

RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product: Smart Phone

Trade Mark: Blackview

Model Name: BL8800 Pro

Family Model: BL8800

Report No.: STR220218001001E

Prepared for

DOKE COMMUNICATION (HK) LIMITED.

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090
Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Report No.: STR220218001001E

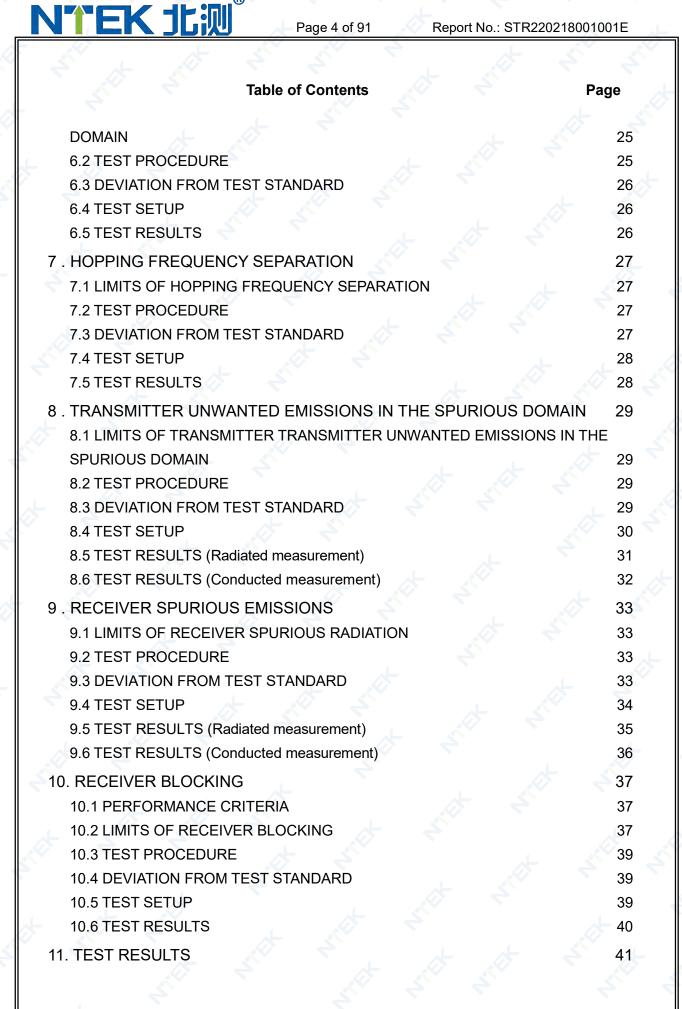

Applicant's	name:	DOKE COMMUN	NICATION (HK)	LIMITED.		
Address		RM 1902 EASEY	COMM BLDG	253-261 HENN	NESSY ROAD	
		WANCHAI HK, C	CHINA.			
	er's Name:					
Address		801, Building3, 7 Road, Guangmir	th Industrial Zo ng District, Shei	ne, Yulv Comm nzhen, China.	unity, Yutang	
Product des	scription					
Product nam	e:	Smart Phone				
Trademark	:	Blackview				
Model Name	·	BL8800 Pro				
Family Mode	ol:	BL8800				
Standards	<u>:</u>	ETSI EN 300 32	3 V2.2.2 (2019-	.07)		
equipment un requirements This report s document ma the documen	described above has nder test (EUT) is in s. And it is applicable hall not be reproduc ay be altered or revi	n compliance with e only to the testo ced except in full, ised by NTEK, pe	n the of article 3 ed sample iden without the wr	3.2 of the Directi tified in the repo itten approval o	ive 2014/53/EU ort. f NTEK, this	
Date (s) of pe	erformance of tests.	Feb 18. 2	028 ~ Mar 11. 2	2022		
Date of Issue	э	Mar 11. 2	022			
Test Result		Pass				
	Testing Engine	er :	Muhai L (Mukzi L			
			· · · · · · · · · · · · · · · · · · ·			
	Authorized Sig	natory:	\$. A	Le	t ziet	
			(Alex L	.i)		

	Table of Contents	Page
1	. GENERAL INFORMATION	7
	1.1 GENERAL DESCRIPTION OF EUT	7
	1.2 INFORMATION ABOUT THE EUT	8
	1.3 TEST CONDITIONS	13
	1.4 TEST CONFIGURATION OF EUT	13
	1.5 DESCRIPTION OF TEST CONDITIONS	14
	1.6 DESCRIPTION OF SUPPORT UNITS	15
	1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS	16
2	. SUMMARY OF TEST RESULTS	17
	2.1 TEST FACILITY	18
3	. RF OUTPUT POWER	19
	3.1 LIMITS OF RF OUTPUT POWER	19
	3.2 TEST PROCEDURE	19
	3.3 DEVIATION FROM TEST STANDARD	19
	3.4 TEST SETUP	19
	3.5 TEST RESULTS	20
4	. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AN	ID HOPPING
S	EQUENCE	21
	4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPA	ATION AND
	HOPPING SEQUENCE	21
	4.2 TEST PROCEDURE	21
	4.3 DEVIATION FROM TEST STANDARD	_ 21
	4.4 TEST SETUP	22
	4.5 TEST RESULTS	22
5	. OCCUPIED CHANNEL BANDWIDTH	23
	5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	23
	5.2 TEST PROCEDURE	23
	5.3 DEVIATION FROM TEST STANDARD	24
	5.4 TEST SETUP	24
	5.5 TEST RESULTS	24
6	. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND D	OMAIN 25
	6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF	-BAND

Table of Contents	Page
11.1 Accumulated Transmit Time	41
11.2 Frequency Occupation	48
11.3 One Pulse Dwell Time	55
11.4 RF Output Power	65
11.5 Hopping Frequency Separation	67
11.6 Occupied Channel Bandwidth	71
11.7 Transmitter unwanted emissions in the out-of-band doma	in 74
11.8 Transmitter unwanted emissions in the spurious domain	77
11.9 Receiver spurious emissions	85
11.10 Hopping Sequence	89
12. EUT TEST PHOTO	91
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	91

Revision History

Report No.	Version	Description	Issued Date		
STR220218001001E	Rev.01	Initial issue of report	Mar 11. 2022		
		T 1/4 5	4		
		\$ P			
/ 3 ⁽⁰⁾		1 4 30	7		
4	* <		4		
			3.00		
	7 4	\			
		.d 3100	7		
		4	* *		
* 30	4		QT 73.0		
4 4°)	4	1 1 2 2 2 2	& S		
4	3.00	~	45		
.d+ 47		* * *			
4	.0+	21° 4			

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart Phone			
Trade Mark	Blackview			
Model Name.	BL8800 Pro			
Family Model	BL8800			
Model Difference	All the model are the same circuit and RF module, except the Model name.			
	The EUT is Smart Phone			
	Operation Frequency:	2402~2480 MHz		
	Modulatin Type:	GFSK,π/4-DQPSK,8-DPSK		
	Modulation Technology:	FHSS		
	Adaptive/non-adaptive	Adaptive equipment		
	Receiver categories	2		
Product Description	Number Of Channel	79CH		
	Antenna Designation:	PIFA Antenna		
	Antenna Gain(Peak)	-0.6dBi		
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.			
Channel List	Refer to below Table			
Adapter	Model: QA-0300CE03 Input: 100-240V~50/60Hz 0.8A Output: (PD)5.0V3.0A or 9.03.0A or 12.0V2.5A or 15.0V2.0A or 20.0A1.5A (PPS) 3.3A-11.0V3.0A(33.0W MAX)			
Battery	DC 3.85V, 8380mAh, 32.263Wh			
Rating	DC 3.85V from battery or DC 5V from Adapter.			
I/O Ports	Refer to users manual			
Hardware Version	TF929-B1-V1.1			
Software Version	BL8800 Pro_EEA_TF92	9_V1.0		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

79 channels are provided to (GFSK, π/4-DQPSK, 8-DPSK)

Channel	Frequency (MHz)
00	2402
01	2403
¥ %,	
Ø –	<i>₹</i> 0
🖈 🔊	- -
77	2479
78	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:
other forms of modulation
b) In case of FHSS modulation:
In case of non-Adaptive Frequency Hopping equipment:
The number of Hopping Frequencies:
● In case of Adaptive Frequency Hopping Equipment:
The maximum number of Hopping Frequencies: 79
The minimum number of Hopping Frequencies: 79
The (average) Dwell Time: 301.56s Maximum
c) Adaptive / non-adaptive equipment:
non-adaptive Equipment
☑ adaptive Equipment without the possibility to switch to a non-adaptive mode
adaptive Equipment which can also operate in a non-adaptive mode
d) In case of adaptive equipment:
The maximum Channel Occupancy Time implemented by the equipment:/ ms
☑ The equipment has implemented an LBT based DAA mechanism
In case of equipment using modulation different from FHSS:
The equipment is Frame Based equipment
The equipment is Load Based equipment
☐ The equipment can switch dynamically between Frame Based and Load Based equipment
The CCA time implemented by the equipment:/ µs
The equipment has implemented a non-LBT based DAA mechanism
The equipment can operate in more than one adaptive mode

Page 9 of 91	Report No.: STR220218001001E
e) In case of non-adaptive Equipment:	* 3, 4,
The maximum RF Output Power (e.i.r.p.):	
The maximum (corresponding) Duty Cycle:	
Equipment with dynamic behaviour, that behaviour is described	here. (e.g. the different combinations
of duty cycle and corresponding power levels to be declared):	
f) The worst case operational mode for each of the following t	ests:
RF Output Power	
GFSK	
Power Spectral Density	
N/A	
Duty cycle, Tx-Sequence, Tx-gap	
N/A	
 Accumulated Transmit time, Frequency Occupation & Hopping 	g Sequence (only for FHSS equipment)
π/4-DQPSK	
 Hopping Frequency Separation (only for FHSS equipment) 	
GFSK	
Medium Utilization	
N/A	
Adaptivity	
N/A	
Receiver Blocking	
GFSK	
Nominal Channel Bandwidth	
8-DPSK	
Transmitter unwanted emissions in the OOB domain	
8-DPSK	
Transmitter unwanted emissions in the spurious domain	
π/4-DQPSK	
Receiver spurious emissions	
GFSK	
g) The different transmit operating modes (tick all that apply)):
⊠ Equipment with only one antenna	
Equipment with two diversity antennas but only one anter	nna active at any moment in time
☐ Smart Antenna Systems with two or more antennas, but o	operating in a (legacy) mode where only
one antenna is used (e.g. IEEE 802.11™ [i.3] legacy mod	de in smart antenna systems)
Operating mode 2: Smart Antenna Systems - Multiple Ant	tennas without beam forming
Single spatial stream / Standard throughput / (e.g. IEEE 8	302.11™ [i.3] legacy mode)
☐ High Throughput (> 1 spatial stream) using Nominal Char	nnel Bandwidth 1
☐ High Throughput (> 1 anoticl stream) using Naminal Char	

NOTE 1: Add more lines if more channel bandwidths are supported. Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming	
☐ Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)	
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1	
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2 NOTE 2: Add more lines if more channel bandwidths are supported.	
h) In case of Smart Antenna Systems:	
The number of Receive chains:	
The number of Transmit chains:	
symmetrical power distribution	
asymmetrical power distribution	
In case of beam forming, the maximum (additional) beam forming gain: dB NOTE: The additional beam forming gain does not include the basic gain of a single antenna.	
i) Operating Frequency Range(s) of the equipment:	
Operating Frequency Range 1: 2402 MHz to 2480 MHz	
Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported.	
j) Nominal Channel Bandwidth(s):	
Nominal Channel Bandwidth 1: 1.181MHz	
Nominal Channel Bandwidth 2:/ MHz NOTE: Add more lines if more channel bandwidths are supported.	
k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.):	
⊠ Stand-alone	
Combined Equipment (Equipment where the radio part is fully integrated within another type	e of
equipment)	
☐ Plug-in radio device (Equipment intended for a variety of host systems)☐ Other	
l) The normal and the extreme operating conditions that apply to the equipment:	
Normal operating conditions (if applicable):	
Operating temperature: 15℃~35℃	
Other (please specify if applicable):	
Extreme operating conditions:	
Operating temperature range: Minimum: -10° C Maximum 40° C Other (please specify if applicable): Minimum: Maximum Details provided are for the:	
combined (or host) equipment	
test jig	

3

Antenna Type: PIFA		ided in second conducted	
		vided in case of conducted	measurements)
		n (excluding basic antenna	again): / dB
<u> </u>	RF connector provided	-	i gaiii)/ ub
	ry RF connector provided		
<u> </u>	•		
_		ith antenna connector)	
	r level with correspond	. ,	
<u> </u>	er settings and corres		
	erent Power Levels:		
Power Level 1:			
Power Level 2:			
Power Level 3:			
NOTE 1: Add n	nore lines in case the e	equipment has more power	r levels.
			es, their corresponding gains
6) and the resulting e.	i.r.p. levels also taking	ntended antenna assemblic into account the beamforr	
6) and the resulting e. Power Level 1	i.r.p. levels also taking		ming gain (Y) if applicable
S) and the resulting e. Power Level 1 Number of ante	i.r.p. levels also taking	into account the beamforr	ming gain (Y) if applicable
6) and the resulting e. Power Level 1 Number of ante Assembly #	i.r.p. levels also taking :dBm enna assemblies provid	into account the beamforn	ming gain (Y) if applicable
Power Level 1 Number of ante	i.r.p. levels also taking : dBm enna assemblies provid Gain (dBi)	g into account the beamformula ded for this power level: e.i.r.p. (dBm)	ming gain (Y) if applicable
Power Level 1 Number of ante Assembly #	i.r.p. levels also taking : dBm enna assemblies provid Gain (dBi)	g into account the beamformula ded for this power level: e.i.r.p. (dBm)	ming gain (Y) if applicable
6) and the resulting e. Power Level 1 Number of ante Assembly # 1 2	i.r.p. levels also taking : dBm enna assemblies provid Gain (dBi) -0.6	into account the beamformulation ded for this power level: e.i.r.p. (dBm) 9.01	ming gain (Y) if applicable Part number or model name
Power Level 1 Number of ante Assembly # NOTE 3: Add n	i.r.p. levels also taking dBm enna assemblies provio Gain (dBi) -0.6 nore rows in case more	into account the beamformulation ded for this power level: e.i.r.p. (dBm) 9.01	ming gain (Y) if applicable Part number or model name
Power Level 1 Number of ante Assembly # NOTE 3: Add n	i.r.p. levels also taking dBm enna assemblies provio Gain (dBi) -0.6 nore rows in case more	into account the beamformulation ded for this power level: e.i.r.p. (dBm) 9.01	Part number or model name
Power Level 1 Number of ante Assembly # NOTE 3: Add note Power Level 2 Number of ante	i.r.p. levels also taking dBm enna assemblies provio Gain (dBi) -0.6 nore rows in case more	e.i.r.p. (dBm) 9.01 e antenna assemblies are	Part number or model name
Power Level 1 Number of ante Assembly # NOTE 3: Add note Power Level 2 Number of ante Number of ante	i.r.p. levels also taking dBm enna assemblies provio Gain (dBi) -0.6 nore rows in case more dBm enna assemblies provio	e.i.r.p. (dBm) 9.01 e antenna assemblies are	Part number or model name
Power Level 1 Number of ante Assembly # NOTE 3: Add note Power Level 2 Number of ante Assembly #	i.r.p. levels also taking dBm enna assemblies provio Gain (dBi) -0.6 nore rows in case more dBm enna assemblies provio	e.i.r.p. (dBm) 9.01 e antenna assemblies are	Part number or model name
Power Level 1 Number of ante Assembly # NOTE 3: Add n Power Level 2 Number of ante Assembly #	i.r.p. levels also taking dBm enna assemblies provio Gain (dBi) -0.6 nore rows in case more dBm enna assemblies provio	e.i.r.p. (dBm) 9.01 e antenna assemblies are	Part number or model name
Power Level 1 Number of ante Assembly # NOTE 3: Add note Power Level 2 Number of ante Assembly # 1 2 3	i.r.p. levels also taking denna assemblies provide Gain (dBi) -0.6 nore rows in case more denna assemblies provide Gain (dBi)	e.i.r.p. (dBm) 9.01 e antenna assemblies are ded for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level.
Power Level 1 Number of ante Assembly # NOTE 3: Add note Power Level 2 Number of ante Assembly # 1 2 3	i.r.p. levels also taking denna assemblies provid Gain (dBi) -0.6 nore rows in case more denna assemblies provid Gain (dBi) Gain (dBi)	e.i.r.p. (dBm) 9.01 e antenna assemblies are ded for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level.
Power Level 2 Number of ante Assembly # NOTE 3: Add note Power Level 2 Number of ante Assembly # Power Level 3	i.r.p. levels also taking denna assemblies provide Gain (dBi) -0.6 nore rows in case more denna assemblies provide Gain (dBi) Gain (dBi)	e.i.r.p. (dBm) 9.01 e antenna assemblies are ded for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level 2 Number of ante Assembly # NOTE 3: Add note Power Level 2 Number of ante Assembly # Number of ante Number of ante Number of ante Number of ante	i.r.p. levels also taking denna assemblies provide Gain (dBi) -0.6 nore rows in case more denna assemblies provide Gain (dBi) Gain (dBi)	e.i.r.p. (dBm) 9.01 e antenna assemblies are ded for this power level: e.i.r.p. (dBm) 9.01 e antenna assemblies are ded for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level 2 Number of ante Assembly # NOTE 3: Add note Power Level 2 Number of ante Assembly #	i.r.p. levels also taking denna assemblies provide Gain (dBi) -0.6 nore rows in case more denna assemblies provide Gain (dBi) Gain (dBi)	e.i.r.p. (dBm) 9.01 e antenna assemblies are ded for this power level: e.i.r.p. (dBm) 9.01 e antenna assemblies are ded for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name supported for this power level.

	-					
NOTE 5: Add more	a rowe in acce me	ro ontonno occ	aomhlian ara ai	innorted for t	hio nowor lov	10
INCLE 5. Add more	2 10WS III CASE IIIC	ne amenna ass	semblies are su	ioponea ioi i	nis bower iev	/EI.

Report No.: STR220218001001E n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined (host) equipment or test jig in case of plug-in devices: Details provided are for the: stand-alone equipment combined (or host) equipment test jig Supply Voltage AC mains State AC voltage V DC State DC voltage: DC 3.85V In case of DC, indicate the type of power source Internal Power Supply Battery: DC 3.85V Other: o) Describe the test modes available which can facilitate testing: See clause 1.4 p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802.15.4™ [i.4], proprietary, etc.): Bluetooth® q) If applicable, the statistical analysis referred to in clause 5.4.1 q) (to be provided as separate attachment) r) If applicable, the statistical analysis referred to in clause 5.4.1 r) (to be provided as separate attachment) s) Geo-location capability supported by the equipment: Yes The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user t) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or clause 4.3.2.11.3): GFSK(CH78) = 0.80%

1.3 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	-10℃ ~ 40℃ Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.85V	/

Note:

- (1) The HT 40 $^{\circ}$ C and LT -10 $^{\circ}$ C was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.
- (2) The measurements are performed at the highest, middle, lowest available channels.

1.4 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing			
Bluetooth mode	Data rate	Modulation type	
BR	1Mbps	GFSK	
EDR	2Mbps	π/4-DQPSK	
EDR	3Mbps	8-DPSK	

Test Channel Frequencies Configuration			
Test Channel	EUT Channel	Test Frequency (MHz)	
Lowest	CH00	2402	
Middle	CH39	2441	
Highest	CH78	2480	

	Page 14 of 91	Report No.: STR22	0218001001E
1.5 DESCRIPTION OF TEST CO	ONDITIONS	L	71, 71,
1.0 BESSIAN FISH OF FEST SC	A LANGUAGE		X
			J 31
4 14 2 2	E-1		٠
4,	EUT		* 30
Jr 45	7		
			<u>.</u>
4			
d 310			4
4			* *
of second			3.10
* =====================================			
			* 4
4			
A 300 7			` * K
			AL 1997
7			
			at Arith
7			
			- 41/1/
7			4,
			THE THE
			ALIENT OF
			ALL A
			3,7

1.6 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Smart Phone	BL8800 Pro	N/A	EUT
		4.	√ -	
		*	160	•
-		VF 740		
		30	1 8	
.0		,		
		L 30	7	d

Iter	Shielded Type	Ferrite Core	Length	Note	
			A	7	
		٨_		4 4	
	*			A	
F				2 4 7	
		4			

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
Turn Table	EM	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2021.03.29	2022.03.28	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2021.04.27	2022.04.26	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835S E	980246	2021.07.01	2022.06.30	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2021.04.27	2022.04.26	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2021.07.01	2022.06.30	1 year
Power Splitter	Mini-Circuits/U SA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2021.07.01	2022.06.30	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2021.04.27	2022.04.26	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2021.07.01	2022.06.30	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
Temperature & Humitidy Chamber	GIANT FORCE	GTH-056P	GF-94454-1	2021.04.27	2022.04.26	1 year

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
7	TRANSMITTER PARAMETERS	+ 3
4.3.1.2	RF Output Power	Pass
4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
4.3.1.5	Hopping Frequency Separation	Pass
4.3.1.6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2
4.3.1.7	Adaptivity	Not Applicable (See Note 1)
4.3.1.8	Occupied Channel Bandwidth	Pass
4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
.1	RECEIVER PARAMETERS	٠
4.3.1.11	Receiver Spurious Emissions	Pass
4.3.1.12	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add.: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District,

Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.:9270A-1

CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively 95 % and 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Maximum measurement uncertainty

	Maximum measurement uncertainty				
No.	Item	Uncertainty			
1	Occupied Channel Bandwidth	± 5%			
2	RF output Power,conducted	±1.5dB			
3	Power Spectral Density, conducted	± 3dB			
4	Unwanted emissions, conducted	± 3dB			
5	All emissions,radiated	± 6dB			
6	Temperature	± 3°C			
7	Humidity	± 3%			
9	Time	± 5%			

TRANSMITTER PARAMETERS

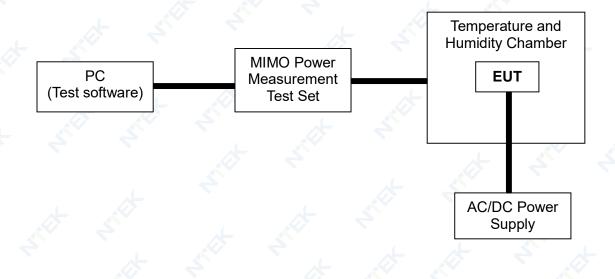
3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER

Refer to chapter 4.3.1.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER		
Condition	Limit	
inon-adaptive frequency hopping systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.	
Adaptive frequency hopping systems	equal to or less than 20 dBm.	

3.2 TEST PROCEDURE


Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement		
☐ Conducted measurement ☐ Radiated measurement		

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

3.5 TEST RESULTS

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	20°C	Relative Humidity:	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK		

Test data reference attachment

4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Refer to chapter 4.3.1.4.3 of ETSI EN 300 328 V2.2.2 (2019-07)

A				
Accumulated Transmit Time				
Condition	Limit			
Non-adaptive frequency hopping systems	≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]			
Adaptive frequency hopping systems	≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]			
MINIMUM	FREQUENCY OCCUPATION TIME			
Condition	Limit			
Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not			
Adaptive frequency hopping systems	exceeding four times the product of the dwell time and the number of hopping frequencies in use.			
Н	OPPING SEQUENCE (S)			
Condition	Limit			
Non-adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum			
	Operating over a minimum of 70% of the Operating in the band 2.4 GHz to 2.4835 GHz			
hopping systems	≥15 hopping frequencies or 15/minimum			

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of ETSI EN 300 328 V2.2.2 (2019-07)

N	Measurement	
⊠Conducted measurement	Radiated measurement	

4.3 DEVIATION FROM TEST STANDARD

No deviation

4.4 TEST SETUP

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

4.5 TEST RESULTS

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	26°C	Relative Humidity	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-F	lopping Mode	

Test data reference attachment

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH Refer to chapter 4.3.1.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

OCCUPIED CHANNEL BANDWIDTH				
Condition		Limit		
Al	I types of equipment	Shall fall completely within the band 2400 to 2483.5 MHz		
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz		
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz		

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	M	easurement		
⊠Conducted measurement		surement		
The setting of the Spectr	rum Analyzer	300		- 4
Center Frequency	The centre frequence	cy of the channel under test		
Frequency Span	2 × Nominal Channel Bandwidth			
Detector	RMS		*	
RBW	~ 1 % of the span w	vithout going below 1 %		
VBW	3 × RBW			4
Trace	Max hold	*	4	
Sweep time	1s			7

5.3 DEVIATION FROM TEST STANDARD

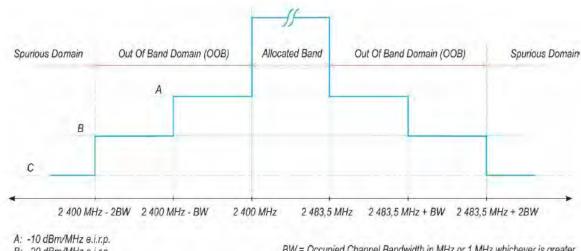
No deviation

5.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

5.5 TEST RESULTS

EUT :	Smart Phone	Model Name :	BL8800 Pro
Temperature :	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-(0	CH00/CH78)	,


Test data reference attachment

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition Limit		
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	

- B: -20 dBm/MHz e.i.r.p.
- C: Spurious Domain limits

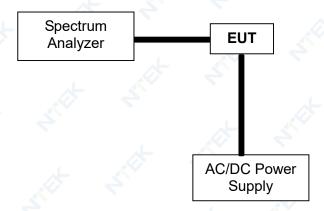
BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

Report No.: STR220218001001E

Figure 1: Transmit mask

6.2 TEST PROCEDURE

Refer to chapter 5.4.8.2of ETSI EN 300 328 V2.2.2 (2019-07)


	Me	easurement	
⊠Conducted measure	ment	Radiated measurement	
The setting of the Spectrum Ana	alyzer		*
Span	0Hz	\	
Filter Mode	Channel Filte	er	
Trace Mode	Clear/Write	* 50	
Trigger Mode	Video Trigge	er	
Detector	RMS		
Sweep Point / Sweep Mode	5000 / Conti	nuous	4
RBW / VBW	1MHz / 3MH	lz	

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

6.5 TEST RESULTS

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-(CH78)	

Test data reference attachment

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of ETSI EN 300 328 V2.2.2 (2019-07)

HOPPING FREQUENCY SEPARATION			
Condition	Limit		
☐ Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.		
Adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be 100 kHz.		

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	M	easuren	nent			
⊠Conducted	measurement		□F	Radiated mea	asurement	
Γhe setting of the Spec	ctrum Analyzer		7		.04	- 4
Center Frequency	Centre of the two ad	djacent	hopping fr	equencies		
Frequency Span	Sufficient to see the frequencies	comple	ete power	envelope of	both hopping	
Detector	Max Peak			*		
RBW	~ 1 % of the span					4
VBW	3 × RBW		X			
Trace	Max hold					4
Sweep Time	Auto				4	

7.3 DEVIATION FROM TEST STANDARD

No deviation

7.4 TEST SETUP

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

7.5 TEST RESULTS

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-(0	CH00/CH39/CH78)	4

Test data reference attachment

Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz.

2. The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Refer to chapter 4.3.1.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EN	MISSIONS IN THE SPURIOUS DO	OMAIN
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

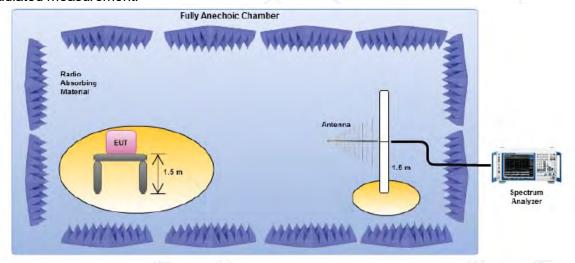
8.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

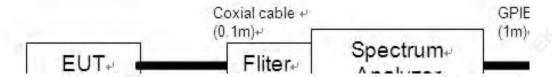
M	easurement
☐Conducted measurement	⊠Radiated measurement

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)
VBW	300K(<1GHz) / 3M(>1GHz)


8.3 DEVIATION FROM TEST STANDARD

No deviation



8.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

8.5 TEST RESULTS (Radiated measurement)
BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)

EUT: Smart Phone Model Name: BL8800 Pro
Temperature: 24 °C Relative Humidity 54%

Pressure: 1010 hPa Test Power: DC 3.85V

Test Mode: BT-GFSK (CH00)

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	43.247	-71.93	10.87	-61.06	-36	-25.06	peak
V	94.688	-74.87	11.36	-63.51	-54	-9.51	peak
V	215.495	-71.23	11.24	-59.99	-54	-5.99	peak
V	309.829	-75.96	11.28	-64.68	-36	-28.68	peak
V	636.801	-69.74	9.54	-60.20	-54	-6.20	peak
Н	31.417	-75.42	10.47	-64.95	-36	-28.95	peak
Н	114.911	-76.58	10.31	-66.27	-54	-12.27	peak
H	229.276	-67.39	10.84	-56.55	-54	-2.55	peak
Н	293.186	-69.62	11.23	-58.39	-36	-22.39	peak
Н	491.496	-72.33	11.13	-61.20	-54	-7.20	peak

Remark:

- 1. Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
- 2. All the modes had been tested, but only the worst data recorded in the report.

ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

Report No.: STR220218001001E

EUT :	Smart Phone	Model Name :	BL8800 Pro
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK (CH00/CH39/CH78)		

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
	1	op	eration freq	uency:2402	**		9
V	2915.489	-77.32	10.29	-67.03	-30	-37.03	peak
V	5412.675	-74.2	9.72	-64.48	-30	-34.48	peak
V	2222.202	-74.22	11.08	-63.14	-30	-33.14	peak
V	5942.499	-76.07	9.98	-66.09	-30	-36.09	peak
Н	2153.909	-71.35	10.55	-60.80	-30	-30.80	peak
Н	5986.499	-73.56	11.26	-62.30	-30	-32.30	peak
_ H	2003.655	-72.41	10.20	-62.21	-30	-32.21	peak
Н	5521.306	-73.27	10.46	-62.81	-30	-32.81	peak
		op	eration freq	uency:2441			
V	2222.739	-77.14	10.28	-66.86	-30	-36.86	peak
V	5129.51	-70.23	10.26	-59.97	-30	-29.97	peak
V	2257.973	-67.6	10.54	-57.06	-30	-27.06	peak
V	4209.263	-71.6	10.91	-60.69	-30	-30.69	peak
Н	2926.073	-68.58	9.93	-58.65	-30	-28.65	peak
Н	4603.22	-73.66	9.64	-64.02	-30	-34.02	peak
H.Ø	2565.087	-70.75	9.72	-61.03	-30	-31.03	peak
Н	3065.016	-74.93	11.36	-63.57	-30	-33.57	peak
		ор	eration freq	uency:2480	X		
V	2675.07	-72.5	10.16	-62.34	-30	-32.34	peak
V	5743.328	-75.63	9.76	-65.87	-30	-35.87	peak
V	2756.259	-70.91	10.80	-60.11	-30	-30.11	peak
V	4150.147	-74.54	10.84	-63.70	-30	-33.70	peak
Н	2163.613	-70.44	11.42	-59.02	-30	-29.02	peak
Н	5107.157	-69.06	10.48	-58.58	-30	-28.58	peak
Н	2217.11	-75.41	10.72	-64.69	-30	-34.69	peak
H	4703.797	-73.47	10.51	-62.96	-30	-32.96	peak

- Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

B.6 TEST RESULTS (Conducted measurement) Test data reference attachment

9. RECEIVER SPURIOUS EMISSIONS

9.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.1.11.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS					
Frequency Range	Maximum Power Limit Frequency Range (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))				
30 MHz ~ 1 GHz	z ~ 1 GHz -57dBm				
1 GHz ~ 12.75 GHz	-47dBm	1MHz			

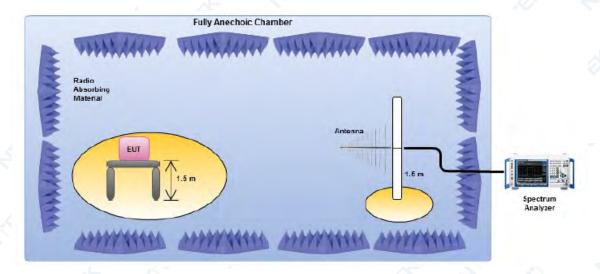
9.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

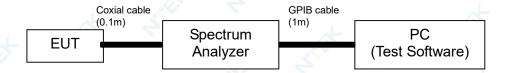
M	leasurement
⊠Conducted measurement	☑Radiated measurement

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)	* * *
VBW	300K(<1GHz) / 3M(>1GHz)	


9.3 DEVIATION FROM TEST STANDARD

No deviation



9.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

9.5 TEST RESULTS (Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK(CH00)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	33.468	-83.08	12.28	-70.80	-57	-13.80	peak
V	106.187	-78.17	16.20	-61.97	-57	-4.97	peak
V	195.255	-78.51	14.15	-64.36	-57	-7.36	peak
V	392.124	-81.63	17.05	-64.58	-57	-7.58	peak
V	476.322	-78.24	15.54	-62.70	-57	-5.70	peak
Н	45.589	-82.53	14.68	-67.85	-57	-10.85	peak
<u></u> ⊢ H	108.455	-78.09	17.98	-60.11	-57	-3.11	peak
Н	195.126	-82.12	16.70	-65.42	-57	-8.42	peak
Н	320.961	-79.08	15.92	-63.16	-57	-6.16	peak
Н	474.608	-78.06	17.64	-60.42	-57	-3.42	peak

Remark:

- Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

RX ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

Report No.: STR220218001001E

EUT :	Smart Phone	Model Name :	BL8800 Pro
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK (CH00)	W 4	<i>ب</i>

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	2961.192	-83.94	10.47	-73.47	-47	-26.47	peak
V	3816.134	-81.34	10.28	-71.06	-47	-24.06	peak
V	2433.582	-77.59	10.58	-67.01	-47	-20.01	peak
V	5032.374	-79.9	16,91	-62.99	-47	-15.99	peak
Н	2266.036	-81.07	10.41	-70.66	-47	-23.66	peak
Н	3227.074	-81.51	11.35	-70.16	-47	-23.16	peak
Н	2543.577	-82.83	6.83	-76.00	-47	-29.00	peak
Н	5866.068	-79.69	15.15	-64.54	-47	-17.54	peak

9.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

10. RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

☐ Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504	-34	CW
(-139 dBm + 10 × log₁₀(OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524	4, 4,	
* 34	2584 2674	* *	

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Wanted signal mean power from **Blocking signal Blocking signal power** Type of blocking companion device (dBm) Frequency (MHz) (dBm) (see note 3) signal (see notes 1 and 3) $(-139 \text{ dBm} + 10 \times \log_{10}(OCBW) + 10 \text{ dB})$ 2 380 -34 CW or (-74 dBm + 10 dB) whichever is less 2 504 (see note 2) 2 300 2 584

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters receiver category 3 equipment

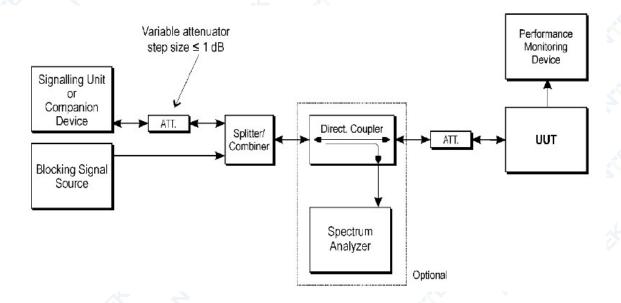
Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	*	
(see note 2)	2 300		
(666 11616 2)	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to P_{min} + 30 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

10.3 TEST PROCEDURE


Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement ☐Radiated measurement

10.4 DEVIATION FROM TEST STANDARD

No deviation

10.5 TEST SETUP

10.6 TEST RESULTS

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK Hopping mode (RX)	3	A 30

CH00

receiver category 2

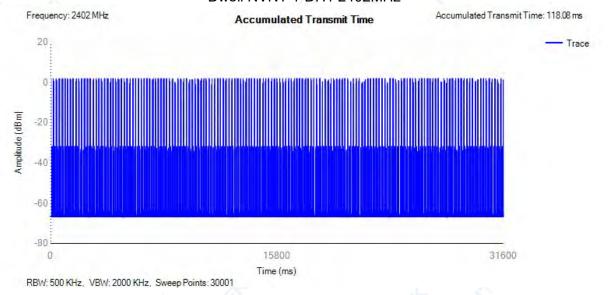
Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)			PER Limit %
-70.17	2 380		0.13%	≤10
	2 504	-34	0.21%	
	2 300		0.45%	<10
	2 584		0.32%	≤10

CH78

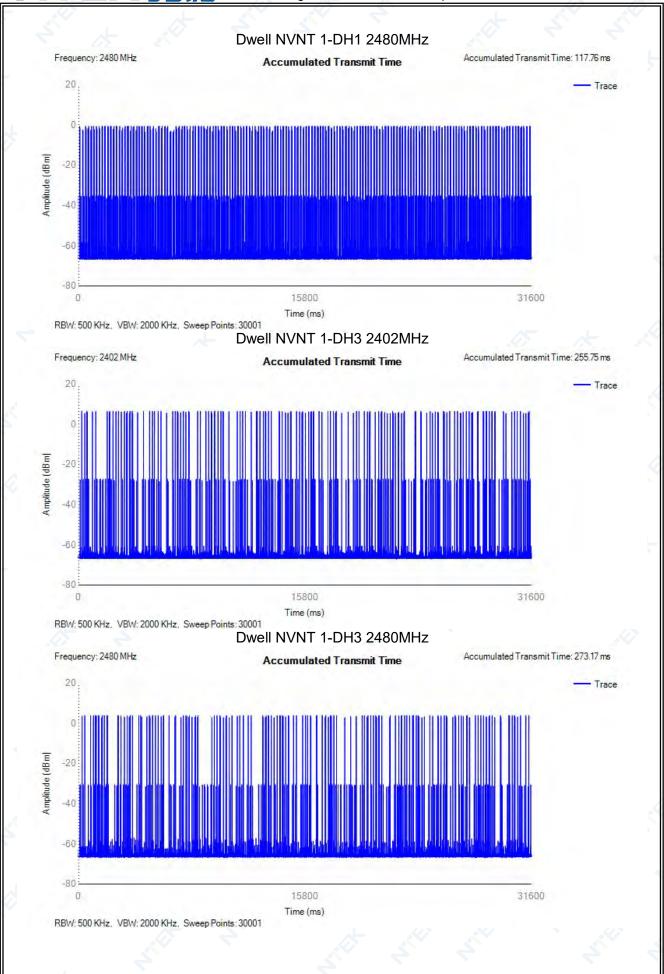
receiver category 2

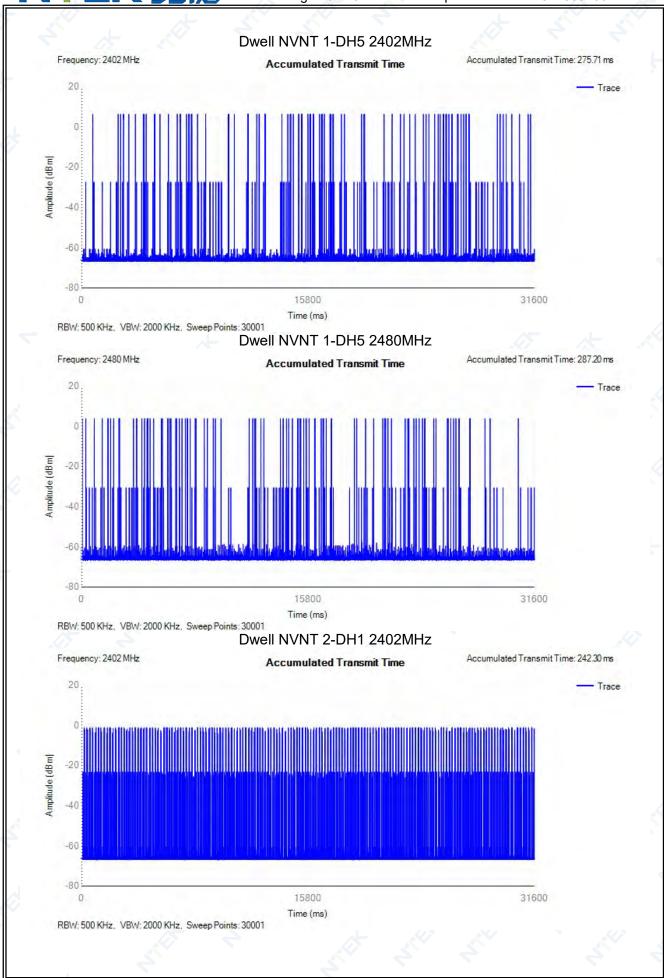
Wanted signal mean power from companion device (dBm)	Blocking signal Frequency (MHz)	Blocking signal power(dBm) (see note 3)	PER %	PER Limit
(see notes 1 and 3)		4		%
- 1	2 380	46. 4.	0.49%	-10
70.17	2 504	24	0.11%	≤10
-70.17	2 300	-34	0.14%	~10
	2 584	*	0.80%	≤10

Note: (1) The above results were obtained from laboratory tests.

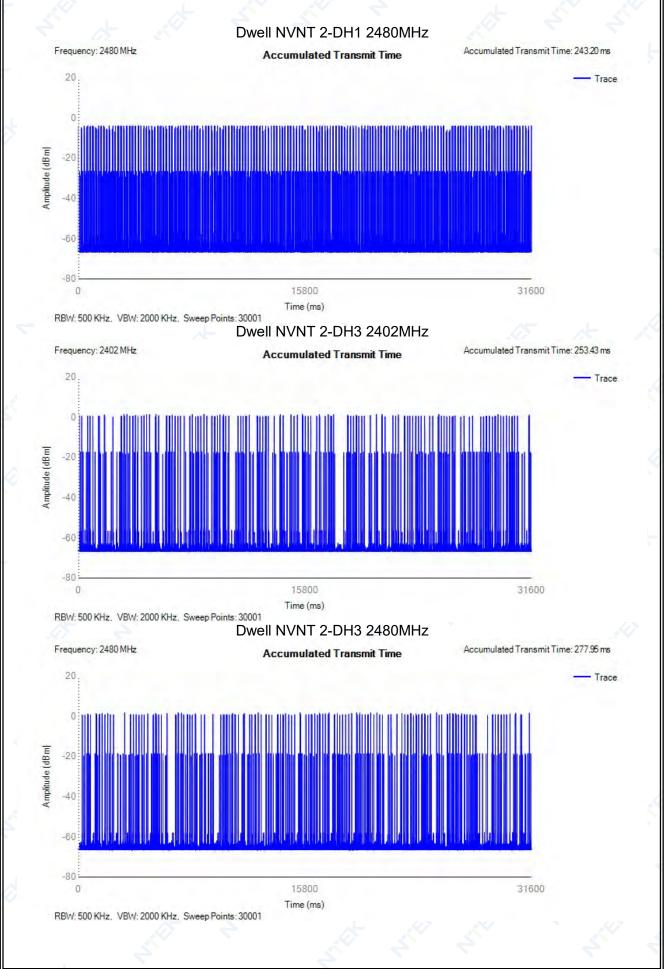


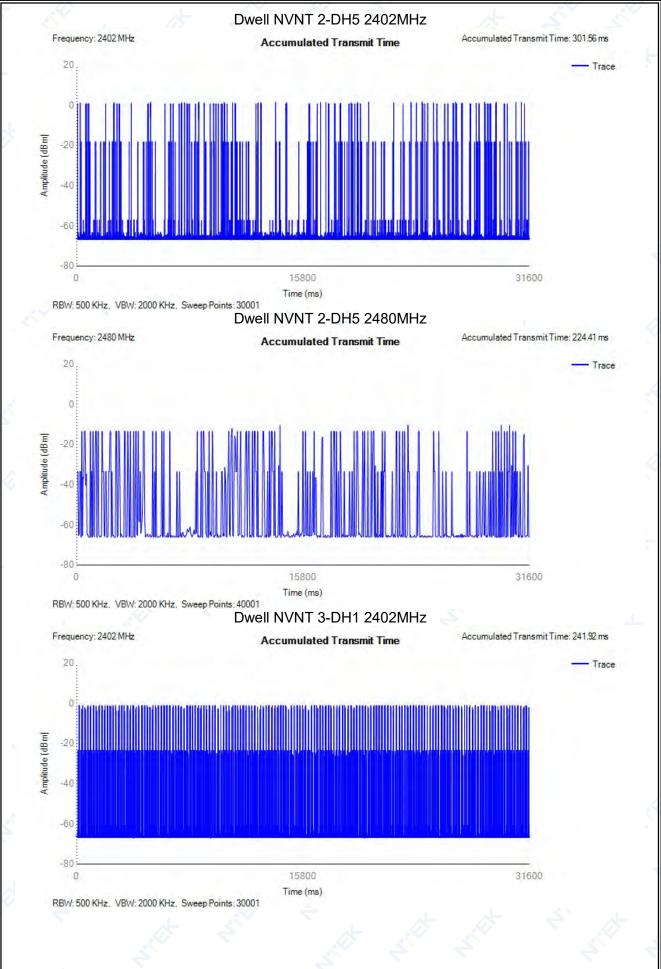
11. TEST RESULTS

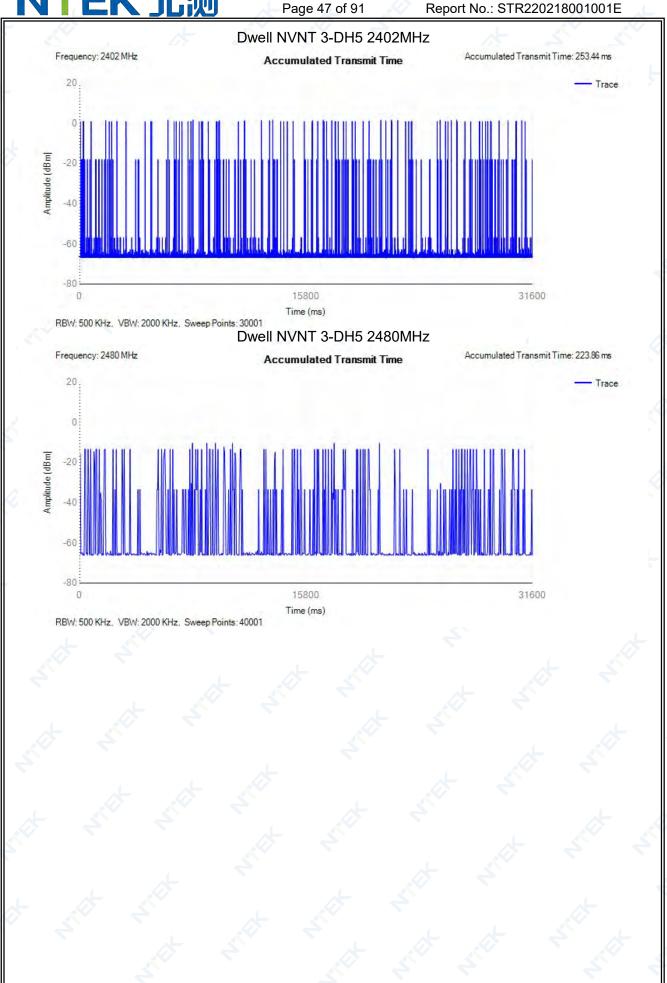

11.1 Accumulated Transmit Time


Condition	Mode	Frequency (MHz)	Accumulated Transmit Time (ms)	Limit (ms)	Sweep Time (ms)	Burst Number	Verdict
NVNT	1-DH1	2402	118.08	400	31600	320	Pass
NVNT	1-DH1	2480	117.76	400	31600	320	Pass
NVNT	1-DH3	2402	255.753	400	31600	157	Pass
NVNT	1-DH3	2480	273.168	400	31600	168	Pass
NVNT	1-DH5	2402	275.712	400	31600	96	Pass
NVNT	1-DH5	2480	287.2	400	31600	100	Pass
NVNT	2-DH1	2402	242.298	400	31600	641	Pass
NVNT	2-DH1	2480	243.2	400	31600	640	Pass
NVNT	2-DH3	2402	253.425	400	31600	155	Pass
NVNT	2-DH3	2480	277.95	400	31600	170	Pass
NVNT	2-DH5	2402	301.56	400	31600	105	Pass
NVNT	2-DH5	2480	224.406	400	31600	-78	Pass
NVNT	3-DH1	2402	241.92	400	31600	640	Pass
NVNT	3-DH1	2480	240	400	31600	640	Pass
NVNT	3-DH3	2402	258.534	400	31600	159	Pass
NVNT	3-DH3	2480	244.8	400	31600	150	Pass
NVNT	3-DH5	2402	253.44	400	31600	88	Pass
NVNT	3-DH5	2480	223.86	400	31600	78	Pass

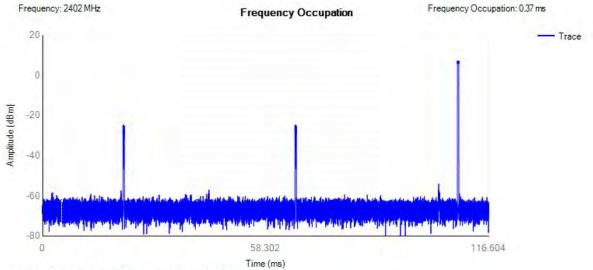
Dwell NVNT 1-DH1 2402MHz



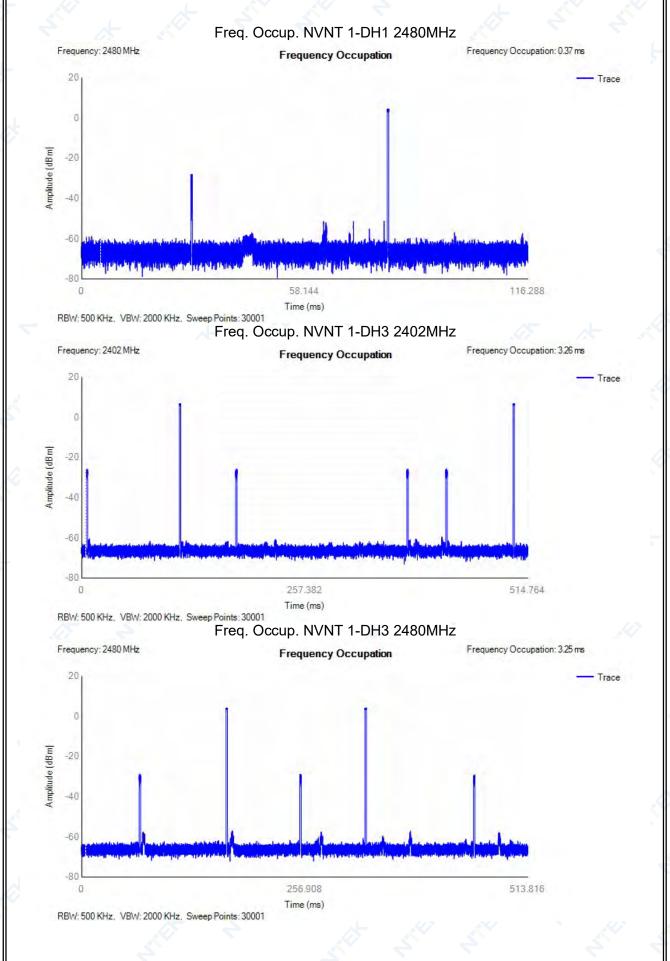




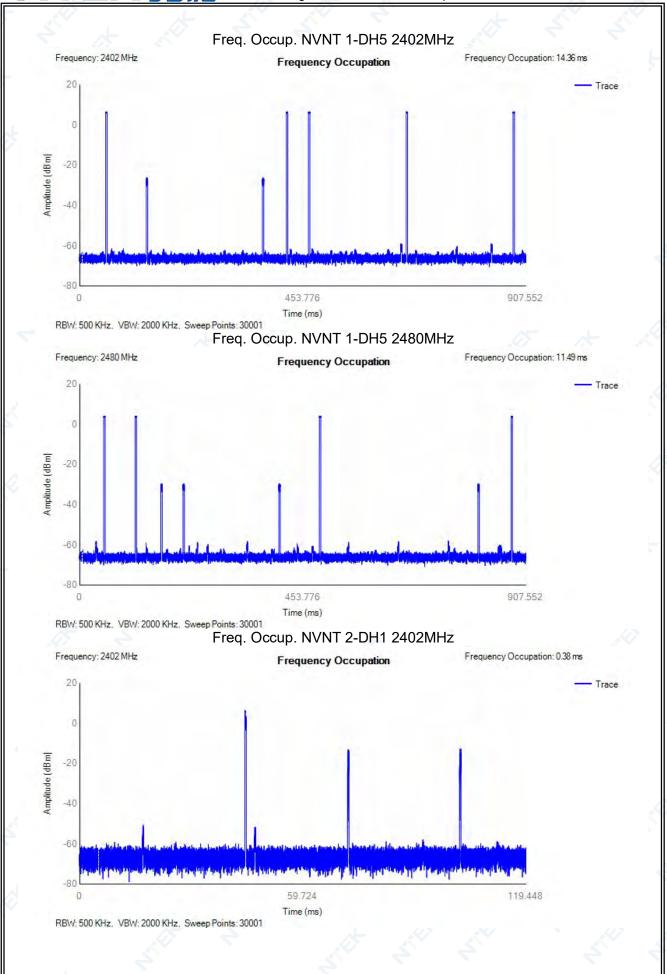
Page 46 of 91 Report No.: STR220218001001E Dwell NVNT 3-DH1 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 240.00 ms **Accumulated Transmit Time** 20. Trace Amplitude (dBm) -80 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH3 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 258.53 ms **Accumulated Transmit Time** 20 Trace Amplitude (dBm) -80 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH3 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 244.80 ms **Accumulated Transmit Time** 20. Trace Amplitude (dBm) -80 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

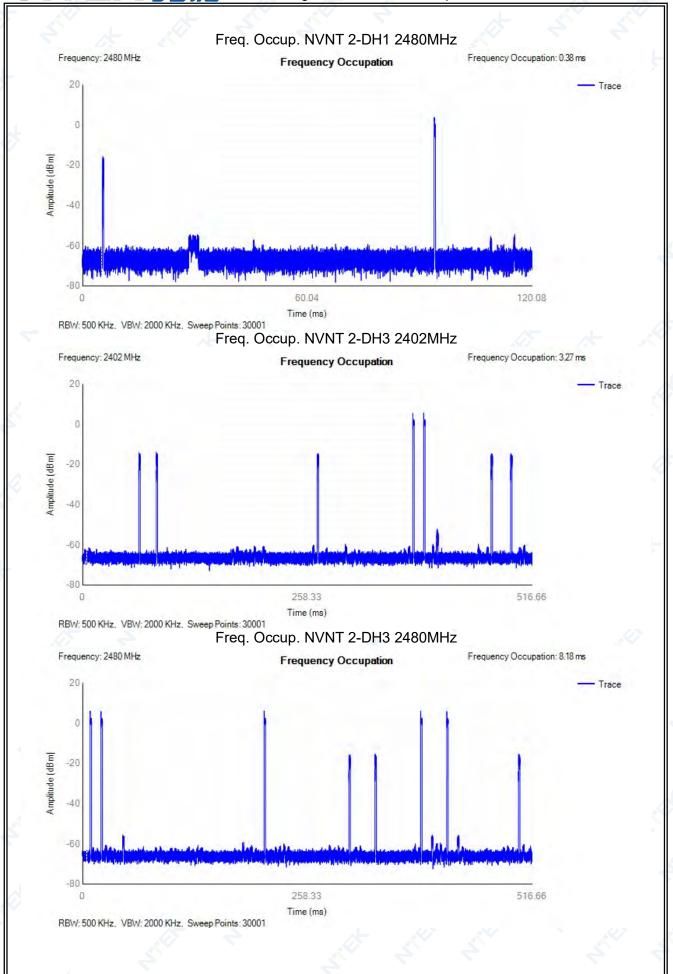


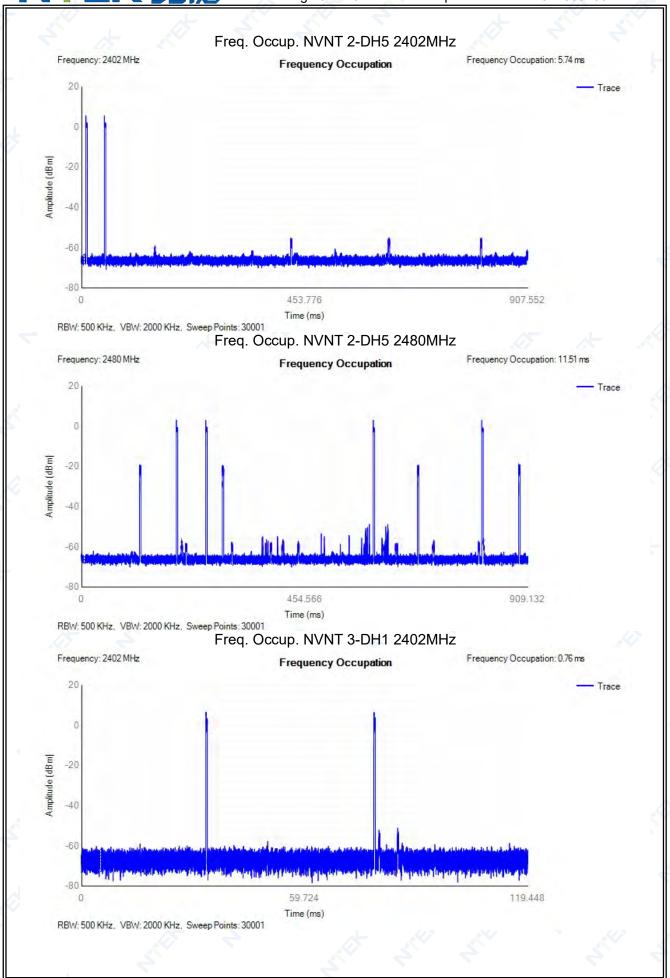
11.2 Frequency Occupation

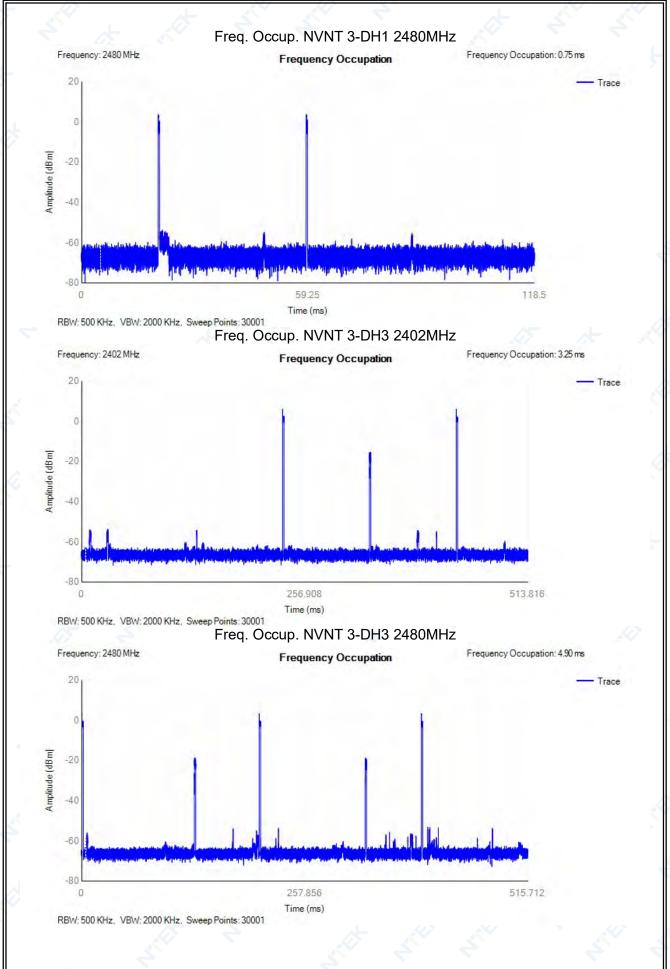

Condition	Mode	Frequency (MHz)	Frequency Occupation (ms)	Limit (ms)	Sweep Time (ms)	Burst Number	Verdict
NVNT	1-DH1	2402	0.369	0	116.604	1	Pass
NVNT	1-DH1	2480	0.368	0	116.288	1	Pass
NVNT	1-DH3	2402	3.258	0	514.764	2	Pass
NVNT	1-DH3	2480	3.252	0	513.816	2	Pass
NVNT	1-DH5	2402	14.36	0	907.552	5	Pass
NVNT	1-DH5	2480	11.488	0	907.552	4	Pass
NVNT	2-DH1	2402	0.378	, 0	119.448	1	Pass
NVNT	2-DH1	2480	0.38	0	120.08	1	Pass
NVNT	2-DH3	2402	3.27	0	516.66	2	Pass
NVNT	2-DH3	2480	8.175	0	516.66	5	Pass
NVNT	2-DH5	2402	5.744	0	907.552	2	Pass
NVNT	2-DH5	2480	11.508	0	909.132	4	Pass
NVNT	3-DH1	2402	0.756	0	119.448	2	Pass
NVNT	3-DH1	2480	0.75	0	118.5	2	Pass
NVNT	3-DH3	2402	3.252	0	513.816	2	Pass
NVNT	3-DH3	2480	4.896	0	515.712	3	Pass
NVNT	3-DH5	2402	17.28	0	910.08	6	Pass
NVNT	3-DH5	2480	11.48	0	906.92	4	Pass

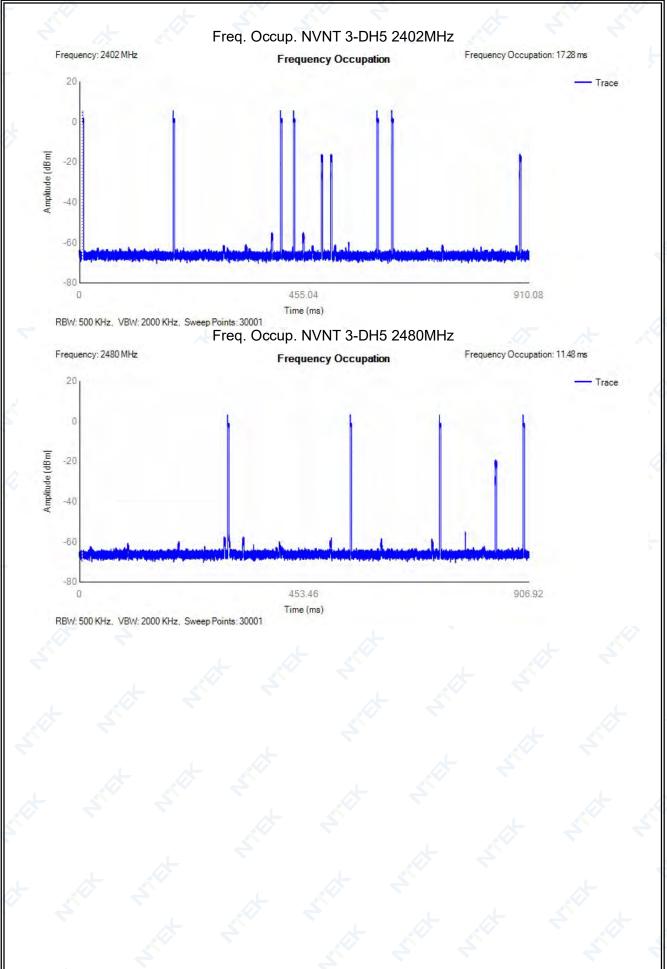
Freq. Occup. NVNT 1-DH1 2402MHz

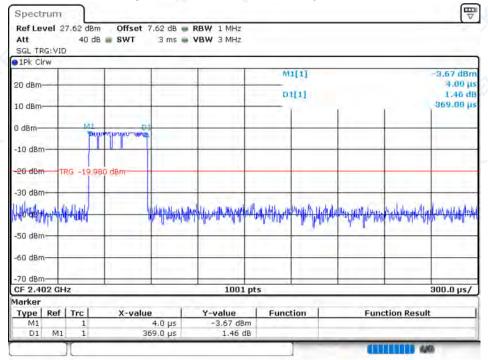



RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

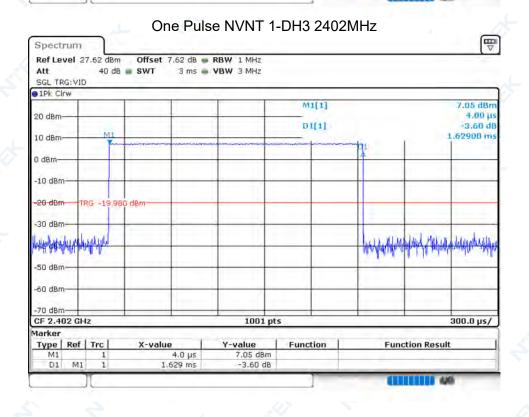


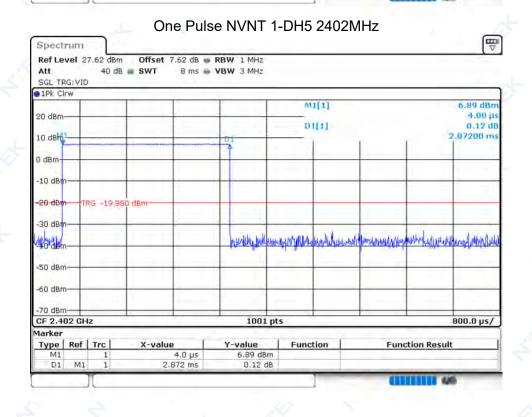




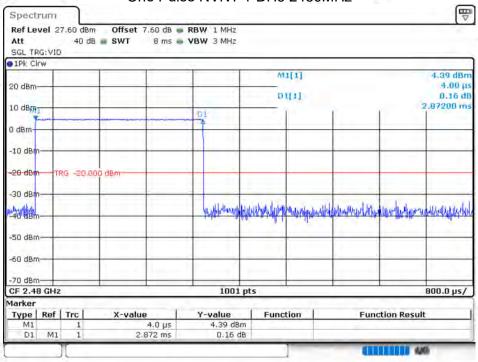


11.3 One Pulse Dwell Time

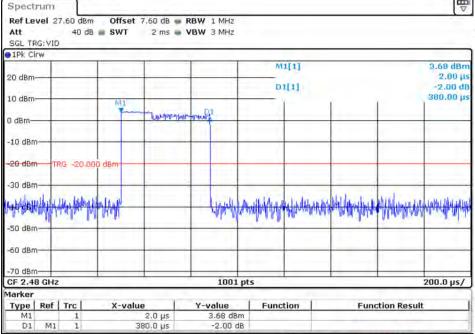

Condition	Mode	Frequency (MHz)	Pulse Time (ms)
NVNT	1-DH1	2402	0.369
NVNT	1-DH1	2480	0.368
NVNT	1-DH3	2402	1.629
NVNT	1-DH3	2480	1.626
NVNT	1-DH5	2402	2.872
NVNT	1-DH5	2480	2.872
NVNT	2-DH1	2402	0.378
NVNT	2-DH1	2480	0.38
NVNT	2-DH3	2402	1.635
NVNT	2-DH3	2480	1.635
NVNT	2-DH5	2402	2.872
NVNT	2-DH5	2480	2.877
NVNT	3-DH1	2402	0.378
NVNT	3-DH1	2480	0.375
NVNT	3-DH3	2402	1.626
NVNT	3-DH3	2480	1.632
NVNT	3-DH5	2402	2.88
NVNT	3-DH5	2480	2.87

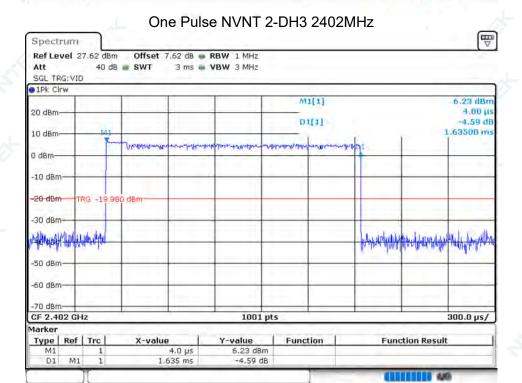


One Pulse NVNT 1-DH1 2480MHz Spectrum Ref Level 27.60 dBm Offset 7.60 dB - RBW 1 MHz 40 dB w SWT 2 ms - VBW 3 MHz SGL TRG: VID 1Pk Clrw M1[1] 4.00 III D1[1] 0.48 dB 368.00 µ 10 dBm 70 dBm CF 2.48 GHz 1001 pts 200.0 µs/ Marker Type | Ref | Trc | value 4.0 μs 368.0 μs -6.37 dBm -0.48 dB D1

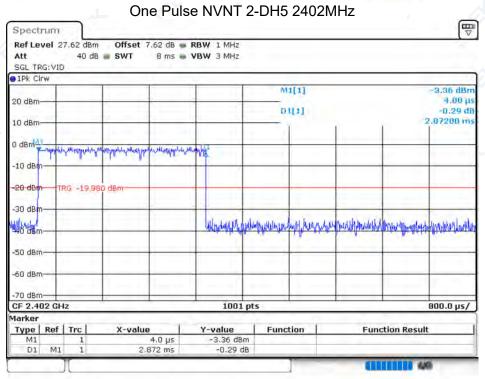


One Pulse NVNT 1-DH3 2480MHz Spectrum Ref Level 27.60 dBm Offset 7.60 dB - RBW 1 MHz 40 dB . SWT 3 ms - VBW 3 MHz SGL TRG: VID 1Pk Clrw M1[1] 4.00 III DILI 0.17 dB .62600 m 10 dBm 70 dBm 1001 pts CF 2.48 GHz 300.0 µs/ Marker Type | Ref | Trc | value 4.0 μs 1.626 ms 4.39 dBm 0.17 dB D1


Report No.: STR220218001001E One Pulse NVNT 1-DH5 2480MHz

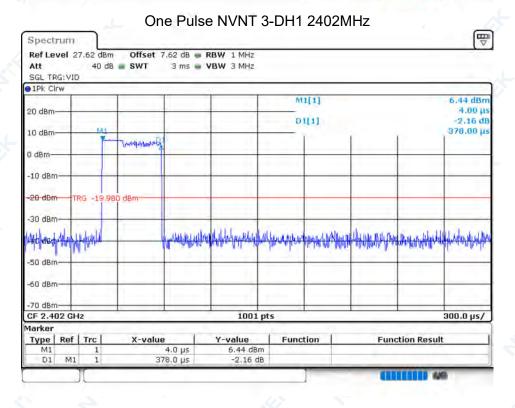


Report No.: STR220218001001E One Pulse NVNT 2-DH1 2480MHz

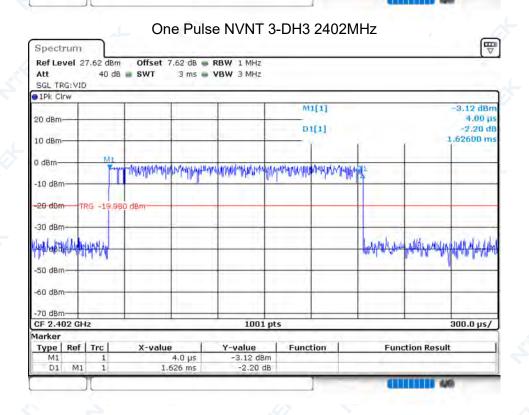

Spectrum

SGL TRG: VID 1Pk Clrw

10 dBm

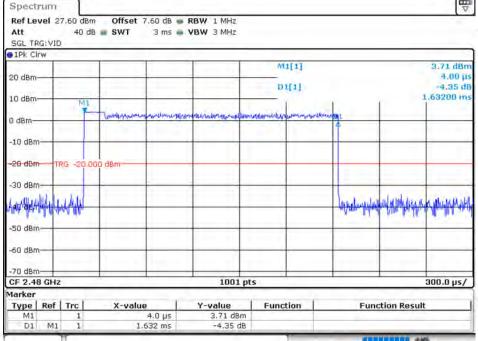

Report No.: STR220218001001E One Pulse NVNT 2-DH3 2480MHz Ref Level 27.60 dBm Offset 7.60 dB - RBW 1 MHz 40 dB . SWT 3 ms - VBW 3 MHz M1[1] 4.00 µ DILI 4.96 dB .63500 ms

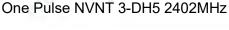
One Pulse NVNT 2-DH5 2480MHz Spectrum Ref Level 27.60 dBm Offset 7.60 dB - RBW 1 MHz Att 40 dB . SWT 7 ms - VBW 3 MHz SGL TRG: VID • 1Pk Clrw M1[1] 20 dBm 4.00 µ DHIL 1.28 dB 2.87700 m 10 dBm 0 dBm -30 dBn hope her who grand private general general private free hor feet private grand general sone of the file 70 dBm 1001 pts CF 2.48 GHz 700.0 µs/ Marker Type | Ref | Trc | value 4.0 μs 2.877 ms 3.61 dBm -1.28 dB D1

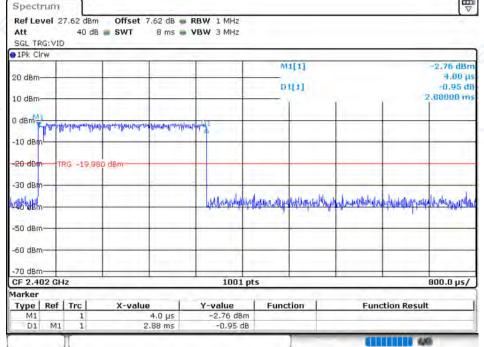


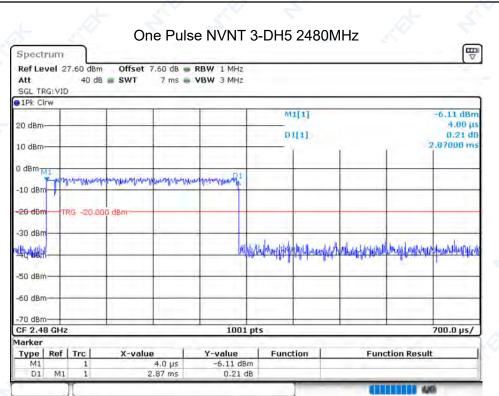
D1

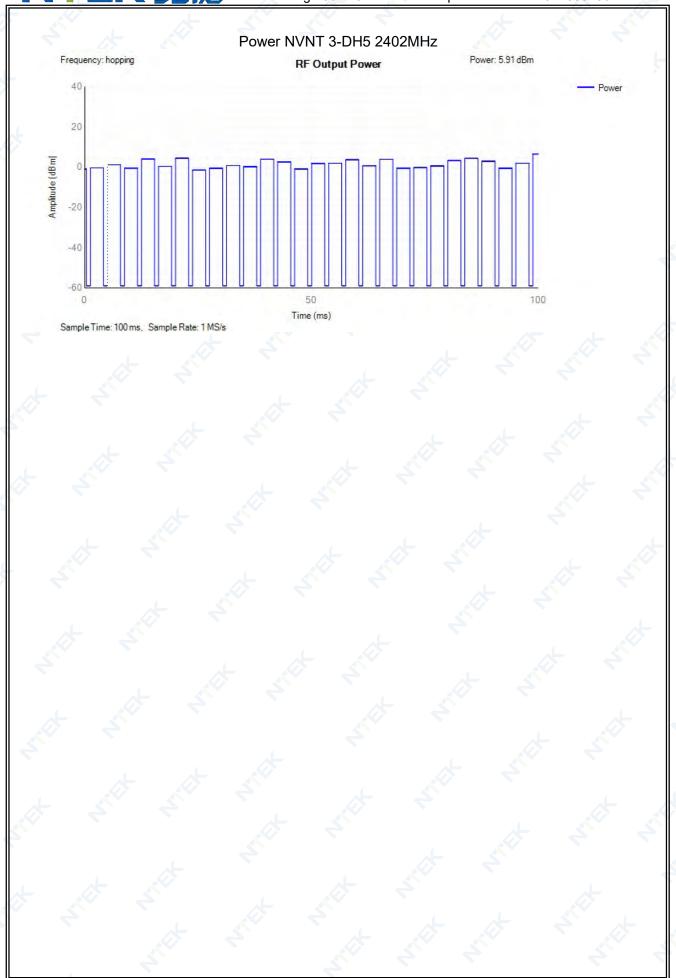
One Pulse NVNT 3-DH1 2480MHz Spectrum Ref Level 27.60 dBm Offset 7.60 dB - RBW 1 MHz Att 40 dB . SWT 3 ms - VBW 3 MHz SGL TRG: VID 1Pk Clrw M1[1] 4.00 µ D1[1] 1.99 dB 375.00 µ 10 dBm 70 dBm CF 2.48 GHz 1001 pts 300.0 µs/ Marker Type | Ref | Trc | value


-5.92 dBm -1.99 dB


4.0 μs 375.0 μs

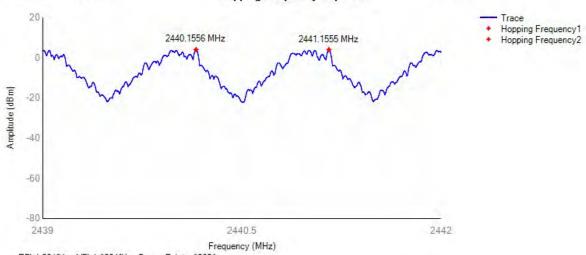


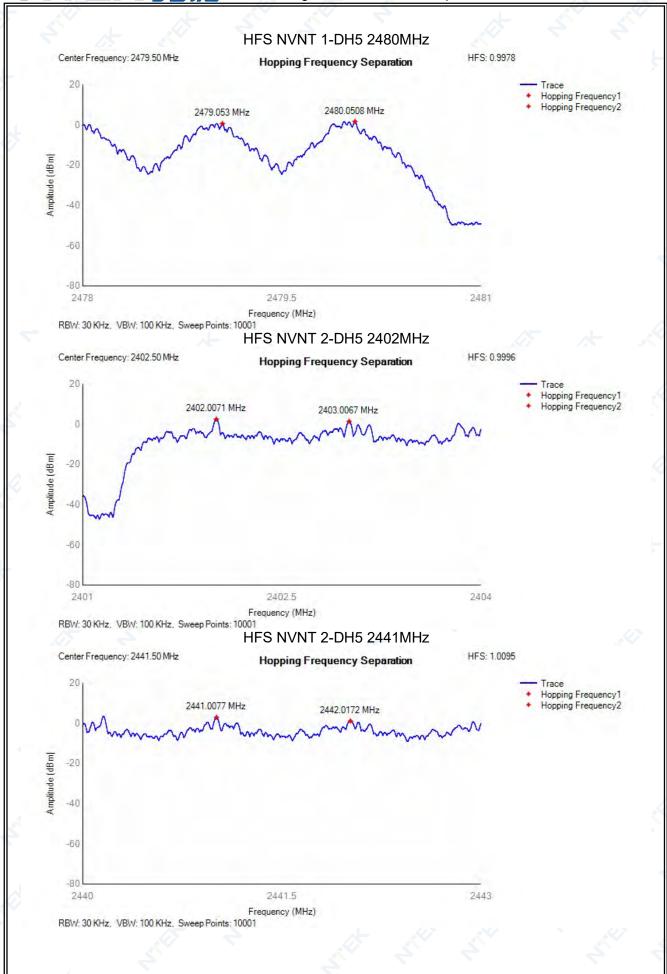

Report No.: STR220218001001E One Pulse NVNT 3-DH3 2480MHz



Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	hopping	9.61	28	9.01	20	Pass
NVNT	2-DH5	hopping	6.79	27	6.19	20	Pass
NVNT	3-DH5	hopping	6.51	28	5.91	20	Pass
NVLT	1-DH5	hopping	9.45	28	8.85	20	Pass
NVLT	2-DH5	hopping	6.56	27	5.96	20	Pass
NVLT	3-DH5	hopping	6.4	28	5.8	20	Pass
NVHT	1-DH5	hopping	9.15	28	8.55	20	Pass
NVHT	2-DH5	hopping	6.21	27	5.61	20	Pass
NVHT	3-DH5	hopping	6.16	28	5.56	20	Pass

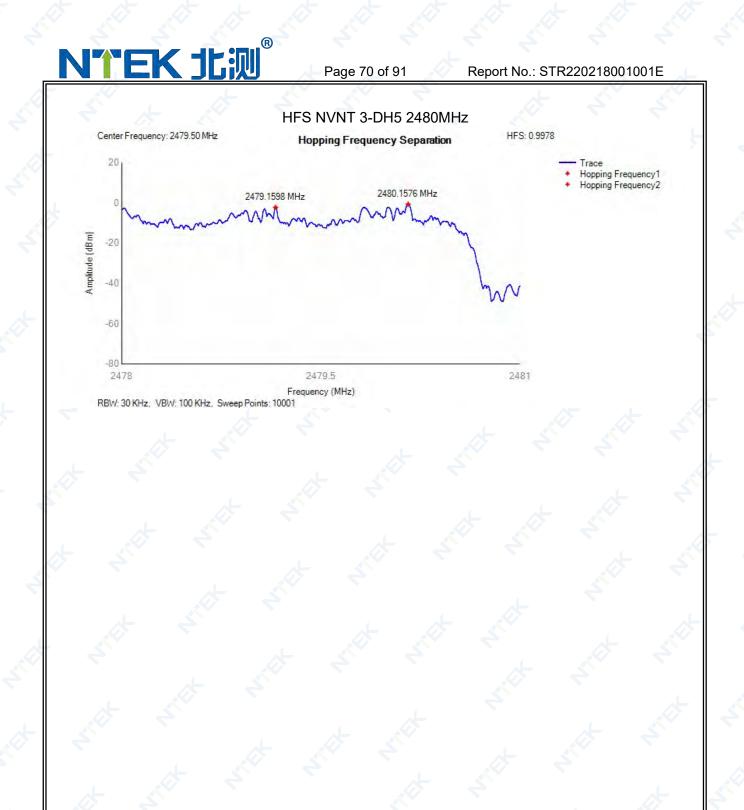
Power NVNT 1-DH5 2402MHz

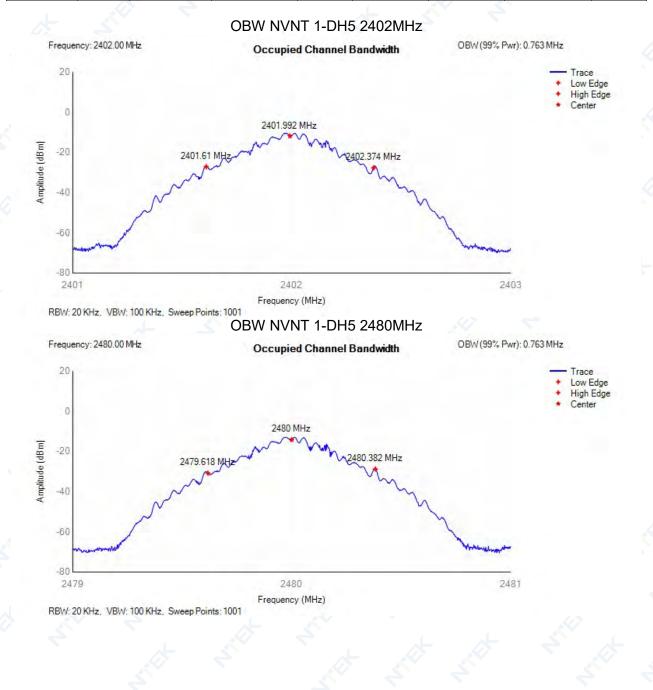




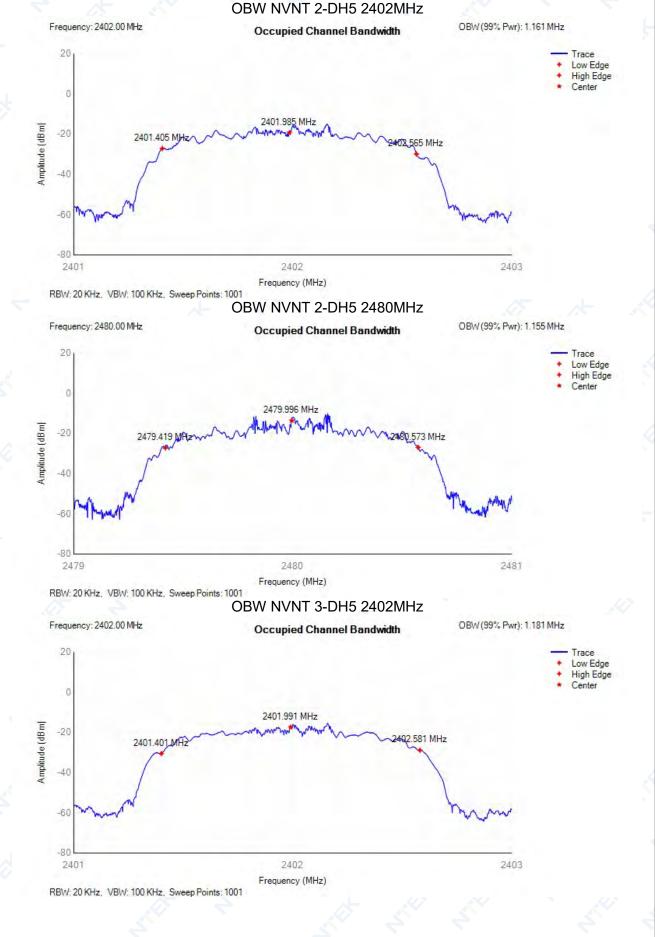
11.5 Hopping	Frequenc	cy Separation				
Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	2402.0509	2403.052	1.0011	0.1	Pass
NVNT	1-DH5	2440.1556	2441.1555	0.9999	0.1	Pass
NVNT	1-DH5	2479.053	2480.0508	0.9978	0.1	Pass
NVNT	2-DH5	2402.0071	2403.0067	0.9996	0.1	Pass
NVNT	2-DH5	2441.0077	2442.0172	1.0095	0.1	Pass
NVNT	2-DH5	2479.1562	2480.1579	1.0017	0.1	Pass
NVNT	3-DH5	2402.1553	2403.1564	1.0011	0.1	Pass
NVNT	3-DH5	2441.1562	2442.1561	0.9999	0.1	Pass
NVNT	3-DH5	2479.1598	2480.1576	0.9978	0.1	Pass

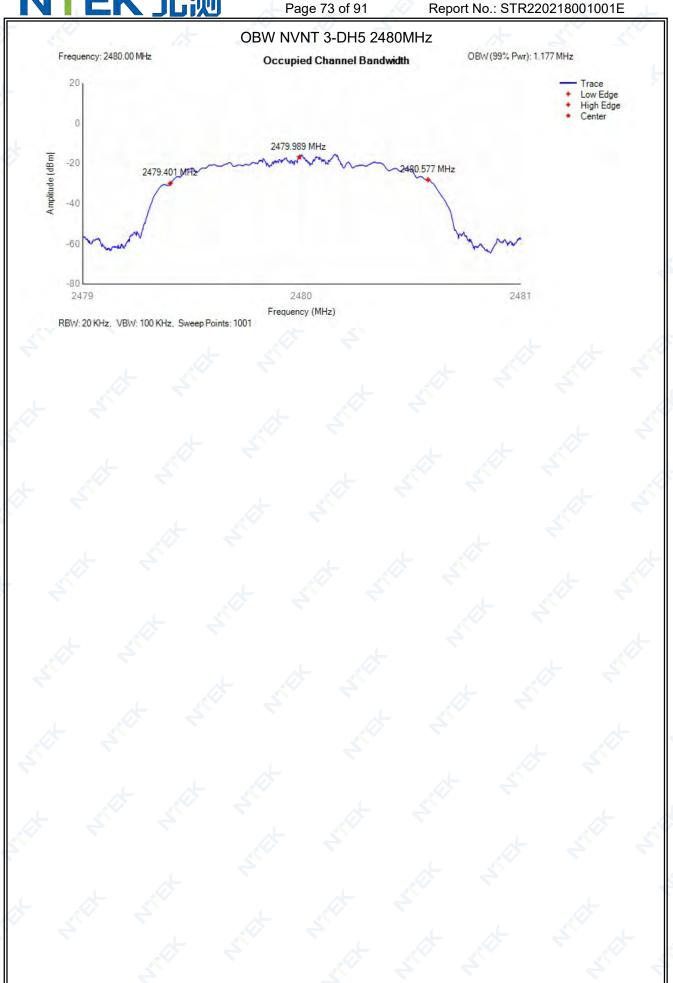
HFS NVNT 1-DH5 2402MHz HFS: 1.0011 Center Frequency: 2402.50 MHz Hopping Frequency Separation Hopping Frequency1 2402.0509 MHz 2403.052 MHz Hopping Frequency2 Amplitude (dBm) -20 -40 -60 2402.5 2401 2404 Frequency (MHz) RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001 HFS NVNT 1-DH5 2441MHz Center Frequency: 2440.50 MHz HFS: 0.9999 Hopping Frequency Separation



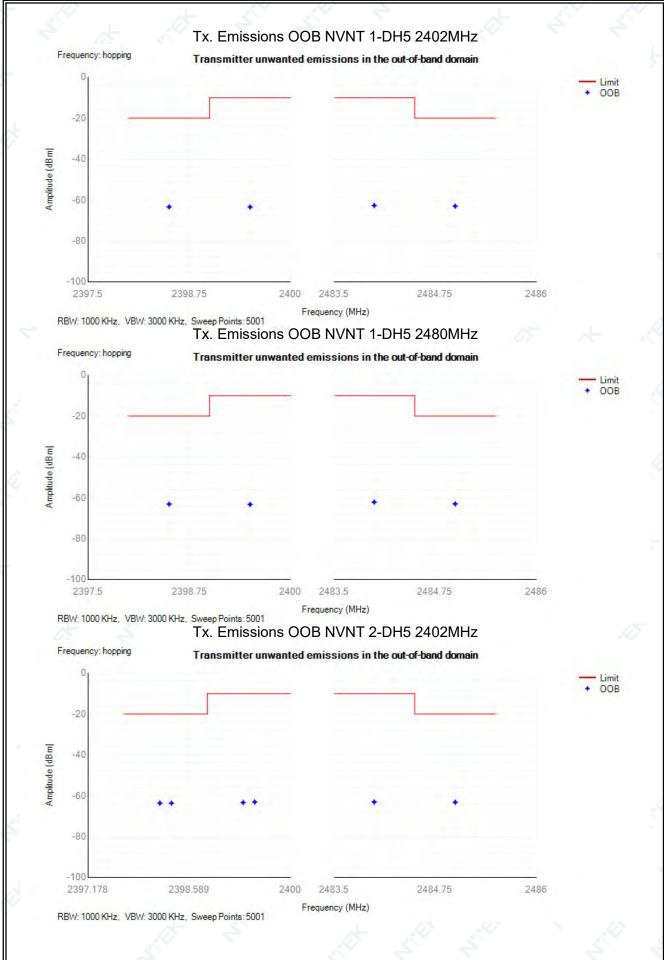


Page 69 of 91 Report No.: STR220218001001E HFS NVNT 2-DH5 2480MHz Center Frequency: 2479.50 MHz HFS: 1.0017 Hopping Frequency Separation Hopping Frequency 1 Hopping Frequency2 2480.1579 MHz 2479.1562 MHz Amplitude (dBm) -20 -40 -60 -80 2479.5 2481 2478 Frequency (MHz) RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001 HFS NVNT 3-DH5 2402MHz Center Frequency: 2402.50 MHz HFS: 1.0011 Hopping Frequency Separation 20 Hopping Frequency1 2402.1553 MHz Hopping Frequency2 2403.1564 MHz Amplitude (dBm) -20 -40 -60 2402.5 2404 2401 Frequency (MHz) RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001 HFS NVNT 3-DH5 2441MHz Center Frequency: 2441.50 MHz HFS: 0.9999 Hopping Frequency Separation 20 Hopping Frequency1 2442.1561 MHz 2441.1562 MHz Hopping Frequency2 Amplitude (dBm) -20 -40 -60 2441.5 2443 Frequency (MHz) RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001




1	1.6 Occupie	d Chann	el Bandwidth						
	Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
	NVNT	1-DH5	2402	2401.992	0.763	2401.61	2402.374	2400 - 2483.5MHz	Pass
Ĉ	NVNT	1-DH5	2480	2480	0.763	2479.618	2480.382	2400 - 2483.5MHz	Pass
	NVNT	2-DH5	2402	2401.985	1.161	2401.405	2402.565	2400 - 2483.5MHz	Pass
	NVNT	2-DH5	2480	2479.996	1.155	2479.419	2480.573	2400 - 2483.5MHz	Pass
	NVNT	3-DH5	2402	2401.991	1.181	2401.401	2402.581	2400 - 2483.5MHz	Pass
	NVNT	3-DH5	2480	2479.989	1.177	2479.401	2480.577	2400 - 2483.5MHz	Pass

Report No.: STR220218001001E OBW (99% Pwr): 1.161 MHz Low Edge High Edge Center 2403,565 MHz 2403 OBW (99% Pwr): 1.155 MHz Low Edge High Edge Center 2481 OBW (99% Pwr): 1.181 MHz Trace Low Edge High Edge Center 2402.581 MHz



11.7 Transmitter unwanted emissions in the out-of-band domain

Condition	Mode	Frequency (MHz)	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	1-DH5	hopping	2399.5	-63.4	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.35	-20	Pass
NVNT	1-DH5	hopping	2484	-62.67	-10	Pass
NVNT	1-DH5	hopping	2485	-62.99	-20	Pass
NVNT	1-DH5	hopping	2399.5	-63.27	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.11	-20	Pass
NVNT	1-DH5	hopping	2484	-62.12	-10	Pass
NVNT	2-DH5	hopping	2399.5	-63.07	-10	Pass
NVNT	2-DH5	hopping	2399.339	-63.33	-10	Pass
NVNT	2-DH5	hopping	2398.339	-63.63	-20	Pass
NVNT	2-DH5	hopping	2398.178	-63.61	-20	Pass
NVNT	2-DH5	hopping	2484	-63.05	-10	Pass
NVNT	2-DH5	hopping	2485	-63.18	-20	Pass
NVNT	2-DH5	hopping	2399.5	-63.36	-10	Pass
NVNT	2-DH5	hopping	2399.339	-63.06	-10	Pass
NVNT	2-DH5	hopping	2398.339	-63.46	-20	Pass
NVNT	2-DH5	hopping	2398.178	-63.66	-20	Pass
NVNT	2-DH5	hopping	2484	-62.99	-10	Pass
NVNT	2-DH5	hopping	2484.155	-62.44	-10	Pass
NVNT	2-DH5	hopping	2485.155	-63	-20	Pass
NVNT	2-DH5	hopping	2485.31	-63.18	-20	Pass
NVNT	3-DH5	hopping	2399.5	-37.71	-10	Pass
NVNT	3-DH5	hopping	2399.319	-37.69	-10	Pass
NVNT	3-DH5	hopping	2398.319	-37.87	-20	Pass
NVNT	3-DH5	hopping	2398.138	-37.93	-20	Pass
NVNT	3-DH5	hopping	2484	-37.65	-10	Pass
NVNT	3-DH5	hopping	2484.155	-37.62	-10	Pass
NVNT	3-DH5	hopping	2485.155	-37.64	-20	Pass
NVNT	3-DH5	hopping	2485.31	-37.53	-20	Pass
NVNT	3-DH5	hopping	2399.5	-63.3	-10	Pass
NVNT	3-DH5	hopping	2399.319	-62.99	-10	Pass
NVNT	3-DH5	hopping	2398.319	-63.62	-20	Pass
NVNT	3-DH5	hopping	2398.138	-63.47	-20	Pass
NVNT	3-DH5	hopping	2484	-62.93	-10	Pass
NVNT	3-DH5	hopping	2484.98	-62.71	-10	Pass
NVNT	3-DH5	hopping	2485.98	-63.06	-20	Pass
NVNT	3-DH5	hopping	2486.96	-63.35	-20	Pass

Report No.: STR220218001001E OOB 2484.75 2486 Limit OOB 2486 2484.75 Limit OOB

-20

-40

-60

-80

2397.178

Amplitude (dBm)

Amplitude (dBm)

-80

-100

-20

-60

-80

-100

2397.138

RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001

Amplitude (dBm)

Page 76 of 91 Report No.: STR220218001001E Tx. Emissions OOB NVNT 2-DH5 2480MHz Frequency: hopping Transmitter unwanted emissions in the out-of-band domain OOB 2398.589 2400 2483.5 2484.905 2486.31 Frequency (MHz) RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001 Tx. Emissions OOB NVNT 3-DH5 2402MHz Frequency: hopping Transmitter unwanted emissions in the out-of-band domain Limit OOB 2398.569 2400 2483.5 2484.905 2486.31 Frequency (MHz) RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001 Tx. Emissions OOB NVNT 3-DH5 2480MHz Frequency: hopping Transmitter unwanted emissions in the out-of-band domain Limit OOB 2398.569 2400 2483.5 2485.73 2487.96 Frequency (MHz)

2480

-230 MHz 230 MHz

NVNT

1-DH5

Report No.: STR220218001001E Page 77 of 91 11.8 Transmitter unwanted emissions in the spurious domain Spur Level Frequency Spur Level Limit Condition Mode Range Spur Freq (MHz) Verdict (MHz) Peak(dBm) RMS(dBm) (dBm) 30 MHz **NVNT** 2402 -66.93 NA 1-DH5 42 -36 **Pass** -47 MHz 47 MHz **NVNT** 1-DH5 2402 64 -66.52 NA -54 **Pass** -74 MHz 74 MHz **NVNT** 1-DH5 2402 81.5 -66.6 NA -36 **Pass** -87.5 MHz 87.5 MHz **NVNT** 1-DH5 2402 99.45 -66.42 NA -54 Pass -118 MHz 118 MHz **NVNT** 1-DH5 2402 149.65 -64.5 NA -36 Pass -174 MHz 174 MHz **NVNT** 1-DH5 2402 204.05 -65.06NA -54 **Pass** -230 MHz 230 MHz 2402 **NVNT** 1-DH5 390.45 -64.95 NA -36 Pass -470 MHz 470 MHz **NVNT** 1-DH5 2402 562.95 -65 NA -54 Pass -694 MHz 694 MHz **NVNT** 1-DH5 2402 -1000 882.25 -62.93 NA -36 Pass MHz 1000 MHz **NVNT** 1-DH5 2402 1981 -53.25 NA -30 Pass -2398 MHz 2485.5 MHz **NVNT** 1-DH5 2402 6710 NA -45.3-30 Pass -12750 MHz 30 MHz **NVNT** 2441 34.05 1-DH5 -66.23NA -36 **Pass** -47 MHz 47 MHz **NVNT** 1-DH5 2441 47.3 -66.67 NA -54 Pass -74 MHz 74 MHz **NVNT** 1-DH5 2441 85.45 -66.44 NA -36 Pass -87.5 MHz 87.5 MHz **NVNT** 1-DH5 2441 103.5 -65.56 NA -54 **Pass** -118 MHz 118 MHz **NVNT** 1-DH5 2441 143.2 -65.61 NA -36 **Pass** -174 MHz 174 MHz NVNT 1-DH5 2441 179.15 -65.47NA -54 Pass -230 MHz 230 MHz **NVNT** 1-DH5 2441 NA -36 315.5 -64.9 Pass -470 MHz 470 MHz **NVNT** 1-DH5 2441 549.2 -64.59NA -54 **Pass** -694 MHz 694 MHz **NVNT** 1-DH5 2441 -1000 897.8 -61.32 NA -36 **Pass** MHz 1000 MHz **NVNT** 1-DH5 2441 -2398 2117 -52.39NA -30 Pass MHz 2485.5 MHz **NVNT** 1-DH5 2441 6994 -45.28 NA -30 **Pass** -12750 MHz 30 MHz 1-DH5 **NVNT** 2480 NA Pass 46.0311377245509 -66.7 -36 -47 MHz 47 MHz **NVNT** 1-DH5 2480 53.0011976047904 -66.93 NA -54 Pass -74 MHz 74 MHz **NVNT** Pass 1-DH5 2480 85.0634730538922 -67.18NA -36 -87.5 MHz 87.5 MHz **NVNT** 1-DH5 2480 101.675449101796 -65.87 NA -54 **Pass** -118 MHz 118 MHz **NVNT** 1-DH5 2480 160.804790419162 -64.86 NA -36 Pass -174 MHz 174 MHz

203.205988023952

432.637125748503

Pass

-54

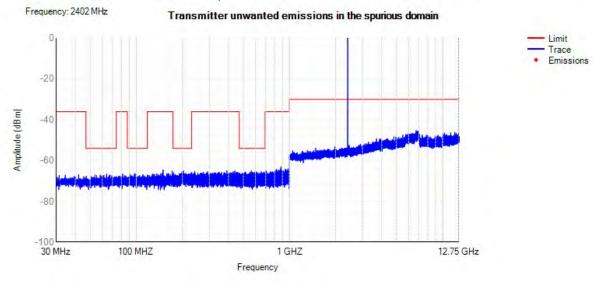
NA

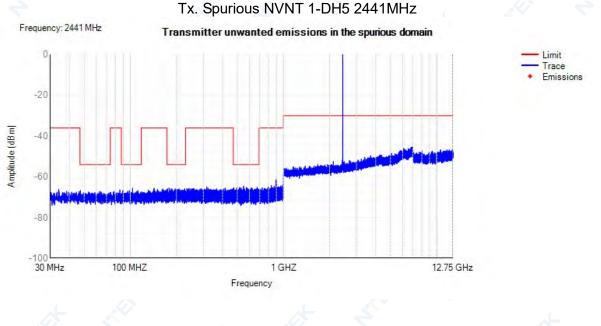
-64.33

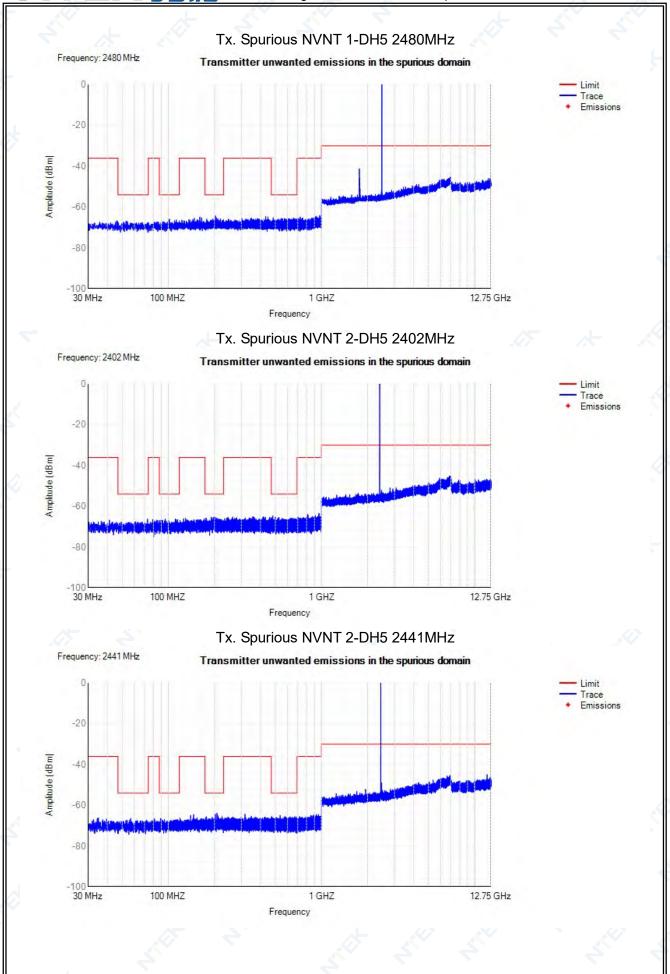
64.57

			-470 MHz					
NVNT	1-DH5	2480	470 MHz -694 MHz	484.331736526946	-65.23	NA	-54	Pass
	4		00 1 1111 12				4	

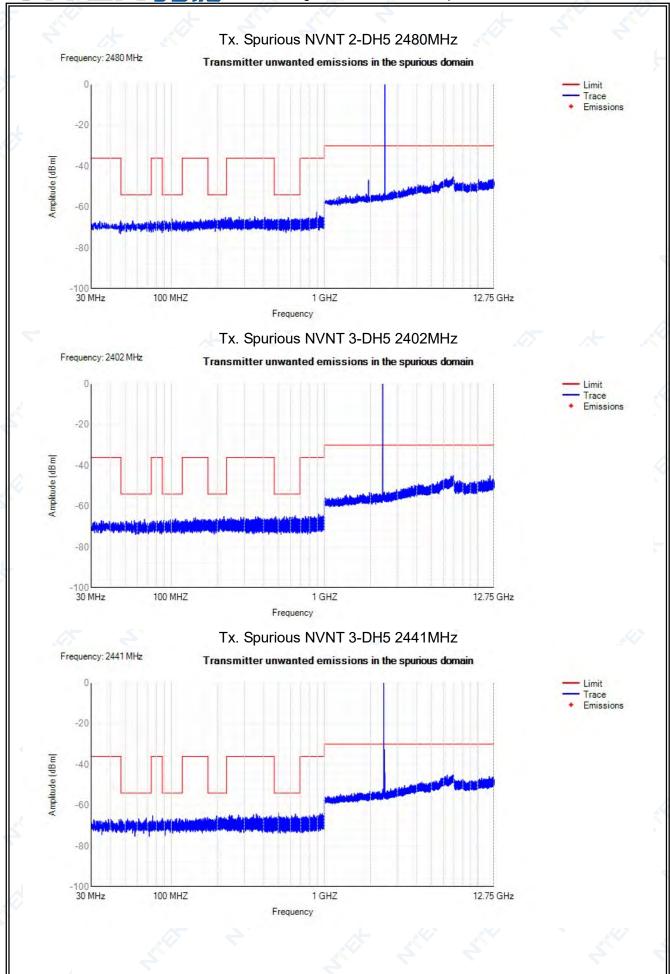
NVNT	1-DH5	2480	694 MHz -1000 MHz	974.443113772455	-64.16	NA	-36	Pass
NVNT	1-DH5	2480	1000 MHz -2398 MHz	1766.91616766467	-41.22	NA	-30	Pass
NVNT	1-DH5	2480	2485.5 MHz -12750 MHz	6963.65269461078	-45.1	NA S	-30	Pass
NVNT	2-DH5	2402	30 MHz -47 MHz	41.3	-66.77	NA	-36	Pass
NVNT	2-DH5	2402	47 MHz -74 MHz	73.25	-66.26	NA	-54	Pass
NVNT	2-DH5	2402	74 MHz -87.5 MHz	79.05	-66.47	NA	-36	Pass
NVNT	2-DH5	2402	87.5 MHz -118 MHz	111.15	-66.23	NA	-54	Pas
NVNT	2-DH5	2402	118 MHz -174 MHz	129.6	-65.9	NA	-36	Pas
NVNT	2-DH5	2402	174 MHz -230 MHz	190.8	-65.3	NA	-54	Pas
NVNT	2-DH5	2402	230 MHz -470 MHz	357	-65.01	NA	-36	Pas
NVNT	2-DH5	2402	470 MHz -694 MHz	481.45	-64.74	NA	-54 -36	Pas
NVNT	2-DH5	2402	694 MHz -1000 MHz	964.05	-63.42	NA		Pas
NVNT	2-DH5	2402	1000 MHz -2398 MHz	1736.5	-53.64	NA	-30	Pas
NVNT	2-DH5	2402	2485.5 MHz -12750 MHz	6853	-45.09	NA S	-30	Pas
NVNT	2-DH5	2441	30 MHz -47 MHz	35	-66.14	NA	-36	Pas
NVNT	2-DH5	2441	47 MHz -74 MHz	56.9	-66.41	NA NA	-54	Pas
NVNT	2-DH5	2441	74 MHz -87.5 MHz	81.3	-66.66	NA	-36	Pas
NVNT	2-DH5	2441	87.5 MHz -118 MHz	89.8	-66.36	NA	-54	Pas
NVNT	2-DH5	2441	118 MHz -174 MHz	146.5	-64.52	NA	-36	Pas
NVNT	2-DH5	2441	174 MHz -230 MHz	208	-63.87	NA	-54	Pas
NVNT	2-DH5	2441	230 MHz -470 MHz	316.8	-64.37	NA	-36	Pas
NVNT	2-DH5	2441	470 MHz -694 MHz	537.05	-64.99	NA	-54	Pass
NVNT	2-DH5	2441	694 MHz -1000 MHz	956.5	-64.44	NA	-36	Pas
NVNT	2-DH5	2441	1000 MHz -2398 MHz	1941	-52.21	NA	-30	Pass
NVNT	2-DH5	2441	2485.5 MHz -12750 MHz	12065	-44.95	NA	-30	Pass
NVNT	2-DH5	2480	30 MHz -47 MHz	46.8443113772455	-66.74	NA	-36	Pas
NVNT	2-DH5	2480	47 MHz -74 MHz	73.0982035928144	-66.75	NA	-54	Pas
NVNT	2-DH5	2480	74 MHz -87.5 MHz	82.0431137724551	-66.79	NA	-36	Pas
NVNT	2-DH5	2480	87.5 MHz -118 MHz	101.326946107784	-65.69	NA	-54	Pas
NVNT	2-DH5	2480	118 MHz -174 MHz	155.22874251497	-65.94	NA	-36	Pas
NVNT	2-DH5	2480	174 MHz -230 MHz	225.974850299401	-64.91	NA	-54	Pass

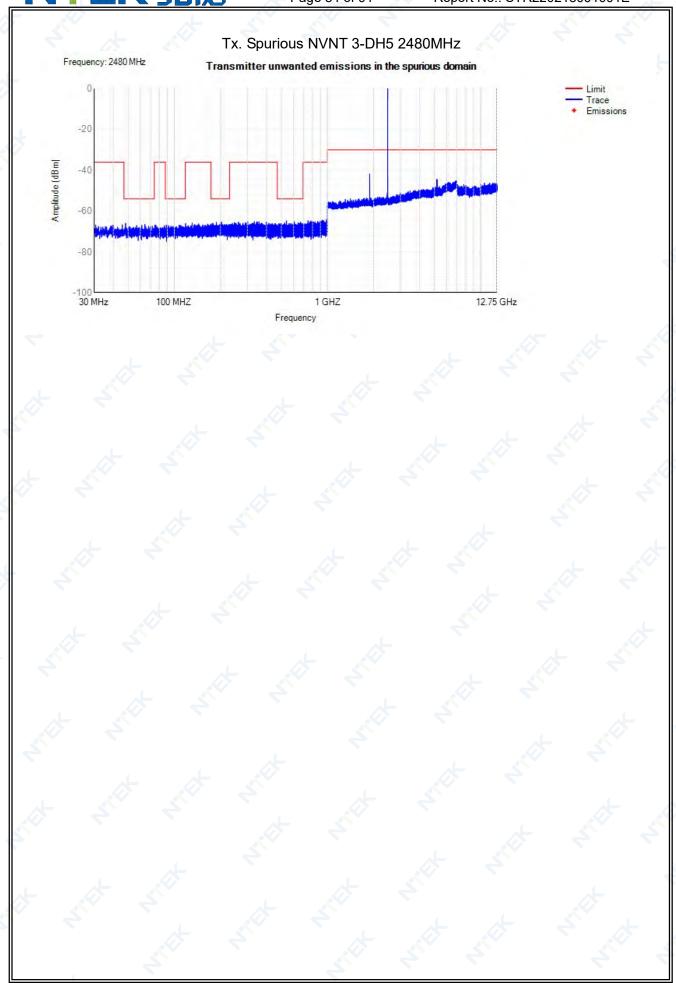


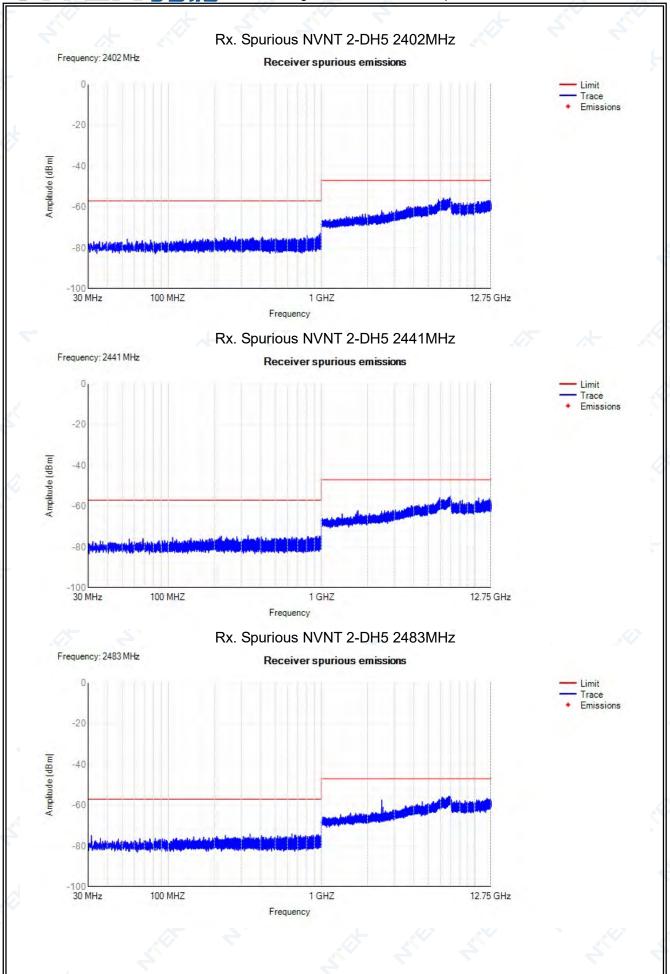

230 MHz **NVNT** 2-DH5 2480 350.855089820359 -64.62 NA **Pass** -36 -470 MHz 470 MHz **NVNT** 2-DH5 2480 -64.94 579.821556886227 NA -54 Pass -694 MHz 694 MHz 2480 890.337724550898 **NVNT** 2-DH5 -62.46NA -36 **Pass** -1000 MHz 1000 MHz **NVNT** 2-DH5 2480 1940 -46.75 NA -30 **Pass** -2398 MHz 2485.5 MHz **NVNT** 2-DH5 2480 6976.31736526946 -45.03 NA -30 **Pass** -12750 MHz 30 MHz **NVNT** NA 3-DH5 2402 35.35 -67.09-36 Pass -47 MHz 47 MHz **NVNT** 3-DH5 2402 66.9 -66.36NA -54 **Pass** -74 MHz 74 MHz **NVNT** 3-DH5 2402 85.9 -66.88 NA -36 Pass -87.5 MHz 87.5 MHz **NVNT** 3-DH5 2402 106.9 -66.03 NA -54 **Pass** -118 MHz 118 MHz **NVNT** 3-DH5 2402 144 -65.54NA -36 Pass -174 MHz 174 MHz 3-DH5 2402 220.55 -64.99 NA -54 NVNT Pass -230 MHz 230 MHz **NVNT** 3-DH5 2402 368.4 -65.08 NA -36 **Pass** -470 MHz 470 MHz NVNT 3-DH5 2402 644.5 -64.56 NA -54 Pass -694 MHz 694 MHz NVNT 3-DH5 2402 NΑ 914 -63.69 -36 Pass -1000 MHz 1000 MHz 2402 **Pass** NVNT 3-DH5 1969 -53.18 NA -30 -2398 MHz 2485.5 MHz 6909 NVNT 3-DH5 2402 -44.74 NA -30 Pass -12750 MHz 30 MHz **NVNT** 3-DH5 2441 38.9 -66.81 NA -36 **Pass** -47 MHz 47 MHz 2441 **NVNT** 68.75 -54 3-DH5 -66.13 NA Pass -74 MHz 74 MHz **NVNT** 3-DH5 2441 75.6 -65.14NA -36 Pass -87.5 MHz 87.5 MHz **NVNT** 3-DH5 2441 108.65 -66.5 NA -54 Pass -118 MHz 118 MHz **NVNT** 3-DH5 2441 172.5 -65.86 NA -36 **Pass** -174 MHz 174 MHz **NVNT** 3-DH5 2441 197.5 -65.21 NA -54 **Pass** -230 MHz 230 MHz **NVNT** 2441 359.5 -64.21 NA -36 Pass 3-DH5 -470 MHz 470 MHz -64.04 **NVNT** 3-DH5 2441 503.1 NA -54 **Pass** -694 MHz 694 MHz NVNT 3-DH5 2441 -64.06 NA -36 939.35 **Pass** -1000 MHz 1000 MHz **NVNT** -53.15 3-DH5 2441 1979.5 NA -30 **Pass** -2398 MHz 2485.5 MHz **NVNT** 3-DH5 2441 6982.5 -44.68 NA -30 Pass -12750 MHz 30 MHz **NVNT** 3-DH5 2480 45.75 -66.7NA -36 Pass -47 MHz 47 MHz NVNT 3-DH5 2480 48.1 -65.96 NA -54 **Pass** -74 MHz 74 MHz **NVNT** 3-DH5 2480 75.7 -66.8 NA -36 Pass -87.5 MHz 87.5 MHz **NVNT** 3-DH5 2480 88.7 NA -54 -66.95Pass -118 MHz


NVNT	3-DH5	2480	118 MHz -174 MHz	130.95	-65.9	NA	-36	Pass
NVNT	3-DH5	2480	174 MHz -230 MHz	203.35	-65.32	NA	-54	Pass
NVNT	3-DH5	2480	230 MHz -470 MHz	301.2	-65.09	_ NA	-36	Pass
NVNT	3-DH5	2480	470 MHz -694 MHz	540.25	-64.77	NA	-54	Pass
NVNT	3-DH5	2480	694 MHz -1000 MHz	986.45	-64.15	NA	-36	Pass
NVNT	3-DH5	2480	1000 MHz -2398 MHz	1887	-41.89	NA	-30	Pass
NVNT	3-DH5	2480	2485.5 MHz -12750 MHz	5181	-44.48	NA	-30	Pass

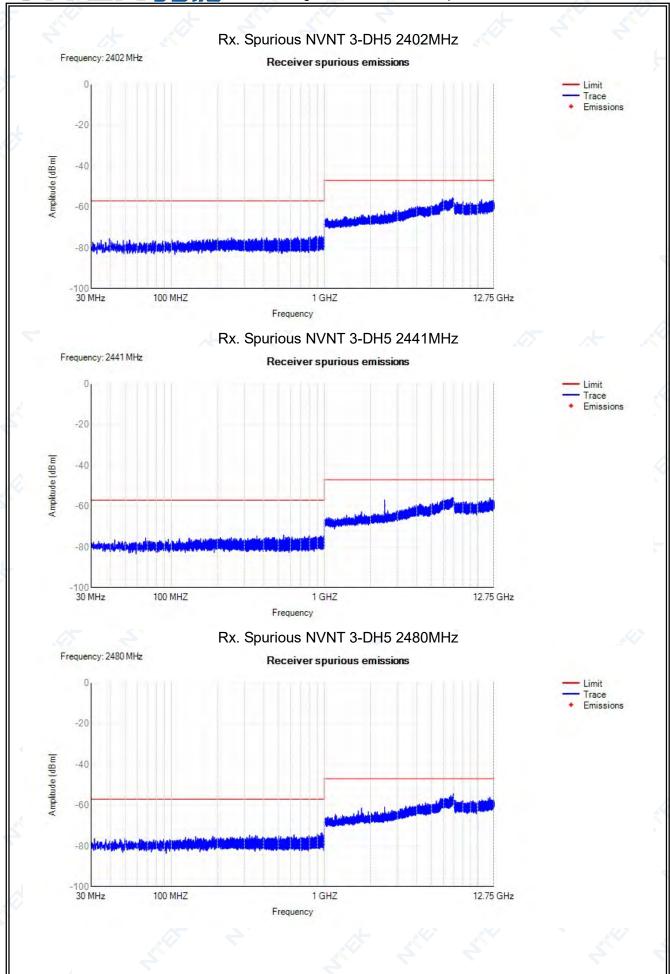
Tx. Spurious NVNT 1-DH5 2402MHz



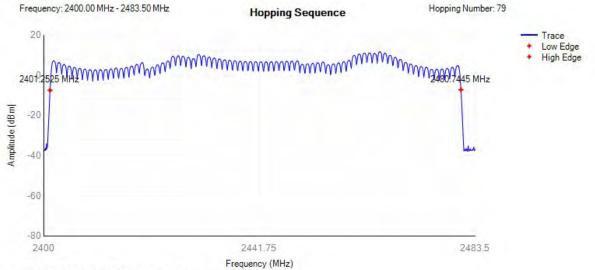


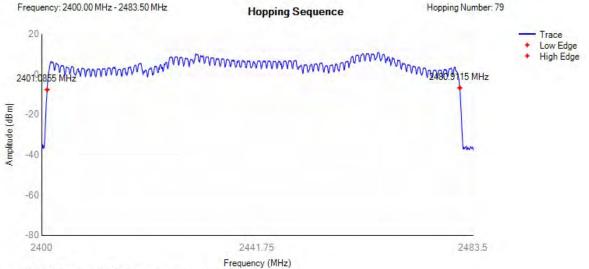

11.9 Receiver spurious emission	11.9	Receiver	spurious	emissions
---------------------------------	------	----------	----------	-----------

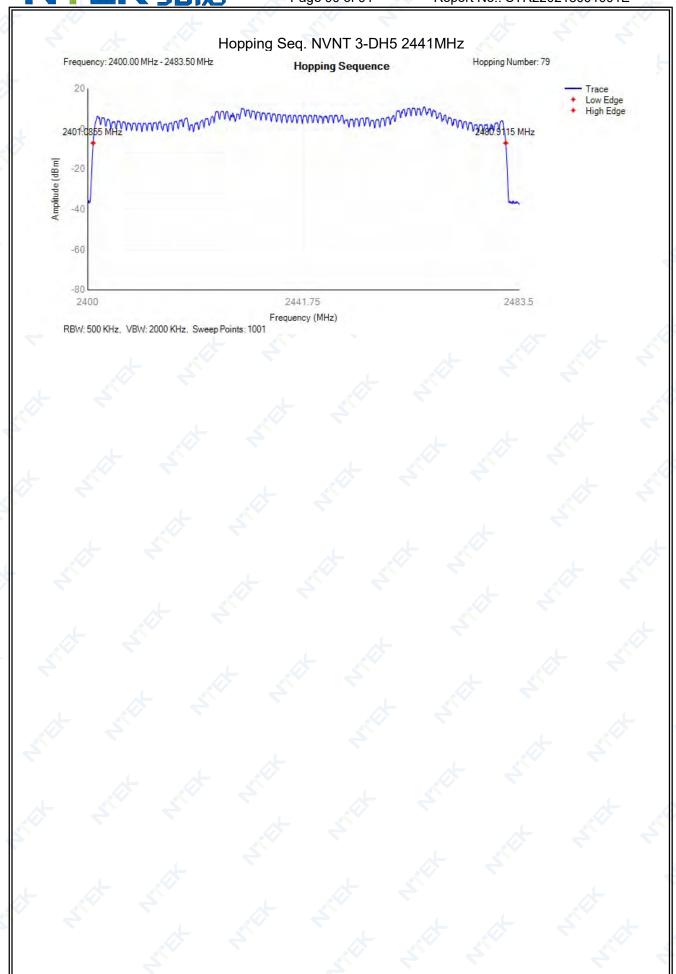
Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
NVNT	1-DH5	2402	30 MHz -1000 MHz	124.95	-73.99	NA		Pass
NVNT	1-DH5	2402	1000 MHz -12750 MHz	6942.24141598945	-55.57	NA	-47	Pass
NVNT	1-DH5	2441	30 MHz -1000 MHz	828.3	-74.05	NA	-57	Pass
NVNT	NVNT 1-DH5 2441 -12		1000 MHz -12750 MHz	6884	-53.45	NA	-47	Pass
NVNT	1-DH5	2480	30 MHz -1000 MHz 1000	618.6	-74.18	NA	-57	Pass
NVNT	1-DH5	2480	MHz -12750 MHz	6926	-55.42	NA	-47	Pass
NVNT	2-DH5	2402	30 MHz -1000 MHz	982.65	-72.67	NA	-57	Pass
NVNT	2-DH5	2402	1000 MHz -12750 MHz	6998	-55.36	NA	-47	Pass
NVNT	2-DH5	2441	30 MHz -1000 MHz	332.1	-74.32	NA	-57	Pass
NVNT	2-DH5	2441	1000 MHz -12750 MHz	6968	-54.89	★ NA	-47	Pass
NVNT	2-DH5	2483	30 MHz -1000 MHz	642.3	-73.9	NA NA	-57	Pass
NVNT	2-DH5	2483	1000 MHz -12750 MHz	6981.5	-55.31	NA	-47	Pass
NVNT	3-DH5	2402	30 MHz -1000 MHz	957.6	-74.08	NA	-57	Pass
NVNT	T 3-DH5 2402 MH -127 MH		1000 MHz -12750 MHz	6943	-55.36	NA	-47	Pass
NVNT	IT 3-DH5 2441	2441	30 MHz -1000 MHz	541.4	-74.08	NA	-57	Pass
NVNT	3-DH5	2441	1000 MHz -12750 MHz	6993.5	-55.57	.57 NA		Pass
NVNT	3-DH5	2480	30 MHz -1000 MHz	962.2	-73.52	NA	-57	Pass
NVNT	3-DH5	2480	1000 MHz -12750 MHz	6948.5	-54.22	NA	-47	Pass



Report No.: STR220218001001E Rx. Spurious NVNT 1-DH5 2402MHz Frequency: 2402 MHz Receiver spurious emissions Limit Trace Emissions Amplitude (dBm) -40 -60 100 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency Rx. Spurious NVNT 1-DH5 2441MHz Frequency: 2441 MHz Receiver spurious emissions Limit Trace Emissions Amplitude (dBml -40 -60 100 Hz 100 MHZ 1 GHZ 12.75 GHz Frequency Rx. Spurious NVNT 1-DH5 2480MHz Frequency: 2480 MHz Receiver spurious emissions Limit Trace Emissions -20 Amplitude (dBm) -40 -60 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency

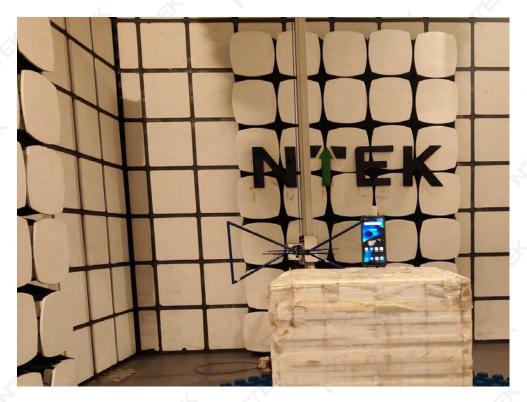


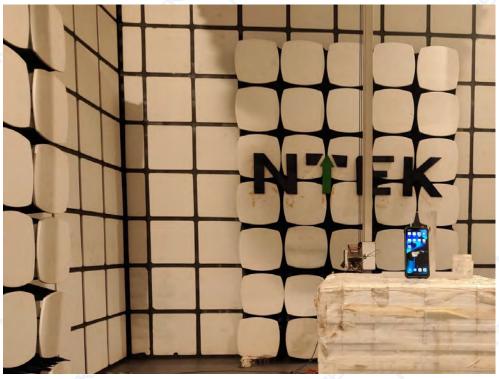

11	I.10 Hoppin	g Sequer	nce		4		
	Condition	Mode	Hopping Number	Limit	Band Allocation (%)	Limit Band Allocation (%)	Verdict
	TNVN	1-DH5	79	15	95.2	70	Pass
	NVNT	2-DH5	79	15	95.6	70	Pass
	NVNT	3-DH5	79	15	95.6	70	Pass


RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 1001

Hopping Seq. NVNT 2-DH5 2441MHz

RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 1001





12. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT