MHz)		
	Lowest	CH00	2402		
	Middle	CH39	2441		
۶	Highest	CH78	2480		

Page 14 of 93

Report No.: STR211122001001E

1.4 DESCRIPTION OF TEST CONDITIONS

E-1 EUT

NTEK 北测®

Page 15 of 93

Report No.: STR211122001001E

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

-	43	24		
Item	Equipment	Model/Type No.	Series No.	Note
E-1	Mobile Phone	A95 📩	<∼ N/A	EUT
	A V	+ 5	5	
t	1	19	+ 5	
	A	r t	K	4
	* ~		A A	5
	5	AT V	5	
	t ·	SA.	AT .	t
	L K	t i	5	24

	All All		AT S	
Item	Shielded Type	Ferrite Core	Length	Note
A.	b.	A	4	1 5
	t	5	1ª	-
	K		t r	
2			E A	2 5
2	i.	A	+ +	di la
		2	41	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\]$ column.

Page 16 of 93

Report No.: STR211122001001E

1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

L 2			15	5	23	~ ~
EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrat ion period
EMI Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
Bilog Antenna	TESEQ 🧹	CBL6111D	31216	2021.03.29	2022.03.28	1 year
Turn Table	EM	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	N EM	EM-AH-10180	2011071402	2021.03.29	2022.03.28	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2021.04.27	2022.04.26	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
Test Cable (1-18GHz)		R-02	N/A	2020.05.11	2023.05.10	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05 <mark>.1</mark> 1	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835S E	980246	2021.07.01	2022.06.30	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2021.04.27	2022.04.26	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2021.07.01	2022.06.30	1 year
Power Splitter	Mini-Circuits/U SA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2021.07.01	2022.06.30	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2021.04.27	2022.04.26	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2021.04.27	2022.04.26	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Page 17 of 93

Report No.: STR211122001001E

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

41		
	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
S S	TRANSMITTER PARAMETERS	5 8
4.3.1.2	RF Output Power	Pass
4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
4.3.1.5	Hopping Frequency Separation	Pass
4.3.1.6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.1.7	Adaptivity	Not Applicable (See Note 1)
4.3.1.8	Occupied Channel Bandwidth	Pass
4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	4
4.3.1.11	Receiver Spurious Emissions	Pass 🗧
4.3.1.12	Receiver Blocking	Pass
~		L S

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

NTEK 北测®

Page 18 of 93

Report No.: STR211122001001E

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

- Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China
- FCC Registered No.: 463705 IC Registered No.: 9270A-1
- CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

	Maximum measurement un	certainty
No.	ltem 🖉	Uncertainty
1	Occupied Channel Bandwidth	<u></u> ± 5%
2	RF output Power, conducted	±1.5dB
3	Power Spectral Density, conducted	± 3dB 🦽 🔶
4	Unwanted emissions, conducted	± 3dB
5	All emissions, radiated	🔨 ± 6dB
6	Temperature	± 3℃
7	Humidity 🤝	± 3%
9	Time	± 5%

Page 19 of 93

Report No.: STR211122001001E

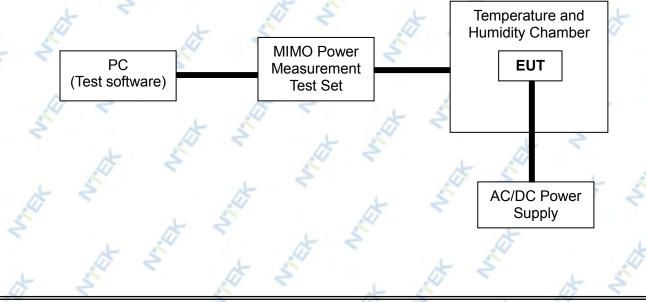
TRANSMITTER PARAMETERS

3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER Refer to chapter 4.3.1.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	DOWED
RF OUTPUT	POWER
Condition	Limit
Non-adaptive frequency hopping systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.
Adaptive frequency hopping systems	equal to or less than 20 dBm.

3.2 TEST PROCEDURE


Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement		
Conducted measurement	X	Radiated measurement	
	80		-

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

N2017.06.06.0614.V.1.3

3.5 TEST RESULTS

Page 20 of 93

Report No.: STR211122001001E

A. A	SEE	to the	2 2 4 6
EUT :	Mobile Phone	Model Name :	A95
Temperature :	200	Relative Humidity :	55 %
Pressure :	1012 hPa 🥂 🍝	Test Voltage :	DC 3.85V (Normal)
Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK	A S	× + 4 ×

Test data reference attachment

Page 21 of 93

- 4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE
- 4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Refer to chapter 4.3.1.4.3 of ETSI EN 300 328 V2.2.2 (2019-07)

10 K	
A	ccumulated Transmit Time
Condition	Limit
Non-adaptive frequency hopping systems	≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]
Adaptive frequency hopping systems	≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]
MINIMUM	FREQUENCY OCCUPATION TIME
Condition	Limit
Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence
Adaptive frequency hopping systems	shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.
H	IOPPING SEQUENCE (S)
Condition	Limit
Non-adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum
Adaptive frequency	Operating over a minimum of 70% of the Operating in the band 2.4 GHz to 2.4835 GHz
hopping systems	≥15 hopping frequencies or 15/minimum

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of ETSI EN 300 328 V2.2.2 (2019-07)

Me	easurement
Conducted measurement	Radiated measurement
4.3 DEVIATION FROM TEST STANDARD No deviation	whet what what what we

EUT

Report No.: STR211122001001E

4.4 TEST SETUP

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 22 of 93

Spectrum

Analyzer

4.5 TEST RESULTS

Page 23 of 93

Report No.: STR211122001001E

No.	S IT E	L A	S R A R
EUT :	Mobile Phone	Model Name :	A95 🔨 🍣 🤜
Temperature :	26°C 💉	Relative Humidity	60 %
Pressure :	1012 hPa 🥂 🍝	Test Voltage :	DC 3.85V
Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK-ŀ	Hopping Mode	2 7 4 2

Test data reference attachment

Page 24 of 93

Report No.: STR211122001001E

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH Refer to chapter 4.3.1.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	OCCUPIED CHANNEL BA	NDWIDTH	
	Condition	Limit	
All types of equipment		Shall fall completely within the band 2400 to 2483.5 MHz	
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz	
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz	

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Me	easurement		
Conducted r	neasurement		I measurement	2
The setting of the Spect	rum Analyzer	L A	t t	
Center Frequency	The centre frequenc	y of the channel under te	st 🍼	A
Frequency Span	2 × Nominal Channe	el Bandwidth	t	3
Detector	RMS 🤝	4 8		
RBW	~ 1 % of the span wi	thout going below 1 %	4 4	
VBW 🖉 <	3 × RBW	×	2	A
Trace	Max hold	A. C.	1×	2
Sweep time	1s 🔷	A F	1. 5	

Page 25 of 93

5.3 DEVIATION FROM TEST STANDARD

No deviation

5.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

5.5 TEST RESULTS

Page 26 of 93

Report No.: STR211122001001E

14	S IF .	N.	. Le	19	2	E	A	K
EUT :	Mobile Phone	2	Model Name	:	A95	5	5	2
Temperature :	26°C	ET.	Relative Humi	dity :	60 %			
Pressure :	1012 hPa	2	Test Voltage	:	DC 3.85	/	at -	ET.
Test Mode :	st Mode BT-GFSK/∏/4-DQPSK /8-DPSK-(CH00/CH78)					5		

Test data reference attachment

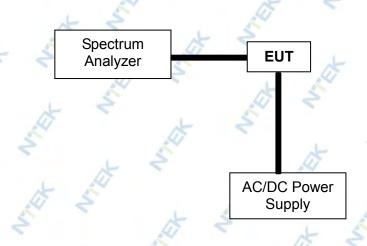
NTEK 北测®

Page 27 of 93

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

Condition	Limit					
Under all test conditions	domai	The transmitter unwanted emissions in the out-of-ban domain but outside the allocated band, shall not excee the values provided by the mask in below figure.				
x 2		65	5	5		
Spurious Domain Out Of Band L	Domain (OOB)	Allocated Band	Out Of Band Domain (DOB) Spur	ious Domai	
	1					
B		. L		-		
с					_	
A: -10 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	Figur	BW = Occupie re 1: Transmit	d Channel Bandwidth in Mi	2 483,5 MHz + 2B Hz or 1 MHz whicheve		
B: -20 dBm/MHz e.i.r.p.	<	re 1: Transmit	nd Channel Bandwidth in Mi mask			
B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	EN 300 32	re 1: Transmit 8 V2.2.2 (201	nd Channel Bandwidth in Mi mask			
B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	EN 300 32	re 1: Transmit	nd Channel Bandwidth in Mi mask	Hz or 1 MHz whicheve		
B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	EN 300 32	re 1: Transmit 8 V2.2.2 (201	d Channel Bandwidth in Mi mask 9-07)	Hz or 1 MHz whicheve		
B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	EN 300 32 ment	re 1: Transmit 8 V2.2.2 (201	d Channel Bandwidth in Mi mask 9-07)	Hz or 1 MHz whicheve		
B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	EN 300 32	re 1: Transmit 8 V2.2.2 (201 Measurement	d Channel Bandwidth in Mi mask 9-07)	Hz or 1 MHz whicheve		
B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	EN 300 32 ment	re 1: Transmit 8 V2.2.2 (201 Measurement	d Channel Bandwidth in Mi mask 9-07)	Hz or 1 MHz whicheve		
B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	EN 300 32 ment Nyzer OHz Channel F Clear/Write	re 1: Transmit 28 V2.2.2 (2012 Measurement ilter	d Channel Bandwidth in Mi mask 9-07)	Hz or 1 MHz whicheve		
B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	EN 300 32 Iment Iyzer OHz Channel F	re 1: Transmit 28 V2.2.2 (2012 Measurement ilter	d Channel Bandwidth in Mi mask 9-07)	Hz or 1 MHz whicheve		
B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	EN 300 32 ment Nyzer OHz Channel F Clear/Write Video Trigg	re 1: Transmit 28 V2.2.2 (2012 Measurement ilter e ger	d Channel Bandwidth in Mi mask 9-07)	Hz or 1 MHz whicheve		


Page 28 of 93

Report No.: STR211122001001E

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

Page 29 of 93

Report No.: STR211122001001E

6.5 TEST RESULTS

	L 7	7 8 8	5 14	5 2 7		
4	EUT :	Mobile Phone	Model Name :	A95		
	Temperature :	260	Relative Humidity :	60 %		
	Pressure :	1012 hPa	Test Voltage :	DC 3.85V 🖉 💉		
Ś	Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK-(CH78)				

Test data reference attachment

Page 30 of 93

Report No.: STR211122001001E

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of ETSI EN 300 328 V2.2.2 (2019-07)

e.	HOPPING FREQUEN	CY SEPARATION
	Condition	Limit
	Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.
	Adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be 100 kHz.

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of ETSI EN 300 328 V2.2.2 (2019-07)

		113		1.1	
	N	leasurement			
	measurement	A	Radiated me	easurement	R.
K	LE	14		1.	5
The setting of the Spec	trum Analyzer	1 2		A	8
Center Frequency	Centre of the two a	idjacent hoppin	g frequencies	E.	4
Frequency Span	Sufficient to see the frequencies	e complete pov	ver envelope o	f both hopping	T NS
Detector	Max Peak	- 5		1 2	
RBW 🍌 🍣	~ 1 % of the span		4	S	A
VBW 💉	3 × RBW		A	A	1
Trace	Max hold	A	2	S	
Sweep Time	Auto	F K	4	5	
	1 A A A A A A A A A A A A A A A A A A A		15 5		1

7.3 DEVIATION FROM TEST STANDARD

No deviation

Page 31 of 93 Report No.: STR211122001001E

7.4 TEST SETUP

EUT Spectrum Analyzer

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 32 of 93

Report No.: STR211122001001E

7.5 TEST RESULTS 🏑

14	SER	L 14	SEA A	
EUT :	Mobile Phone	Model Name :	A95 🗧 🍣 🤜	
Temperature :	26°C	Relative Humidity :	60 %	
Pressure :	1012 hPa 🔬 🖉	Test Voltage :	DC 3.85V	
Test Mode : BT-GFSK/∏/4-DQPSK /8-DPSK-(CH00/CH39/CH78)				

Test data reference attachment

Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz. 2.The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

NTEK 北测®

Page 33 of 93

8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Refer to chapter 4.3.1.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

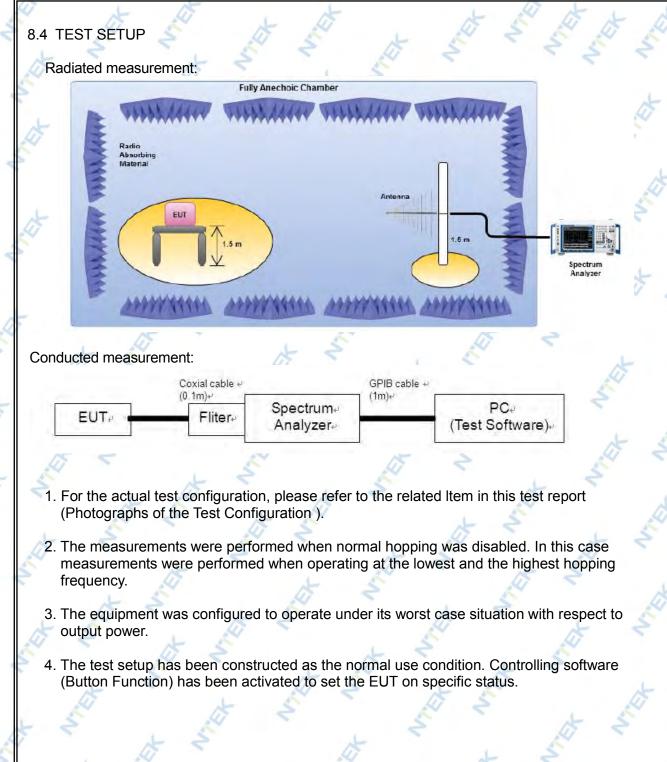
TRANSMITTER UNWANTED EN	ISSIONS IN THE SPURIOUS DO	OMAIN
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	🧹 🗧 -54dBm 🔔 🔏	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	36dBm 🖉	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz 📈
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	-54dBm 📈	_100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz 🎸
1 GHz ~ 12.75 GHz	-30dBm	1 MHz
	07	

8.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	14					
	Meas	surement				
Conducted n	neasurement	-	Radia	ated measu	rement	
The setting of the Spect	rum Analyzer	VIE		A	1	
RBW 🖉	100K(<1GHz)/1M(>	∘1GHz)	A	2		A

300K(<1GHz)/3M(>1GHz)


8.3 DEVIATION FROM TEST STANDARD

No deviation

VBW

Page 34 of 93 Report I

Report No.: STR211122001001E

Page 35 of 93

Report No.: STR211122001001E

8.5 TEST RES	ULTS (Radiated measurement) BELOW 1 GHz WORST- CA	SE DATA (30 MHz ~	1GHz)
EUT :	Mobile Phone	Model Name :	A95
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	BT-GFSK (CH00)	14	A A

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	43.54	-74.22	10.77	-63.45	-36	-27.45	peak
V 🖉	108.99	-71.44	11.26	-60.18	-54	-6.18	peak
V	204.94	-76.71	11.22	-65.49	-54	-11.49	peak
V	421.69	<u></u> -67.12	11.19	-55.93	-36	-19.93	peak
V	558.79	-75.46	9.53	-65.93	-54	-11.93	peak
V	766.60	-76.33	11.03	-65.30	-36	-29.30	peak
H	31.14	-74.42 💉	10.45	-63.97	-36	-27.97	peak
H	96.78	-72.94	10.2	-62.74	-54	-8.74	peak
Н	211.19	-70.14	10.83	-59.31	-54	-5.31	peak
Н	463.01	-76.82	11.11	-65.71	-36	-29.71	peak
Н	311.36	-72.40 🦟	11.11	-61.29	-36	-25.29	peak
GH	790.93	-70.04	11.03	-59.01	-36	-23.01	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 36 of 93

Report No.: STR211122001001E

	L	ABOVE 1 GHz WORST- CAS	E DATA (1GHz ~ 12	.75GHz)
1	EUT :	Mobile Phone	Model Name :	A95
2	Temperature :	24 °C	Relative Humidity	54%
	Pressure :	1010 hPa	Test Power :	DC 3.85V 🖉 🖉
Ś	Test Mode :	GFSK (CH00/CH39/CH78)	Ser la	AT S

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
	5	ope	ration freq	uency:2402	N		
V 🎊	4804.18	-35.89	-1.47	-37.36	-30	-7.36	peak
V	7206.86	-47.46	10.87	-36.59	-30	-6.59	peak
H	4804.18	-35.66	-1.47	-37.13	-30	-7.13	peak
Н	7206.86	-54.01	10.87	-43.14	-30	-13.14	peak
A		ope	ration freq	uency:2441	X		
V	4882.32	-43.96 💉	-1.91	-45.87	-30	-15.87	peak
V	7323.44	-47.40	5.95	-41.45	-30	-11.45	peak
Н	4882.32	-38.05	-1.91	-39.96	-30	-9.96	speak
Н	7323.44	-52.72	5.95	-46.77	-30	-16.77	peak
1	K	ope	ration freq	uency:2480	14	2	×
V	4960.46	-36.24	-1.28	-37.52	<u>-30</u>	-7.52	peak
V	7440.31	-49.80	8.79	-41.01	-30	-11.01	peak
Н	4960.46	-41.30	-1.28	-42.58	-30	-12.58	peak
Н	7440.31	-51.85	8.79	-43.06	-30 🧹	-13.06	peak
Remar	K:	4	5		4 7		1

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

8.6 TEST RESULTS (Conducted measurement) Test data reference attachment

Page 37 of 93

Report No.: STR211122001001E

9. RECEIVER SPURIOUS EMISSIONS

9.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.1.11.3 of ETSI EN 300 328 V2.2.2 (2019-07)

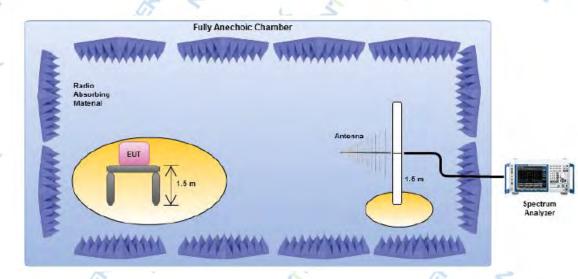
RECEIVER SPURIOUS EMISSIONS						
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth				
30 MHz ~ 1 GHz	-57dBm	100KHz				
1 GHz ~ 12.75 GHz	-47dBm	1MHz				

9.2 TEST PROCEDURE

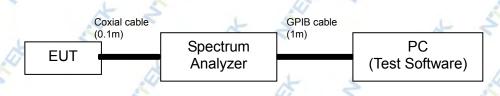
Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	2 4	7		2			
Measurement							
Conducted measurement			adiated mea	asurement	15		
The setting of the Sp	ectrum Analyzer	A		t	5		
RBW 🖉	100K(<1GHz) / 1M(>1G	Hz)	t	5			
VBW	300K(<1GHz) / 3M(>1G	Hz) 📈	5		A	2	

9.3 DEVIATION FROM TEST STANDARD


No deviation

Page 38 of 93


Report No.: STR211122001001E

Radiated measurement:

9.4 TEST SETUP

Conducted measurement:

1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).

2. Testing was performed when the equipment was in a receive-only mode.

- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 39 of 93

Report No.: STR211122001001E

9.5 TEST RESULTS (Radiated measurement)

1 5	RX BELOW 1 GHz WORST- C	ASE DATA (30 MHz	~ 1GHz)
EUT :	Mobile Phone	Model Name :	A95
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK(CH00)	4	A A

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	69.32	-92.07	26.21	-65.86	-57	-8.86	peak
V 🎊	80.37	-92.76	18.83	-73.93	-57	-16.93	peak
V	131.04	-92.24	24.48	-67.76	-57	-10.76	peak
V	211.41	-93.28	27.43	-65.85	-57	-8.85	peak
V	289.51	-93.07	31.46	-61.61	-57	-4.61	peak
V	39 <mark>3</mark> .60	-98.36	34.55	-63.81	-57	-6.81	peak
H	70.82	-91.69 💉	27.92	-63.77	-57	-6.77	peak
H	166.64	-92.56	17.84	-74.72	-57	-17.72	peak
Н	392.64	-93.36	21.01	-72.35	-57	-15.35	peak
Н	593.17	-92.81	25.35	-67.46	-57	-10.46	peak
Н	763.60	-94.57 🦟	29.69	-64.88	-57	-7.88	peak
CH	888.02	-99.26	33.43	-65.83	-57	-8.83	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 40 of 93

Report No.: STR211122001001E

RX ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)						
EUT :	Mobile Phone	Model Name :	A95			
Temperature :	24 °C 💉	Relative Humidity	54%			
Pressure :	1010 hPa 🛛 🖉 🍣	Test Power :	DC 3.85V			
Test Mode :	GFSK (CH00) 🍣	A A	1 + 4 2			

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	1249.47	-64.10	-4.12	-68.22	-47 🦟	-21.22	peak
V	1760.44	-63.97	-1.01	-64.98	-47	-17.98	peak
V	2252.78	-64.87	-0.49	-65.36 📈	-47	-18.36	peak
V	2814.26	-63.51	8.38	-55.13	-47	-8.13	peak
V	3413.92	-64.71	9.55	-55.16	-47	-8.16	peak
V	4900.55	-63.35	10.48	-52.87	-47	-5.87	peak
H	1379.47	-63.01	-4.82	-67.83	-47	-20.83	peak
H	2370.66	-64.71	-0.85	-65.56	-47	-18.56	peak
H	2919.36	-64.91	4.48	-60.43	-47	-13.43	peak
Н	3855.30	-64.06	6.12	-57.94	-47	-10.94	Speak
Н	4784.49	-64.40	10.48	-53.92	-47	-6.92	peak
Н	5457.25	-69.32	18.43	-50.89	-47	-3.89	peak
1 Em	hission Level:	= Meter Readi	na+ Facto	r, Margin= Limit-	Emission L	evel.	4

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

9.6 TEST RESULTS (Conducted measurement) Test data reference attachment

Page 41 of 93

10. RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504	-34	CW
(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524 2584 2674	to the state	the the second second

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 42 of 93

Report No.: STR211122001001E

Table 7: Receiver Blocking parameters receiver category 2 equipment							
Wanted signal mean power from companion device (dBm)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal				
(see notes 1 and 3)	A						
(-139 dBm + 10 × log₁₀(OCBW) + 10 dB)	2 380	-34	Lcw 🖉				
or (-74 dBm + 10 dB) whichever is less	2 504	FSFL	A S				
(see note 2)	2 300	A	2				
6 5	2 584	1 2	4				

NOTE 1: OCBW is in Hz.

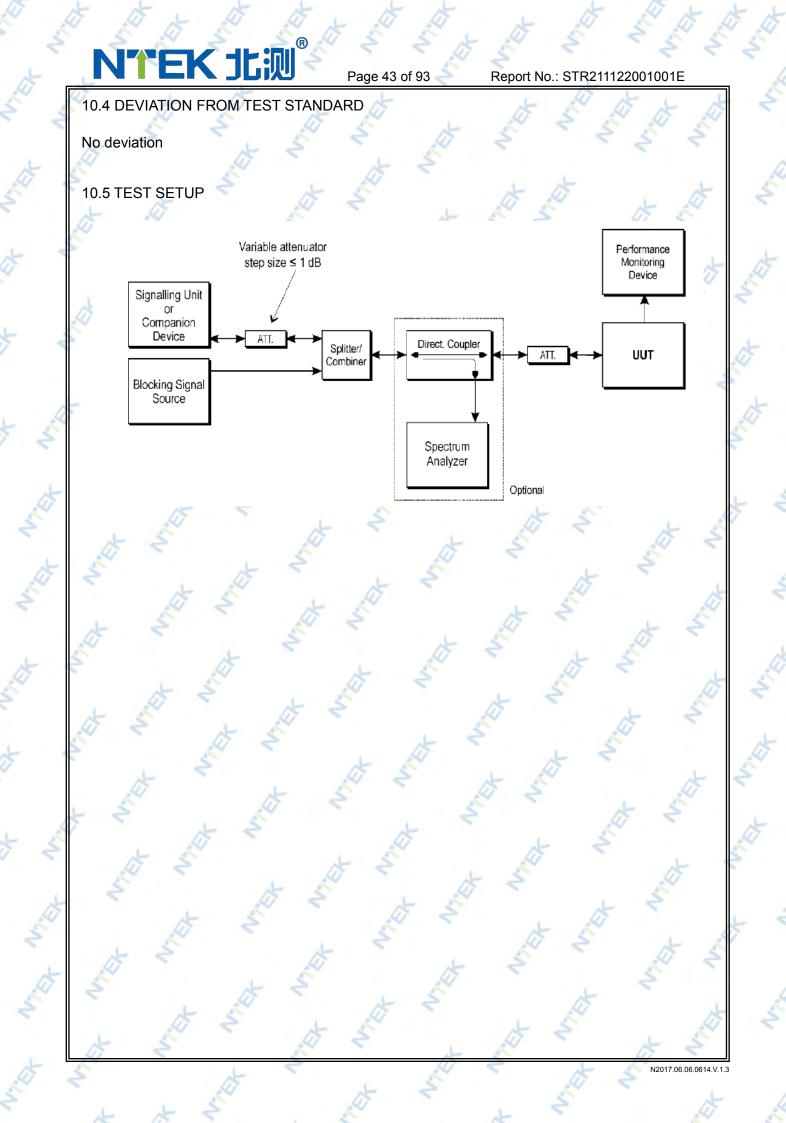
NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz) 📣	(dBm) (see note 2)	signal
(-139 dBm + 10 × log₁₀(OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	At S	20
(see note 2)	2 300	- 5	4 2
	2 584	× × +	No.

NOTE 1: OCBW is in Hz.


NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to P_{min} + 30 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

10.3 TEST PROCEDURE

Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)

		Measurement	
	Conducted measurement	Radiated measurement	4
t	S A	A The A	

Page 44 of 93

Report No.: STR211122001001E

A	· 4	1 A		t	14	15	5 1
10.6 TEST RES	SULTS	IT E	al-	H	~	8 2	1 6
EUT :	Mobile Phone		Model Name	:	A95	. 5	4
Temperature :	24 °C	The second	Relative Humi	idity	54%		
Pressure :	1010 hPa	5 5	Test Power :		DC 3.85V	×	A
Test Mode :	GFSK Hopping mc	ode (RX)	A		T A	N.	2
	AT .	receiver ca	tegory 2		N.	1	
	1 m	Dis di Caissant	Dis alsian ai		~	_	

	Wanted signal mean power	Blocking signal	Blocking signal		PER	0
i.	from companion device (dBm)	companion device (dBm) Frequency (MHz) power(dBm) (see note 3)		PER %	Limit	
47	(see notes 1 and 3)		+	E.	%	
	No. 1	2 380	L. L.	0.08%	<10]
	60.10 L	2 504	1 A 2	0.55%	≤10	
	-68.16	2 300		0.44%	<10	
	* *	2 584 🖉	t	0.36%	≤10	
		L S	24			-

EUT :	Mobile Phone	Model Name :	A95	The second secon
Temperature :	24 °C	Relative Humidity	54%	3
Pressure :	1010 hPa	Test Power :	DC 3.85V	
Test Mode :	∏/4-DQPSK Hopping mode (RX)	A S		P.

A A A A A A A A A A A A A A A A A A A	receiver cate	egory 2	t	
Wanted signal mean power from companion device (dBm)	Blocking signal Frequency (MHz)	Blocking signal power(dBm) (see note 3)	PER %	PER
(see notes 1 and 3)	S	AS .	4	%
LT .	2 380	E A	0.12%	<10
67.01	2 504	24	0.18%	≤10
-67.01	2 300	34	0.10%	<10
1 2	2 584	4 3	0.10%	≤10
C				

Page 45 of 93

Report No.: STR211122001001E

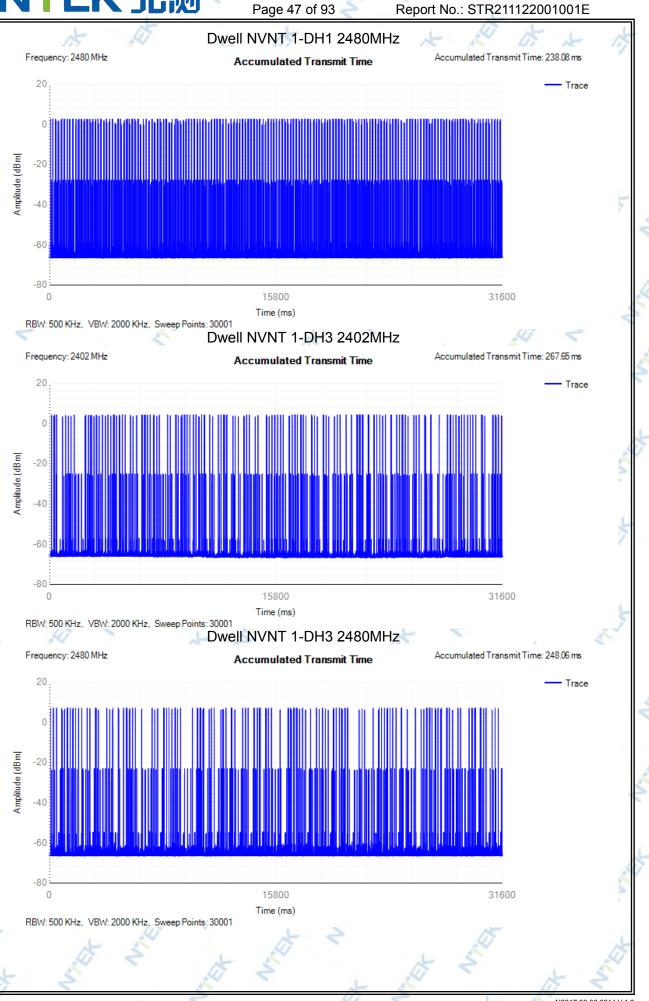
A		×	- A G + A
EUT :	Mobile Phone	Model Name :	A95 🖉 🏑 🖉
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	8-DPSK Hopping mode (RX)	+ 2	A A

receiver category 2

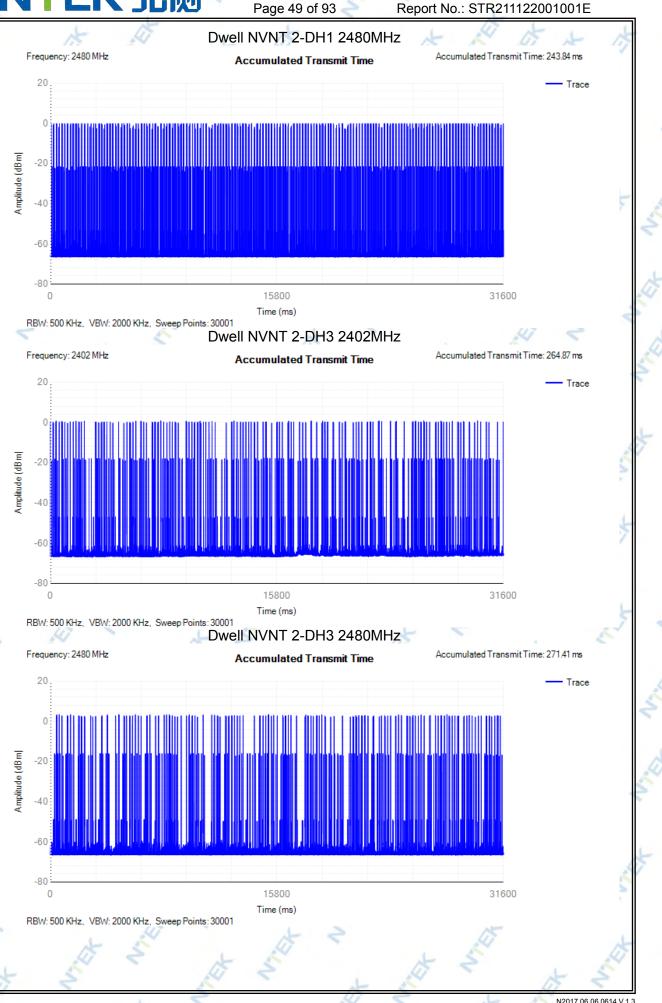
t	Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)	Blocking signal power(dBm) (see note 3)	PER %	PER Limit %
	THE WEAT	2 380 🔨	L.	0.31%	<10
	66.04	2 504	-34	0.46%	≤10
	-66.94	2 300	-34	0.94%	<10
	- +	2 584 🧹	- the	0.80%	≤10

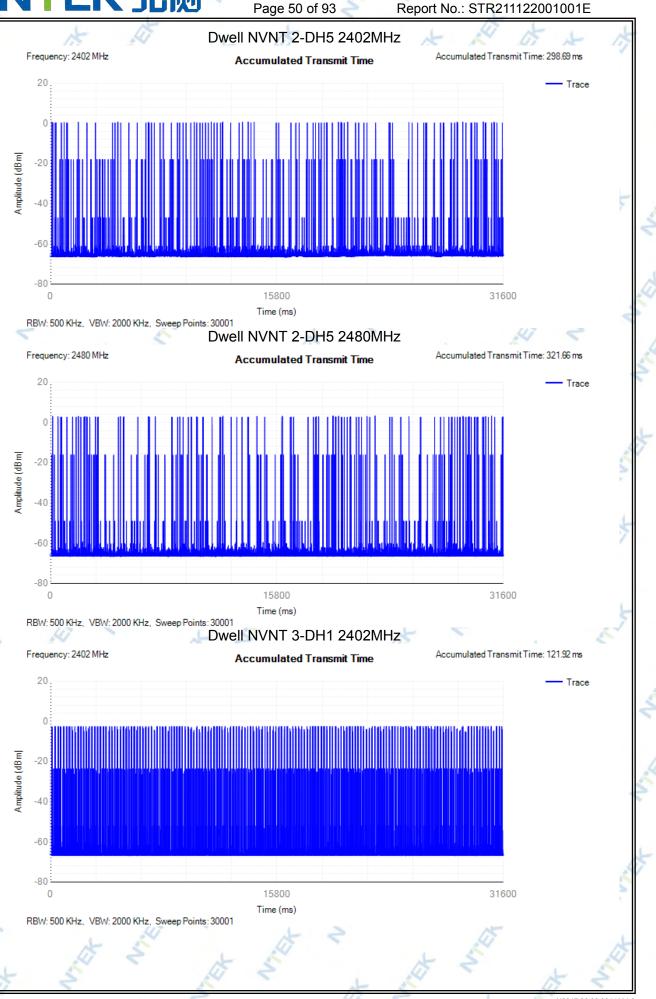
Note: (1) The above results were obtained from laboratory tests.

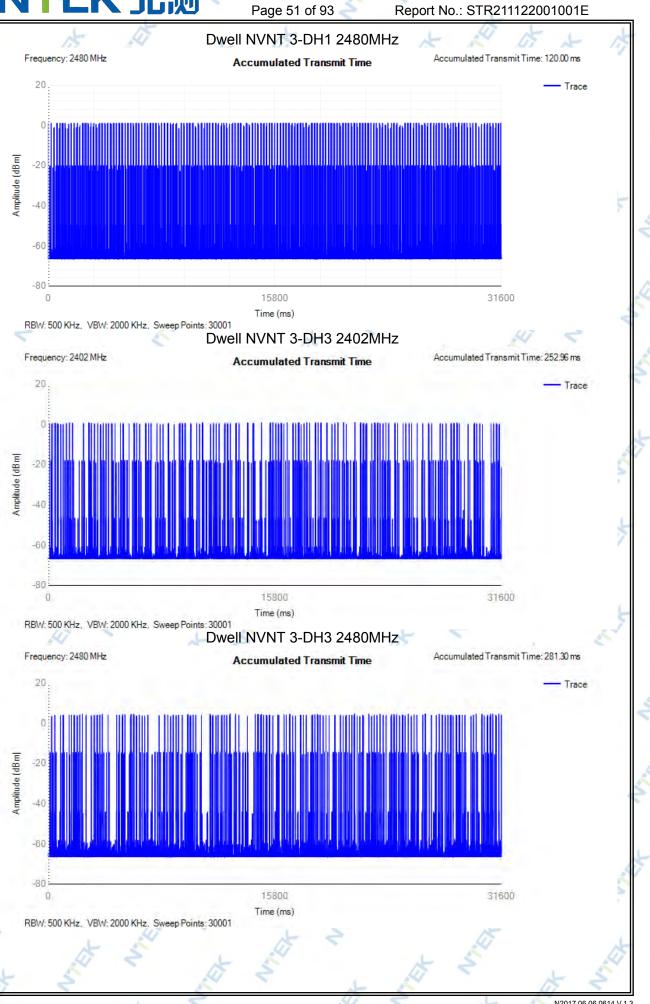
Page 46 of 93 🔶

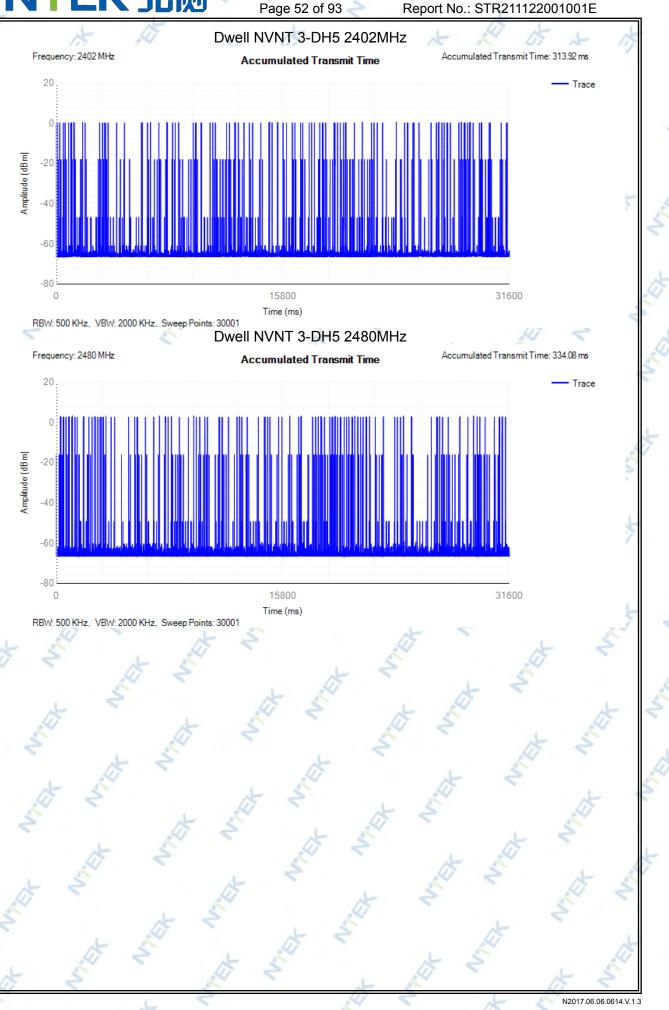

Report No.: STR211122001001E

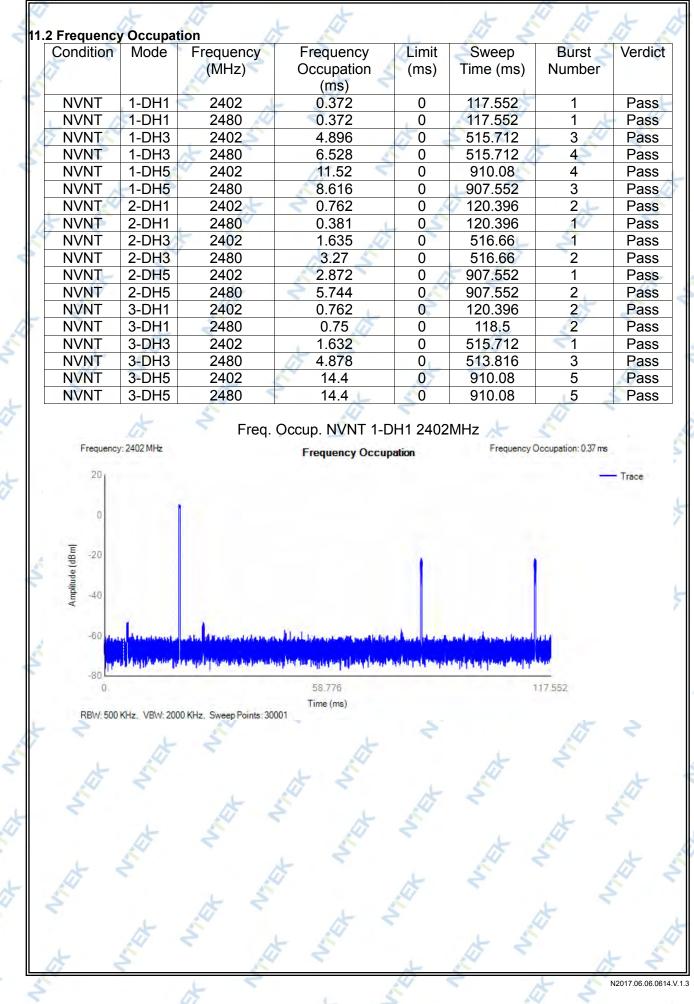

11. TEST RESULTS

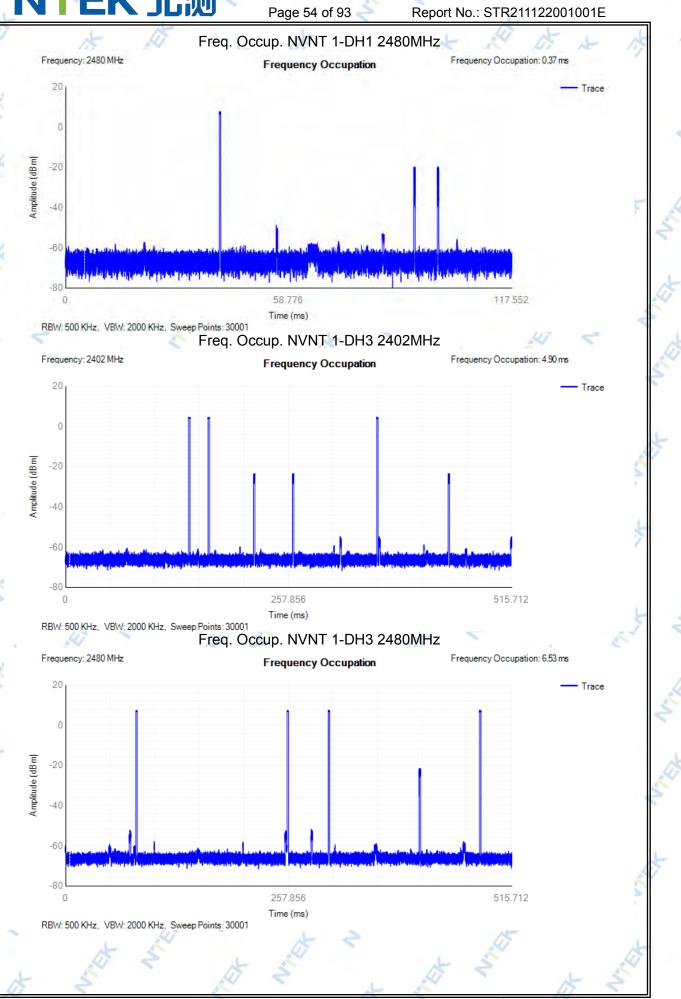

11.1 Accumulated Transmit Time

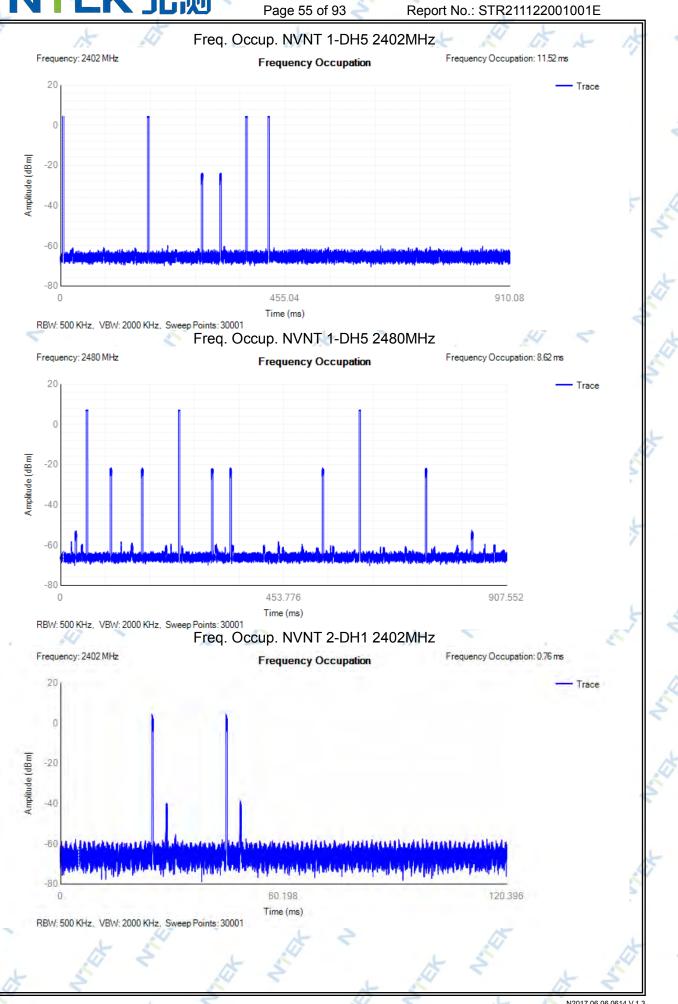

	Condition	Mode	Frequency	Accumulated	Limit	Sweep	Burst	Verdict
		1	(MHz)	 Transmit Time 	(ms)	Time	Number	x
	L 4	J.	24	(ms)		🤍 (ms)	A	Nº N
k	🗁 NVNT 🔨	1-DH1	2402	119.412 🧳	400	31600	321	Pass
	NVNT	1-DH1	2480	238.08 🔊	400	31600 🧷	640	Pass
	NVNT	1-DH3	2402	267.648	400	31600	164	Pass
	NVNT 🍃	1-DH3	2480	248.064	400	31600	152	Pass
	NVNT	1-DH5	2402	299.52	400	31600	104	Pass
2	NVNT	1-DH5	2480	324.536 🔔	400	31600	113	Pass
	NVNT	2-DH1/	2402	244.221	400	31600	641	Pass
1	NVNT	2-DH1	2480	243.84	400	31600	640	Pass
	NVNT	2-DH3	2402	264.87	400	31600	162	Pass
	NVNT	2-DH3	2480	271.41	400	31600	166	Pass
	NVNT	2-DH5	2402	298.688	400	31600	104	Pass
	NVNT	2-DH5	2480	321.664	400	31600	112	Pass
	NVNT	3-DH1	2402	121.92	400	31600	320	Pass
	NVNT	3-DH1	2480	120	400	31600	320	Pass
	NVNT	3-DH3	2402	252.96	400	31600	155	Pass
	NVNT	3-DH3	2480	281.298	400	31600	173	Pass
	NVNT	3-DH5	2402	313.92	400	31600	109	Pass
	NVNT	3-DH5	2480	334.08	400	31600	116	Pass
	1	8		15	1	R.		N S

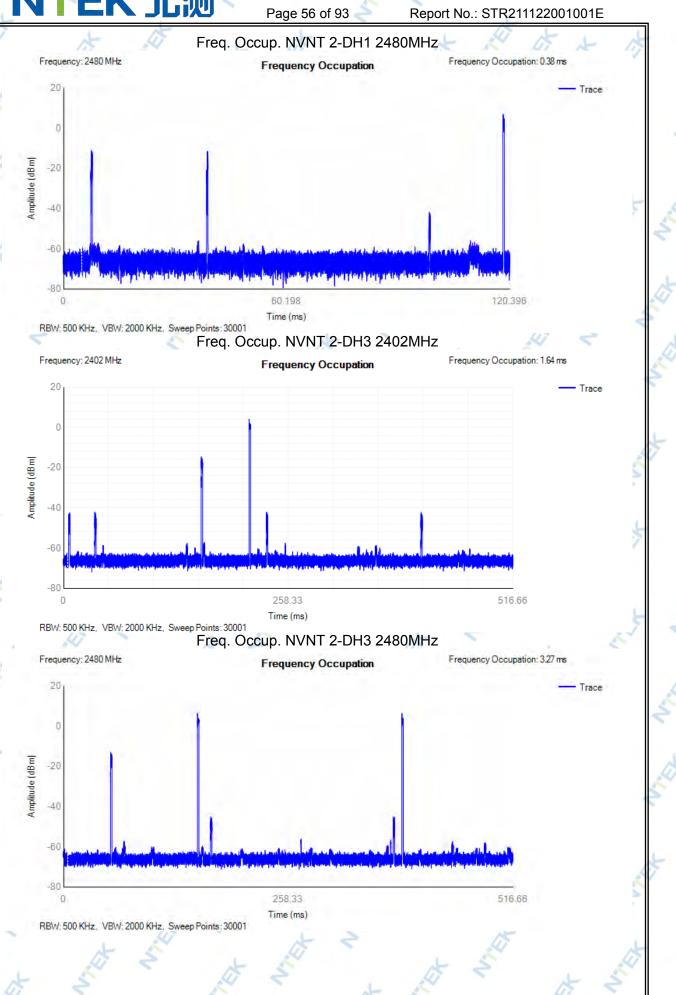


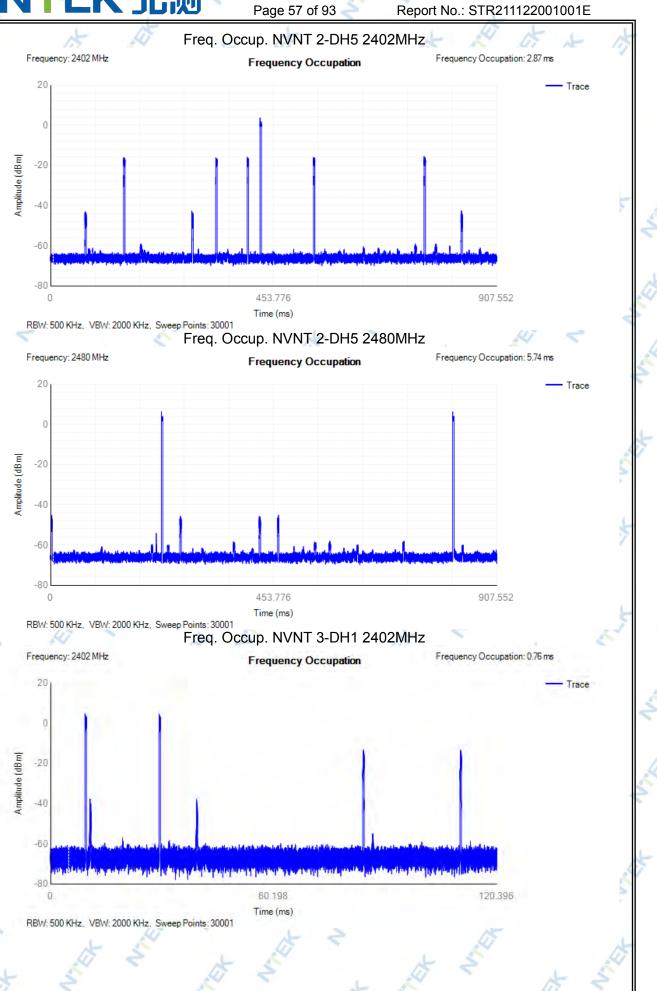


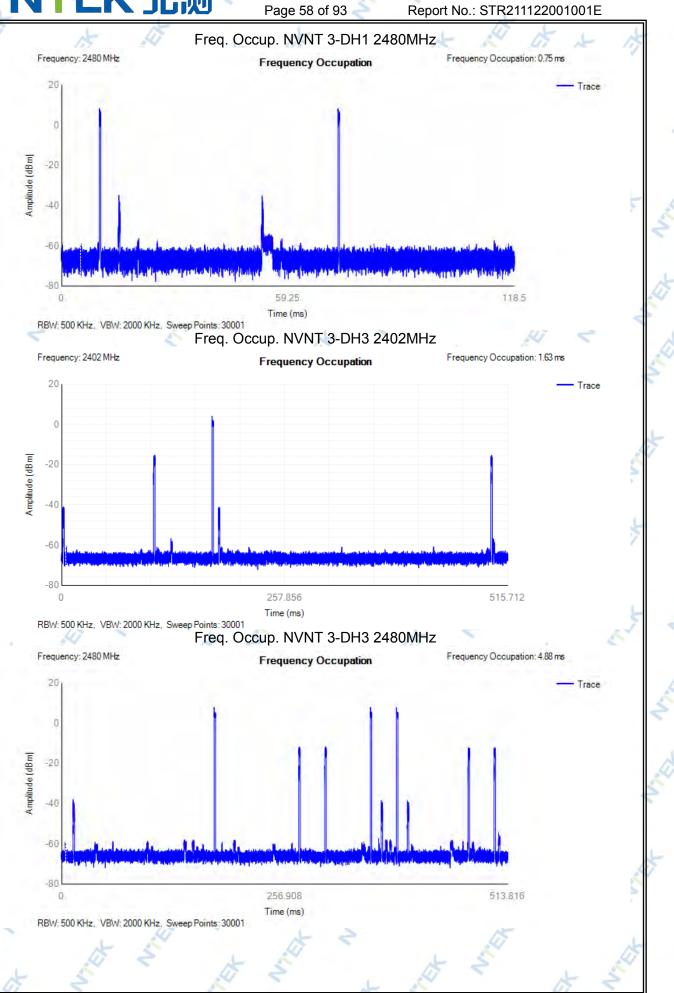


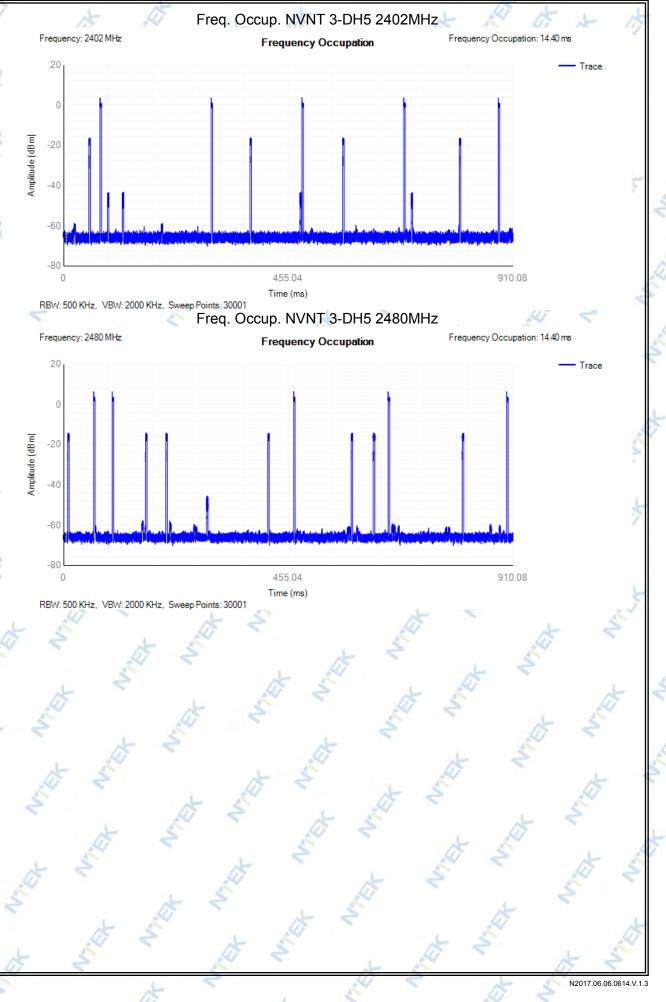

N2017.06.06.0614.V.1.3



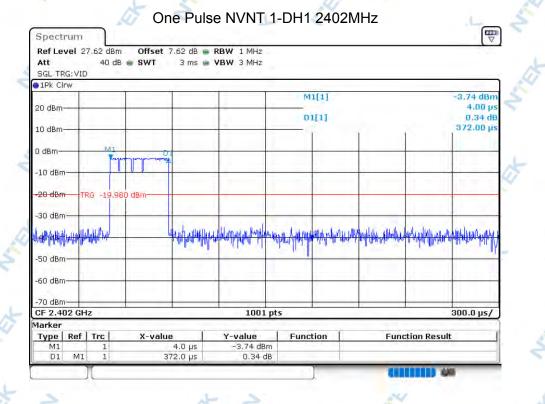



Page 53 of 93

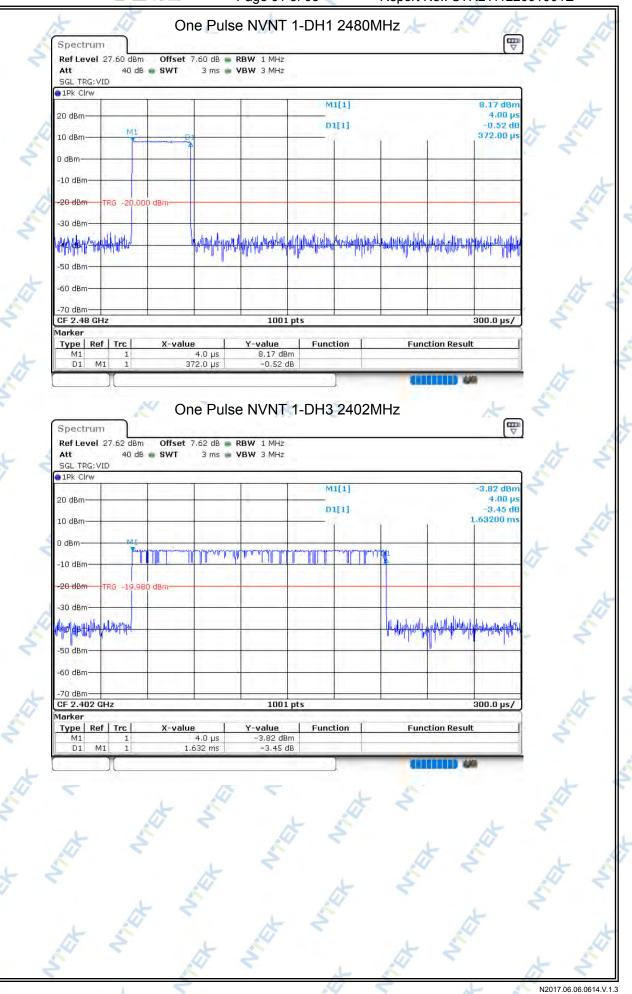




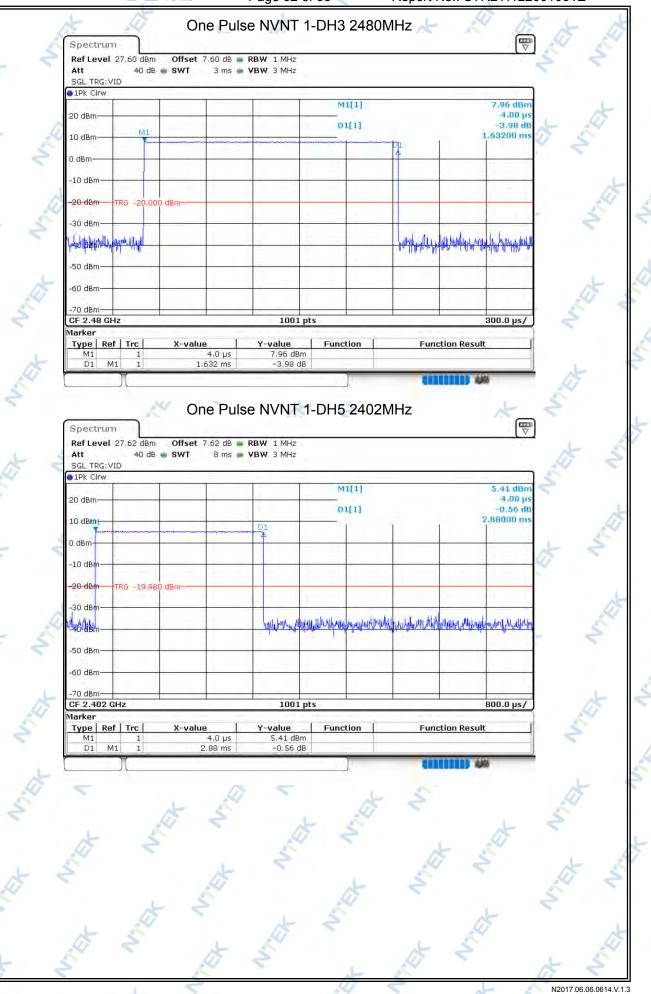
Page 59 of 93 🛁

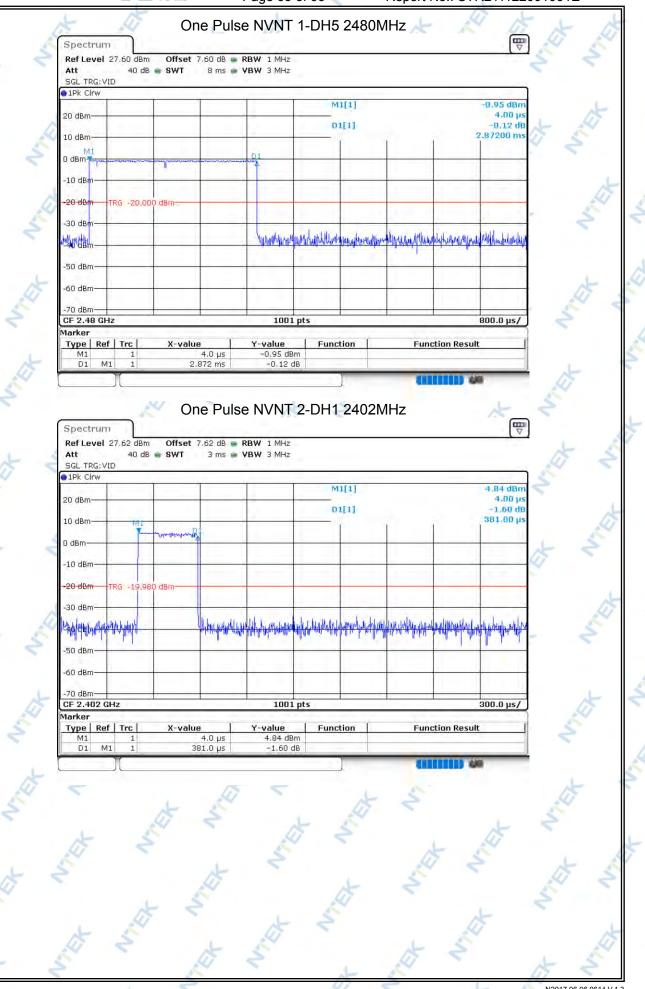


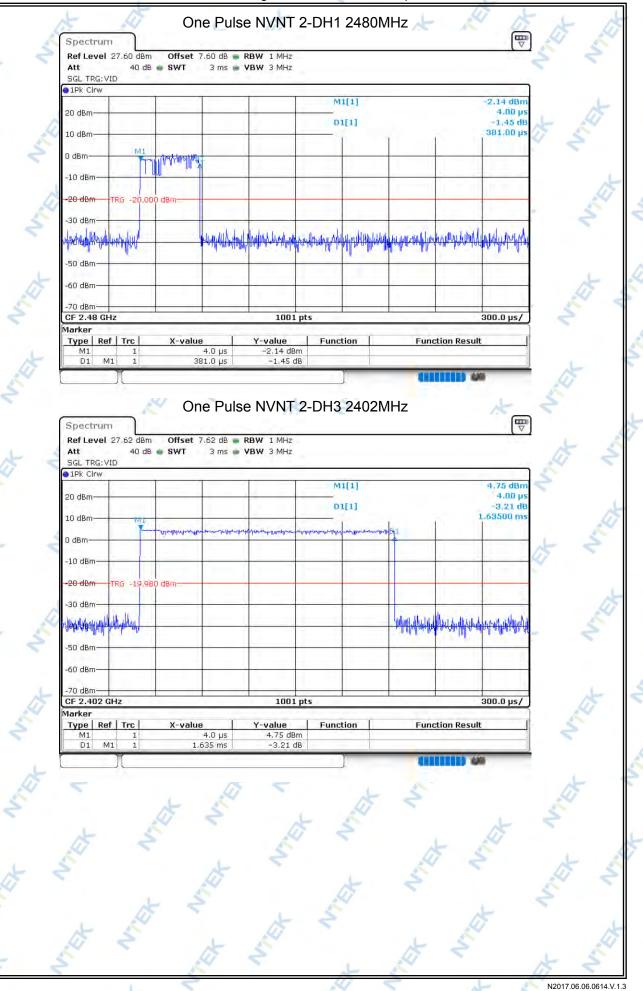
Page 60 of 93


Report No.: STR211122001001E

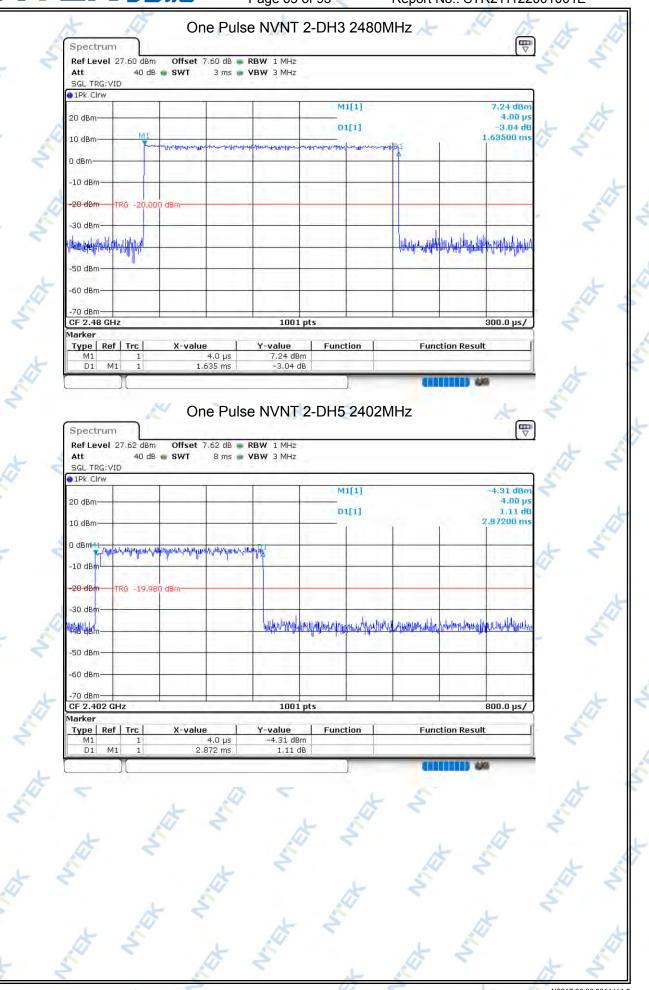
11.3 One Pulse Dwell Time


	lille	41		
	Condition	Mode	Frequency (MHz)	Pulse Time (ms)
	NVNT	1-DH1	2402	0.372
	NVNT	1-DH1	2480	0.372
	NVNT	1-DH3	2402	1.632
	NVNT	1-DH3	2480	1.632
	NVNT	1-DH5	2402 🏑	2.88
	NVNT	1-DH5	2480	2.872
	NVNT	2-DH1	2402	0.381 🔷
3	NVNT	2-DH1	2480	0.381
	NVNT	2-DH3	2402	1.635
	NVNT	2-DH3	2480	<u> </u>
	NVNT	2-DH5	2402	2.872
ć	🟹 NVNT	2-DH5	2480	2.872
5	NVNT	3-DH1	2402	0.381
	NVNT	3-DH1	2480	0.375
	NVNT	3-DH3	2402	1.632
L	NVNT	3-DH3	2480	1.626
7	NVNT	3-DH5	2402	2.88
	NVNT	3-DH5	2480	2.88
			4	

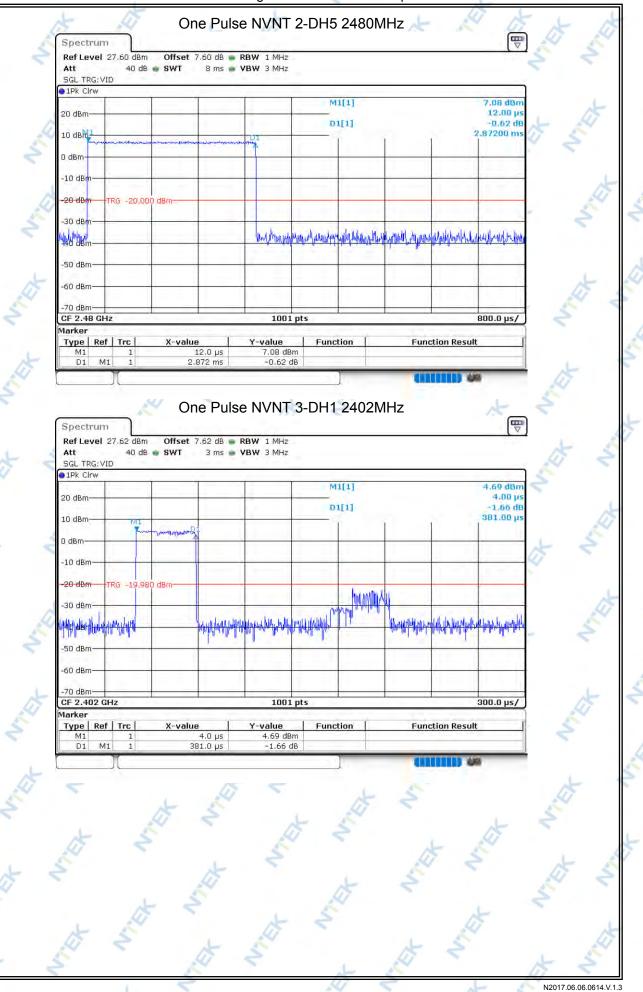

Page 61 of 93


Page 62 of 93

Page 63 of 93

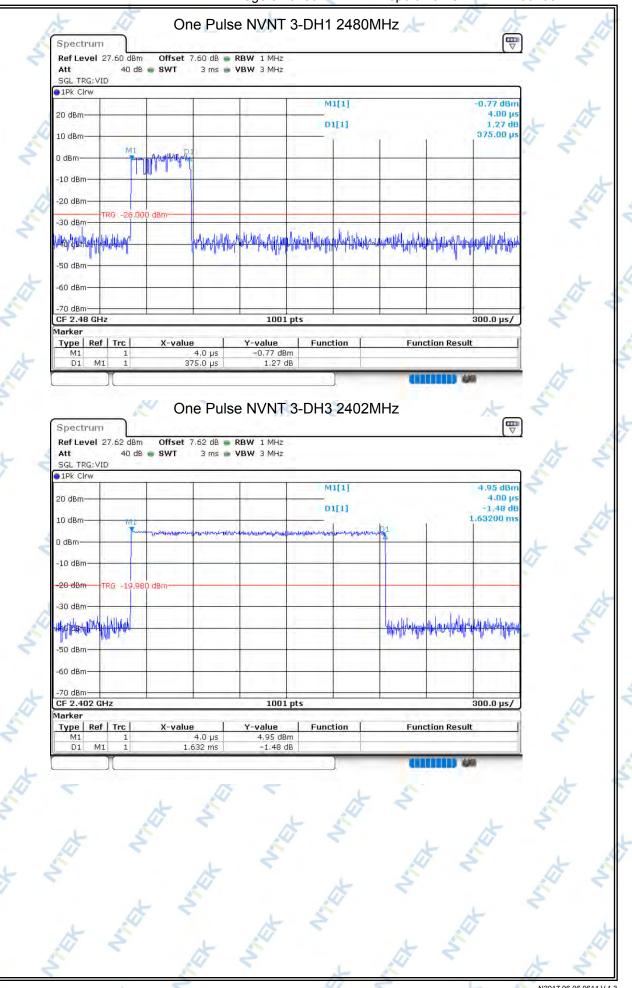


Page 64 of 93



Page 65 of 93

Report No.: STR211122001001E

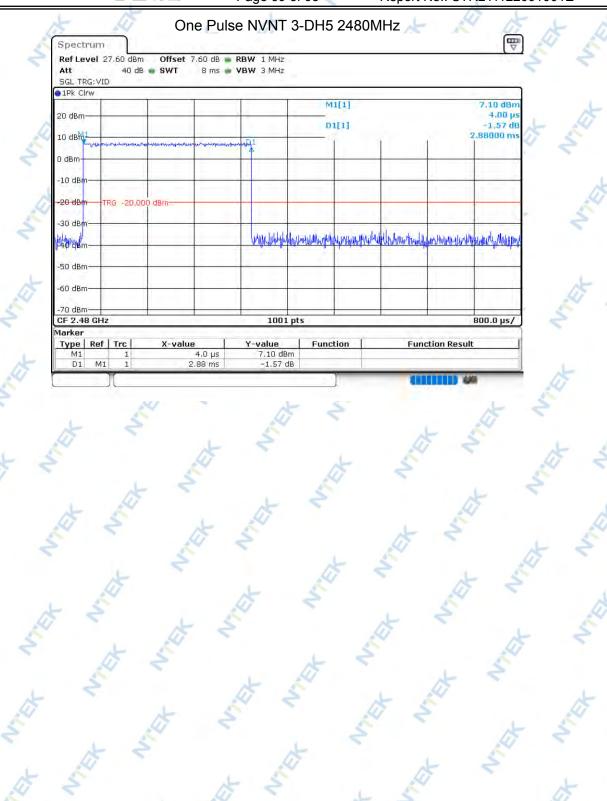


Page 66 of 93

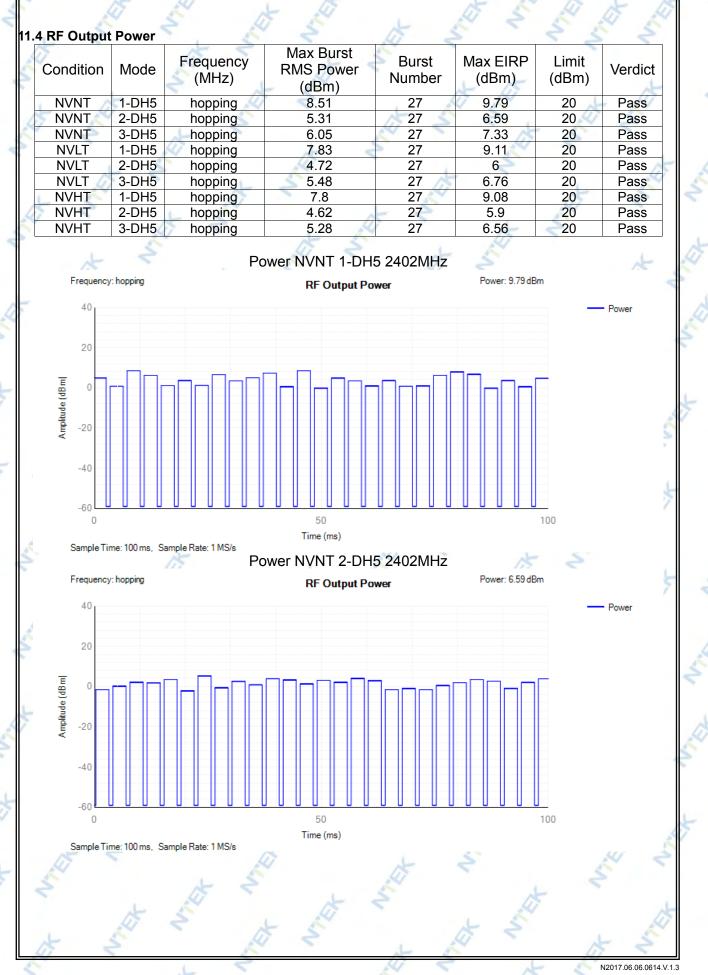


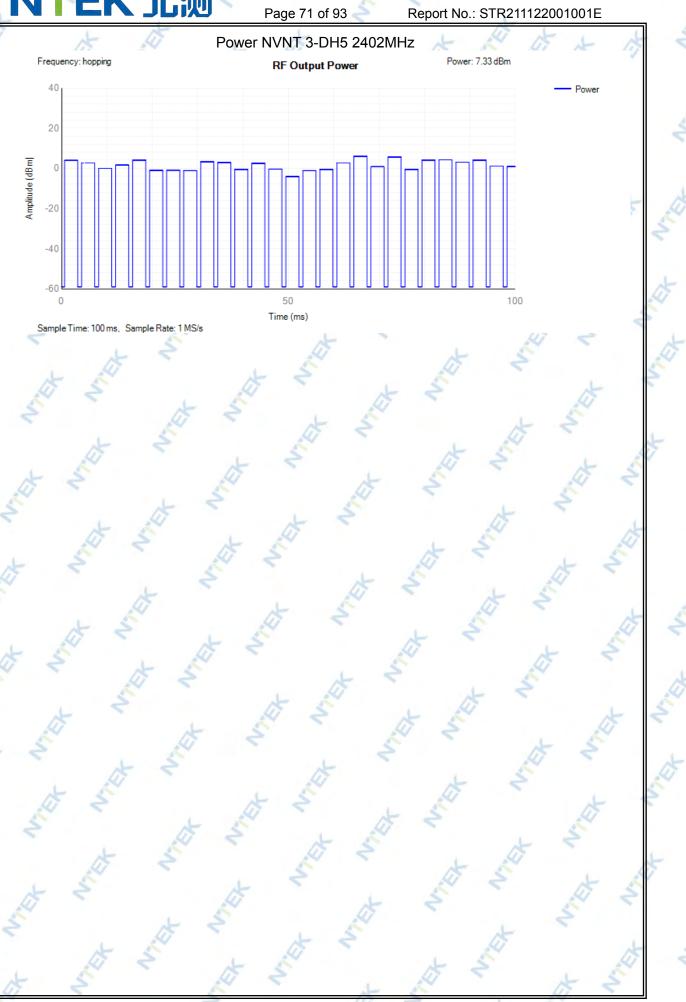
Page 67 of 93

Report No.: STR211122001001E



Page 68 of 93



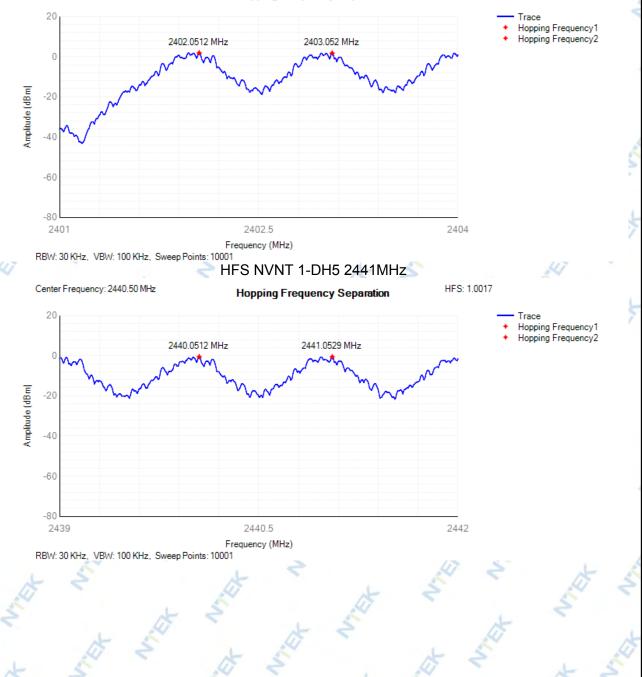

Page 69 of 93

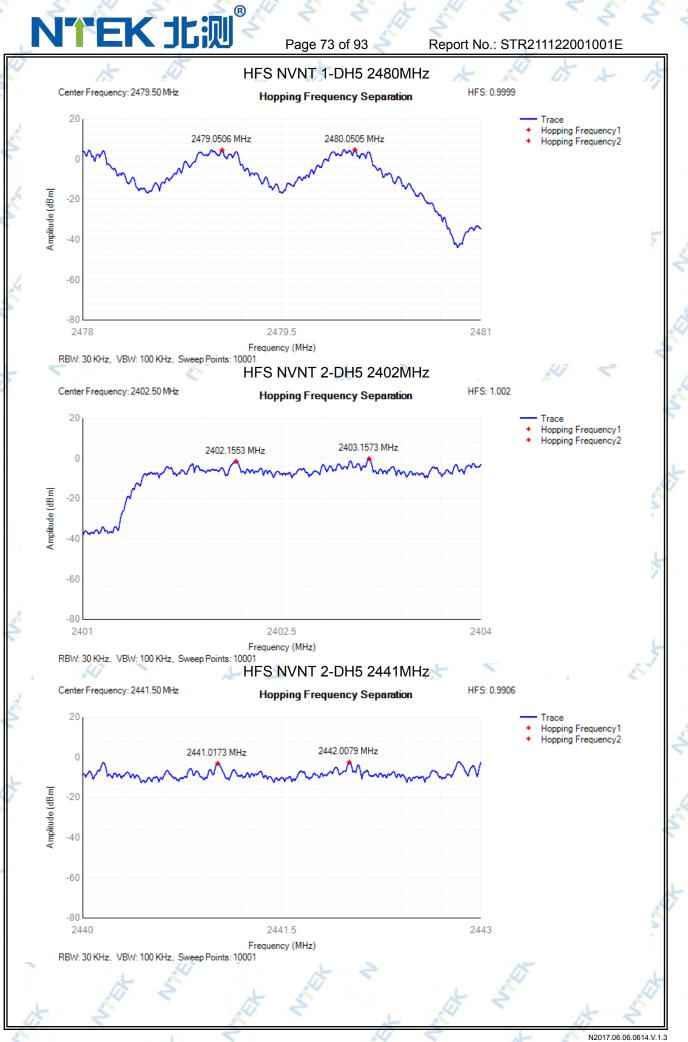
Report No.: STR211122001001E

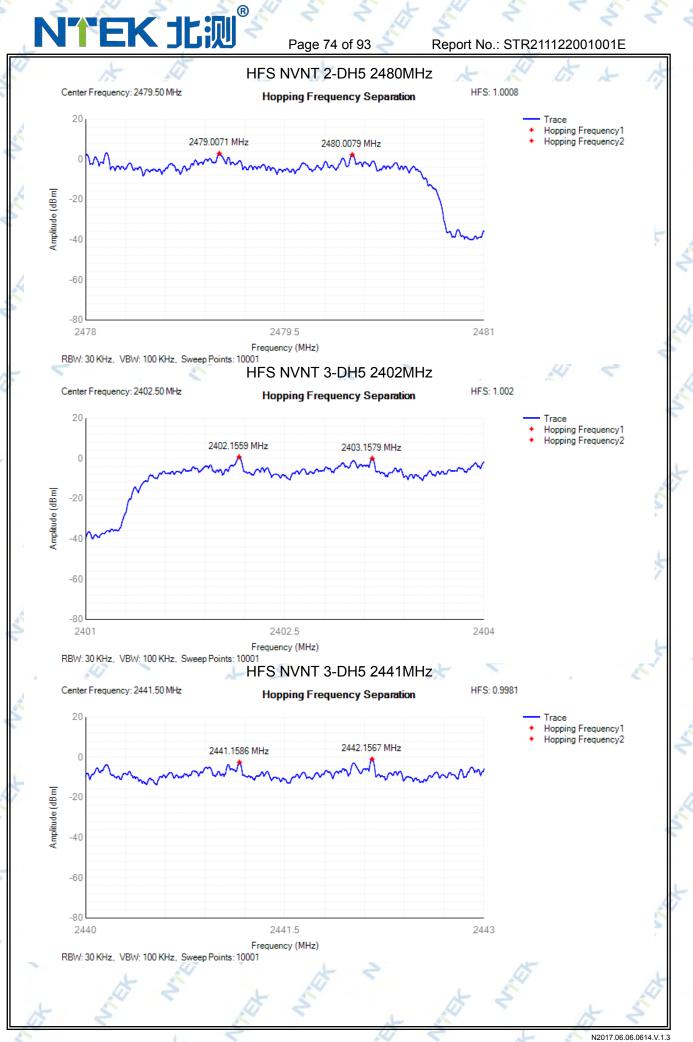
Page 70 of 93

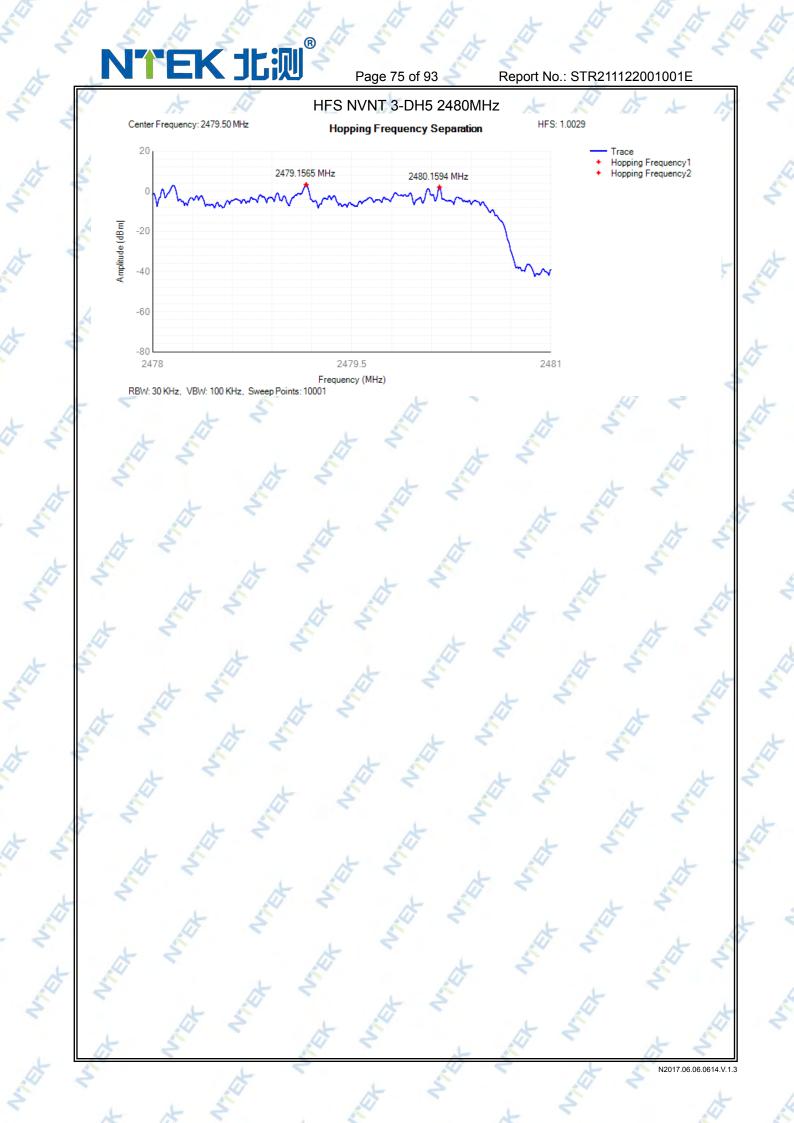
Page 72 of 93

Report No.: STR211122001001E

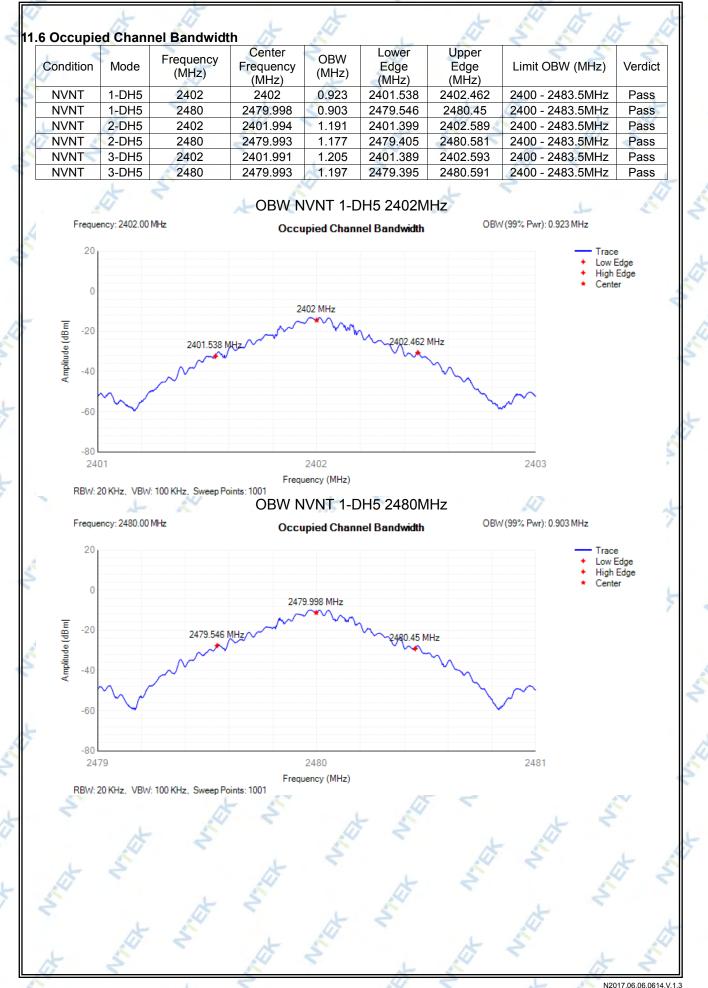

HFS: 1.0008

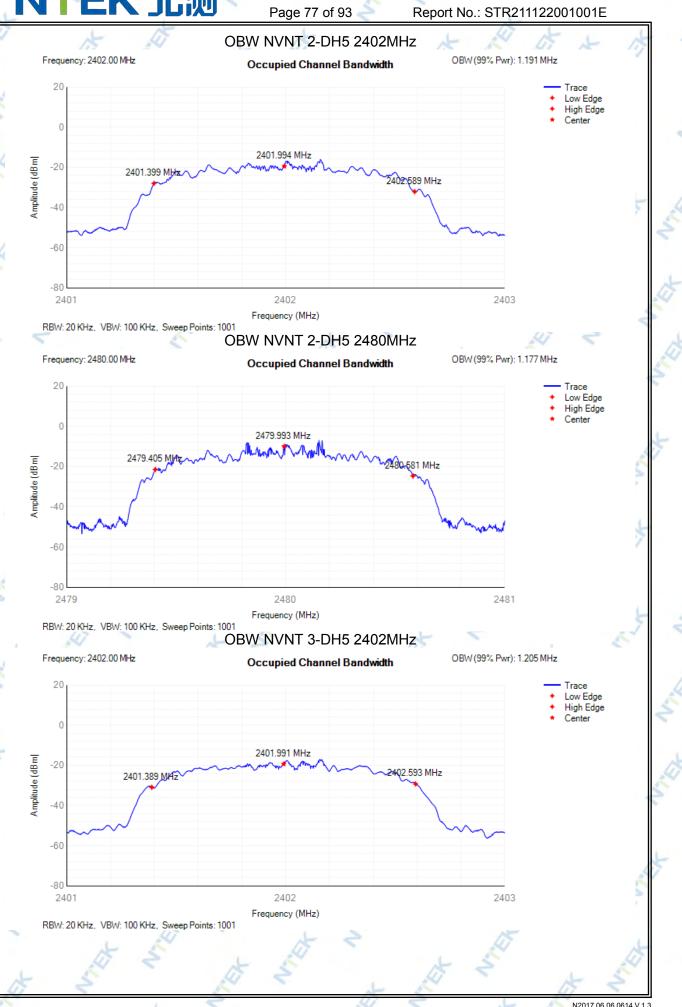

11.5 Hopping Frequency Separation 🖉 💦 💦 👘 🖉							
Condition	Mode	Hopping Freq1	Hopping Freq2	S HFS	Limit	Verdict	
15		(MHz)	(MHz)	(MHz)	(MHz)		
NVNT	1-DH5	2402.0512	2403.052	1.0008	0.1	Pass	
NVNT	1-DH5	2440.0512	💉 2441.0529	1.0017	0.1	Pass	
NVNT	1-DH5	2479.0506	2480.0505	0.9999	0.1 🦯	Pass	
NVNT 🔨	2-DH5	2402.1553	2403.1573	1.002	0.1	Pass	
NVNT	2-DH5	// 2441.0173	2442.0079	0.9906 🖉	0.1	Pass	
NVNT	2-DH5	2479.0071	2480.0079	1.0008	0.1	Pass	
NVNT 🤈	3-DH5	2402.1559 💉	2403.1579	1.002	0.1	Pass	
NVNT	3-DH5	2441.1586	2442.1567 📈	0.9981	0.1	Pass	
NVNT	3-DH5	2479.1565	2480.1594 🔊	1.0029	0.1	Pass	

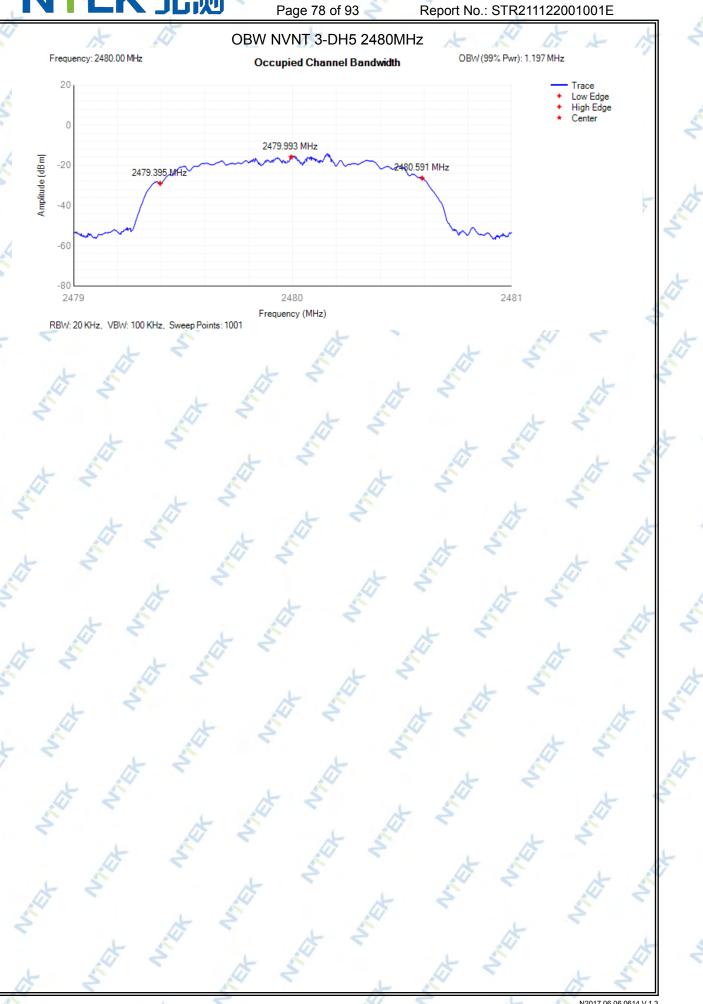

HFS NVNT 1-DH5 2402MHz



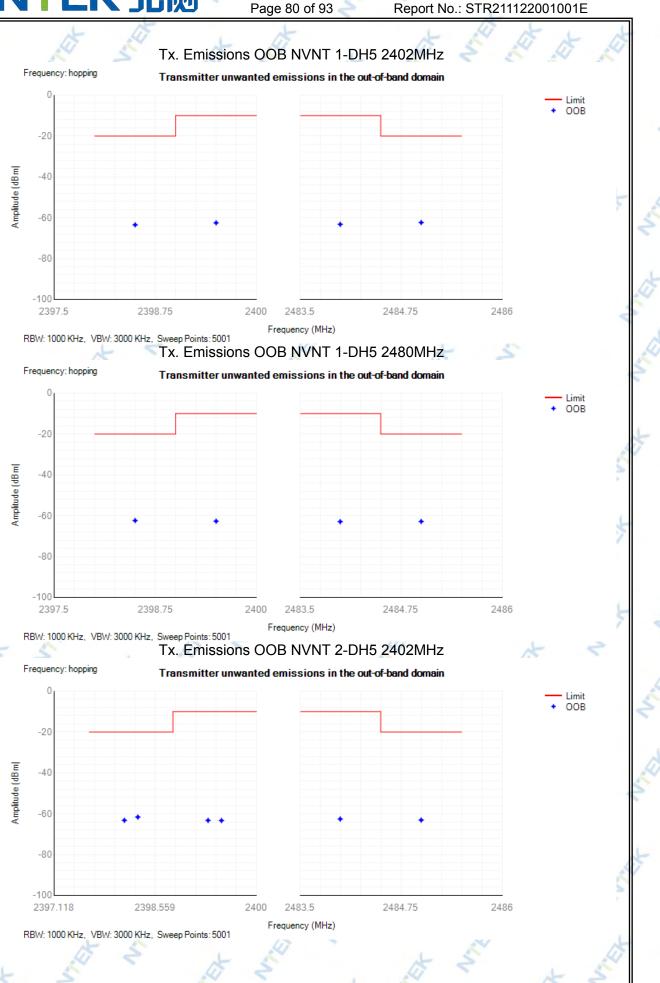
Hopping Frequency Separation

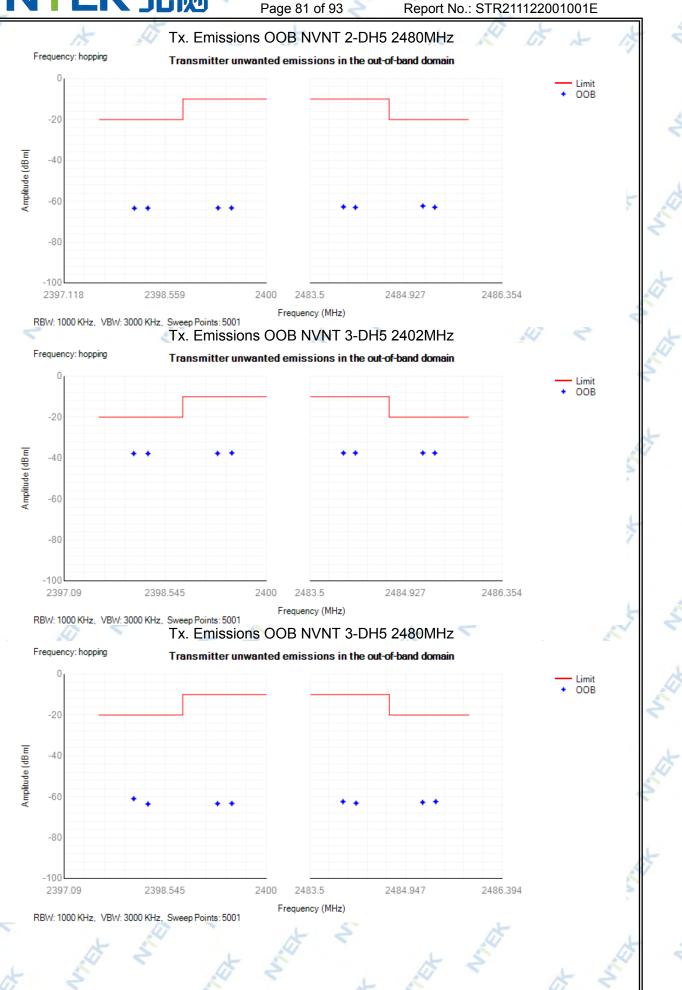






Page 76 of 93



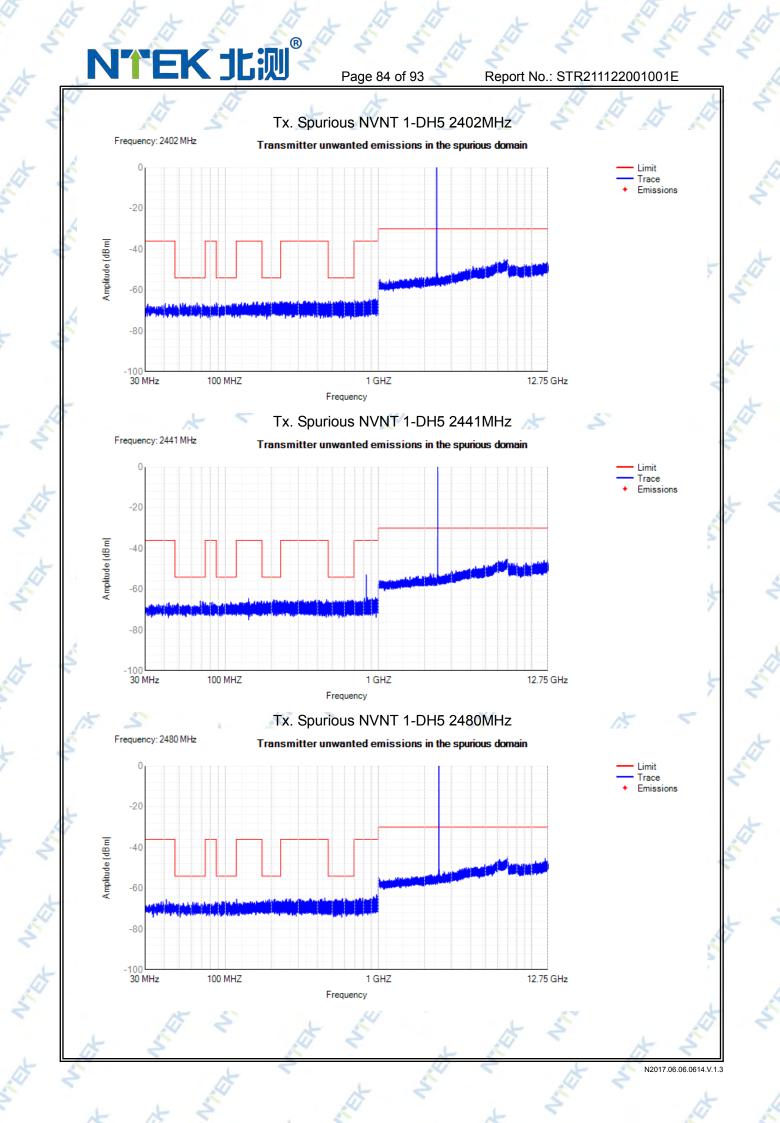


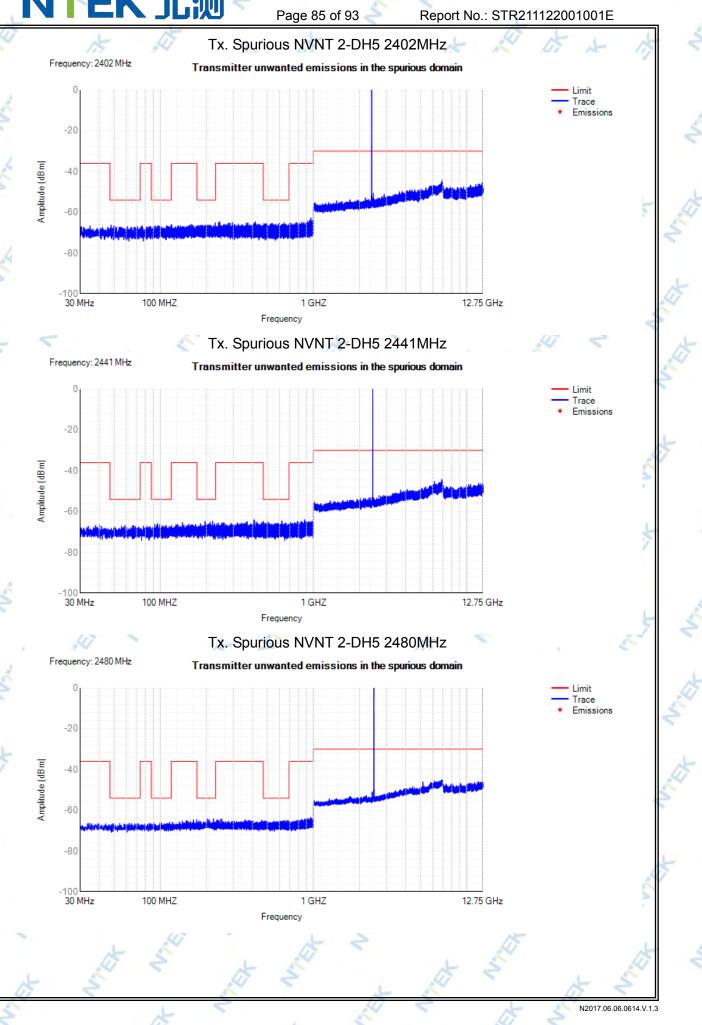
Page 79 of 93

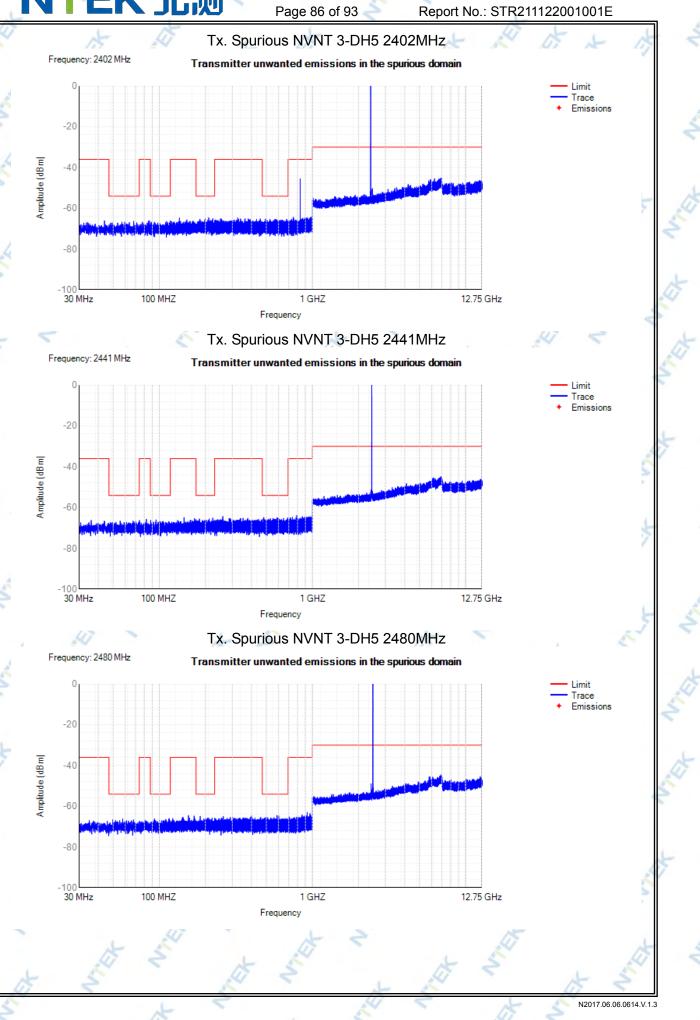
Condition	r unwant Mode		the out-of-band dor	nain 💦 🔨	2 5 1	
5	iniouc	Frequency	OOB Frequency	Level	Limit 🛸	Verdict
		(MHz)	(MHz)	(dBm/MHz)	(dBm/MHz)	verdier
NVNT	1-DH5	hopping	2399.5	-62.49	-10	Pass
	1-DH5	hopping	2398.5	-63.47	-20	Pass
	1-DH5	hopping	2484	-63.21	-10	Pass
	1-DH5	hopping	2485	-62.34	-20	Pass
	1-DH5	hopping	2399.5	-62.67	-10	Pass
	1-DH5	hopping	2398.5	-62.35	-20	Pass
	1-DH5	hopping	2484	-62.89	-10	Pass
	1-DH5	hopping	2485	-62.8	-20 🔎	Pass
	2-DH5	hopping	2399.5	-63.32	-10	Pass
	2-DH5	hopping	2399.309	-63.26	-10	Pass
	2-DH5	hopping	2398.309	-61.63	-20	Pass
	2-DH5	hopping	2398.118	-63.21	-20	Pass
	2-DH5	hopping	2484	-62.58	-10	Pass
	2-DH5	hopping	2485	-63.1	-20	Pass
	2-DH5	hopping	2399.5	-63.27	-10	Pass
	2-DH5	hopping	2398.309	-63.36	-20	Pass
	2-DH5	hopping	2398.118	-63.42	-20	Pass
	2-DH5	hopping 🛛	2484	-62.73	-10	Pass
NVNT	2-DH5	hopping	2484.177	-63.01	-10	Pass
NVNT	2-DH5	hopping	2485.177	-62.33	-20	Pass
NVNT	2-DH5	hopping	2485.354	-62.94	-20	Pass
NVNT	3-DH5	hopping	2399.5	-37.52	-10	Pass
NVNT	3-DH5	hopping	2399.295	-37.71	-10 📝	Pass
NVNT	3-DH5	hopping	2398.295 🍼	-37.78	-20	Pass
NVNT	3-DH5	hopping	2398.09	-37.78	-20	Pass
NVNT	3-DH5	hopping 🔔	2484	-37.54	-10	Pass
NVNT	3-DH5	hopping	2484.177	-37.51	-10	Pass
NVNT	3-DH5	hopping	2485.177	-37.52	-20 🧷	Pass
NVNT	3-DH5	hopping	2485.354 🏑	-37.54	20 💉	Pass
NVNT	3-DH5	hopping	2399.5	-63.29		Pass
NVNT 🗼	3-DH5	hopping	2399.295	-63.37	-10	Pass
NVNT	3-DH5	hopping	2398.295	-63.53	-20	Pass
NVNT	3-DH5	hopping	2398.09	-60.96	-20 🎊	Pass
NVNT	3-DH5	hopping	2484 🔎	-62.39	-10	Pass
NVNT	3-DH5	hopping	2484.197	-63.14	-10	Pass
NVNT	3-DH5	hopping	2485.197	-62.73	-20	Pass
NVNT	3-DH5	hopping	2485.394	-62.38	-20	Pass

NTEK 北测®

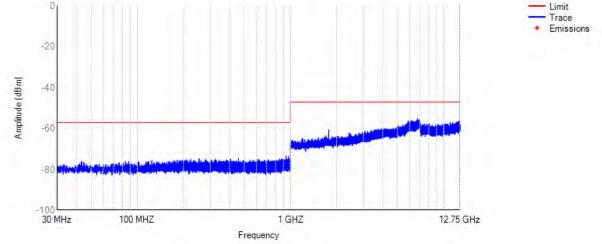
Page 82 of 93

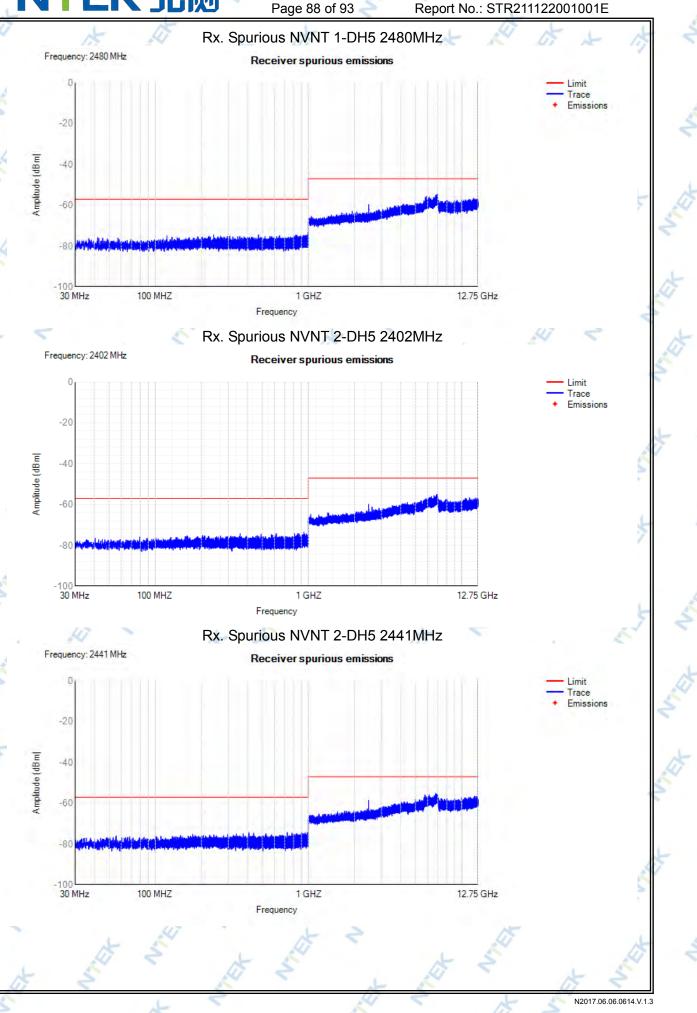

Report No.: STR211122001001E

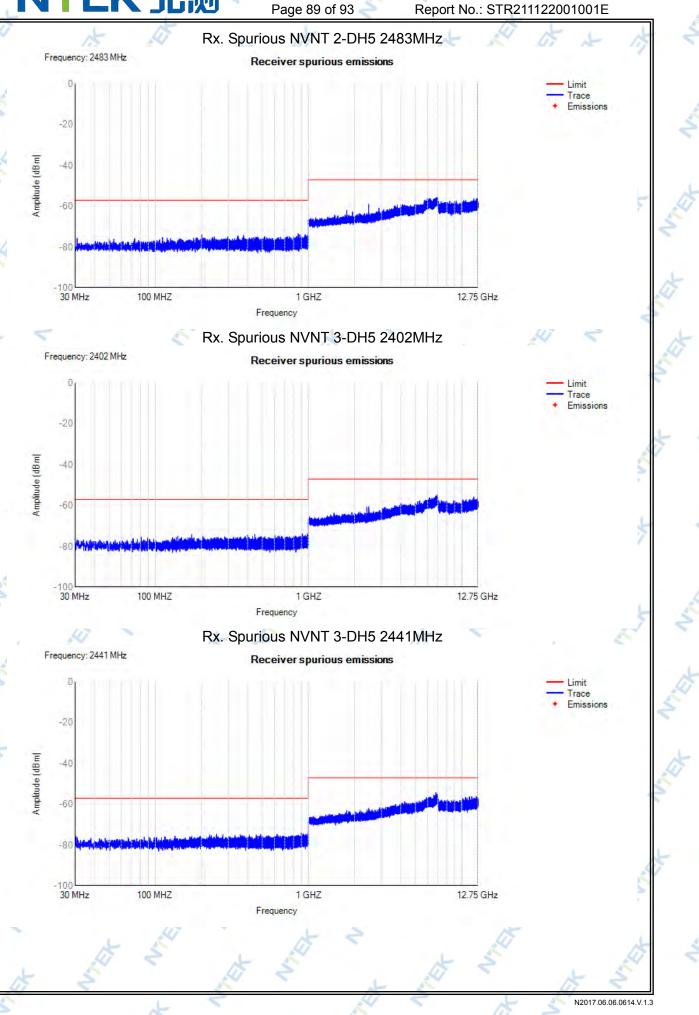

Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
NVNT	1-DH5	2402	30 MHz -47 MHz	40.55	-66.53	ŇA	-36	Pass
NVNT	1-DH5	2402	47 MHz -74 MHz 🧄	65.45	-66.28	NA	-54	Pass
NVNT	1-DH5	2402	74 MHz -87.5 MHz	85.1	-67.04	📈 NA	-36	Pass
NVNT	1-DH5	2402	87.5 MHz -118 MHz	87.55	-66.28	V NA	-54	Pass
NVNT	1-DH5	2402	118 MHz -174 MHz	162.25	-65.72	NA	-36	Pass
NVNT	1-DH5	2402	174 MHz -230 MHz	227.85	-65.62	NA	-54	Pass
NVNT 🦷	1-DH5	2402	230 MHz -470 MHz	382.55	-65.24	NA	-36	Pass
NVNT	1-DH5	2402	470 MHz -694 MHz	566.4	-64.97	NA	-54	Pass
NVNT	1-DH5	2402	694 MHz -1000 MHz	957.2	-64.28	< NA	-36	Pass
NVNT	1-DH5	2402	1000 MHz -2398 MHz	2266	-53.42	NA	-30	Pass
NVNT	1-DH5	2402			-44.94	NA		Pass
			2485.5 MHz -12750 MHz	6973.5 42.95			-30	
NVNT	1-DH5	2441	30 MHz -47 MHz		-66.48	NA	-36	Pass
NVNT	1-DH5	2441	47 MHz -74 MHz	68.7	-65.66	NA	-54	Pass
NVNT	1-DH5	2441	24 MHz -87.5 MHz	82.9	-66.37	NA S	-36	Pass
NVNT	1-DH5	2441	87.5 MHz -118 MHz	109.05	-66.23	NA	-54	Pass
NVNT	1-DH5	2441	118 MHz -174 MHz	142.05	-64.45	NA	-36	Pass
NVNT 🗼	1-DH5	2441	174 MHz -230 MHz	207.15	-65.1	NA	-54	Pass
NVNT	1-DH5	2441	230 MHz -470 MHz	458.6	-64.96	NA	-36	Pass
NVNT	1-DH5	2441	470 MHz -694 MHz	671.05	-65.21	NA	-54	Pass
NVNT	1-DH5	2441	694 MHz -1000 MHz	832.55	-52.89	NA 🥖	-36	Pass
NVNT	1-DH5	2441	1000 MHz -2398 MHz	2181	-52.22	NA	-30	Pass
NVNT	1-DH5	2441	2485.5 MHz -12750 MHz	6892.5	-45.26	NA	-30	Pass
NVNT								
	1-DH5	2480	30 MHz -47 MHz	41.25	-65.45	NA	-36	Pass
NVNT	1-DH5	2480	47 MHz -74 MHz	73.05	-66.73	NA	-54	Pass
NVNT	1-DH5	2480	74 MHz -87.5 MHz	86.55	-66.66	NA	-36	Pase
NVNT	1-DH5	2480	87.5 MHz -118 MHz	101	-66.24	NA	-54	Pass
NVNT	1-DH5	2480	118 MHz -174 MHz	118.65	-65.3	NA	-36	Pass
NVNT	1-DH5	2480	174 MHz -230 MHz 📈	211.3	-65.3	NA	-54	Pass
NVNT	1-DH5	2480	230 MHz -470 MHz 🌑	446.4	-64.73	NA	-36	Pass
NVNT	1-DH5	2480	470 MHz -694 MHz	613.1	-64.99	NA	-54	Pass
NVNT	1-DH5	2480	694 MHz -1000 MHz	972.6	-63.11	NA	-36	Pass
NVNT	1-DH5	2480	1000 MHz -2398 MHz	2205.5	-53.22	NA	-30	Pass
NVNT	1-DH5	2480	2485.5 MHz -12750 MHz	6984	-44.35	NA	-30	
		2400						Pass
NVNT	2-DH5		30 MHz -47 MHz	34.8	-66.66	NA	-36	Pass
NVNT	2-DH5	2402	47 MHz -74 MHz	47.7	-66.3	NA	-54	Pass
NVNT	2-DH5	2402	74 MHz -87.5 MHz	75.75	-66.71	NA	-36	Pass
NVNT	2-DH5	2402	87.5 MHz -118 MHz	117.5	-66.1	NA	-54	Pass
NVNT	2-DH5	2402	118 MHz -174 MHz	159.05	-65.97	NA	-36	Pass
NVNT	2-DH5	2402	174 MHz -230 MHz	228.95	-65.16	NA	-54	Pass
NVNT	2-DH5	2402	230 MHz -470 MHz	244.6	-64.56	NA	-36	Pass
NVNT	2-DH5	2402	470 MHz -694 MHz	643.6	-64.91	NA	-54	Pass
NVNT	2-DH5	2402	694 MHz -1000 MHz	962.45	-62.79	NA	-36	Pass
NVNT	2-DH5	2402	1000 MHz -2398 MHz	2396.5	-51.65	NA	-30	Pass
NVNT	2-DH5	2402	2485.5 MHz -12750 MHz	6943.5	-44.25	NA	-30	Pass
			30 MHz -47 MHz					
NVNT	2-DH5	2441		40.2	-66.48	NA	-36	Pass
NVNT	2-DH5	2441	47 MHz -74 MHz	58.75	-66.79	NA 🔬	-54	Pass
NVNT	2-DH5	2441	74 MHz -87.5 MHz	77.65	-67.09	NA 🔬	-36	Pass
NVNT	2-DH5	2441	87.5 MHz -118 MHz	96	-65.77	NA	-54	Pass
NVNT	2-DH5	2441	118 MHz -174 MHz	// 139.3	-65.34	NA	-36	Pass
NVNT 🍌	2-DH5	2441	174 MHz -230 MHz	219.65	-64.61	NA	-54	Pass
NVNT	2-DH5	2441	230 MHz -470 MHz	409.75	-63.98	NA	-36	Pass
NVNT	2-DH5	2441	470 MHz -694 MHz	622.2	-64.48	NA	-54	Pass
NVNT	2-DH5	2441	694 MHz -1000 MHz	873.6	-63.93	NA 🧷	-36	Pas
NVNT	2-DH5	2441	1000 MHz -2398 MHz	2341.5	-53.08	NA	-30	Pas
	2-DH5	2441	2485.5 MHz -12750 MHz	6881	-44.3	NA	-30	Pas
INVINI			30 MHz -47 MHz	34.30	-66.34	NA	-36	Pas
NVNT NVNT	2-DH5	/480						Pas
NVNT 🔟	2-DH5	2480	47 MHz _74 MHz	62 53	-66 32	ΝΔ		
NVNT NVNT	2-DH5	2480	47 MHz -74 MHz	62.53 86.34	-66.32	NA	-54	
NVNT NVNT NVNT	2-DH5 2-DH5	2480 2480	74 MHz -87.5 MHz	86.34	-66.45	NA	-36 🟑	Pas
NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5	2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz	86.34 115.03	-66.45 -65.72	NA NA	-36 -54	Pass Pass
NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5	2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz	86.34 115.03 173.23	-66.45 -65.72 -64.45	NA NA NA	-36 -54 -36	Pase Pase Pase
NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2480 2480 2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz	86.34 115.03 173.23 202.86	-66.45 -65.72 -64.45 -64.13	NA NA NA NA	-36 -54 -36 -54	Pass Pass Pass Pass
NVNT NVNT NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2480 2480 2480 2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz	86.34 115.03 173.23 202.86 252.46	-66.45 -65.72 -64.45 -64.13 -64.25	NA NA NA NA	-36 -54 -36 -54 -36	Pass Pass Pass Pass Pass
NVNT NVNT NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2480 2480 2480 2480 2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz	86.34 115.03 173.23 202.86 252.46 676.71	-66.45 -65.72 -64.45 -64.13 -64.25 -64.89	NA NA NA NA NA	-36 -54 -36 -54 -36 -54	Pass Pass Pass Pass Pass
NVNT NVNT NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2480 2480 2480 2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz	86.34 115.03 173.23 202.86 252.46	-66.45 -65.72 -64.45 -64.13 -64.25	NA NA NA NA	-36 -54 -36 -54 -36	Pass Pass Pass Pass Pass Pass
NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2480 2480 2480 2480 2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz 694 MHz -1000 MHz	86.34 115.03 173.23 202.86 252.46 676.71 955.51	-66.45 -65.72 -64.45 -64.13 -64.25 -64.89 -63.46	NA NA NA NA NA NA	-36 -54 -36 -54 -36 -54 -36	Pass Pass Pass Pass Pass Pass Pass
NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2480 2480 2480 2480 2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz 694 MHz -1000 MHz 1000 MHz -2398 MHz	86.34 115.03 173.23 202.86 252.46 676.71 955.51 2203.14	-66.45 -65.72 -64.45 -64.13 -64.25 -64.89 -63.46 -52.84	NA NA NA NA NA NA NA	-36 -54 -36 -54 -36 -36 -30	Pass Pass Pass Pass Pass Pass Pass Pass
NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5	2480 2480 2480 2480 2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz 694 MHz -1000 MHz 1000 MHz -2398 MHz 2485.5 MHz -12750 MHz	86.34 115.03 173.23 202.86 252.46 676.71 955.51 2203.14 6986.17	-66.45 -65.72 -64.45 -64.13 -64.25 -64.89 -63.46 -52.84 -44.86	NA NA NA NA NA NA NA NA	-36 -54 -36 -54 -36 -54 -36 -30 -30	Pass Pass Pass Pass Pass Pass Pass Pass
NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 3-DH5	2480 2480 2480 2480 2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz 694 MHz -1000 MHz 1000 MHz -2398 MHz 2485.5 MHz -12750 MHz 30 MHz -47 MHz	86.34 115.03 173.23 202.86 252.46 676.71 955.51 2203.14 6986.17 43.85	-66.45 -65.72 -64.45 -64.13 -64.25 -64.89 -63.46 -52.84 -44.86 -66.14	NA NA NA NA NA NA NA NA NA NA	-36 -54 -36 -54 -36 -54 -36 -30 -30 -30 -36	Pass Pass Pass Pass Pass Pass Pass Pass
NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 3-DH5 3-DH5	2480 2480 2480 2480 2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz 694 MHz -1000 MHz 1000 MHz -2398 MHz 2485.5 MHz -12750 MHz 30 MHz -47 MHz 47 MHz -74 MHz	86.34 115.03 173.23 202.86 252.46 676.71 955.51 2203.14 6986.17 43.85 68.05	-66.45 -65.72 -64.45 -64.13 -64.25 -64.89 -63.46 -52.84 -44.86 -66.14 -66.38	NA NA NA NA NA NA NA NA NA NA NA	-36 -54 -36 -54 -36 -54 -36 -30 -30 -30 -36 -54	Pass Pass Pass Pass Pass Pass Pass Pass
NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 3-DH5 3-DH5 3-DH5	2480 2480 2480 2480 2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz 694 MHz -1000 MHz 1000 MHz -2398 MHz 2485.5 MHz -12750 MHz 30 MHz -47 MHz 47 MHz -74 MHz 74 MHz -87.5 MHz	86.34 115.03 173.23 202.86 252.46 676.71 955.51 2203.14 6986.17 43.85 68.05 86.2	-66.45 -65.72 -64.45 -64.13 -64.25 -64.89 -63.46 -52.84 -44.86 -66.14 -66.38 -66.07	NA NA NA NA NA NA NA NA NA NA NA NA	-36 -54 -36 -54 -36 -54 -30 -30 -30 -30 -36 -54 -54 -36	Pass Pass Pass Pass Pass Pass Pass Pass
NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVNT	2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 2-DH5 3-DH5 3-DH5	2480 2480 2480 2480 2480 2480 2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz 118 MHz -174 MHz 174 MHz -230 MHz 230 MHz -470 MHz 470 MHz -694 MHz 694 MHz -1000 MHz 1000 MHz -2398 MHz 2485.5 MHz -12750 MHz 30 MHz -47 MHz 47 MHz -74 MHz	86.34 115.03 173.23 202.86 252.46 676.71 955.51 2203.14 6986.17 43.85 68.05	-66.45 -65.72 -64.45 -64.13 -64.25 -64.89 -63.46 -52.84 -44.86 -66.14 -66.38	NA NA NA NA NA NA NA NA NA NA NA	-36 -54 -36 -54 -36 -54 -36 -30 -30 -30 -36 -54	Pass Pass Pass Pass Pass Pass Pass Pass

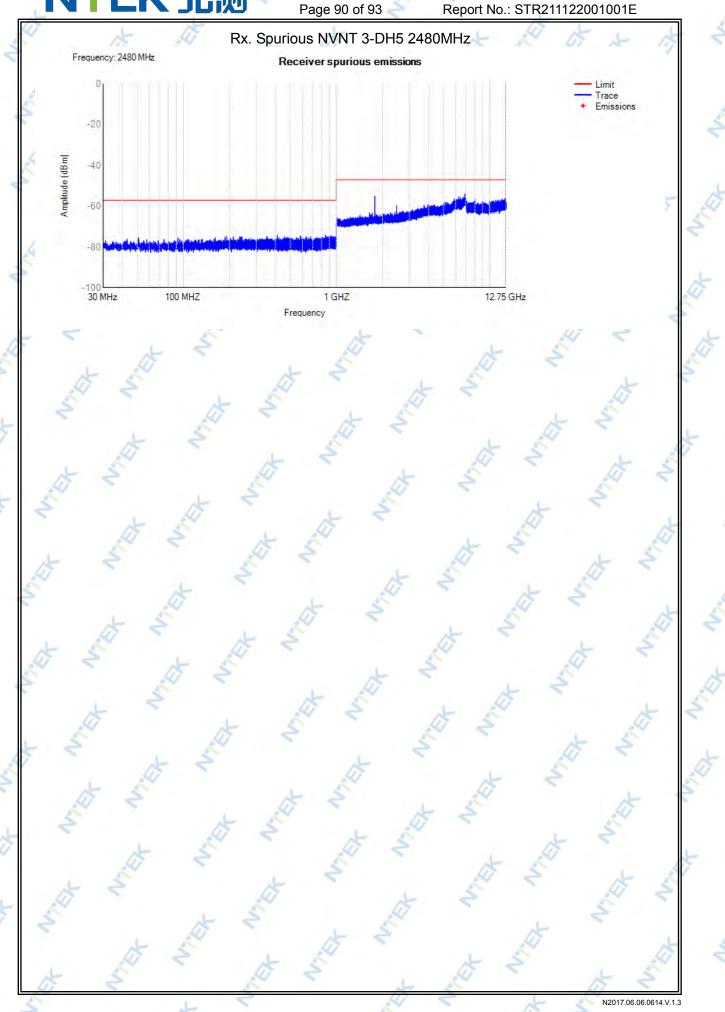

NTEK 北测®

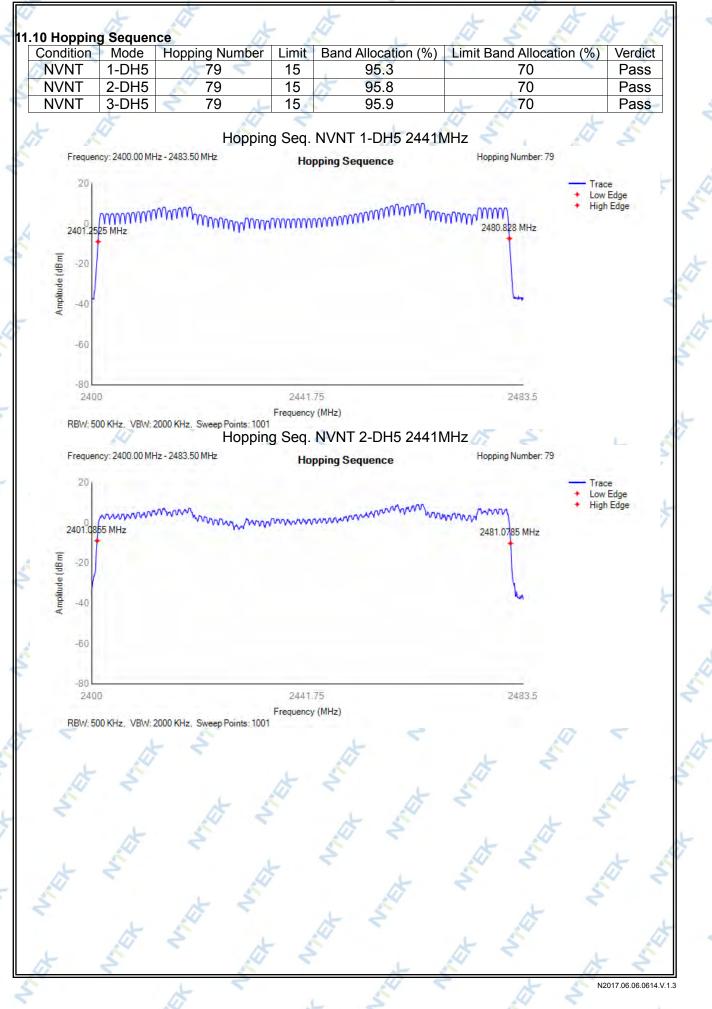
Page 83 of 93


\Box	2		A				1		1
	NVNT	3-DH5	2402	230 MHz -470 MHz 🥂	325.55	-64.7	NA	-36	Pass
	NVNT	3-DH5	2402	470 MHz -694 MHz	492.7	-65.27	NA NA	-54	Pass
	NVNT	3-DH5	2402	694 MHz -1000 MHz	831.3	-45.47	NA	-36	Pass
	NVNT	3-DH5	2402	1000 MHz -2398 MHz	2397.5	-51.43	NA	-30	Pass
	NVNT	3-DH5	2402	2485.5 MHz -12750 MHz	6903.5	-45.12	NA	-30	Pass
1	NVNT	3-DH5	2441	30 MHz -47 MHz 📈	35.95	-66.22	NA	-36	Pass
	NVNT	3-DH5	2441	47 MHz -74 MHz 🧹	55.55	-66.48	NA NA	-54	Pass
	NVNT	3-DH5	2441	74 MHz -87.5 MHz	82.45	-65.67	🥟 NA	-36	Pass
	NVNT	3-DH5	2441	87.5 MHz -118 MHz	95.35	-65.99	NA	-54	Pass
	NVNT	3-DH5	2441	118 MHz -174 MHz	145.15	-64.87	NA	-36	Pass
1	NVNT 🔹	3-DH5	2441	174 MHz -230 MHz	223.55	-65.07	NA	-54	Pass
	NVNT 📉	3-DH5	2441	230 MHz -470 MHz	259.85	-64.36	NA 🚽	-36	Pass
	NVNT	3-DH5	2441	470 MHz -694 MHz	481.1	-64.85	🔨 NA 👘	-54	Pass
	NVNT	3-DH5	2441	694 MHz -1000 MHz	790.15	-63.85	> NA	-36	Pass
	NVNT	3-DH5	2441	1000 MHz -2398 MHz	2261.5	-52.87	NA	-30	Pass
	NVNT	3-DH5	2441	2485.5 MHz -12750 MHz	6959.5	-44.8	NA	-30	Pass
	NVNT	3-DH5	2480	30 MHz -47 MHz	34.9	-66.91	NA 🏒	-36	Pass
4	🖉 NVNT 🥆	3-DH5	2480	47 MHz -74 MHz 🔨	57.7	-66.13	NA 🔨	-54	Pass
5	NVNT	3-DH5	2480	🤍 74 MHz -87.5 MHz	80.85	-66.93	NA	-36	Pass
	NVNT	3-DH5	2480	87.5 MHz -118 MHz	116.45	-66.01 🏑	NA	-54	Pass
	NVNT	3-DH5	2480	118 MHz -174 MHz	155.05	-64.54	NA	-36	Pass
	NVNT 🏑	3-DH5	2480	174 MHz -230 MHz	185.2	-64.92	NA	-54	Pass
	NVNT	3-DH5	2480	230 MHz -470 MHz	400.35 💉	-64.7	NA	-36	Pass
	NVNT	3-DH5	2480	🔊 470 MHz -694 MHz	587.85	-64.52	NA	-54	Pass
-	NVNT	3-DH5	2480	C 694 MHz -1000 MHz	923.55	-62.96	NA 📈	-36	Pass
	NVNT	3-DH5	2480	1000 MHz -2398 MHz 🍡	2259.5	-53.08	NA	-30	Pass
	NVNT	3-DH5	2480	2485.5 MHz -12750 MHz	6906.5	-44.59	NA	-30	Pass
				AT S					









Page 91 of 93 Report No

Page 92 of 93 Report No.: STR211122001001E Hopping Seq. NVNT 3-DH5 2441MHz Frequency: 2400.00 MHz - 2483.50 MHz Hopping Number: 79 Hopping Sequence 20 Trace Low Edge High Edge www 2401.002 MHz 2481.0785 MHz Amplitude (dBm) -20 -40 -60 -80 2400 2441.75 2483.5 Frequency (MHz) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 1001

Page 93 of 93

Report No.: STR211122001001E

12. EUT TEST PHOTO

END OF REPORT