

RADIO TEST REPORT ETSI EN 300 440 V2.2.1 (2018-07)

Product: Smart Phone

Trade Mark: Blackview

Model Name: BL8800 Pro

Family Model: BL8800

Report No.: STR220218001005E

Prepared for

DOKE COMMUNICATION (HK) LIMITED.

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090

Website: http://www.ntek.org.cn

NTEK 北测®

TEST RESULT CERTIFICATION

Report No.: STR220218001005E

Applicant's name: DO	OKE COMMUNICATION (HK) LIMITED.
Address :: RM	M 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD ANCHAI HK, CHINA.
Manufacturer's Name: Sh	
Address 80	1, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Langming District, Shenzhen, China.
Product description	
Product name: Sn	nart Phone
Trademark: Bla	ackview
Model and/or type reference : BL	8800 Pro
Family Model: BL	8800
Standards ET	SI EN 300 440 V2.2.1 (2018-07)
equipment under test (EUT) is in or requirements. And it is applicable of This report shall not be reproduced	been tested by NTEK, and the test results show that the compliance with the of article 3.2 of the Directive 2014/53/EU only to the tested sample identified in the report. It is except in full, without the written approval of NTEK, this ed by NTEK, personnel only, and shall be noted in the revision of income.
	: Feb 18. 2028 ~ Mar 11. 2022
Date of Issue	
Test Result Testing Engineer	
Authorized Signa	Alex Li)

Page 3 of 74

Table of Contents	Page
1 . SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.2 MEASUREMENT UNCERTAINTY	8
2 . GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 TEST CONDITIONS	10
2.3 DESCRIPTION OF TEST CONDITIONS	11
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	13
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	14
3 . EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)	15
3.1 APPLICABILITY	15
3.2 LIMITS	15
3.3 GENERAL REQUIREMENTS	15
3.4 TEST PROCEDURES 3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS	15 15
3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS	16
3.5 TEST SETUP LAYOUT	16
3.6 EUT OPERATION DURING TEST	16
3.7 TEST RESULT FOR -6 DB BANDWIDTH	17
3.8 TEST RESULT FOR E.I.R.P	18
4 . PERMITTED RANGE OF OPERATING FREQUENCIES	19
4.1 APPLIED PROCEDURES / LIMIT	19
4.2 TEST PROCEDURES	19
4.3 TEST SETUP LAYOUT	19
4.4 EUT OPERATION DURING TEST	19
4.5 TEST RESULTS	20
5 . UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	23
5.1 APPLIED PROCEDURES / LIMIT	23
5.2 MEASURING INSTRUMENTS AND SETTING	23
5.3 TEST PROCEDURES	23
5.4 TEST SETUP LAYOUT	24

Table of Contents	Page
5.5 EUT OPERATION DURING TEST	24
5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS	24
5.7 TEST RESULTS	25
6 . DUTY CYCLE	27
6.1 APPLICABILITY AND DESCRIPTION	27
6.2 LIMITS	27
6.4 METHOD OF MEASUREMENT	27
6.5 TEST SETUP	28
6.6 TEST RESULTS	28
7 . SPURIOUS EMISSIONS – RX	29
7.1 APPLIED PROCEDURES / LIMIT	29
7.2 MEASURING INSTRUMENTS AND SETTING	29
7.3 TEST PROCEDURES	29
7.5 TEST SETUP LAYOUT	29
7.6 EUT OPERATION DURING TEST	29
7.7 TEST RESULTS	30
8 . ADJACENT CHANNEL SELECTIVITY	31
8.1 APPLICABILITY	31
8.2 LIMITS	31
8.3 METHODS OF MEASUREMENT	31
8.4 TEST SETUP LAYOUT	32
8.5 TEST RESULTS	32
9 . BLOCKING OR DESENSITIZATION	33
9.1 APPLICABILITY	33
9.2 LIMITS	33
9.3 TEST PROCEDURES	33
8.4 TEST SETUP LAYOUT 9.4 TEST RESULTS	34 35
10 . TEST RESULTS	40
10.1 DUTY CYCLE	40
10.2 -6DB EMISSION BANDWIDTH	48
10.3 FREQUENCY RANGE	56
10.4 OCCUPIED CHANNEL BANDWIDTH	62

Table of Contents	Page
10.5 RF OUTPUT POWER	67
11 . EUT TEST PHOTO	74
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	74
APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

Page 6 of 74

Report No.: STR220218001005E

Revision History

Report No.	Version	Description	Issued Date
STR220218001005E	Rev.01	Initial issue of report	Mar 11. 2022

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

ETSI EN 300 440 V2.2.1 (2018-07)

Clause	Description of Test Item	Remarks	Results		
	Transmitter Parameters				
4.2.2	-6 dB channel bandwidth	Conducted	Pass		
4.2.2	Effective isotropic radiated power	Conducted	Pass		
4.2.3	Permitted range of operation frequencies	Conducted	Pass		
4.2.4	Unwanted emissions in the spurious domain	Radiated	Pass		
4.2.5	Duty cycle	Conducted	Pass		
4.2.6	Additional requirements for FHSS equipment	Conducted	N/A		
Receiver Parameters					
4.3.3	Adjacent channel selectivity(For Receiver category 1)	Conducted	N/A		
4.3.4	Blocking or desensitization(For Receiver category 1,2,3)	Conducted	Pass		
4.3.5	Spurious emissions(For Receiver category Radiated Pass 1,2,3)				

Note: The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter

1.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add.: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District,

Report No.: STR220218001005E

Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.:9270A-1

CNAS Registration No.:L5516

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ %.

No.	Item	Uncertainty
1	Radio frequency	±1 x 10-7
2	RF power (conducted)	±2,5 dB
3	Radiated emission of transmitter, valid to 26,5 GHz	±6 dB
4	Radiated emission of transmitter, valid between	±8 dB
	26,5 GHz and 66 GHz	
5	Radiated emission of receiver, valid to 26,5 GHz	±6 dB
6	Radiated emission of receiver, valid between 26,5	±8 dB
	GHz and 66 GHz	
7	Temperature	±1°℃
8	Humidity	±5 %
9	Voltage (DC)	±1 %
10	Voltage (AC, < 10 kHz)	±2 %

NOTE: For radiated emissions above 26,5 GHz it may not be possible to achieve measurement uncertainties complying with the levels specified in this table. In these cases alone it is acceptable to employ the alternative interpretation procedure specified in EN 300440 V2.2.1 clause 5.9.1.

2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart Phone		
Trade Mark	Blackview		
Model Name	BL8800 Pro		
Family Model	BL8800		
Model Difference	All the model a Model name.	are the same circuit and RF module,except the	
	Operation Frequency: Data Rate:	5745-5825 MHz for 802.11a/n20/ac20; 5755-5795 MHz for 802.11n40/ac40; 5775MHz for 802.11 ac80; 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS7; 802.11ac(VHT20/ VHT40/VHT80): NSS1, MCS0-MCS9, NSS2	
Product Description	Modulation Channel No.:	OFDM with BPSK/QPSK/16QAM/64QAM/256QAM 5 channels for 802.11a/n20/ac20 in the 5745-5825MHz band; 2 channels for 802.11 n40/ac40 in the 5755-5795MHz band; 1 channels for 802.11 ac80 in the 5775MHz band;	
	Antenna Designation: Antenna -0.6dBi		
Receiver category	Gain(Peak) ☐ Category 1: Highly reliable SRD communication media; e.g. serving human life inherent systems (may result in a physical risk to a person). ☐ Category 2: Medium reliable SRD communication media e.g. causing inconvenience to persons, which cannot simply be overcome by other means. ☐ Category 3: Standard reliable SRD communication media e.g. Inconvenience to persons, which can simply be overcome by other means (e.g. manual).		
Channel List	Refer to below		
Adapter	Model: QA-0300CE03 Input: 100-240V~50/60Hz 0.8A Output: (PD)5.0V3.0A or 9.03.0A or 12.0V2.5A or 15.0V2.0A or 20.0A1.5A (PPS) 3.3A-11.0V3.0A(33.0W MAX)		
Battery	DC 3.85V, 8380mAh, 32.263Wh		
Rating	DC 3.85V from	battery or DC 5V from Adapter.	
Hardware Version	TF929-B1-V1.1		
Software Version	BL8800 Pro_EEA_TF929_V1.0		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. Channel list:

Frequency and Channel list for 802.11a/n/ac(20 MHz) band IV (5745-5825MHz):

	802.11a/n/ac(20 MHz) Carrier Frequency Channel						
	Frequen		Frequen		Frequen		Frequen
Channel	су	Channel	су	Channel	су	Channel	су
	(MHz)		(MHz)		(MHz)		(MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-

Frequency and Channel list for 802.11n/ac(40MHz) band IV (5755-5795MHz):

802.11n/ac 40MHz Carrier Frequency Channel					
Channel Frequency (MHz) Channel Frequency (MHz) Frequency (MHz)					. ,
151	5755	159	5795	-	-

Frequency and Channel list for 802.11ac(80MHz) band IV (5775MHz):

802.11ac 80MHz Carrier Frequency Channel		
Channel Frequency (MHz)		
155	5775	

2.2 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15°C - 35°C	-10°C ~ 40°C _{Note1}
Relative Humidity	20% - 75%	N/A
Power Rating	DC 3.85V	N/A
Test voltage	DC 3.85V	DC 4.2V-DC 3.4V _{Note2}

Note

- (1) The temperature range as declared by the manufacturer; or one of the following specified temperature ranges:
 - Temperature category I (General): -20 °C to +40 °C;
 - Temperature category II (Portable): -10 °C to +40 °C;
 - Temperature category III (Equipment for normal indoor use): 5 °C to +35 °C.
- (2) The High Voltage 4.2V and Low Voltage 3.4V was declarated by manufacturer.

2.3 DESCRIPTION OF TEST CONDITIONS

For Conducted Test				
Pretest Mode Description				
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165			
Mode 2	802.11n/ ac40 CH 151 / CH 159			
Mode 3	802.11 ac80 CH 155			

For Radiated Test			
Final Test Mode	Description		
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165		
Mode 2	802.11n/ ac40 CH 151 / CH 159		
Mode 3	802.11 ac80 CH 155		

	Page 12 of 74	Report No.: STR22021800100	5E
2.4 BLOCK DIGRAM SHOWING	THE CONFIGURATIO	ON OF SYSTEM TESTED	
	E-1 EUT		
	EUT		

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Smart Phone	BL8800 Pro	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in 『Length』 column.
- (3) "YES" means "shielded" or "with ferrite core"; "NO" means "unshielded" or "without ferrite core"

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
Turn Table	EM	SC100 1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2021.03.29	2022.03.28	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2021.04.27	2022.04.26	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2021.07.01	2022.06.30	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2021.04.27	2022.04.26	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2021.07.01	2022.06.30	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2021.07.01	2022.06.30	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2021.04.27	2022.04.26	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2021.04.27	2022.04.26	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

3. EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)

3.1 APPLICABILITY

The equivalent isotropically radiated power requirement shall apply to all transmitters.

3.2 LIMITS

Table 2: Maximum radiated peak power

Report No.: STR220218001005E

Application	Power	Frequency Bands
Non-specific short ran	10 mW e.i.r.p.	2 400 MHz to 2 483,5 MHz
Radio determination of	25 mW e.i.r.p.	2 400 MHz to 2 483,5 MHz
Radio Frequency Ider (RFID) devices	500 mW e.i.r.p.	(a) 2 446 MHz to 2 454 MHz
Radio Frequency Ider (RFID) devices	4 W e.i.r.p.	(b) 2 446 MHz to 2 454 MHz
Non-specific short ran	25 mW e.i.r.p.	5 725 MHz to 5 875 MHz
Radio determination of	25 mW e.i.r.p.	9 200 MHz to 9 500 MHz
Radio determination of	25 mW e.i.r.p.	9 500 MHz to 9 975 MHz

3.3 GENERAL REQUIREMENTS

1. To measure e.i.r.p. it is first necessary to determine the appropriate method of measurement: see EN 300440 V2.2.1 clauses 4.2.2.3.1 and 4.2.2.3.2. The -6 dB transmitter bandwidth shall be determined using a 100 kHz measuring bandwidth in order to establish which measurement method is applicable:

Co	Method of measurement	
Non spread spectrum transmitters with a -6 dB bandwidth of up to 20 MHz and spread spectrum transmitters with channel bandwidth of up to 1 MHz;	□Non spread spectrum equipment with a -6 dB bandwidth of 20 MHz or less and a duty cycle above 50 %; □Spread spectrum equipment with a -6 dB channel bandwidth of 1 MHz or less.	Refer to section 3.4.1
for all other transmitter bandwidths.	□ equipment with a -6 dB bandwidth greater than 20 MHz, and equipment with a duty cycle below 50 %;; □ Spread spectrum equipment with a channel bandwidth above 1 MHz	Refer to section 3.4.2

2. Measurements shall be performed at normal test conditions.

3.4 TEST PROCEDURES

3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS

The measurement shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded.

Equipment measured as constant envelope modulation equipment

Page 16 of 74

For practical reasons, measurements shall be performed only at the highest power level at which the transmitter is intended to operate. The measurement arrangement in figure 2 shall be used. The measurement shall be performed preferably in the absence of modulation.

Report No.: STR220218001005E

When it is not possible to measure it in the absence of modulation, this fact shall be stated in test reports.

The transmitter shall be set in continuous transmission mode. If this is not possible, the measurements shall be carried

out in a period shorter than the duration of the transmitted burst. It may be necessary to extend the duration of the burst.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

Equipment measured as non-constant envelope modulation equipment

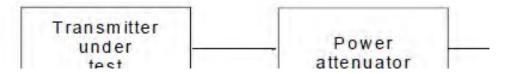
The measurement shall be performed with test signals D-M2 or D-M3 as appropriate.

The transmitter shall be preferably set in continuous transmission mode. If this is not possible, the measurement can be performed in discontinuous mode.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured. The measuring instrument shall have a measurement bandwidth not less than sixteen times the channel bandwidth.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS


Step 1:

- using a suitable means, the output of the transmitter shall be coupled to a matched diode detector;
- the output of the diode detector shall be connected to the vertical channel of an oscilloscope;
- the combination of the diode detector and the oscilloscope shall be capable of faithfully reproducing the envelope peaks and the duty cycle of the transmitter output signal;
- the observed duty cycle of the transmitter (Tx on/(Tx on + Tx off)) shall be noted as x, (0 < x < 1) And recorded.

Step 2:

- the average output power of the transmitter shall be determined using a wideband, calibrated RF power meter with a matched thermocouple detector or an equivalent thereof and, where applicable, with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);
- the e.i.r.p. shall be calculated from the above measured power output A, the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:
- $P = A + G + 10 \log (1/x);$
- P should be EIRP POWER.

3.5 TEST SETUP LAYOUT

3.6 EUT OPERATION DURING TEST

Where possible, the equipment shall be able to operate in a continuous transmit mode for testing ourposes.

Page 17 of 74

3.7 TEST RESULT FOR -6 DB BANDWIDTH

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	Mode 1/2/3		

Report No.: STR220218001005E

Test data reference attachment

3.8 TEST RESULT FOR E.I.R.P

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

4. PERMITTED RANGE OF OPERATING FREQUENCIES

4.1 APPLIED PROCEDURES / LIMIT

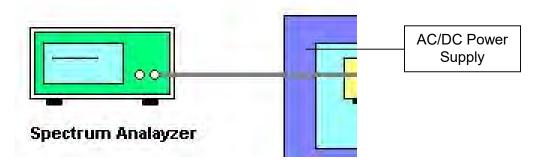
The Permitted range of operating frequencies shall apply to all transmitters.

Limits:The width of the power spectrum envelope is fH -fL for a given operating frequency. In equipment that allows adjustment or selection of different operating frequencies, the power envelope takes up different positions in the allowed band. The frequency range is determined by the lowest value of fL and the highest value of fH resulting from the adjustment of the equipment to the lowest and highest operating frequencies.

Report No.: STR220218001005E

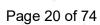
The occupied bandwidth (i.e. the bandwidth in which 99 % of the wanted emission is contained) of the transmitter shall fall within the assigned frequency band.

For all equipment the frequency range shall lie within the frequency band given by section 3.2, table 2. For non-harmonized frequency bands the available frequency range may differ between national administrations.


4.2 TEST PROCEDURES

These measurements shall be performed under both normal and extreme operating conditions except for the occupied bandwidth assessment for which measurement at normal operating conditions is sufficient.

The measurement procedure shall be as follows:


- a) put the spectrum analyser in video averaging mode with a minimum of 50 sweeps selected;
- b) select the lowest operating frequency of the equipment under test and activate the transmitter with modulation applied. The RF emission of the equipment shall be displayed on the spectrum analyser;
- c) using the marker of the spectrum analyser, find the lowest frequency below the operating frequency at which the spectral power density drops below the level given in clause 4.2.3. This frequency shall be recorded in the test report;
- d) select the highest operating frequency of the equipment under test and find the highest frequency at which the spectral power density drops below the value given in clause 4.2.3. This frequency shall be recorded in the test report;
- e) the difference between the frequencies measured in steps c) and d) is the operating frequency range. It shall be recorded in the test report.

4.3 TEST SETUP LAYOUT

4.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

4.5 TEST RESULTS

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	TX		

802.11a

Extreme condition		Frequency	range (MHz)		
		F _L CH149	F _H CH165		
		V max (V)	4.2	5735.771	5834.632
T min (°C)	-10	V nom (V)	3.85	5735.967	5834.955
		V min (V)	3.4	5735.991	5834.537
	40	V max (V)	4.2	5735.632	5835.403
T max (°C)		V nom (V)	3.85	5735.574	5834.603
		V min (V)	3.4	5736.221	5835.362
T normal (°C)	24	V nom (V)	3.85	5735.933	5834.932
Min. f	Min. f _L / Max. f _H Band Edges			5735.574	5835.403
Indoor Use Limits		F _L > 5725.0 MHz	F _L < 5875.0 MHz		
	R	esult		Con	nplies

802.11n20

Extreme condition			Frequency range (MHz)		
[Extreme condition			F _L CH149	F _H CH165
		V max (V)	4.2	5735.959	5834.768
T min (°C)	-10	V nom (V)	3.85	5736.467	5834.949
		V min (V)	3.4	5736.489	5835.193
		V max (V)	4.2	5736.142	5835.065
T max (°C)	40	V nom (V)	3.85	5735.516	5834.890
		V min (V)	3.4	5735.786	5834.572
T normal (°C)	24	V nom (V)	3.85	5735.971	5834.833
Min. f _ı	Min. f _L / Max. f _H Band Edges			5735.516	5835.193
Indoor Use Limits			F _L > 5725.0 MHz	F _L < 5875.0 MHz	
	R	esult		Con	nplies

802.11n40

Extreme condition			Frequency range (MHz)		
·	Extreme condition			F _L CH151	F _H CH159
		V max (V)	4.2	5736.583	5813.751
T min (°C)	-10	V nom (V)	3.85	5737.312	5814.202
		V min (V)	3.4	5737.013	5814.442
		V max (V)	4.2	5736.893	5814.201
T max (°C)	40	V nom (V)	3.85	5737.028	5813.727
		V min (V) 3.4 5737.177		5813.920	
T normal (°C)	24	V nom (V)	3.85	5737.463	5813.505
Min. f _L / Max. f _H Band Edges			5736.583	5814.442	
Indoor Use Limits			F _L > 5725.0 MHz	F _L < 5875.0 MHz	
	R	esult		Con	nplies

802.11ac20

Extreme condition				Frequency range (MHz)	
				F _L CH149	F _H CH165
		V max (V)	4.2	5736.389	5835.481
T min (°C)	-10	V nom (V)	3.85	5736.288	5835.147
		V min (V)	3.4	5736.437	5835.375
		V max (V)	4.2	5735.615	5835.118
T max (°C)	40	V nom (V)	3.85	5736.092	5834.970
		V min (V)	3.4	5736.482	5834.689
T normal (°C)	24	V nom (V)	3.85	5736.029	5834.595
Min. f _ı	₋ / Max	f _H Band Edges		5735.615	5835.481
Indoor Use Limits			F _L > 5725.0 MHz	F _L < 5875.0 MHz	
	R	esult		Con	nplies

802.11ac40

Extreme condition				Frequency range (MHz)		
				F _L CH151	F _H CH159	
		V max (V)	4.2	5737.425	5813.713	
T min (°C)	-10	V nom (V)	3.85	5737.089	5813.572	
		V min (V)	3.4	5736.575	5813.592	
		V max (V)	4.2	5737.103	5814.106	
T max (°C)	40	V nom (V)	3.85	5737.214	5814.235	
	·	V min (V)	3.4	5737.300	5813.972	
T normal (°C)	24	V nom (V)	3.85	5736.941	5813.990	
Min. f _L / Max. f _H Band Edges			5736.575	5814.235		
Indoor Use Limits			F _L > 5725.0 MHz	F _L < 5875.0 MHz		
	R	esult		Con	nplies	

802.11ac80

Extreme condition				Frequency range (MHz)	
				F _L CH155	F _H CH155
		V max (V)	4.2	5736.887	5813.549
T min (°C)	-10	V nom (V)	3.85	5737.486	5813.514
		V min (V)	3.4	5736.882	5813.987
		V max (V)	4.2	5736.576	5814.299
T max (°C)	40	V nom (V)	3.85	5737.129	5813.563
		V min (V)	3.4 5736.845		5814.164
T normal (°C)	24	V nom (V)	3.85	5737.016	5814.389
Min. f _L / Max. f _H Band Edges			5736.576	5814.389	
Indoor Use Limits			F _L > 5725.0 MHz	F _L < 5875.0 MHz	
	R	esult		Con	nplies

5. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

5.1 APPLIED PROCEDURES / LIMIT

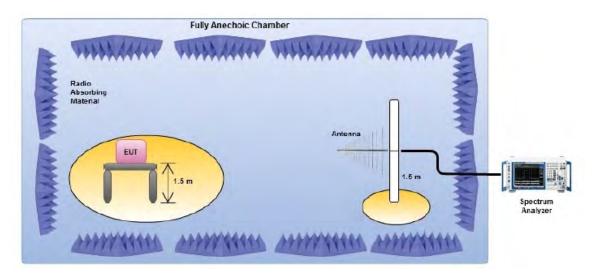
The unwanted emissions in the spurious domain requirement shall apply to all transmitters.

			1 3
	47 MHz to 74 MHz		
04-4-	87.5 MHz to 118 MHz	Other frequencies	Frequencies
State	174 MHz to 230 MHz	≤ 1 000 MHz	> 1 000 MHz
	470 MHz to 862 MHz		
Operating	4 nW /-54dBm	250 nW/-36dBm	1 μW /-30dBm
Standby	2 nW /-57dBm	2 nW /-57dBm	20 nW /-47dBm

5.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

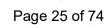
Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz
	For frequency above 1G:1MHz


5.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable. For above 1G, using Horn antenna .
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

5.4 TEST SETUP LAYOUT

Radiated Emission Test Set-Up



5.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS

For the initial investigation on standby mode and receiving mode, no significant differences in spurious emissions were observed between these 2 modes. So test data for standby mode was omitted in this section.

5.7 TEST RESULTS

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	24 ℃	Relative Humidity:	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V (NORMAL)
Test Mode :	TX-802.11n20 mode		

Below 1G:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	40.99	-69.92	15.35	-54.57	-36	-18.57	peak
V	70.43	-71.50	9.07	-62.43	-54	-8.43	peak
V	104.83	-80.77	10.71	-70.06	-54	-16.06	peak
V	182.43	-81.39	12.61	-68.78	-54	-14.78	peak
V	272.14	-60.99	12.54	-48.45	-36	-12.45	peak
V	482.88	-90.59	17.00	-73.59	-54	-19.59	peak
Н	44.10	-63.56	13.03	-50.53	-36	-14.53	peak
Н	63.36	-72.87	6.66	-66.21	-54	-12.21	peak
Н	112.06	-80.33	10.85	-69.48	-54	-15.48	peak
Н	179.77	-78.73	12.89	-65.84	-54	-11.84	peak
Н	343.75	-60.64	14.29	-46.35	-36	-10.35	peak
Н	621.39	-88.76	20.08	-68.68	-54	-14.68	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Above 1G:

Polar	Frequency	Meter	Factor	Emission	Limits	Margin	Detector
		Reading		Level			Туре
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
		op	peration frequency	/:5755 MHz			
V	1196.91	-45.24	2.23	-43.01	-30	-13.01	peak
V	1696.40	-44.00	3.18	-40.82	-30	-10.82	peak
V	2196.95	-51.97	8.59	-43.38	-30	-13.38	peak
V	5759.50	-59.59	8.92	-50.67	-30	-20.67	peak
Н	1696.86	-46.77	2.85	-43.92	-30	-13.92	peak
Н	3822.89	-63.82	8.22	-55.60	-30	-25.60	peak
Н	5759.92	-58.81	9.26	-49.55	-30	-19.55	peak
Н	9383.11	-58.70	15.03	-43.67	-30	-13.67	peak
		op	eration frequency	/:5785 MHz			
V	1197.50	-46.26	1.90	-44.36	-30	-14.36	peak
V	1697.47	-45.32	3.07	-42.25	-30	-12.25	peak
V	2198.20	-50.87	8.39	-42.48	-30	-12.48	peak
V	3885.63	-60.13	8.47	-51.66	-30	-21.66	peak
V	5823.56	-59.11	8.95	-50.16	-30	-20.16	peak
Н	1697.86	-47.01	3.35	-43.66	-30	-13.66	peak
Н	2197.93	-51.67	8.28	-43.39	-30	-13.39	peak
Н	5822.84	-56.73	8.71	-48.02	-30	-18.02	peak
Н	9387.83	-53.92	14.99	-38.93	-30	-8.93	peak
		op	eration frequency	:5825 MHz			
V	1697.37	-45.73	3.76	-41.97	-30	-11.97	peak
V	2197.03	-50.31	8.61	-41.70	-30	-11.70	peak
V	2633.40	-58.35	10.18	-48.17	-30	-18.17	peak
V	5822.71	-60.88	8.43	-52.45	-30	-22.45	peak
V	6169.33	-51.03	11.22	-39.81	-30	-9.81	peak
Н	1696.83	-47.09	3.30	-43.79	-30	-13.79	peak
Н	2197.56	-52.56	8.82	-43.74	-30	-13.74	peak
Н	2634.98	-58.33	9.81	-48.52	-30	-18.52	peak
Н	5821.96	-56.26	8.43	-47.83	-30	-17.83	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Note: Only the worst case 802.11a mode recorded in the report.

6. DUTY CYCLE

6.1 APPLICABILITY AND DESCRIPTION

Duty Cycle (DC) shall apply to all transmitting equipment except those which utilize Listen Before Talk (LBT) clause 4.4.2, or Detect And Avoid (DAA), clause 4.4.3. RFID transmitters operating in the 2 446 MHz to 2 454 MHz frequency band that transmit at a maximum radiated peak power level of less than 500 mW e.i.r.p. are also excluded.

Duty cycle is the ratio expressed as a percentage, of the cumulative duration of transmissions T_{on_cum} within an observation interval $T_{obs.}$

$$DC = (\frac{T_{o\,n_cum}}{T_{o\,bs}})F_{o\,bs}$$
 on an observation bandwidth F_{obs} .

Unless otherwise specified, T_{obs} is 1 hour and the observation bandwidth F_{obs} is the operational frequency band

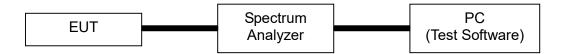
Each transmission consists of an RF emission, or sequence of RF emissions separated by intervals < T_{Dis} .

6.2 LIMITS

Table 4 defines the maximum duty cycle within a 1 hour period.

Table 4: Duty cycle limits

Frequency Band	Duty cycle	Application
2 400 MHz to 2 483,5 MHz	No Restriction	Generic use
2 400 MHz to 2 483,5 MHz	No Restriction	Detection, movement a applications
(a) 2 446 MHz to 2 454 MHz	No Restriction	RFID
(b) 2 446 MHz to 2 454 MHz	≤ 15 %	RFID
5 725 MHz to 5 875 MHz	No Restriction	Generic use
9 200 MHz to 9 500 MHz	No Restriction	Radiodetermination: radar, detection, move alert applications
9 500 MHz to 9 975 MHz	No Restriction	Radiodetermination: radar, detection, move alert applications
10,5 GHz to 10,6 GHz	No Restriction	Radiodetermination: radar, detection, move alert applications


For devices with a 100 % duty cycle transmitting an unmodulated carrier most of the time, a time-out shut-off facility shall be implemented in order to improve the efficient use of spectrum. The method of implementation shall be declared by the manufacturer.

6.4 METHOD OF MEASUREMENT

Please refer to EN 300440 V2.2.1 Clause 4.2.5.3.

6.5 TEST SETUP

6.6 TEST RESULTS

EUT:	Smart Phone	Model Name:	BL8800 Pro
Temperature:	26°C	Relative Humidity:	53 %
Pressure:	1012 hPa	Test Voltage:	DC 3.85V (NORMAL)
Test Mode:	Mode 1/2/3		

Test data reference attachment

7. SPURIOUS EMISSIONS - RX

7.1 APPLIED PROCEDURES / LIMIT

Clause	Test Item	Frequency(MHz)	Limit
4.3.5.4	Spurious emissions	30-1000	-57dBm
	(radiated)	Above 1000	-47dBm

7.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

7.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable. For above 1G, using Horn antenna.
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

7.5 TEST SETUP LAYOUT

This test setup layout is the same as that shown in section 5.4.

7.6 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously receiving mode.

7.7 TEST RESULTS

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	26°C	Relative Humidity :	53 %
Pressure :	1012 hPa	Test Power :	DC 3.85V (NORMAL)
Test Mode :	RX-802.11n20 mode		

Report No.: STR220218001005E

Below 1G:

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	35.26	-91.17	18.59	-72.58	-57	-15.58	peak
V	50.81	-81.28	9.95	-71.33	-57	-14.33	peak
V	115.41	-81.00	11.13	-69.87	-57	-12.87	peak
V	165.63	-79.62	12.17	-67.45	-57	-10.45	peak
V	234.19	-79.12	11.74	-67.38	-57	-10.38	peak
V	369.83	-80.79	14.93	-65.86	-57	-8.86	peak
Н	49.79	-76.58	10.59	-65.99	-57	-8.99	peak
Н	92.41	-80.11	10.56	-69.55	-57	-12.55	peak
Н	172.06	-81.30	12.51	-68.79	-57	-11.79	peak
Н	199.10	-78.91	11.94	-66.97	-57	-9.97	peak
Н	392.61	-90.59	15.35	-75.24	-57	-18.24	peak
Н	556.90	-90.10	18.35	-71.75	-57	-14.75	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Above 1G:

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	1198.46	-61.44	2.20	-59.24	-47	-12.24	peak
V	1699.03	-61.94	3.28	-58.66	-47	-11.66	peak
V	2198.56	-65.74	9.05	-56.69	-47	-9.69	peak
V	2636.10	-68.60	9.82	-58.78	-47	-11.78	peak
V	8447.12	-76.74	16.17	-60.57	-47	-13.57	peak
Н	1197.41	-58.59	2.19	-56.40	-47	-9.40	peak
Н	1698.33	-57.82	3.63	-54.19	-47	-7.19	peak
Н	2197.12	-63.33	8.33	-55.00	-47	-8.00	peak
Н	3822.93	-70.54	8.76	-61.78	-47	-14.78	peak
Н	10698.05	-79.81	23.81	-56.00	-47	-9.00	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

8. ADJACENT CHANNEL SELECTIVITY

8.1 APPLICABILITY

This requirement applies to channelized Category 1 receivers..

8.2 LIMITS

The adjacent channel selectivity of the equipment under specified conditions shall not be less than -30 dBm + k.

The correction factor, k, is as follows:

k = -20log f -10logBW

Where:

- f is the frequency in GHz;
- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

-40 dB < k < 0 dB.

8.3 METHODS OF MEASUREMENT

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

- a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or
- b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.

Signal generator B shall be unmodulated and shall be adjusted to the adjacent channel centre frequency immediately

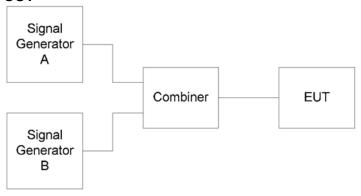
above that of the wanted signal.

Initially signal generator B shall be switched off and using signal generator A the level that still gives sufficient

response shall be established. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurements shall be repeated with signal generator B unmodulated and adjusted to the adjacent channel centre immediately below the wanted signal.

The adjacent channel selectivity shall be recorded for the upper and lower adjacent channels as the level in dBm of the unwanted signal.


For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres.

In this case, the adjacent selectivity shall be recorded as the level in dBm of lowest level of the unwanted signal

(generator B) resulting in a non-read of the tag.

8.4 TEST SETUP LAYOUT

8.5 TEST RESULTS

EUT:	Smart Phone	Model Name :	BL8800 Pro
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	N/A
Test Mode :	N/A		

Not applicable.

9. BLOCKING OR DESENSITIZATION

9.1 APPLICABILITY

This requirement applies to all Category 1, 2, and 3 SRD communication media receivers.

9.2 LIMITS

The blocking level, for any frequency within the specified ranges, shall not be less than the values given in table 6,except at frequencies on which spurious responses are found.

Table 6: Limits for blocking or dese

Report No.: STR220218001005E

Receiver category
1
2

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

Where:

- f is the frequency in GHz;
- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

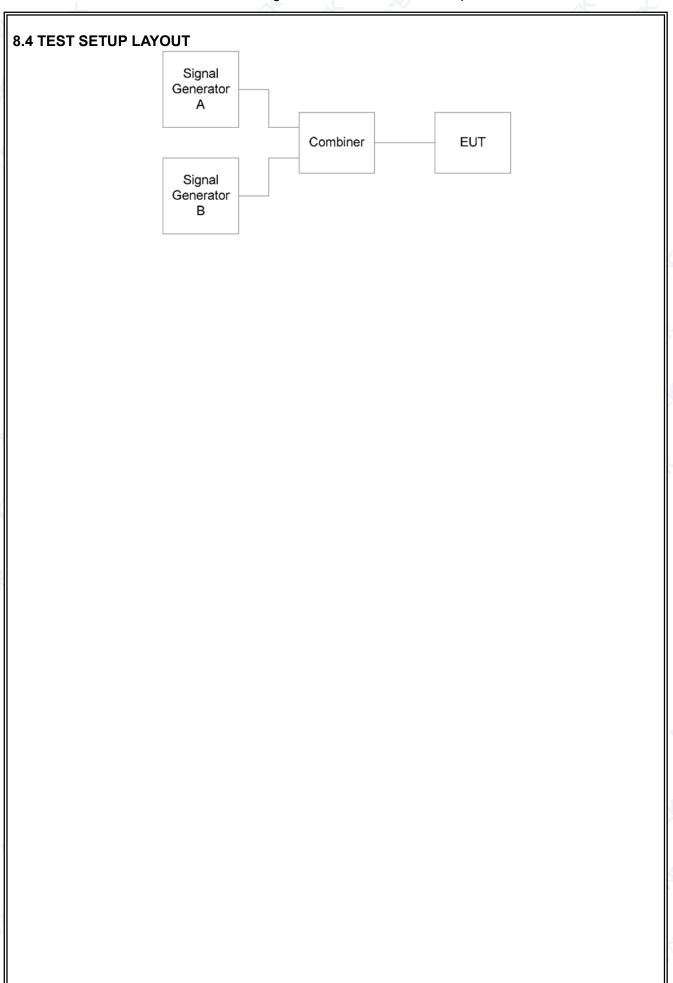
-40 dB < k < 0 dB.

9.3 TEST PROCEDURES

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

- a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or
- b) directly to the receiver permanent or temporary antenna connector.


The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal. Signal generator B shall be unmodulated and shall be adjusted to a test frequency at approximately 10 times, 20 times and 50 times of the occupied bandwidth above upper band edge of occupied bandwidth. Initially signal generator B shall be switched off and using signal generator A the level which still gives sufficient response shall be established. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurement shall be repeated with the test frequency for signal generator B at 10 times, 20 times and 50 times of the occupied bandwidth below the lower band edge of the occupied bandwidth The blocking or desensitization shall be recorded as the level in dBm of lowest level of the unwanted signal(generator B).

For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres. In this case, the blocking or desensitization shall be recorded as the ratio in dB of lowest level of the unwanted signal (generator B) resulting in a non-read of the tag. to the declared sensitivity of the receiver +3 dB.

9.4 TEST RESULTS

EUT :	Smart Phone	Model Name :	BL8800 Pro
Temperature :	24 ℃	Relative Humidity:	54%
Pressure :	1010 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	RX		

Report No.: STR220218001005E

802.11a

5745 MHz

Flow= 5736.769MHz; Fhigh= 5753.215MHz, occupied bandwidth=16.446MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-64.69	-	-
	10 times lower band edge of the occupied bandwidth	5572.309	-	-29.57	-87.35(Note ¹)
	20 times lower band edge of the occupied bandwidth	5407.849	-	-32.58	-87.35
3	50 times lower band edge of the occupied bandwidth	4914.469		-35.37	-87.35
	10 times upper band edge of the occupied bandwidth	5917.675		-32.21	-87.35
	20 times upper band edge of the occupied bandwidth	6082.135	-	-34.26	-87.35
	50 times upper band edge of the occupied bandwidth	6575.515	-	-31.10	-87.35

Note1:

The limit:

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.35

Where:

- f is the frequency in GHz;
- BW is the occupied bandwidth in MHz.

Report No.: STR220218001005E 802.11a

5825 MHz

Flow= 5816.789MHz; Fhigh= 5833.191MHz, occupied bandwidth=16.402MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5825 MHz	5825	-65.36	-	-
	10 times lower band edge of the occupied bandwidth	5652.769	-	-31.11	-87.45(Note ¹)
	20 times lower band edge of the occupied bandwidth	5488.749	-	-34.21	-87.45
3	50 times lower band edge of the occupied bandwidth	4996.689	-	-34.27	-87.45
	10 times upper band edge of the occupied bandwidth	5997.211	-	-31.08	-87.45
	20 times upper band edge of the occupied bandwidth	6161.231	-	-32.41	-87.45
	50 times upper band edge of the occupied bandwidth	6653.291	-	-31.11	-87.45

Note1:

The limit:

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.45

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

802.11n40

5755 MHz

Flow= 5736.978MHz; Fhigh= 5773.03MHz, occupied bandwidth=36.052MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5755 MHz	5755	-65.33	-	-
	10 times lower band edge of the occupied bandwidth	5376.458	-	-31.02	-90.77(Note ¹)
	20 times lower band edge of the occupied bandwidth	5015.938	-	-31.44	-90.77
3	50 times lower band edge of the occupied bandwidth	3934.378		-32.57	-90.77
	10 times upper band edge of the occupied bandwidth	6133.55	-	-31.05	-90.77
	20 times upper band edge of the occupied bandwidth	6494.07	-	-32.22	-90.77
	50 times upper band edge of the occupied bandwidth	7575.63	-	-31.05	-90.77

Note1:

The limit:

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.77

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

Page 38 of 74

Report No.: STR220218001005E

802.11n40

5795 MHz

Flow= 5776.986MHz; Fhigh= 5813.046MHz, occupied bandwidth=36.06MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5795	-64.91	-	-
	10 times lower band edge of the occupied bandwidth	5416.386	-	-30.11	-90.83(Note ¹)
	20 times lower band edge of the occupied bandwidth	5055.786	-	-31.21	-90.83
3	50 times lower band edge of the occupied bandwidth	3973.986	-	-32.57	-90.83
	10 times upper band edge of the occupied bandwidth	6173.646	-	-31.23	-90.83
	20 times upper band edge of the occupied bandwidth	6534.246	-	-32.22	-90.83
	50 times upper band edge of the occupied bandwidth	7616.046	-	-30.57	-90.83

Note1:

The limit:

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -30.83

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

802.11ac80

5775 MHz

Flow= 5737.324MHz; Fhigh= 5812.82MHz, occupied bandwidth=75.496MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5775	-65.30	-	-
	10 times lower band edge of the occupied bandwidth	4982.364	-	-29.21	-94.01(Note ¹)
	20 times lower band edge of the occupied bandwidth	4227.404	-	-30.21	-94.01
3	50 times lower band edge of the occupied bandwidth	1962.524		-34.02	-94.01
	10 times upper band edge of the occupied bandwidth	6567.780	-	-31.15	-94.01
	20 times upper band edge of the occupied bandwidth	7322.740	-	-30.87	-94.01
	50 times upper band edge of the occupied bandwidth	9587.620	-	-32.89	-94.01

Note1:

The limit:

-60 dBm + k

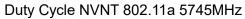
The correction factor, k, is as follows:

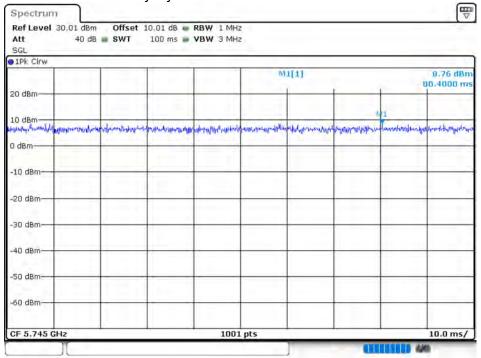
k = -20log f -10logBW

k = -34.01

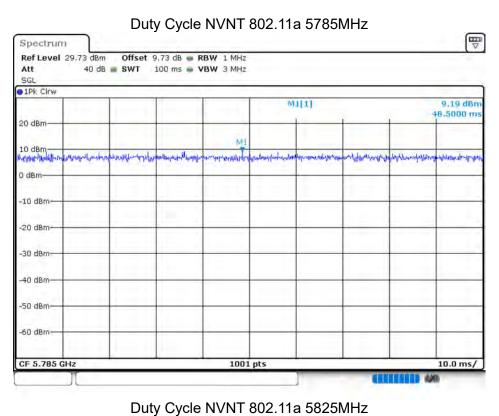
Where:

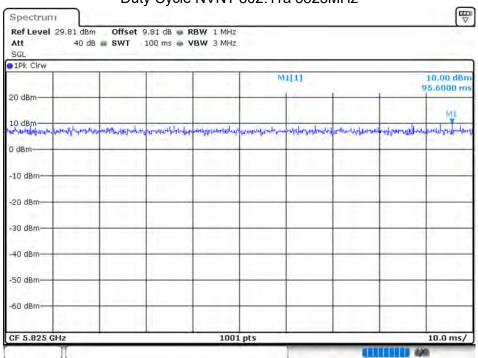
- f is the frequency in GHz;

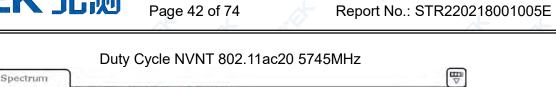

- BW is the occupied bandwidth in MHz.

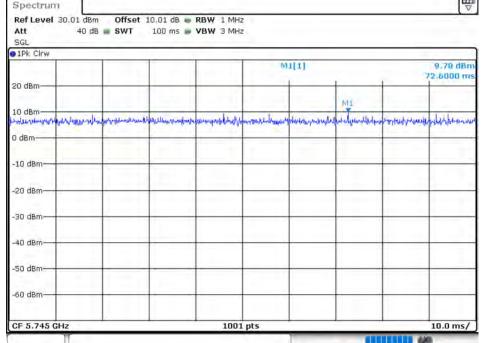


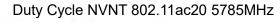
10. TEST RESULTS

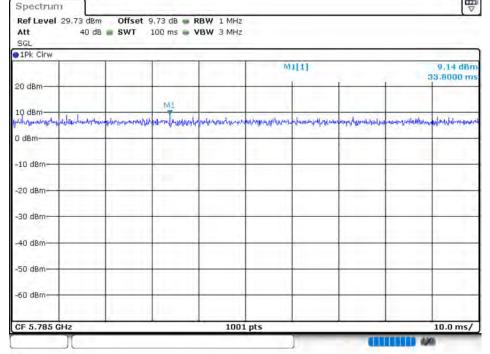

10.1 DUTY CYCLE

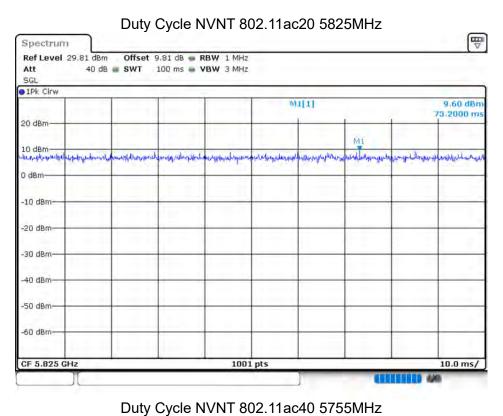

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	802.11a	5745	100	0
NVNT	802.11a	5785	100	0
NVNT	802.11a	5825	100	0
NVNT	802.11ac20	5745	100	0
NVNT	802.11ac20	5785	100	0
NVNT	802.11ac20	5825	100	0
NVNT	802.11ac40	5755	100	0
NVNT	802.11ac40	5795	100	0
NVNT	802.11ac80	5775	100	0
NVNT	802.11n(HT20)	5745	100	0
NVNT	802.11n(HT20)	5785	100	0
NVNT	802.11n(HT20)	5825	100	0
NVNT	802.11n(HT40)	5755	100	0
NVNT	802.11n(HT40)	5795	100	0

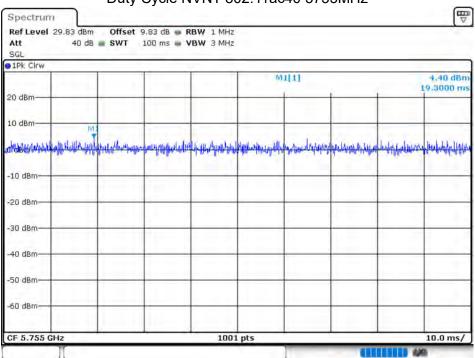


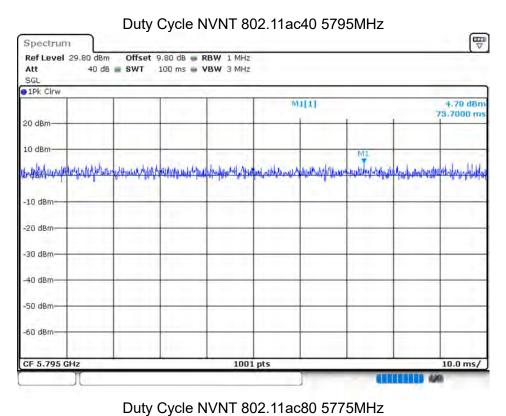


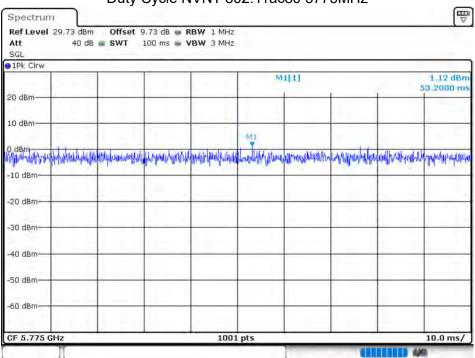


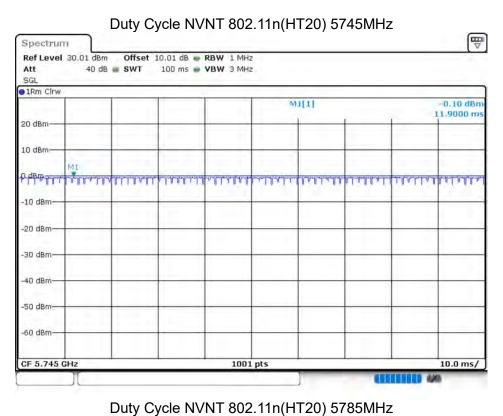


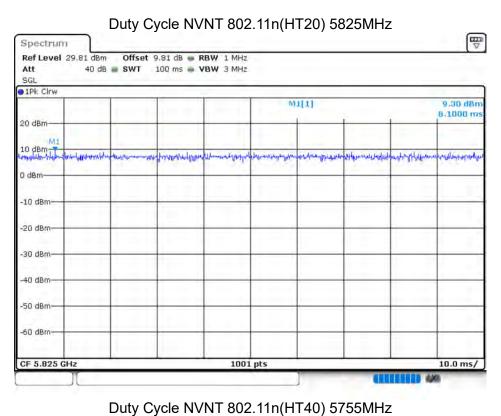


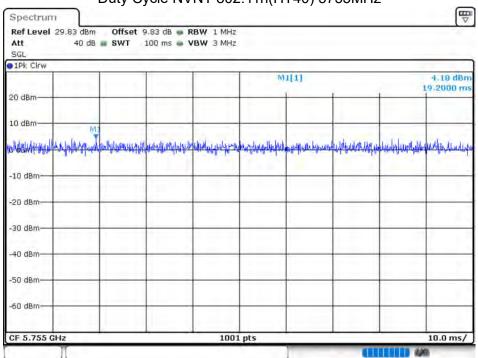


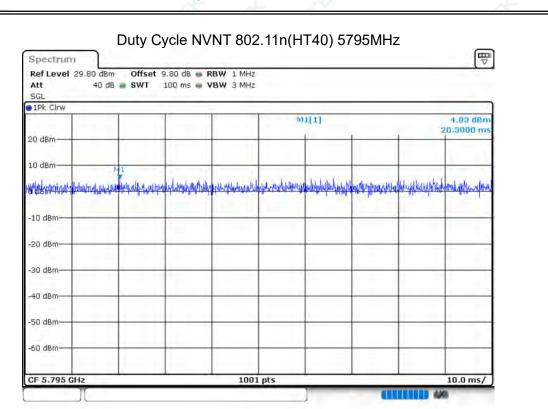


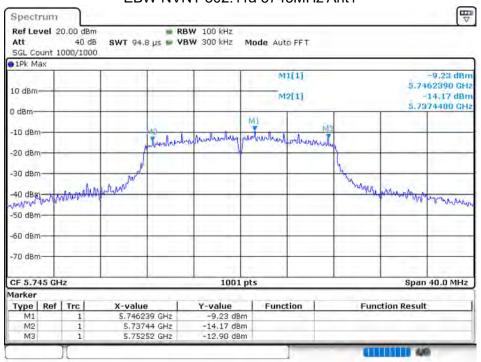


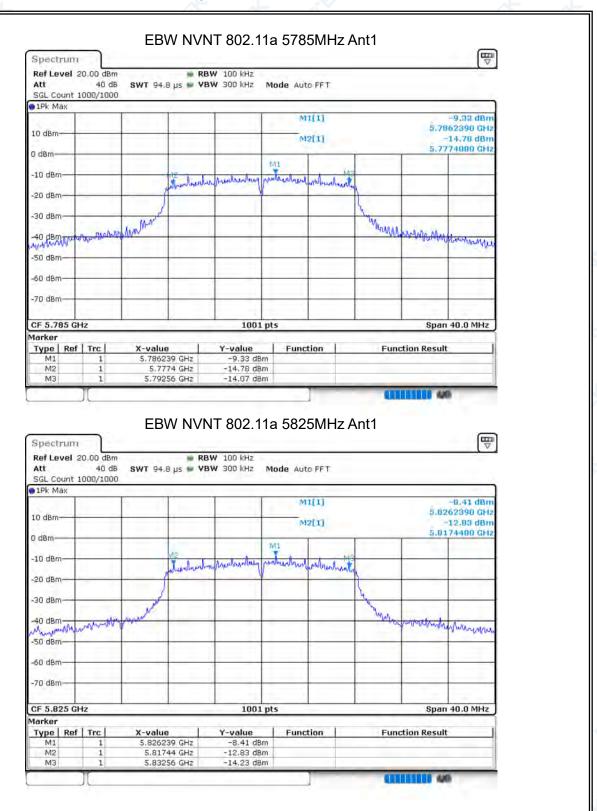






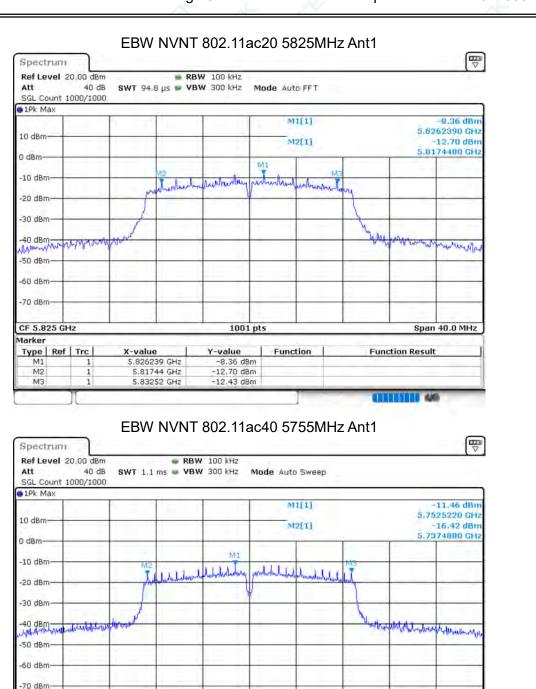





10.2 -6DB EMISSION BANDWIDTH

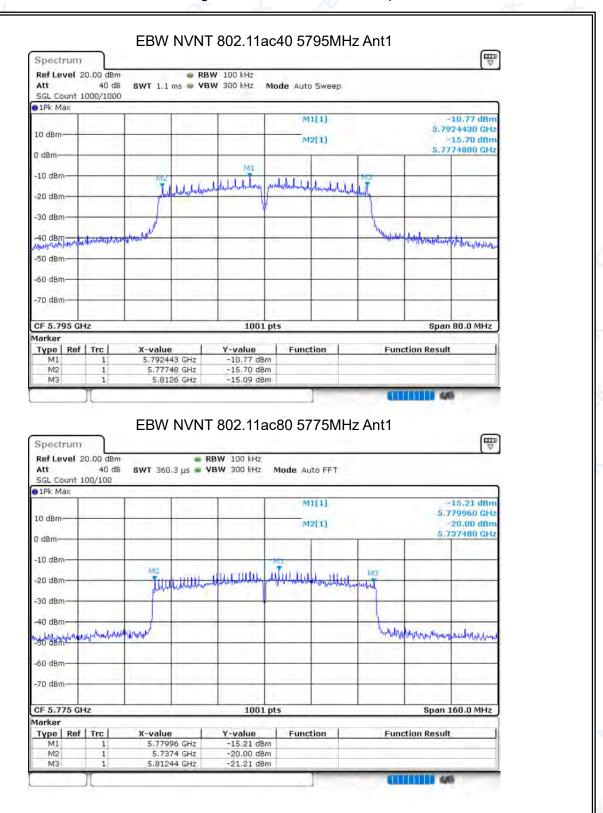
Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	802.11a	5745	Ant 1	15.08	0.5	Pass
NVNT	802.11a	5785	Ant 1	15.16	0.5	Pass
NVNT	802.11a	5825	Ant 1	15.12	0.5	Pass
NVNT	802.11ac20	5745	Ant 1	15.12	0.5	Pass
NVNT	802.11ac20	5785	Ant 1	15.16	0.5	Pass
NVNT	802.11ac20	5825	Ant 1	15.08	0.5	Pass
NVNT	802.11ac40	5755	Ant 1	35.04	0.5	Pass
NVNT	802.11ac40	5795	Ant 1	35.12	0.5	Pass
NVNT	802.11ac80	5775	Ant 1	75.04	0.5	Pass
NVNT	802.11n(HT20)	5745	Ant 1	15.12	0.5	Pass
NVNT	802.11n(HT20)	5785	Ant 1	15.12	0.5	Pass
NVNT	802.11n(HT20)	5825	Ant 1	15.32	0.5	Pass
NVNT	802.11n(HT40)	5755	Ant 1	35.04	0.5	Pass
NVNT	802.11n(HT40)	5795	Ant 1	35.12	0.5	Pass

EBW NVNT 802.11a 5745MHz Ant1

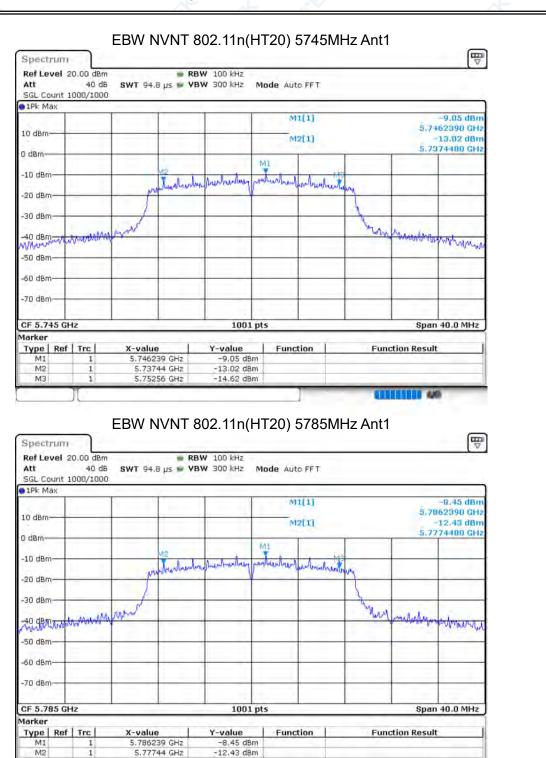


Page 50 of 74 Report No.: STR220218001005E EBW NVNT 802.11ac20 5745MHz Ant1 Spectrum Ref Level 20.00 dBm RBW 100 kHz SWT 94.8 µs > VBW 300 kHz Att 40 dB Mode Auto FFT SGL Count 1000/1000 1Pk Max M1[1] 5.7462390 GH 10 dBm M2[1] -13.06 dBn o dam 40 dBm -60 dBm CF 5.745 GHz 1001 pts Span 40.0 MHz Marker
 Type
 Ref
 Trc

 M1
 1


 M2
 1
 Y-value Function **Function Result** X-value 5.73744 GHz -13.06 dBm 5.75256 GHz -14.31 dBm МЗ EBW NVNT 802.11ac20 5785MHz Ant1 Spectrum Ref Level 20.00 dBm RBW 100 kHz SWT 94.8 µs w VBW 300 kHz 40 dB Mode Auto FFT • 1Pk Max M1[1] 9.92 dBn 5.7862390 GH 10 dBm M2[1] -14.58 dBm 5.7774000 GHz -10 dBm -30 dBm -50 dBm -70 d8m 1001 pts CF 5.785 GHz Span 40.0 MHz Marker Type 5.786239 GHz 5.7774 GHz -8.92 dBm -14.58 dBm МЗ 5.79256 GHz -14.60 dBm

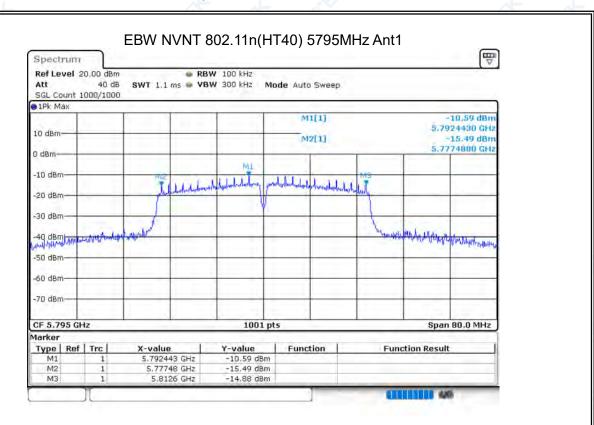
CF 5.755 GHZ			1001 pt	5	Span BU.U MHZ			
Marker								
Type Ref	Trc	X-value	Y-value	Function	Function Result			
M1	1	5.752522 GHz	-11.46 dBm					
M2	1	5.73748 GHz	-16.42 dBm					
МЗ	1	5.77252 GHz	-15.02 dBm					
	71				CHILINIA 40			

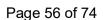


МЗ

5.79256 GHz

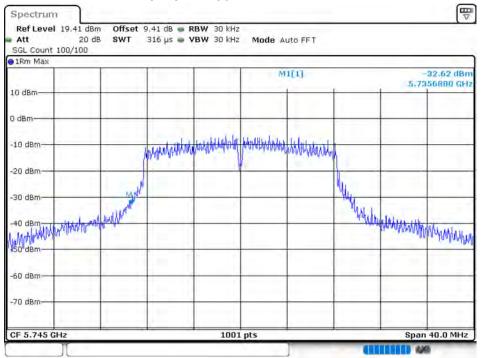
-14.31 dBm

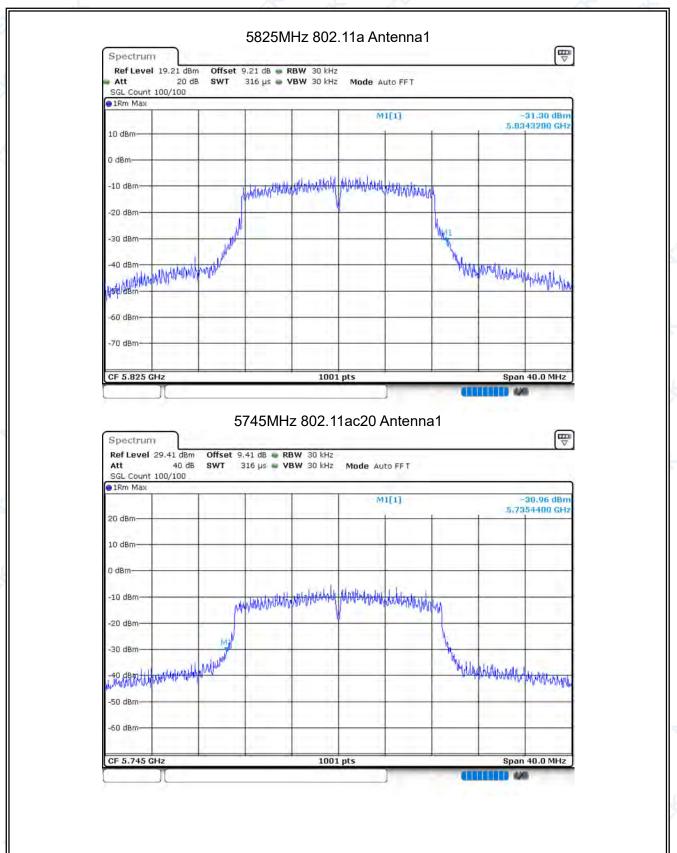

NTEK 北测® Page 54 of 74 Report No.: STR220218001005E EBW NVNT 802.11n(HT20) 5825MHz Ant1 Spectrum Ref Level 20.00 dBm RBW 100 kHz Att 40 dB SGL Count 1000/1000 SWT 94.8 µs w VBW 300 kHz Mode Auto FFT 1Pk Max M1[1] 5.8262390 GH 10 dBm M2[1] -12.56 dBm 0 dBm March fare brief hard from Mary Mary Mary CF 5.825 GHz 1001 pts Span 40.0 MHz Marker
 Type
 Ref
 Trc


 M1
 1

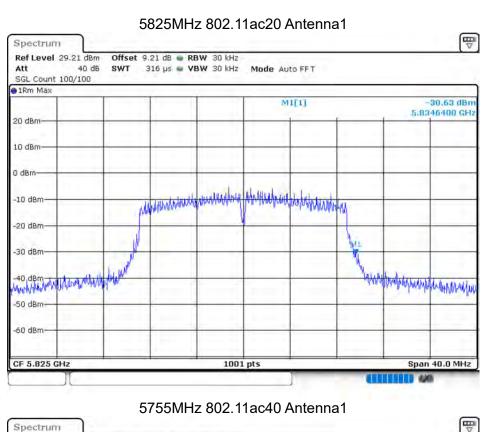
 M2
 1
 Y-value Function **Function Result** X-value -8.38 dBm -12.56 dBm -14.23 dBm 5.81744 GHz 5.83276 GHz МЗ EBW NVNT 802.11n(HT40) 5755MHz Ant1 Spectrum Ref Level 20.00 dBm RBW 100 kHz SWT 1.1 ms - VBW 300 kHz Mode Auto Sweep 40 dB • 1Pk Max M1[1] 11.25 dBn 5.7525220 GH 10 dBm M2[1] -16.00 dBm 5.7374800 GHz -30 dBm -50 dBm -70 d8m

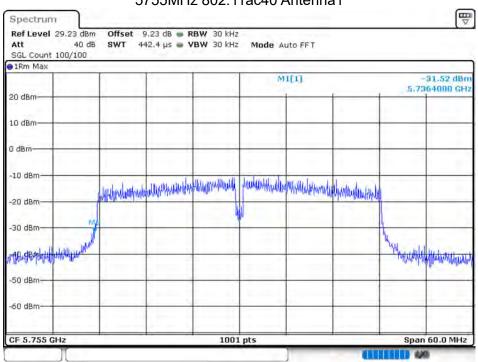
CF 5.755 GHz			1001 pts	Span 80.0 MHz	
larker				1.000	
Type Ref	Trc	X-value	Y-value	Function	Function Result
M1	1	5.752522 GHz	-11.25 dBm		
M2	1	5.73748 GHz	-16.00 dBm		
МЗ	1	5.77252 GHz	-14.71 dBm		

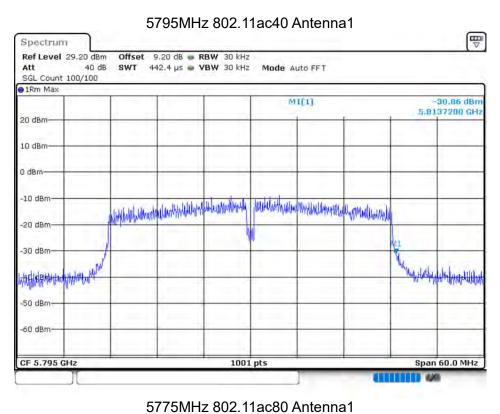


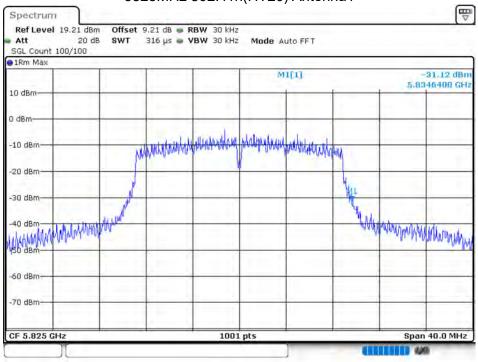


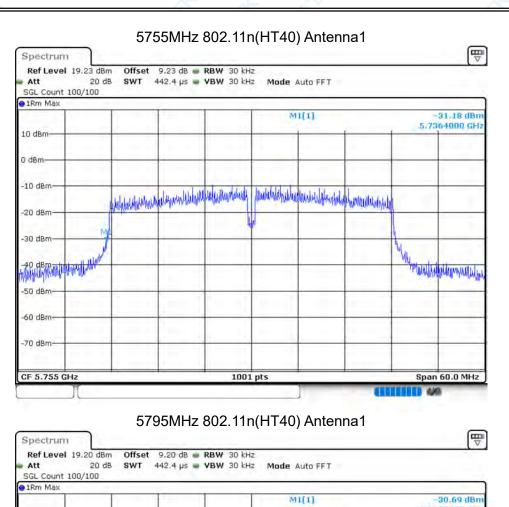
Condition	Mode	Frequency	Antenna	Frequency Range	Limit	Verdict
Condition	IVIOGE	(MHz)	Antenna	(MHz)	(MHz)	Verdict
NVNT	802.11a	5745	Ant 1	5735.68	>=5725	Pass
NVNT	802.11a	5825	Ant 1	5834.32	<=5875	Pass
NVNT	802.11ac20	5745	Ant 1	5735.44	>=5725	Pass
NVNT	802.11ac20	5825	Ant 1	5834.64	<=5875	Pass
NVNT	802.11ac40	5755	Ant 1	5736.4	>=5725	Pass
NVNT	802.11ac40	5795	Ant 1	5813.72	<=5875	Pass
NVNT	802.11ac80	5775	Ant 1	5813.4	<=5875	Pass
NVNT	802.11n(HT20)	5745	Ant 1	5735.52	>=5725	Pass
NVNT	802.11n(HT20)	5825	Ant 1	5834.64	<=5875	Pass
NVNT	802.11n(HT40)	5755	Ant 1	5736.4	>=5725	Pass
NVNT	802.11n(HT40)	5795	Ant 1	5813.78	<=5875	Pass

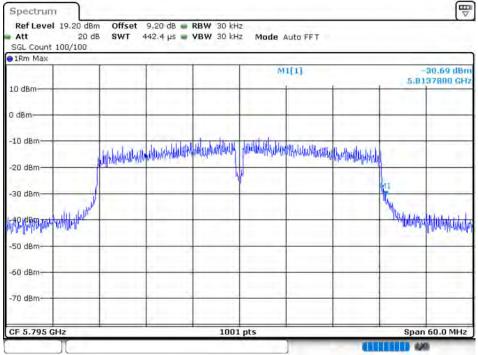

5745MHz 802.11a Antenna1

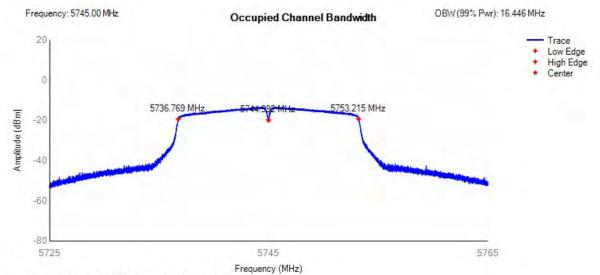


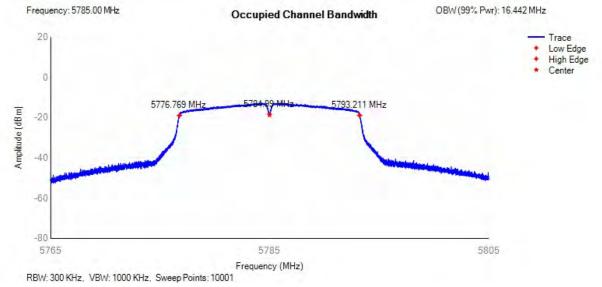








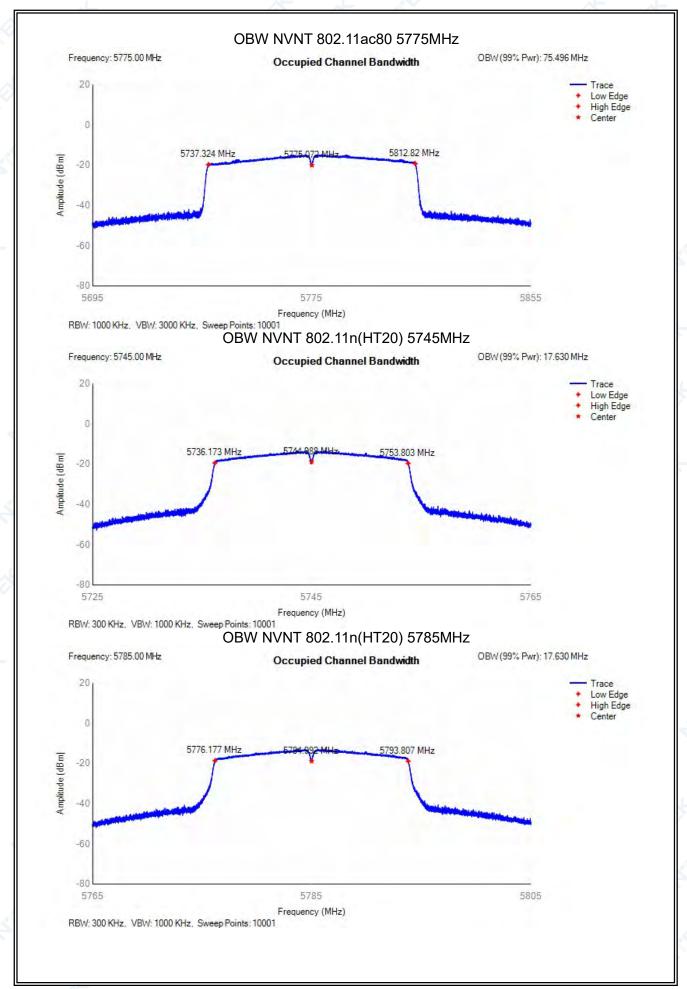



0	4 OCCUPIE	D CHANNEL BAN	DWIDTH					
	Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Limit (MHz)	Upper Limit(MHz)	Verdict
	NVNT	802.11a	5745	5744.992	16.446	16	20	Pass
	NVNT	802.11a	5785	5784.99	16.442	16	20	Pass
	NVNT	802.11a	5825	5824.99	16.402	16	20	Pass
	NVNT	802.11ac20	5745	5744.994	17.642	16	20	Pass
	NVNT	802.11ac20	5785	5784.99	17.642	16	20	Pass
	NVNT	802.11ac20	5825	5824.992	17.598	16	20	Pass
	NVNT	802.11ac40	5755	5754.996	36.052	32	40	Pass
	NVNT	802.11ac40	5795	5795.024	36.06	32	40	Pass
	NVNT	802.11ac80	5775	5775.072	75.496	64	80	Pass
	NVNT	802.11n(HT20)	5745	5744.988	17.63	16	20	Pass
	NVNT	802.11n(HT20)	5785	5784.992	17.63	16	20	Pass
	NVNT	802.11n(HT20)	5825	5824.99	17.594	16	20	Pass
	NVNT	802.11n(HT40)	5755	5755.004	36.052	32	40	Pass
	NVNT	802.11n(HT40)	5795	5795.016	36.06	32	40	Pass

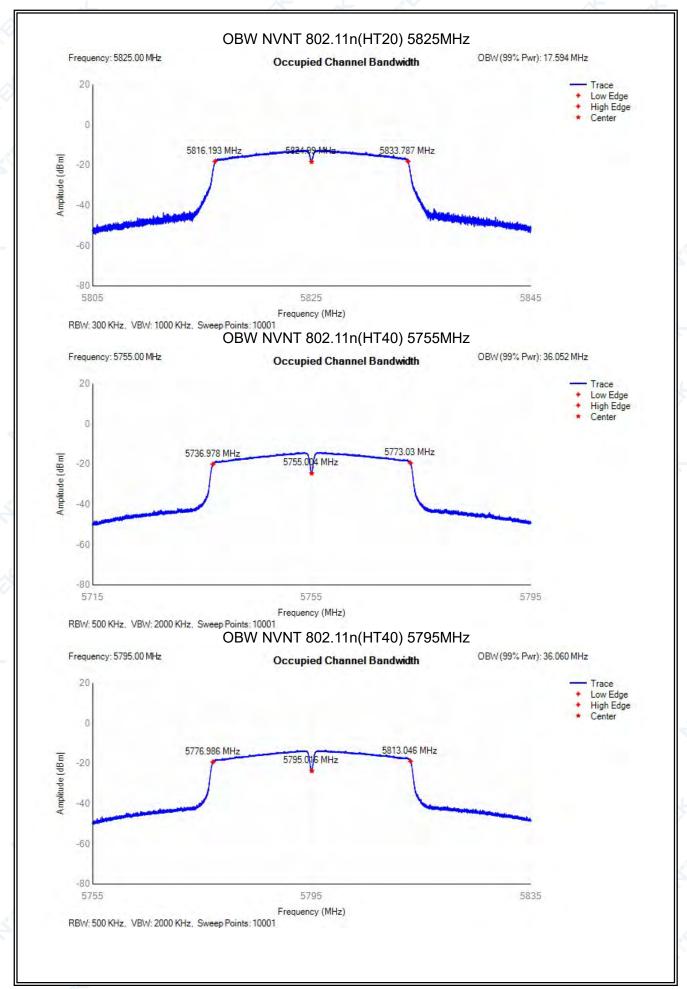
OBW NVNT 802.11a 5745MHz

RBW: 300 KHz, VBW: 1000 KHz, Sweep Points: 10001

OBW NVNT 802.11a 5785MHz



Report No.: STR220218001005E OBW NVNT 802.11a 5825MHz Frequency: 5825.00 MHz OBW (99% Pwr): 16.402 MHz Occupied Channel Bandwidth Trace High Edge Center 5833.191 MHz 5816.789 MHz Amplitude (dBm) -20 -40 -60 -80 5805 5825 5845 Frequency (MHz) RBW: 300 KHz, VBW: 1000 KHz, Sweep Points: 10001 OBW NVNT 802.11ac20 5745MHz Frequency: 5745.00 MHz OBW (99% Pwr): 17.642 MHz Occupied Channel Bandwidth 20 Low Edge High Edge Center 5753.815 MHz 5736.173 MHz Amplitude (dBm) -20 -40 -60 -80 5725 5745 5765 RBW: 300 KHz, VBW: 1000 KHz, Sweep Points: 10001 OBW NVNT 802.11ac20 5785MHz Frequency: 5785.00 MHz OBW (99% Pwr): 17.642 MHz Occupied Channel Bandwidth 20 Low Edge High Edge Center 5793.811 MHz 5776.169 MHz Amplitude (dBm) -20 -40 -60 -80 5765 5805 RBW: 300 KHz, VBW: 1000 KHz, Sweep Points: 10001



Report No.: STR220218001005E OBW NVNT 802.11ac20 5825MHz Frequency: 5825.00 MHz OBW (99% Pwr): 17.598 MHz Occupied Channel Bandwidth Trace High Edge Center 5833.791 MHz 5816.193 MHz Amplitude (dBm) -20 -40 -60 -80 5805 5825 5845 Frequency (MHz) RBW: 300 KHz, VBW: 1000 KHz, Sweep Points: 10001 OBW NVNT 802.11ac40 5755MHz Frequency: 5755.00 MHz OBW (99% Pwr): 36.052 MHz Occupied Channel Bandwidth 20 Low Edge High Edge Center 5736.97 MHz 5773.022 MHz Amplitude (dBm) -20 -40 -60 -80 5715 5755 5795 RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 10001 OBW NVNT 802.11ac40 5795MHz Frequency: 5795.00 MHz OBW (99% Pwr): 36.060 MHz Occupied Channel Bandwidth 20 Low Edge High Edge Center 5776.994 MHz 5813.054 MHz Amplitude (dBm) -20 -40 -60 -80 5835 5755 RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 10001

HVHT

802.11a

5745

Report No.: STR220218001005E

13.98

		r ago or v			toport i t	J OTT (22	.02 1000
RF OUTPUT I	POWER						
Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	802.11a	5745	9.34	61	8.74	13.98	Pass
NVNT	802.11a	5785	9.76	58	9.16	13.98	Pass
NVNT	802.11a	5825	10.02	57	9.42	13.98	Pass
NVNT	802.11ac20	5745	9.43	52	8.83	13.98	Pass
NVNT	802.11ac20	5785	9.41	68	8.81	13.98	Pass
NVNT	802.11ac20	5825	10.03	63	9.43	13.98	Pass
NVNT	802.11ac40	5755	9.22	137	8.62	13.98	Pass
NVNT	802.11ac40	5795	9.7	130	9.1	13.98	Pass
NVNT	802.11ac80	5775	8.52	251	7.92	13.98	Pass
NVNT	802.11n(HT20)	5745	9.22	66	8.62	13.98	Pass
NVNT	802.11n(HT20)	5785	9.62	59	9.02	13.98	Pass
NVNT	802.11n(HT20)	5825	10.27	57	9.67	13.98	Pass
NVNT	802.11n(HT40)	5755	9.54	134	8.94	13.98	Pass
NVNT	802.11n(HT40)	5795	10.01	134	9.41	13.98	Pass
LVLT	802.11a	5745	9.32	61	8.72	13.98	Pass
LVLT	802.11a	5785	9.62	58	9.02	13.98	Pass
LVLT	802.11a	5825	9.93	57	9.33	13.98	Pass
LVLT	802.11ac20	5745	9.41	52	8.81	13.98	Pass
LVLT	802.11ac20	5785	9.30	68	8.70	13.98	Pass
LVLT	802.11ac20	5825	10.02	63	9.42	13.98	Pass
LVLT	802.11ac40	5755	9.21	137	8.61	13.98	Pass
LVLT	802.11ac40	5795	9.68	130	9.08	13.98	Pass
LVLT	802.11ac80	5775	8.43	251	7.83	13.98	Pass
LVLT	802.11n(HT20)	5745	9.09	66	8.49	13.98	Pass
LVLT	802.11n(HT20)	5785	9.48	59	8.88	13.98	Pass
LVLT	802.11n(HT20)	5825	10.18	57	9.58	13.98	Pass
LVLT	802.11n(HT40)	5755	9.51	134	8.91	13.98	Pass
LVLT	802.11n(HT40)	5795	9.96	134	9.36	13.98	Pass
LVHT	802.11a	5745	9.32	61	8.72	13.98	Pass
LVHT	802.11a	5785	9.74	58	9.14	13.98	Pass
LVHT	802.11a	5825	9.92	57	9.32	13.98	Pass
LVHT	802.11ac20	5745	9.38	52	8.78	13.98	Pass
LVHT	802.11ac20	5785	9.31	68	8.71	13.98	Pass
LVHT	802.11ac20	5825	9.88	63	9.28	13.98	Pass
LVHT	802.11ac40	5755	9.06	137	8.46	13.98	Pass
LVHT	802.11ac40	5795	9.69	130	9.09	13.98	Pass
LVHT	802.11ac80	5775	8.50	251	7.90	13.98	Pass
LVHT	802.11n(HT20)	5745	9.03	66	8.43	13.98	Pass
LVHT	802.11n(HT20)	5785	9.55	59	8.95	13.98	Pass
LVHT	802.11n(HT20)	5825	10.08	57	9.48	13.98	Pass
LVHT	802.11n(HT40)	5755	9.52	134	8.92	13.98	Pass
LVHT	802.11n(HT40)	5795	9.81	134	9.21	13.98	Pass
111/1	000 1	5745	0.44		0.54	40.00	

802.11n(HT40)

HVLT

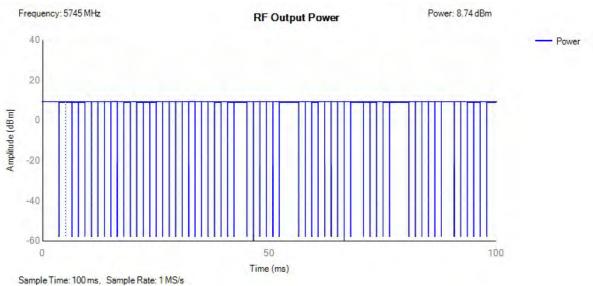
Page 68 of 74

Report No.: STR220218001005E

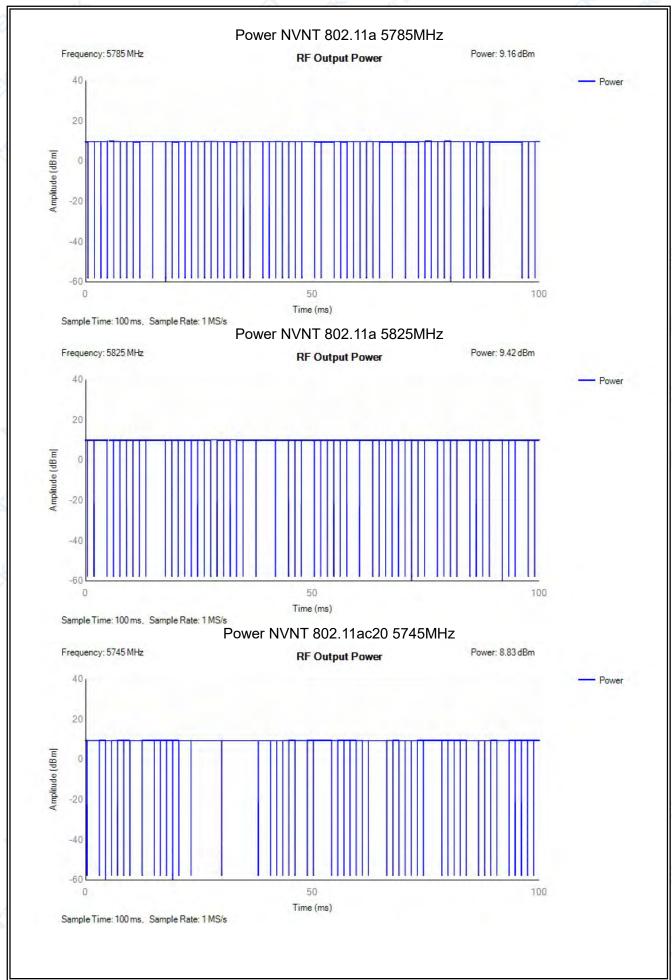
HVHT	802.11a	5785	9.57	58	8.97	13.98	Pass
HVHT	802.11a	5825	9.89	57	9.29	13.98	Pass
HVHT	802.11ac20	5745	9.33	52	8.73	13.98	Pass
HVHT	802.11ac20	5785	9.26	68	8.66	13.98	Pass
HVHT	802.11ac20	5825	9.95	63	9.35	13.98	Pass
HVHT	802.11ac40	5755	9.08	137	8.48	13.98	Pass
HVHT	802.11ac40	5795	9.52	130	8.92	13.98	Pass
HVHT	802.11ac80	5775	8.31	251	7.71	13.98	Pass
HVHT	802.11n(HT20)	5745	9.04	66	8.44	13.98	Pass
HVHT	802.11n(HT20)	5785	9.47	59	8.87	13.98	Pass
HVHT	802.11n(HT20)	5825	10.13	57	9.53	13.98	Pass
HVHT	802.11n(HT40)	5755	9.53	134	8.93	13.98	Pass
HVHT	802.11n(HT40)	5795	9.89	134	9.29	13.98	Pass
HVLT	802.11a	5745	9.18	61	8.58	13.98	Pass
HVLT	802.11a	5785	9.68	58	9.08	13.98	Pass
HVLT	802.11a	5825	9.85	57	9.25	13.98	Pass
HVLT	802.11ac20	5745	9.32	52	8.72	13.98	Pass
HVLT	802.11ac20	5785	9.26	68	8.66	13.98	Pass
HVLT	802.11ac20	5825	9.90	63	9.30	13.98	Pass
HVLT	802.11ac40	5755	9.19	137	8.59	13.98	Pass
HVLT	802.11ac40	5795	9.59	130	8.99	13.98	Pass
HVLT	802.11ac80	5775	8.43	251	7.83	13.98	Pass
HVLT	802.11n(HT20)	5745	9.13	66	8.53	13.98	Pass
HVLT	802.11n(HT20)	5785	9.50	59	8.90	13.98	Pass
HVLT	802.11n(HT20)	5825	10.11	57	9.51	13.98	Pass
HVLT	802.11n(HT40)	5755	9.37	134	8.77	13.98	Pass

Power NVNT 802.11a 5745MHz

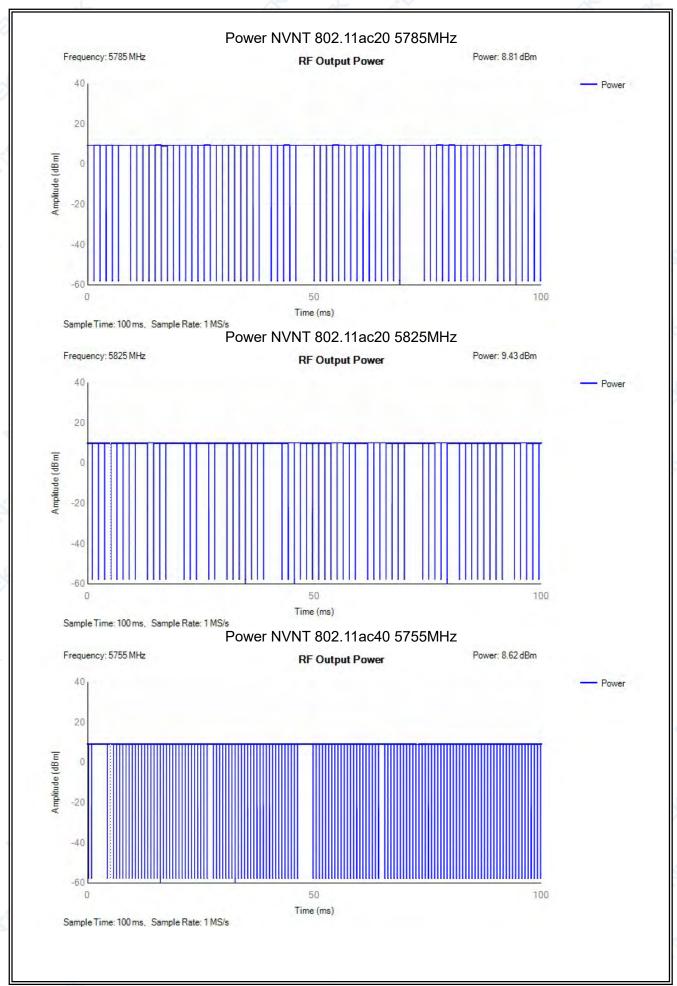
9.99

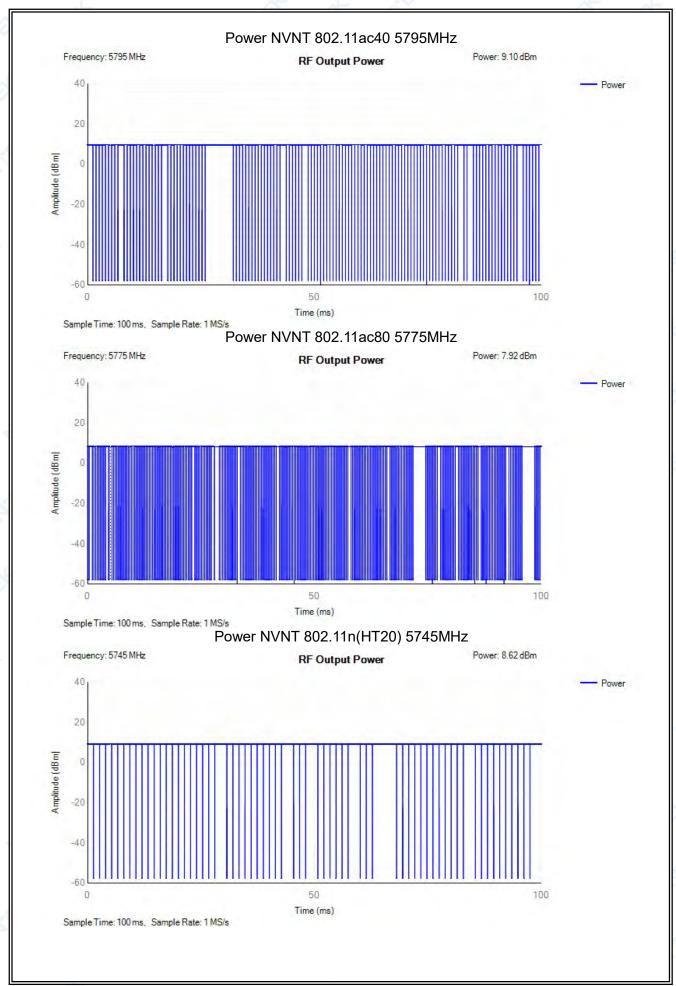

134

9.39

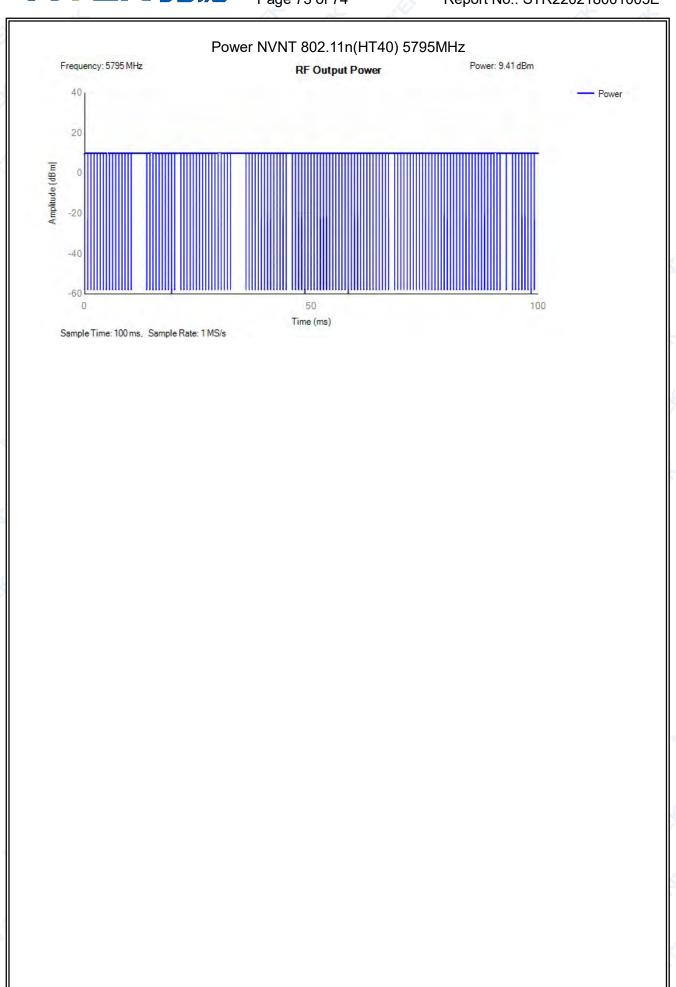

13.98

Pass


5795



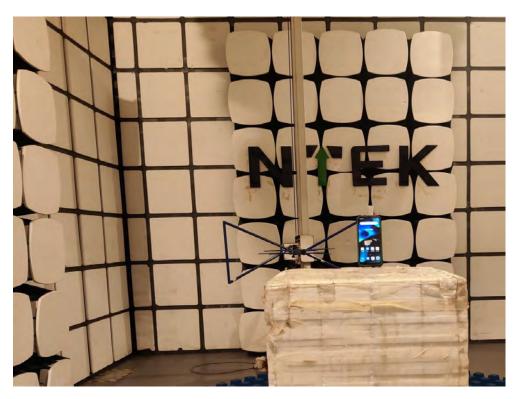
-40


-60

Sample Time: 100 ms, Sample Rate: 1 MS/s

Page 72 of 74 Report No.: STR220218001005E Power NVNT 802.11n(HT20) 5785MHz Frequency: 5785 MHz Power: 9.02 dBm **RF Output Power** 20 Amplitude (dBm) -40 -60 Time (ms) Sample Time: 100 ms, Sample Rate: 1 MS/s Power NVNT 802.11n(HT20) 5825MHz Frequency: 5825 MHz Power: 9.67 dBm **RF Output Power** 20 Amplitude (dBm) -40 -60 Time (ms) Sample Time: 100 ms, Sample Rate: 1 MS/s Power NVNT 802.11n(HT40) 5755MHz Frequency: 5755 MHz Power: 8.94 dBm **RF Output Power** 20 Amplitude (dBm) -20

Time (ms)



11. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT