RADIO TEST REPORT ETSI EN 300 440 V2.2.1 (2018-07)

Product :	Mobile Phone
Trade Mark :	Blackview, OSCAL
Model Name :	BV5300 Pro
Family Model:	S70 Pro
Report No. :	STR230317002005E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Page 2 of 73

Applicant's name: DOKE COMMUNICATION (HK) LIMITED
Address
Manufacturer's Name: : Shenzhen DOKE Electronic Co., Ltd
Address
Product description
Product name: Mobile Phone
Trademark: Blackview, OSCAL
Model Name: BV5300 Pro
Family Model S70 Pro
Standards ETSI EN 300 440 V2.2.1 (2018-07)
Standards: ETSI EN 300 440 V2.2.1 (2018-07) This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.
This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of
This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.

Test Result:	Pass
Date of Issue:	Mar 29, 2023
Date (s) of performance of tests	Mar 17, 2023 /

NTEK 北测[®]

Testing Engineer

Muhri Lee

(Mukzi Lee)

Authorized Signatory :

es

(Alex Li)

Table of Contents Pag	ge
1 . SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.2 MEASUREMENT UNCERTAINTY	8
2 . GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 TEST CONDITIONS	10
2.3 DESCRIPTION OF TEST CONDITIONS	11
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	13
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	14
3 . EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)	15
3.1 APPLICABILITY	15
3.2 LIMITS	15
3.3 GENERAL REQUIREMENTS	15
3.4 TEST PROCEDURES	15
3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS 3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS	15 16
3.5 TEST SETUP LAYOUT	16
3.6 EUT OPERATION DURING TEST	16
3.7 TEST RESULT FOR -6 DB BANDWIDTH	17
3.8 TEST RESULT FOR E.I.R.P	18
4 . PERMITTED RANGE OF OPERATING FREQUENCIES	19
4.1 APPLIED PROCEDURES / LIMIT	19
4.2 TEST PROCEDURES	19
4.3 TEST SETUP LAYOUT	19
4.4 EUT OPERATION DURING TEST	19
4.5 TEST RESULTS	20
5 . UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	23
5.1 APPLIED PROCEDURES / LIMIT	23
5.2 MEASURING INSTRUMENTS AND SETTING	23
5.3 TEST PROCEDURES	23
5.4 TEST SETUP LAYOUT	24
5.5 EUT OPERATION DURING TEST	24

Page 3 of 73

NTEK 北测[®]

Table of Contents	Page
5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS	24
5.7 TEST RESULTS	25
6.DUTY CYCLE	27
6.1 APPLICABILITY AND DESCRIPTION	27
6.2 LIMITS	27
6.4 METHOD OF MEASUREMENT	27
6.5 TEST SETUP	28
6.6 TEST RESULTS	28
7 . SPURIOUS EMISSIONS – RX	29
7.1 APPLIED PROCEDURES / LIMIT	29
7.2 MEASURING INSTRUMENTS AND SETTING	29
7.3 TEST PROCEDURES	29
7.5 TEST SETUP LAYOUT	29
7.6 EUT OPERATION DURING TEST	29
7.7 TEST RESULTS	30
8 . ADJACENT CHANNEL SELECTIVITY	31
8.1 APPLICABILITY	31
8.2 LIMITS	31
8.3 METHODS OF MEASUREMENT	31
8.4 TEST SETUP LAYOUT	32
8.5 TEST RESULTS	32
9 . BLOCKING OR DESENSITIZATION	33
9.1 APPLICABILITY	33
9.2 LIMITS	33
9.3 TEST PROCEDURES	33
8.4 TEST SETUP LAYOUT	34
9.4 TEST RESULTS	35
10 . TEST RESULTS	40
10.1 DUTY CYCLE	40
10.2 -6DB EMISSION BANDWIDTH	48
10.3 OCCUPIED CHANNEL BANDWIDTH	56
10.4 RF OUTPUT POWER	64
11 . EUT TEST PHOTO	73

Page 4 of 73

NTEK 北测[®]

Page 5 of 73

Report No.: STR230317002005E

Table of Contents	Page
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	73
APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

Revision History

Page 6 of 73

Deport No	Version	Description	laguad Data
Report No.	Version	Description	Issued Date
STR230317002005E	Rev.01	Initial issue of report	Mar 29, 2023

1. SUMMARY OF TEST RESULTS

NTEK 北测[®]

Test procedures according to the technical standards: ETSI EN 300 440 V2.2.1 (2018-07)

Clause	Description of Test Item	Remarks	Results			
	Transmitter Parameters					
4.2.2	-6 dB channel bandwidth	Conducted	Pass			
4.2.2	Effective isotropic radiated power	Conducted	Pass			
4.2.3	Permitted range of operation frequencies	Conducted	Pass			
4.2.4	Unwanted emissions in the spurious domain	Radiated	Pass			
4.2.5	Duty cycle	Conducted	Pass			
4.2.6	Additional requirements for FHSS equipment	Conducted	N/A			
	Receiver Parameters					
4.3.3	Adjacent channel selectivity(For Receiver category 1)	Conducted	N/A			
4.3.4	Blocking or desensitization(For Receiver category 1,2,3)	Conducted	Pass			
4.3.5	Spurious emissions(For Receiver category 1,2,3)	Radiated	Pass			

Page 7 of 73

Note: The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter

1.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

Page 8 of 73

1.2 MEASUREMENT UNCERTAINTY

NTEK 北测

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\ k=2$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty	
1	Radio frequency	±1 x 10-7	
2	RF power (conducted)	±2,5 dB	
3	Radiated emission of transmitter, valid to 26,5 GHz	±6 dB	
4	Radiated emission of transmitter, valid between	±8 dB	
	26,5 GHz and 66 GHz		
5	Radiated emission of receiver, valid to 26,5 GHz	±6 dB	
6	Radiated emission of receiver, valid between 26,5	±8 dB	
	GHz and 66 GHz		
7	Temperature	±1 ℃	
8	Humidity	±5 %	
9	Voltage (DC)	±1 %	
10	Voltage (AC, < 10 kHz)	±2 %	
NOTE: For radiated emissions above 26,5 GHz it may not be possible to			

achieve measurement uncertainties complying with the levels specified in this table. In these cases alone it is acceptable to employ the alternative interpretation procedure specified in EN 300440 V2.2.1 clause 5.9.1.

Report No.: STR230317002005E

2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone				
Trade Mark	Blackview, OSCAL				
Model Name	BV5300 Pro				
Family Model	S70 Pro				
Model Difference		are the same circuit and RF module,except the I battery lable is different.			
	Operation Frequency: Data Rate:	5745-5825 MHz for 802.11a/n20/ac20; 5755-5795 MHz for 802.11n40/ac40; 5775MHz for 802.11 ac80; 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS7;			
		802.11ac(VHT20/ VHT40/VHT80): NSS1, MCS0-MCS9, NSS2			
Product Description	Modulation Channel No.:	BPSK/QPSK/16QAM/64QAM/256QAM 5 channels for 802.11a/n20/ac20 in the			
		5745-5825MHz band ; 2 channels for 802.11 n40/ac40 in the 5755-5795MHz band ; 1 channels for 802.11 ac80 in the 5775MHz band ;			
	Antenna Designation: PIFA Antenna				
	Antenna Gain(Peak)	0.31 dBi			
Receiver category	 Category 1: Highly reliable SRD communication media; e.g. serving human life inherent systems (may result in a physical risk to a person). Category 2: Medium reliable SRD communication media e.g. causing inconvenience to persons, which cannot simply be overcome by other means. Category 3: Standard reliable SRD communication media e.g. Inconvenience to persons, which can simply be overcome by other means (e.g. manual). 				
Channel List	Refer to below				
Adapter	Model: QZ-01000EA00 Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A (10.0W)				
Battery	DC 3.85V, 6580mAh, 25.333Wh				
Rating	DC 3.85V fron	n battery or DC 5V from adapter			
Hardware Version	TE105_MAIN_	PCB_V1.1			
Software Version	BV5300 Pro_EEA_TE105_V1.0, S70 Pro_EEA_TE105_V1.0				

Page 9 of 73

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Channel list:

NTEK北测[®]

Frequency and Channel list for 802.11a/n/ac(20 MHz) band IV (5745-5825MHz):

Page 10 of 73

802.11a/n/ac(20 MHz) Carrier Frequency Channel							
Channel	Frequen	Channel	Frequen	Channel	Frequen	Channel	Frequen
Channel	cy (MHz)	Channel	cy (MHz)	Channel	cy (MHz)	Channel	cy (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-

Frequency and Channel list for 802.11n/ac(40MHz) band IV (5755-5795MHz):

802.11n/ac 40MHz Carrier Frequency Channel						
Channel	Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel (MHz)					
151	5755	159	5795	-	-	

Frequency and Channel list for 802.11ac(80MHz) band IV (5775MHz):

802.11ac 80MHz Carrier Frequency Channel		
Channel Frequency (MHz)		
155 5775		

2.2 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15°C - 35°C	-10°C ~ 40°C _{Note1}
Relative Humidity	20% - 75%	N/A
Power Rating	DC 3.85V	N/A
Test voltage	DC 3.85V	DC 4.43V-DC 3.27V _{Note2}

Note:

(1) The temperature range as declared by the manufacturer; or one of the following specified temperature ranges:

- Temperature category I (General): -20 °C to +40 °C;

- Temperature category II (Portable): -10 °C to +40 °C;

- Temperature category III (Equipment for normal indoor use): 5 °C to +35 °C.

(2) The High Voltage 4.43V and Low Voltage 3.27V was declarated by manufacturer.

2.3 DESCRIPTION OF TEST CONDITIONS

NTEK 北测[®]

For Conducted Test			
Pretest Mode Description			
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165		
Mode 2	802.11n/ ac40 CH 151 / CH 159		
Mode 3	802.11 ac80 CH 155		

Page 11 of 73

For Radiated Test			
Final Test Mode Description			
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165		
Mode 2 802.11n/ ac40 CH 151 / CH 159			
Mode 3 802.11 ac80 CH 155			

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Page 13 of 73

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Mobile Phone	BV5300 Pro	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength _l column.
- (3) "YES" means "shielded" or "with ferrite core";"NO" means "unshielded" or "without ferrite core"

Page 14 of 73

Report No.: STR230317002005E

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

NTEK 北测[®]

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
Turn Table	EM	SC100_1	60531	N/A	N/A	Ň/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.01	2023.03.31	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01	2023.03.31	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Page 15 of 73

3. EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)

3.1 APPLICABILITY

The equivalent isotropically radiated power requirement shall apply to all transmitters.

3.2 LIMITS

Table 2: Maximum radiated peak power (e.i.r.p.)

Frequency Bands	Power	Application	Notes
2 400 MHz to 2 483,5 MHz	10 mW e.i.r.p.	Non-specific short range devices	
2 400 MHz to 2 483,5 MHz	25 mW e.i.r.p.	Radio determination devices	
(a) 2 446 MHz to 2 454 MHz	500 mW e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
(b) 2 446 MHz to 2 454 MHz	4 W e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
5 725 MHz to 5 875 MHz	25 mW e.i.r.p.	Non-specific short range devices	
9 200 MHz to 9 500 MHz	25 mW e.i.r.p.	Radio determination devices	
9 500 MHz to 9 975 MHz	25 mW e.i.r.p.	Radio determination devices	
10,5 GHz to 10,6 GHz	500 mW e.i.r.p.	Radio determination devices	
13,4 GHz to 14,0 GHz	25 mW e.i.r.p.	Radio determination devices	
17,1 GHz to 17,3 GHz	400 mW e.i.r.p.	Radio determination devices	See annex F
24,00 GHz to 24,25 GHz	100 mW e.i.r.p.	Non-specific short range devices and Radio determination devices	

3.3 GENERAL REQUIREMENTS

1. To measure e.i.r.p. it is first necessary to determine the appropriate method of measurement: see EN 300440 V2.2.1 clauses 4.2.2.3.1 and 4.2.2.3.2. The -6 dB transmitter bandwidth shall be determined using a 100 kHz measuring bandwidth in order to establish which measurement method is applicable:

Со	Condition	
Non spread spectrum transmitters with a -6 dB bandwidth of up to 20 MHz and spread	Non spread spectrum equipment with a -6 dB bandwidth of 20 MHz or less and a duty cycle above 50 %;	Refer to section 3.4.1
spectrum transmitters with channel bandwidth of up to 1 MHz;	Spread spectrum equipment with a -6 dB channel bandwidth of 1 MHz or less.	
☆ for all other transmitter bandwidths.	☐equipment with a -6 dB bandwidth greater than 20 MHz, and equipment with a duty cycle below 50 %;; ⊠spread spectrum equipment with a channel bandwidth above 1 MHz	Refer to section 3.4.2

2. Measurements shall be performed at normal test conditions.

3.4 TEST PROCEDURES

3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS

The measurement shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded. **Equipment measured as constant envelope modulation equipment**

NTEK 北测 Page

Page 16 of 73

Report No.: STR230317002005E

For practical reasons, measurements shall be performed only at the highest power level at which the transmitter is intended to operate. The measurement arrangement in figure 2 shall be used. The measurement shall be performed preferably in the absence of modulation.

When it is not possible to measure it in the absence of modulation, this fact shall be stated in test reports.

The transmitter shall be set in continuous transmission mode. If this is not possible, the measurements shall be carried

out in a period shorter than the duration of the transmitted burst. It may be necessary to extend the duration of the burst.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

Equipment measured as non-constant envelope modulation equipment

The measurement shall be performed with test signals D-M2 or D-M3 as appropriate. The transmitter shall be preferably set in continuous transmission mode. If this is not possible, the measurement can be performed in discontinuous mode.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured. The measuring instrument shall have a measurement bandwidth not less than sixteen times the channel bandwidth.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS

Step 1:

• using a suitable means, the output of the transmitter shall be coupled to a matched diode detector;

• the output of the diode detector shall be connected to the vertical channel of an oscilloscope;

• the combination of the diode detector and the oscilloscope shall be capable of faithfully

reproducing the envelope peaks and the duty cycle of the transmitter output signal;

• the observed duty cycle of the transmitter (Tx on/(Tx on + Tx off)) shall be noted as x, (0 < x < 1)And recorded.

Step 2:

• the average output power of the transmitter shall be determined using a wideband, calibrated RF power meter with a matched thermocouple detector or an equivalent thereof and, where applicable, with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);

• the e.i.r.p. shall be calculated from the above measured power output A, the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

 $- P = A + G + 10 \log (1/x);$

- P should be EIRP POWER.

3.5 TEST SETUP LAYOUT

3.6 EUT OPERATION DURING TEST

Where possible, the equipment shall be able to operate in a continuous transmit mode for testing purposes.

3.7 TEST RESULT FOR -6 DB BANDWIDTH

EUT :	Mobile Phone	Model Name :	BV5300 Pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

3.8 TEST RESULT FOR E.I.R.P

EUT :	Mobile Phone	Model Name :	BV5300 Pro
Temperature :		Relative Humidity :	
Pressure :	1012 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

4. PERMITTED RANGE OF OPERATING FREQUENCIES

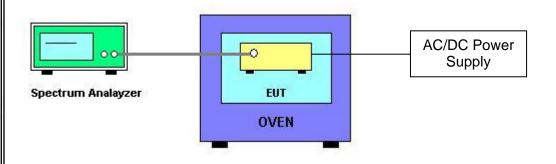
4.1 APPLIED PROCEDURES / LIMIT

The Permitted range of operating frequencies shall apply to all transmitters.

Limits: The width of the power spectrum envelope is fH -fL for a given operating frequency. In equipment that allows adjustment or selection of different operating frequencies, the power envelope takes up different positions in the allowed band. The frequency range is determined by the lowest value of fL and the highest value of fH resulting from the adjustment of the equipment to the lowest and highest operating frequencies.

The occupied bandwidth (i.e. the bandwidth in which 99 % of the wanted emission is contained) of the transmitter shall fall within the assigned frequency band.

For all equipment the frequency range shall lie within the frequency band given by section 3.2, table 2. For non-harmonized frequency bands the available frequency range may differ between national administrations.


4.2 TEST PROCEDURES

These measurements shall be performed under both normal and extreme operating conditions except for the occupied bandwidth assessment for which measurement at normal operating conditions is sufficient.

The measurement procedure shall be as follows:

- a) put the spectrum analyser in video averaging mode with a minimum of 50 sweeps selected;
- b) select the lowest operating frequency of the equipment under test and activate the transmitter with modulation applied. The RF emission of the equipment shall be displayed on the spectrum analyser;
- c) using the marker of the spectrum analyser, find the lowest frequency below the operating frequency at which the spectral power density drops below the level given in clause 4.2.3. This frequency shall be recorded in the test report;
- d) select the highest operating frequency of the equipment under test and find the highest frequency at which the spectral power density drops below the value given in clause 4.2.3. This frequency shall be recorded in the test report;
- e) the difference between the frequencies measured in steps c) and d) is the operating frequency range. It shall be recorded in the test report.

4.3 TEST SETUP LAYOUT

4.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

NTEK 比测[®] Page 20 of 73

Report No.: STR230317002005E

4.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV5300 Pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	ТХ		

802.11a

Extreme condition			Frequency	range (MHz)		
	ztrem	econdition		F _L CH149	F _н CH165	
		V max (V)	4.43	5736.496	5834.817	
T min (°C)	-10	V nom (V)	3.85	5735.878	5834.923	
		V min (V)	3.27	5736.429	5834.609	
	V max (V)		4.43	5735.933	5834.703	
T max (°C)	40	V nom (V)	3.85	5736.305	5835.411	
		V min (V)	3.27	5736.247	5835.011	
T normal (°C)	24	V nom (V)	3.85	5735.975	5834.810	
Min. f	/ Max	. f _H Band Edges	5	5735.878	5835.411	
	Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
	R	esult		Complies		

802.11n20

Extreme condition			Frequency	range (MHz)		
	ztrem	e condition		F _L CH149	F _н CH165	
		V max (V)	4.43	5735.729	5835.032	
T min (°C)	-10	V nom (V)	3.85	5735.827	5834.900	
		V min (V)	3.27	5735.600	5835.187	
		V max (V)	4.43	5735.911	5835.043	
T max (°C)	40	V nom (V)	3.85	5736.400	5834.597	
		V min (V)	3.27	5735.565	5835.363	
T normal (°C)	24	V nom (V)	3.85	5736.048	5835.137	
Min. f	/ Max	. f _H Band Edges	i	5735.565	5835.363	
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$		
	Result			Complies		

Report No.: STR230317002005E

			Frequency range (MHz)		
	zxtrem	e condition		F _L CH151	F _н CH159
		V max (V)	4.43	5736.767	5814.367
T min (°C)	-10	V nom (V)	3.85	5736.797	5813.777
		V min (V)	3.27	5736.910	5814.000
		V max (V)	4.43	5737.205	5813.554
T max (°C)	40	V nom (V)	3.85	5736.676	5814.309
		V min (V)	3.27	5736.662	5814.477
T normal (°C)	24	V nom (V)	3.85	5737.493	5813.578
Min. f	_ / Max	. f _H Band Edges		5736.662	5814.477
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
	R	esult		Con	nplies

Page 21 of 73

802.11ac20

Extreme condition				Frequency	range (MHz)
	ztrem	econdition		F _L CH149	F _н CH165
		V max (V)	4.43	5736.220	5834.682
T min (°C)	-10	V nom (V)	3.85	5735.966	5834.943
		V min (V)	3.27	5735.766	5834.748
		V max (V)	4.43	5735.519	5835.122
T max (°C)	40	V nom (V)	3.85	5735.849	5834.526
		V min (V)	3.27	5735.966 5735.766 5735.519 5735.849 5735.523 5736.285 5735.519	5834.523
T normal (°C)	24	V nom (V)	3.85	5736.285	5835.149
Min. f	₋ / Max	. f _H Band Edges		5735.519	5835.149
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
	R	esult		Complies	

Report No.: STR230317002005E

-			Frequency range (MHz)		
E	xtrem	e condition		F _L CH151	F _н CH159
		V max (V)	4.43	5737.122	5814.273
T min (°C)	-10	V nom (V)	3.85	5736.784	5814.103
		V min (V)	3.27	5737.324	5813.904
		V max (V)	4.43	5737.331	5813.523
T max (°C)	40	V nom (V)	3.85	5737.230	5813.768
		V min (V)	3.27	5736.518	5814.309
T normal (°C)	24	V nom (V)	3.85	5737.194	5814.308
Min. f _L	Min. f_L / Max. f_H Band Edges		5736.518	5814.309	
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
	R	esult		Con	nplies

Page 22 of 73

802.11ac80

	vtrom	e condition	Frequency	range (MHz)	
-	xtrem	econdition		F _L CH155	F _н CH155
		V max (V)	4.43	5736.996	5814.122
T min (°C)	-10	V nom (V)	3.85	5736.876	5814.262
		V min (V)	3.27	5736.580	5814.159
		V max (V)	4.43	5736.709	5813.985
T max (°C)	40	V nom (V)	3.85	5737.092	5813.549
		V min (V)	3.27	3.27 5736.580 4.43 5736.709 3.85 5737.092 3.27 5737.269 3.85 5737.056 5736.580 5736.580	5814.396
T normal (°C)	24	V nom (V)	3.85	5737.056	5814.421
Min. f _L	/ Max	. f _H Band Edges	6	5736.580 5814.42	
Indoor Use Limits			F_L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
	R	esult		Con	nplies

NTEK Lin[®] Page 23 of 73

5. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

5.1 APPLIED PROCEDURES / LIMIT

The unwanted emissions in the spurious domain requirement shall apply to all transmitters.

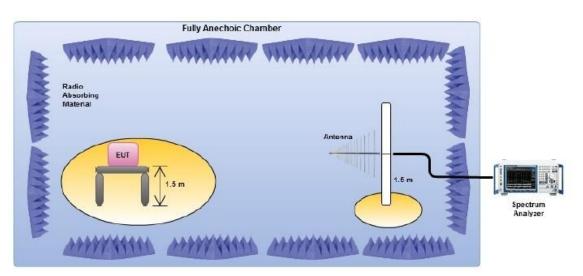
	47 MHz to 74 MHz		
State	87.5 MHz to 118 MHz	Other frequencies	Frequencies
State	174 MHz to 230 MHz	≤□ 1 000 MHz	> 1 000 MHz
	470 MHz to 862 MHz		
Operating	4 nW /-54dBm	250 nW/-36dBm	1 µW /-30dBm
Standby	2 nW /-57dBm	2 nW /-57dBm	20 nW /-47dBm

5.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz
	For frequency above 1G:1MHz

5.3 TEST PROCEDURES


- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable. For above 1G, using Horn antenna .
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

NTEK 北测

Report No.: STR230317002005E

5.4 TEST SETUP LAYOUT

Radiated Emission Test Set-Up

Page 24 of 73

5.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS

For the initial investigation on standby mode and receiving mode, no significant differences in spurious emissions were observed between these 2 modes. So test data for standby mode was omitted in this section.

NTEK Lin[®] Page 25 of 73

Report No.: STR230317002005E

5.7 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV5300 Pro
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V (NORMAL)
Test Mode :	TX-802.11ac40 mode		

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	41.74	-69.97	15.42	-54.55	-36	-18.55	peak
V	69.83	-71.77	9.00	-62.77	-54	-8.77	peak
V	104.53	-80.67	10.89	-69.78	-54	-15.78	peak
V	181.68	-81.15	12.54	-68.61	-54	-14.61	peak
V	270.51	-60.57	12.31	-48.26	-36	-12.26	peak
V	482.65	-90.92	16.73	-74.19	-54	-20.19	peak
Н	45.76	-63.30	12.84	-50.46	-36	-14.46	peak
Н	65.16	-72.97	5.81	-67.16	-54	-13.16	peak
Н	112.31	-79.53	10.67	-68.86	-54	-14.86	peak
Н	179.43	-79.43	12.51	-66.92	-54	-12.92	peak
Н	342.73	-60.29	14.77	-45.52	-36	-9.52	peak
Н	622.53	-88.87	20.09	-68.78	-54	-14.78	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Page 26 of 73

Report No.: STR230317002005E

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
		ор	eration frequency	/:5745 MHz			
V	1197.58	-45.66	1.99	-43.67	-30	-13.67	peak
V	1696.13	-44.36	3.99	-40.37	-30	-10.37	peak
V	2197.28	-52.25	8.55	-43.70	-30	-13.70	peak
V	5760.36	-59.54	8.73	-50.81	-30	-20.81	peak
Н	1697.19	-47.23	3.48	-43.75	-30	-13.75	peak
Н	3821.33	-64.25	8.66	-55.59	-30	-25.59	peak
Н	5759.46	-59.25	9.00	-50.25	-30	-20.25	peak
Н	9382.71	-58.92	14.45	-44.47	-30	-14.47	peak
		ор	eration frequency	/:5785 MHz			
V	1196.70	-46.06	2.10	-43.96	-30	-13.96	peak
V	1698.36	-45.46	3.67	-41.79	-30	-11.79	peak
V	2197.42	-51.17	8.62	-42.55	-30	-12.55	peak
V	3886.06	-60.82	8.31	-52.51	-30	-22.51	peak
V	5823.22	-59.25	9.17	-50.08	-30	-20.08	peak
Н	1697.05	-46.80	3.64	-43.16	-30	-13.16	peak
Н	2197.34	-51.17	8.91	-42.26	-30	-12.26	peak
Н	5823.28	-56.36	8.58	-47.78	-30	-17.78	peak
Н	9388.09	-53.96	14.44	-39.52	-30	-9.52	peak
		ор	eration frequency	/:5825 MHz			
V	1696.00	-46.19	3.30	-42.89	-30	-12.89	peak
V	2196.26	-50.11	9.06	-41.05	-30	-11.05	peak
V	2634.33	-58.11	9.79	-48.32	-30	-18.32	peak
V	5820.93	-60.44	8.38	-52.06	-30	-22.06	peak
V	6168.68	-51.13	11.66	-39.47	-30	-9.47	peak
Н	1696.66	-47.84	3.44	-44.40	-30	-14.40	peak
Н	2196.50	-52.37	8.56	-43.81	-30	-13.81	peak
Н	2634.09	-58.29	9.99	-48.30	-30	-18.30	peak
Н	5822.27	-56.38	9.11	-47.27	-30	-17.27	peak

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Note: Only the worst case 802.11ac40 mode recorded in the report.

NTEK 北视 Page 27 of 73

Report No.: STR230317002005E

6. DUTY CYCLE

6.1 APPLICABILITY AND DESCRIPTION

Duty Cycle (DC) shall apply to all transmitting equipment except those which utilize Listen Before Talk (LBT) clause 4.4.2, or Detect And Avoid (DAA), clause 4.4.3. RFID transmitters operating in the 2 446 MHz to 2 454 MHz frequency band that transmit at a maximum radiated peak power level of less than 500 mW e.i.r.p. are also excluded.

Duty cycle is the ratio expressed as a percentage, of the cumulative duration of transmissions T_{on_cum} within an observation interval $T_{obs.}$

$$DC = \left(\frac{T_{on_cum}}{T_{obs}}\right)F_{obs}$$

on an observation bandwidth F_{obs}.

Unless otherwise specified, $T_{\mbox{\tiny obs}}$ is 1 hour and the observation bandwidth $F_{\mbox{\tiny obs}}$ is the operational frequency band

Each transmission consists of an RF emission, or sequence of RF emissions separated by intervals $< T_{Dis}$.

6.2 LIMITS

Table 4 defines the maximum duty cycle within a 1 hour period. Table 4: Duty cycle limits

Frequency Band	Duty cycle	Application	Notes
2 400 MHz to 2 483,5 MHz	No Restriction	Generic use	
2 400 MHz to 2 483,5 MHz	No Restriction	Detection, movement and alert	
		applications	
(a) 2 446 MHz to 2 454 MHz	No Restriction	RFID	Limits shown in
			annex D shall apply
(b) 2 446 MHz to 2 454 MHz	≤ 15 %	RFID	Limits shown in
			annex D shall apply
5 725 MHz to 5 875 MHz	No Restriction	Generic use	
9 200 MHz to 9 500 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
9 500 MHz to 9 975 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
10,5 GHz to 10,6 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
13,4 GHz to 14,0 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
17,1 GHz to 17,3 GHz	DAA or	Radiodetermination:	Limits shown in
	equivalent	GBSAR detecting and movement	annex F shall apply
	techniques	and alert applications	
24,00 GHz to 24,25 GHz	No Restriction	Generic use and for	
		Radiodetermination:	
		radar, detection, movement and	
		alert applications	


For devices with a 100 % duty cycle transmitting an unmodulated carrier most of the time, a time-out shut-off facility shall be implemented in order to improve the efficient use of spectrum. The method of implementation shall be declared by the manufacturer.

6.4 METHOD OF MEASUREMENT

Please refer to EN 300440 V2.2.1 Clause 4.2.5.3.

Report No.: STR230317002005E

6.5 TEST SETUP

Page 28 of 73

6.6 TEST RESULTS

EUT:	Mobile Phone	Model Name:	BV5300 Pro
Temperature:	26°C	Relative Humidity:	53 %
Pressure:	1012 hPa	Test Voltage:	DC 3.85V (NORMAL)
Test Mode:	Mode 1/2/3		

Test data reference attachment

NTEK 北测®

7. SPURIOUS EMISSIONS – RX

7.1 APPLIED PROCEDURES / LIMIT

Clause	Test Item	Frequency(MHz)	Limit
4.3.5.4	Spurious emissions	30-1000	-57dBm
	(radiated)	Above 1000	-47dBm

7.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

7.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.For above 1G, using Horn antenna .
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

7.5 TEST SETUP LAYOUT

This test setup layout is the same as that shown in section 5.4.

7.6 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously receiving mode.

NTEK LM[®] Page 30 of 73

Report No.: STR230317002005E

7.7 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV5300 Pro
Temperature :	26°C	Relative Humidity :	53 %
Pressure :	1012 hPa	Test Power :	DC 3.85V (NORMAL)
Test Mode :	RX-802.11ac40 mode		

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	34.84	-91.73	18.54	-73.19	-57	-16.19	peak
V	50.40	-81.28	10.25	-71.03	-57	-14.03	peak
V	116.05	-80.84	11.14	-69.70	-57	-12.70	peak
V	165.01	-79.72	12.07	-67.65	-57	-10.65	peak
V	234.91	-78.41	11.49	-66.92	-57	-9.92	peak
V	370.97	-80.13	15.55	-64.58	-57	-7.58	peak
Н	50.11	-77.03	10.17	-66.86	-57	-9.86	peak
Н	92.72	-80.11	10.30	-69.81	-57	-12.81	peak
Н	171.56	-81.67	12.95	-68.72	-57	-11.72	peak
Н	199.32	-79.76	12.24	-67.52	-57	-10.52	peak
Н	392.63	-90.28	14.76	-75.52	-57	-18.52	peak
Н	557.98	-90.01	18.40	-71.61	-57	-14.61	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Above 1G :

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	1198.05	-61.52	1.94	-59.58	-47	-12.58	peak
V	1698.47	-61.77	3.06	-58.71	-47	-11.71	peak
V	2197.48	-65.44	9.20	-56.24	-47	-9.24	peak
V	2635.61	-67.81	9.49	-58.32	-47	-11.32	peak
V	8448.96	-76.65	16.53	-60.12	-47	-13.12	peak
Н	1197.17	-58.53	2.70	-55.83	-47	-8.83	peak
Н	1698.62	-57.88	3.62	-54.26	-47	-7.26	peak
Н	2198.07	-63.29	8.41	-54.88	-47	-7.88	peak
Н	3823.03	-70.37	8.63	-61.74	-47	-14.74	peak
Н	10698.39	-80.06	23.14	-56.92	-47	-9.92	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

8. ADJACENT CHANNEL SELECTIVITY

NTEK 北测

8.1 APPLICABILITY

This requirement applies to channelized Category 1 receivers..

8.2 LIMITS

The adjacent channel selectivity of the equipment under specified conditions shall not be less than -30 dBm + k.

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

8.3 METHODS OF MEASUREMENT

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.

Signal generator B shall be unmodulated and shall be adjusted to the adjacent channel centre frequency immediately

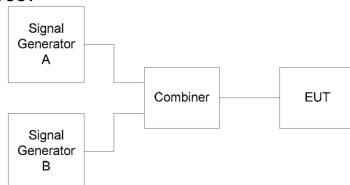
above that of the wanted signal.

Initially signal generator B shall be switched off and using signal generator A the level that still gives sufficient

response shall be established. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurements shall be repeated with signal generator B unmodulated and adjusted to the adjacent channel centre immediately below the wanted signal.

The adjacent channel selectivity shall be recorded for the upper and lower adjacent channels as the level in dBm of the unwanted signal.


For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres.

In this case, the adjacent selectivity shall be recorded as the level in dBm of lowest level of the unwanted signal

(generator B) resulting in a non-read of the tag.

Report No.: STR230317002005E

8.4 TEST SETUP LAYOUT

Page 32 of 73

8.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV5300 Pro
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	N/A
Test Mode :	N/A		

Not applicable.

9. BLOCKING OR DESENSITIZATION

9.1 APPLICABILITY

This requirement applies to all Category 1, 2, and 3 SRD communication media receivers.

9.2 LIMITS

The blocking level, for any frequency within the specified ranges, shall not be less than the values given in table 6, except at frequencies on which spurious responses are found.

Receiver category	Limit
1	-30 dBm + k
2	-45 dBm + k
3	-60 dBm + k

The correction factor, k, is as follows:

 $k = \Box$ -20log f -10log BW

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

9.3 TEST PROCEDURES

This measurement shall be conducted under normal conditions.

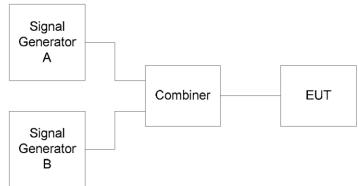
Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or

b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.Signal generator B shall be unmodulated and shall be adjusted to a test frequency at approximately 10 times, 20 times and 50 times of the occupied bandwidth above upper band edge of occupied bandwidth.Initially signal generator B shall be switched off and using signal generator A the level which still gives sufficient response shall be established. The output level of generator A shall then be increased by 3 dB.Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.


The measurement shall be repeated with the test frequency for signal generator B at 10 times, 20 times and 50 times of the occupied bandwidth below the lower band edge of the occupied bandwidth The blocking or desensitization shall be recorded as the level in dBm of lowest level of the unwanted signal(generator B).

For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres. In this case, the blocking or desensitization shall be recorded as the ratio in dB of lowest level of the unwanted signal (generator B) resulting in a non-read of the tag. to the declared sensitivity of the receiver +3 dB.

Page 34 of 73

Report No.: STR230317002005E

NTEK LM[®] Page 35 of 73

9.4 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV5300 Pro
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	RX		

802.11a

5745 MHz

Flow= 5736.777MHz; Fhigh= 5753.167MHz, occupied bandwidth=16.39MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-64.69	-	-
3	10 times lower band edge of the occupied bandwidth	5572.877	-	-30.66	-87.33(Note ¹)
	20 times lower band edge of the occupied bandwidth	5408.977	-	-36.28	-87.33
	50 times lower band edge of the occupied bandwidth	4917.277	-	-35.63	-87.33
	10 times upper band edge of the occupied bandwidth	5917.067	-	-30.88	-87.33
	20 times upper band edge of the occupied bandwidth	6080.967	-	-35.84	-87.33
	50 times upper band edge of the occupied bandwidth	6572.667	-	-31.77	-87.33

Note1:

The limit : -60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.33

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

Report No.: STR230317002005E

802.11a

5825 MHz

Flow= 5816.765MHz; Fhigh= 5833.163MHz, occupied bandwidth=16.398MHz

Page 36 of 73

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5825 MHz	5825	-65.36	-	-
	10 times lower band edge of the occupied bandwidth	5652.785	-	-30.86	-87.45(Note ¹)
3	20 times lower band edge of the occupied bandwidth	5488.805	-	-34.67	-87.45
	50 times lower band edge of the occupied bandwidth	4996.865	-	-35.89	-87.45
	10 times upper band edge of the occupied bandwidth	5997.143	-	-30.96	-87.45
	20 times upper band edge of the occupied bandwidth	6161.123	-	-35.16	-87.45
	50 times upper band edge of the occupied bandwidth	6653.063	-	-31.74	-87.45

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.45

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

Report No.: STR230317002005E

802.11n40

5755 MHz

Flow= 5737.002MHz; Fhigh= 5772.942MHz, occupied bandwidth=35.94MHz

Page 37 of 73

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5755 MHz	5755	-65.33	-	-
	10 times lower band edge of the occupied bandwidth	5377.602	-	-30.46	-90.76(Note ¹)
	20 times lower band edge of the occupied bandwidth	5018.202	-	-36.30	-90.76
3	50 times lower band edge of the occupied bandwidth	3940.002	-	-35.74	-90.76
	10 times upper band edge of the occupied bandwidth	6132.342	-	-29.81	-90.76
	20 times upper band edge of the occupied bandwidth	6491.742	-	-35.61	-90.76
	50 times upper band edge of the occupied bandwidth	7569.942	-	-32.17	-90.76

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.76

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

Report No.: STR230317002005E

802.11n40

5795 MHz

Flow= 5776.962MHz; Fhigh= 5812.902MHz, occupied bandwidth=35.94MHz

Page 38 of 73

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5795	-64.91	-	-
	10 times lower band edge of the occupied bandwidth	5417.562	-	-29.57	-90.82(Note ¹)
	20 times lower band edge of the occupied bandwidth	5058.162	-	-33.98	-90.82
3	50 times lower band edge of the occupied bandwidth	3979.962	-	-35.92	-90.82
	10 times upper band edge of the occupied bandwidth	6172.302	-	-29.46	-90.82
	20 times upper band edge of the occupied bandwidth	6531.702	-	-35.23	-90.82
	50 times upper band edge of the occupied bandwidth	7609.902	-	-30.61	-90.82

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.82

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

Report No.: STR230317002005E

802.11ac80

5775 MHz

Flow= 5737.276MHz; Fhigh= 5812.564MHz, occupied bandwidth=75.288MHz

Page 39 of 73

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5775	-65.30	-	-
	10 times lower band edge of the occupied bandwidth	4984.396	-	-29.64	-94.00(Note ¹)
	20 times lower band edge of the occupied bandwidth	4231.516	-	-33.99	-94.00
3	50 times lower band edge of the occupied bandwidth	1972.876	-	-34.79	-94.00
	10 times upper band edge of the occupied bandwidth	6565.444	-	-30.20	-94.00
	20 times upper band edge of the occupied bandwidth	7318.324	-	-35.60	-94.00
	50 times upper band edge of the occupied bandwidth	9576.964	-	-30.15	-94.00

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

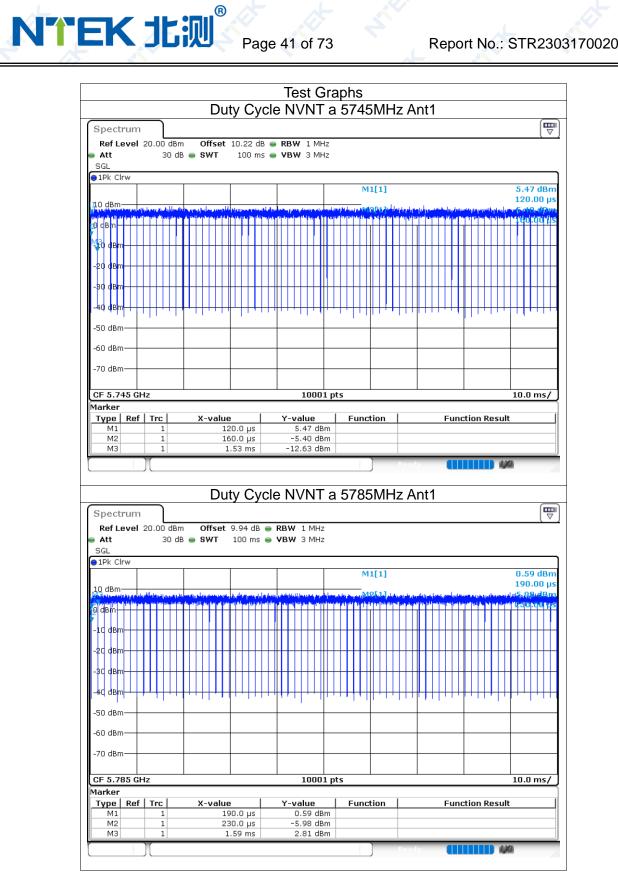
k = -34.00

Where:

- f is the frequency in GHz;

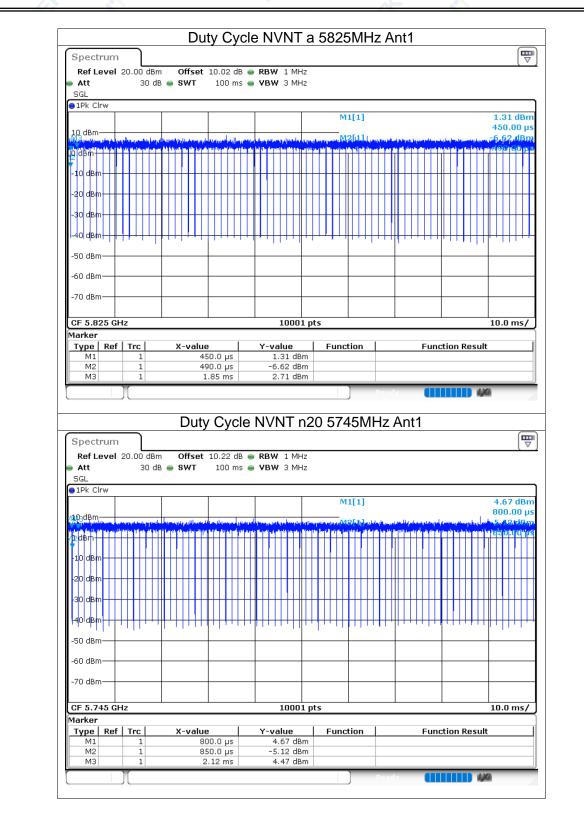
- BW is the occupied bandwidth in MHz.

NTEK LM[®] Page 40 of 73

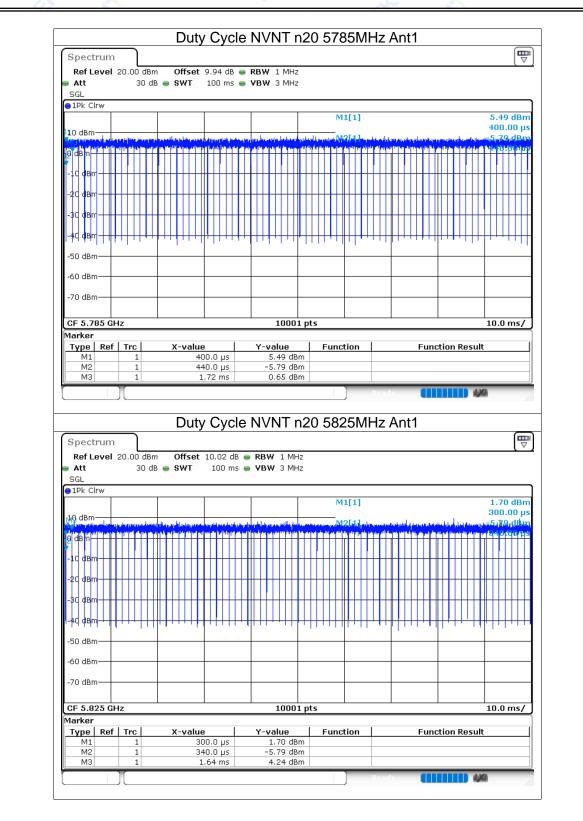

Report No.: STR230317002005E

10. TEST RESULTS

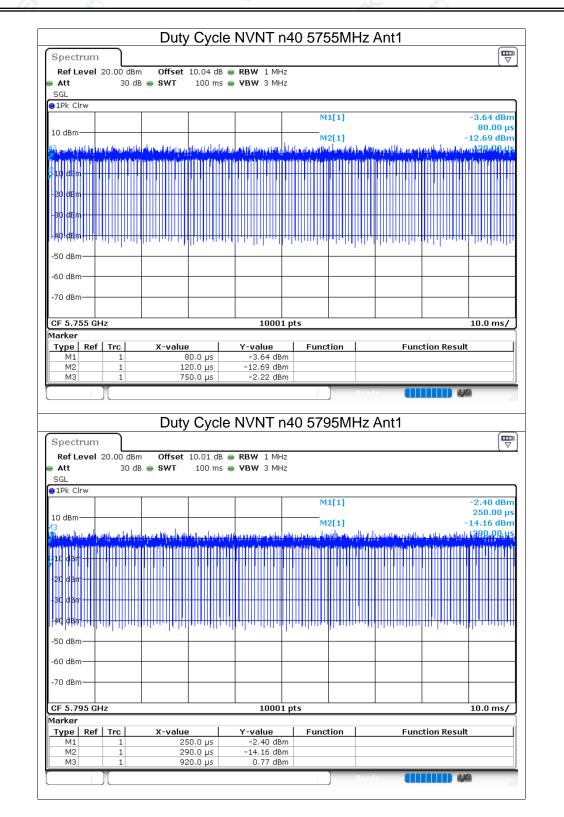
10.1 DUTY CYCLE


Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	а	5745	Ant1	97.58	0.11	0.73
NVNT	а	5785	Ant1	97.58	0.11	0.74
NVNT	а	5825	Ant1	97.62	0.1	0.74
NVNT	n20	5745	Ant1	97.35	0.12	0.79
NVNT	n20	5785	Ant1	97.38	0.12	0.78
NVNT	n20	5825	Ant1	97.42	0.11	0.77
NVNT	n40	5755	Ant1	95.04	0.22	1.59
NVNT	n40	5795	Ant1	95.04	0.22	1.59
NVNT	ac20	5745	Ant1	97.45	0.11	0.78
NVNT	ac20	5785	Ant1	97.46	0.11	0.78
NVNT	ac20	5825	Ant1	97.47	0.11	0.78
NVNT	ac40	5755	Ant1	95.2	0.21	1.56
NVNT	ac40	5795	Ant1	95.16	0.22	1.56
NVNT	ac80	5775	Ant1	88.72	0.52	3.23

Page 41 of 73

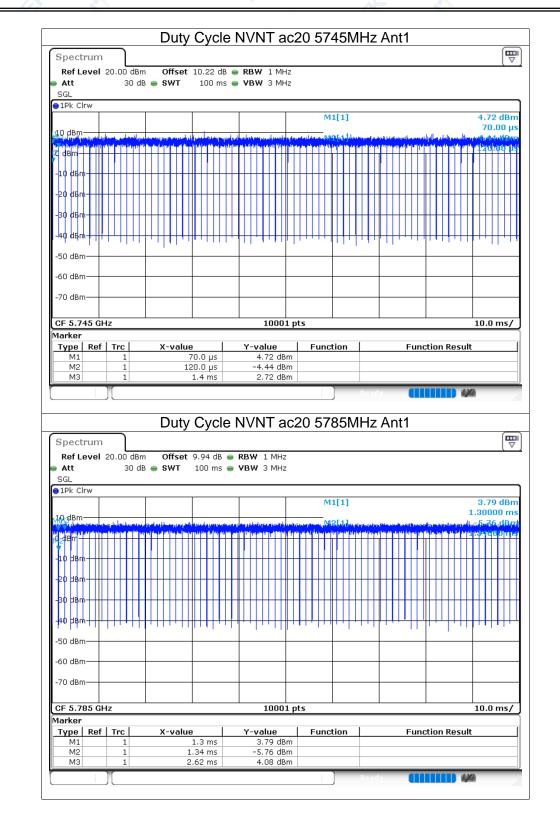

NTEK 北测[®] Page 42 of 73

Report No.: STR230317002005E



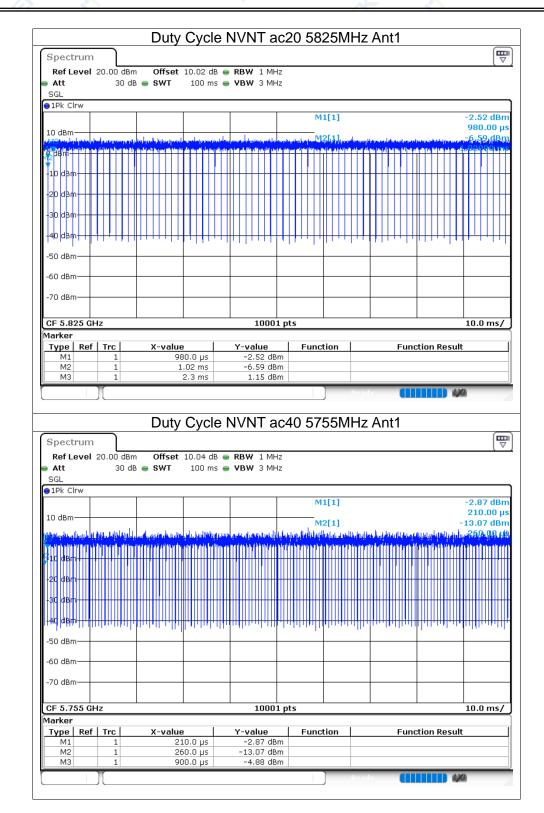
¥ 2.

NTEK 北视® Page 43 of 73

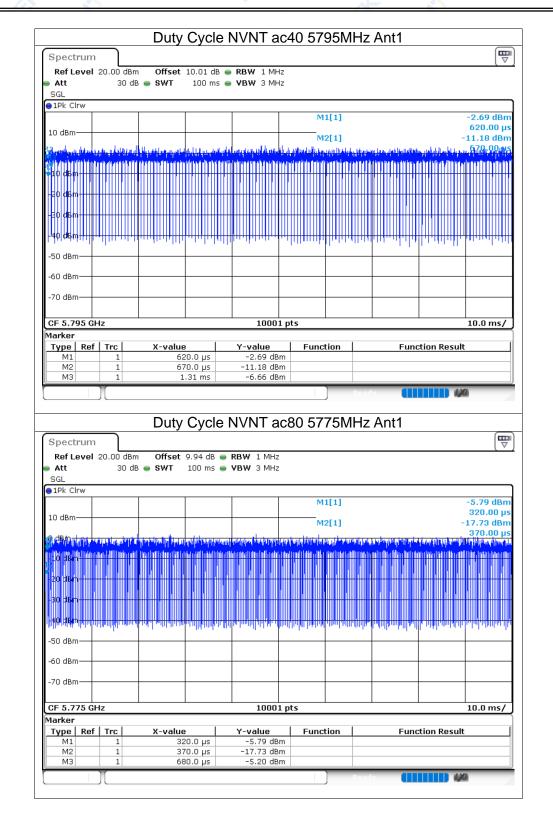


Report No.: STR230317002005E

Page 44 of 73


Report No.: STR230317002005E

Page 45 of 73


NTEK 北测®

Report No.: STR230317002005E

Page 46 of 73

NTEK 北视® Page 47 of 73

Report No.: STR230317002005E

10.2 -6DB EMISSION BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth	Limit -6 dB Bandwidth (MHz)	Verdict
				(MHz)		
NVNT	а	5745	Ant1	14.67	0.5	Pass
NVNT	а	5785	Ant1	14.76	0.5	Pass
NVNT	а	5825	Ant1	14.13	0.5	Pass
NVNT	n20	5745	Ant1	14.67	0.5	Pass
NVNT	n20	5785	Ant1	15.03	0.5	Pass
NVNT	n20	5825	Ant1	17.16	0.5	Pass
NVNT	n40	5755	Ant1	35.04	0.5	Pass
NVNT	n40	5795	Ant1	35.1	0.5	Pass
NVNT	ac20	5745	Ant1	15.06	0.5	Pass
NVNT	ac20	5785	Ant1	17.58	0.5	Pass
NVNT	ac20	5825	Ant1	14.4	0.5	Pass
NVNT	ac40	5755	Ant1	25.92	0.5	Pass
NVNT	ac40	5795	Ant1	33.84	0.5	Pass
NVNT	ac80	5775	Ant1	71.4	0.5	Pass

Page 48 of 73

Page 49 of 73

NTEK 北测[®] Page 50 of 73

NTEK 北视[®] Page 51 of 73

	_	E		/NT n20	001001				
Spectrum									
Ref Level Att	20.00 dBm 30 dB			RBW 100 kH VBW 300 kH		Auto FFT			
SGL Count 1					- mouo	nato i i i			
⊜1Pk Max									
					M	1[1]		5.7	0.88 di 7837110 G
10 dBm				M1	M	2[1]		0.1	-4.17 di
0 dBm		M2		7			Ma	5.7	774400 0
		ingentimente	mlumb	melmentinez	produced	arburn	molonytres		
-10 dBm								1	
-20 dBm	f							<u>k</u>	
00.40	P							Ny .	
-30 dBm	no S							- Vol	hmm
-40 dBm	ΝV								Manulu
-50 dBm									
-50 dbm									
-60 dBm									
-70 dBm								_	_
CF 5.785 GH	Iz			1001	l pts	1		Spa	in 30.0 MH
Marker									
Type Ref		X-value 5.78371	1.011-	<u>Y-value</u> 0.88 dB	Func	tion	Fu	nction Resu	ılt
M1 M2	1	5.78371		-4.17 dB					
M3									
		5.7924 El		-4.62 dB) ЛНz А	nt1		
Spectrum) MHz A	nt1		
Spectrum Ref Level		El	BW NY) 58251) n MHz A	ndv 🚺		1969 (
Ref Level Att	20.00 dBm 20 dB	Offset 10	3W N 3.02 db 🖷	/NT n20) 5825N) MHz A			
Ref Level Att SGL Count 1	20.00 dBm 20 dB	Offset 10	3W N 3.02 db 🖷	/NT n20) 5825N				
Ref Level Att	20.00 dBm 20 dB	Offset 10	3W N 3.02 db 🖷	/NT n20) 5825N ^{Hz} Mode	Auto FF			
Ref Level Att SGL Count 1 1Pk Max	20.00 dBm 20 dB	Offset 10	3W N 3.02 db 🖷	/NT n20) 5825N ^{Hz} Mode			5.8	-3.19 di
Ref Level Att SGL Count 1	20.00 dBm 20 dB	Offset 10	3W N 3.02 db 🖷	/NT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF			-3.19 di 3240710 G -9.09 di
Ref Level Att SGL Count 1 1Pk Max	20.00 dBm 20 dB	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF	т	5.8	-3.19 di 3240710 G -9.09 di
Ref Level Att SGL Count 1 1Pk Max	20.00 dBm 20 dB	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF		5.8	-3.19 di 3240710 G -9.09 di
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm	20.00 dBm 20 dB	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	/NT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF	т	5.8	-3.19 di 3240710 G -9.09 di
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm	20.00 dBm 20 dB	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF	т	5.8	-3.19 d 3240710 C -9.09 d 3162100 C
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm	20.00 dBm 20 dB	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF	т	5.8	-3.19 di 3240710 G -9.09 di
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20 dB 0/10	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF	т	5.8	-3.19 di 3240710 G -9.09 di
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20 dB	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF	т	5.8	-3.19 di 3240710 G -9.09 di 3162100 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20 dB 0/10	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF	т	5.8	-3.19 di 3240710 G -9.09 di 3162100 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	20.00 dBm 20 dB 0/10	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF	т	5.8	-3.19 di 3240710 G -9.09 di
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20 dB 0/10	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF	т	5.8	-3.19 di 3240710 G -9.09 di 3162100 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	20.00 dBm 20 dB 0/10	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20 RBW 100 k VBW 300 k) 5825N ^{Hz} Mode	Auto FF	т	5.8	-3.19 di 3240710 G -9.09 di 3162100 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 20 dB 0/10	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20	D 5825N	Auto FF	т	5.E	-3.19 di 3240710 c -9.09 di 3162100 c
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	20.00 dBm 20 dB 0/10	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n20 RBW 100 k VBW 300 k	D 5825N	Auto FF	т	5.E	-3.19 di 3240710 c -9.09 di 3162100 c
Ref Level Att SGL Count 1 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.825 GH Marker	20.00 dBm 20 dB 0/10	Offset 10 SWT	ЗW № 0.02 dB ● 75.9 µs ●	VNT n2C) 5825N	Auto FF	T Marganesand I	5.8	-3.19 dl 3240710 C -9.09 dl 3162100 C
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	20.00 dBm 20 dB 0/10	Offset 10 SWT	3W N 0.02 dB 75.9 μs 4 4 4 4 4 4 4 4 4 4 4 4 4	VNT n20) 5825N Hz Mode M m m m m M M m M m M M m M M M M M M	Auto FF	T Marganesand I	5.E	-3.19 dl 3240710 C -9.09 dl 3162100 C
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.825 GH Marker Type	20.00 dBm 20 dB 0/10	Offset 10 SWT	3W N 0.02 dB ● 75.9 µs ● иммм//////////////////////////////////	VNT n2C	D 5825N	Auto FF	T Marganesand I	5.8	-3.19 dl 3240710 C -9.09 dl 3162100 C

NTEK 北视[®] Page 52 of 73

	E		/NT n40	D/DDIVIH		I		
Spectrum								ſ
Ref Level 20.00	dBm Offset 1	10.04 dB 👄	RBW 100 kH	z				(
		_	VBW 300 kH		to FF T			
SGL Count 100/10	0							
∋1Pk Max								
				M1[1]			-1.56 dE
10 dBm							5.7	524830 G
			M1	M2[1	1		5.7	-6.21 dE 374200 G
0 dBm	M2	· ·	↓ ▼ ↓	1.6.1.4.4		Ma	-	1200 0
-10 dBm	فاعتدار والبر الملك	how when	And Monte prover 1	withhat	hedrowny	astrand		
-10 UBIII	Jacob Comments of the second					ALMAN BR	1	
-20 dBm			1				l –	
	J.						B	
-30 dBm							<u>u</u>	
dollars to be All	r						N .A	
╔┫ᠹᡗᡃᢩᢓᡛᠹᡊᢍᠲᢣ᠇ᡡᠲᠧᢞ							THOR.	who have
-50 dBm								0 · · · · · · · · · · · · · · · · · · ·
-60 dBm			++					
-70 dBm			+ +					1
CF 5.755 GHz			1001	ots			Spa	n 60.0 MH
Marker								
Type Ref Trc			Y-value	Function	<u>۱</u>	Fund	ction Resu	lt
M1 1 M2 1		83 GHz 42 GHz	-1.56 dBm -6.21 dBm					
M3 1		42 GHZ 46 GHZ	-6.21 dBm					
110	5.112	10 0112						
	E	BW N\	/NT n40		Reads	1	4	KG)
Spectrum			/NT n40	5795MH	Beach Iz Ant	1		
Ref Level 20.00	dBm Offset 1	10.01 dB 👄	/NT n40 RBW 100 kH	5795MH		1		1 1 1
Ref Level 20.00 Att 2	dBm Offset 1 0 dB SWT 1	10.01 dB 👄	/NT n40	5795MH		1		KA (C
Ref Level 20.00 Att 2 SGL Count 1000/1	dBm Offset 1 0 dB SWT 1	10.01 dB 👄	/NT n40 RBW 100 kH	5795MH		1) 4	166 [T
Ref Level 20.00 Att 2	dBm Offset 1 0 dB SWT 1	10.01 dB 👄	/NT n40 RBW 100 kH	5795MH	to FFT	1		
Ref Level 20.00 Att 2 SGL Count 1000/1 1Pk Max 2	dBm Offset 1 0 dB SWT 1	10.01 dB 👄	/NT n40 RBW 100 kH	5795MH	to FFT	1	5.7	-2.04 dE
Ref Level 20.00 Att 2 SGL Count 1000/1	dBm Offset 1 0 dB SWT 1	10.01 dB 👄	/NT n40 RBW 100 kH	5795MH	to FFT	1	5.7	-2.04 dE 924830 G
Ref Level 20.00 Att 2 SGL Count 1000/1 1Pk Max 10	dBm Offset : 0 dB SWT : 000	10.01 dB 👄	/NT n40 RBW 100 kH	2 2 2 3 3 4 5 7 9 5 7 9 5 7 9 5 MH 2 2 3 8 4 9 5 7 9 5 MH 2 2 3 8 4 9 5 8 1 9 5 1 9 5 1 9 5 MH 2 1 9 5 1 1 1 1	to FFT		5.7	-2.04 dE 924830 G -6.25 dE 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 1Pk Max 2	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT	1 	5.7	-2.04 dE 924830 G -6.25 dE
Ref Level 20.00 Att 2 SGL Count 1000/1 1Pk Max 10	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	2 2 2 3 3 4 5 7 9 5 7 9 5 7 9 5 MH 2 2 3 8 4 9 5 7 9 5 MH 2 2 3 8 4 9 5 8 1 9 5 1 9 5 1 9 5 MH 2 1 9 5 1 1 1 1	to FFT		5.7	-2.04 dE 924830 G -6.25 dE
Ref Level 20.00 Att 2 SGL Count 1000/1 1Pk Max 2 10 dBm 0 -10 dBm -10 dBm	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT		5.7	-2.04 dE 924830 G -6.25 dE
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 0 dBm 0	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT		5.7	-2.04 dE 924830 G -6.25 dE
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 0 dBm - -10 dBm - -20 dBm -	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT		5.7	-2.04 dE 924830 G -6.25 dE
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm -	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT		5.7	-2.04 dE 924830 G -6.25 dE 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm -	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT		5.7	-2.04 dE 924830 G -6.25 dE
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm -	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT		5.7	-2.04 dE 924830 G -6.25 dE 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm -	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT		5.7	-2.04 dE 924830 G -6.25 dE 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm -	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT		5.7	-2.04 dE 924830 G -6.25 dE 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm -	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT		5.7	-2.04 dE 924830 G -6.25 dE 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT		5.7	-2.04 dE 924830 G -6.25 dE 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH z Mode Au M1[1 	to FFT		5.7	-2.04 dE 924830 G -6.25 dE 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm - -60 dBm - -70 dBm -	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40	5795MH	to FFT		5.7	-2.04 dl -6.25 dl 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 10 dBm - -10 dBm - -20 dBm - -30 dBm - -60 dBm - -60 dBm - -70 dBm - -70 dBm -	dBm Offset : 0 dB SWT : 000	10.01 dB 🖷 132.7 µs 🖷	/NT n40 RBW 100 kH VBW 300 kH	5795MH	to FFT		5.7	-2.04 dl -6.25 dl 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 10 dBm - -10 dBm - -20 dBm - -30 dBm - -60 dBm - -60 dBm - -70 dBm - -70 dBm - -70 dBm - -30 dBm -	dBm Offset : 0 dB SWT : 000	10.01 dB 132.7 µs	/NT n40	5795MH	to FFT	M:	5.7	-2.04 dE 924830 G -6.25 dE 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 1Pk Max 10 1Pk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm - -70 dBm - <t< td=""><td>dBm Offset : 0 dB SWT : 000 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2</td><td>10.01 dB 132.7 µs</td><td>/NT n40</td><td>5795MH</td><td>to FFT</td><td>M:</td><td>5.7</td><td>-2.04 dE 924830 G -6.25 dE 774200 G</td></t<>	dBm Offset : 0 dB SWT : 000 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	10.01 dB 132.7 µs	/NT n40	5795MH	to FFT	M:	5.7	-2.04 dE 924830 G -6.25 dE 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 10 dBm - 0 dBm - -10 dBm - -20 dBm - -30 dBm - -60 dBm - -60 dBm - -70 dBm -	dBm Offset :: 0 dB SWT :: 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	10.01 dB 132.7 µs	/NT n40 RBW 100 kH VBW 300 kH M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	5795MH	to FFT	M:	5.7	-2.04 dt 924830 G -6.25 dt 774200 G
Ref Level 20.00 Att 2 SGL Count 1000/1 IPk Max 10 IPk Max 10 0 dBm - -20 dBm - -30 dBm - -60 dBm - -60 dBm - -70 dBm - <t< td=""><td>dBm Offset :: 0 dB SWT :: 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2</td><td>10.01 dB 132.7 µs </td><td>/NT n40 RBW 100 kH VBW 300 kH M1 M1 M1 M1 M1 M1 M1 M1 M1 M1</td><td>5795MH</td><td>to FFT</td><td>M:</td><td>5.7</td><td>-2.04 dE 924830 G -6.25 dE 774200 G</td></t<>	dBm Offset :: 0 dB SWT :: 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 000 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	10.01 dB 132.7 µs 	/NT n40 RBW 100 kH VBW 300 kH M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	5795MH	to FFT	M:	5.7	-2.04 dE 924830 G -6.25 dE 774200 G

NTEK 北视[®] Page 53 of 73

0	_			/NT ac20	57451		IL I		ſ
Spectrum Ref Level	20.00 dBm	Offset 1	ID 22 dB 🖷	• RBW 100 kH					(
Att SGL Count 1	30 dB			VBW 300 kH		Auto FFT			
1Pk Max	.000/1000								
					M	1[1]			1.58 dE
10 dBm								5.7	437110 G
				M1		2[1]		5.7	-4.00 dE 374400 G
0 dBm		mulpunt	Juniural	un mentinen	montheally	mbush	man trens	0	
-10 dBm		and house a	W/12 0-				an when proved		
								,	
-20 dBm								<u>'</u> u	
-30 dBm								<u> </u>	
mon	how							444	myn
-40 dBm									104.0
-50 dBm									
-60 dBm									
-70 dBm									
CF 5.745 GH	łz			1001	pts			Spar	1 30.0 MH
4arker									
						Rea	d v 👘		6
	Л) Rea	dy 🚺		G
	Л	FF		/NT ac2() 5785) Rea	dv 🚺		0
	л	E	BW N\	/NT ac20) 5785N) - Rea MHz Ai	dv 🛄 nt1		a
Spectrum			BW N\	/NT ac2() 57851) Rea MHz Ai	dv 🚺		(1
Ref Level		Offset 9	9.94 dB 👄	RBW 100 kH:	2		nt1		(I
Ref Level Att	30 dB	Offset 9	9.94 dB 👄		2) Doo MHZ AI Auto FFT	nt1		(1
Ref Level	30 dB	Offset 9	9.94 dB 👄	RBW 100 kH:	2		nt1		(1
Ref Level Att SGL Count 1	30 dB	Offset 9	9.94 dB 👄	RBW 100 kH:	z z Mode /		nt1		
Ref Level Att SGL Count 1	30 dB	Offset 9	9.94 dB 👄	RBW 100 kH:	z Mode A M	Auto FFT	dy 👥	5.70	-2.58 dE 339810 G
Ref Level Att SGL Count 1 1Pk Max	30 dB	Offset 9	9.94 dB 👄	RBW 100 kH; VBW 300 kH;	z Mode A M	Auto FFT	dy 👥		-2.58 dE 339810 G -7.65 dE
Ref Level Att SGL Count 1 1Pk Max	30 dE .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M	Auto FFT 1[1] 2[1]			-2.58 dE 339810 G
Ref Level Att SGL Count 1 1Pk Max	30 dE .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode A M	Auto FFT 1[1] 2[1]			-2.58 dE 339810 G -7.65 dE
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm	30 dE .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M	Auto FFT 1[1] 2[1]			-2.58 dE 339810 G -7.65 dE
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm	30 dE .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M	Auto FFT 1[1] 2[1]		5.7	-2.58 dE 339810 G -7.65 dE
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm	30 dE .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M	Auto FFT 1[1] 2[1]			-2.58 dE 339810 G -7.65 dE
Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	30 de .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M	Auto FFT 1[1] 2[1]		5.7	-2.58 dE 339810 G -7.65 dE
Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	30 de .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M	Auto FFT 1[1] 2[1]		5.7	-2.58 dE 339810 G -7.65 dE
Ref Level Att SGL Count 1 PR Max 10 dBm 0 dBm -10 dBm -20 dBm	30 de .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M	Auto FFT 1[1] 2[1]		5.7	-2.58 df 339810 G -7.65 df 761800 G
Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	30 de .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M	Auto FFT 1[1] 2[1]		5.7	-2.58 df 339810 G -7.65 df 761800 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 de .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M	Auto FFT 1[1] 2[1]		5.7	-2.58 df 339810 G -7.65 df 761800 G
Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	30 de .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M	Auto FFT 1[1] 2[1]		5.7	-2.58 df 339810 G -7.65 df 761800 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	30 de .00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M	Auto FFT 1[1] 2[1]		5.7	-2.58 df 339810 G -7.65 df 761800 G
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm -70 dBm	30 de 00/100	Offset 9 SWT 7	9.94 dB 👄 75.9 µs 👄	RBW 100 kH: VBW 300 kH:	z Mode / M M M	Auto FFT 1[1] 2[1]		5.7	-2.58 df 339810 G -7.65 df 761800 G
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.785 GH Marker	30 de 00/100	12 12 12 12 12 12 12 12 12 12	9.94 dB 75.9 μs	RBW 100 kH: VBW 300 kH: M1 MMMMMMM V V V V V V V V V V V V V V	2 Mode A	Auto FFT [[1] 2[1] 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		5.7	-2.58 dE 339810 G -7.65 dE 761800 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 de 00/100	12 X-value	9.94 dB 75.9 μs	RBW 100 kH: VBW 300 kH: M1 mmmmmm M1 mmmmmm M1 mmmmm M1 mmmmm M1 mmmmm M1 mmmmm M1 mmmm M1 mmmm M1 mmmm M1 mmmm M1 mmmm M1 mmmmm M1 mmmmm M1 mmmmm M1 mmmmm M1 mmmmm M1 mmmmm M1 mmmmm M1 mmmmm M1 mmmmm M1 mmmmm M1 mmmmm M1 mmmmmm M1 mmmmmm M1 mmmmmm M1 mmmmmm M1 mmmmmm M1 mmmmmmm M1 mmmmmmm M1 mmmmmmmm	z Mode / M M M M M M M M M M M M M M M M M M M	Auto FFT [[1] 2[1] 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		5.7	-2.58 dE 339810 G -7.65 dE 761800 G
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm	30 de 00/100	12 12 12 12 12 12 12 12 12 12	9.94 dB ● 75.9 µs ● 1000000000000000000000000000000000000	RBW 100 kH: VBW 300 kH: M1 MMMMMM MMMMMM M1 M1 M1 M1 M1 M1 M1 M	2 Mode / MM M	Auto FFT [[1] 2[1] 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		5.7	-2.58 dE 339810 G -7.65 dE 761800 G
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 de 00/100	12 12 12 12 12 12 12 12 12 12	9.94 dB 75.9 µs имл.мичи имл.мичи ва пна ва пна	RBW 100 kH: VBW 300 kH: M1 M1 M1 M2 M1 M2 M1 M2 M1 M1 M2 M1 M1 M2 M1 M1 M2 M1 M2 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	2 Mode / MM M	Auto FFT [[1] 2[1] 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	Func	5.7	-2.58 df 339810 G -7.65 df 761800 G

Report No.: STR230317002005E

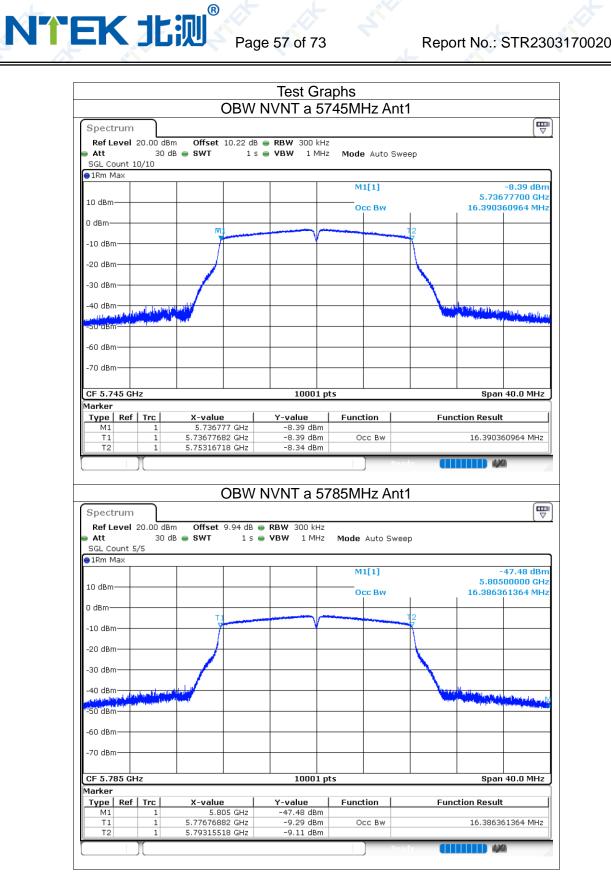
Cooteuro				NT ac20						
Spectrum Ref Level		Offect 10	02 dB 👄	RBW 100 ki	U7					l
Att	30 dB			VBW 300 ki		Auto FF	т			
SGL Count 1	100/100									
1Pk Max										o co do
					IVI	1[1]			5.83	-0.66 dB 262290 GI
10 dBm					M	2[1]				-6.56 dB
0 dBm		M2			M1		M'	2	5.8	180700 GI
		M2	munnha	monormy	mahay	www.	maria			
-10 dBm					1					
-20 dBm										
-30 dBm	2							<u> </u>	L.	
-30 000	٦								Jane .	An An AN
rA9KdBNJAAK	Mar								- irmpi	and worked
-50 dBm	•••									
-60 dBm							_			
-70 dBm										
CF 5.825 GI				1001	pts	1			Spar	1 30.0 MH
1arker					-					
Type Ref		X-value		Y-value	Func	tion		Functio	on Resul	t
M1	1	5.826229		-0.66 dB						
M2 M3	1	5.81807		-6.56 dB -6.61 dB						
		3.03247	GHZ							
							eadv			0
][] R	eady	am		6
)[eady Not1	am		6
)[EB	W NV	NT ac4) MHz /	oady Ant1	am	4	K)
Spectrum		EB	W NV	NT ac4() MHz /	eady Ant1	am		<u>n</u>
Spectrum Ref Level				NT ac4(0 5755) MHz /	oady Ant1			
Ref Level Att	20.00 dBm 30 dB	Offset 10	.04 dB 👄		D 5755					
Ref Level Att SGL Count 1	20.00 dBm 30 dB	Offset 10	.04 dB 👄	RBW 100 ki	D 5755					
Ref Level Att SGL Count 1	20.00 dBm 30 dB	Offset 10	.04 dB 👄	RBW 100 ki) 5755 ^{Hz} ^{Hz} Mode	Auto FF				
Att SGL Count 1 1Pk Max	20.00 dBm 30 dB	Offset 10	.04 dB 👄	RBW 100 ki) 5755 ^{Hz} ^{Hz} Mode				5.75	-2.06 dB
Ref Level Att SGL Count 1 1Pk Max	20.00 dBm 30 dB	Offset 10	.04 dB 👄	RBW 100 ki	D 5755	Auto FF				-2.06 dB 599750 GH -7.83 dB
Ref Level Att SGL Count 1 1Pk Max	20.00 dBm 30 dB	Offset 10 SWT 13	.04 dB 👄	RBW 100 ki	D 5755	Auto FF	T			-2.06 dB 599750 Gł
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm	20.00 dBm 30 dB	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T			-2.06 dB 599750 GH -7.83 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm	20.00 dBm 30 dB	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T			-2.06 dB 599750 GH -7.83 dB
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dB	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T	differ 100		-2.06 dB 599750 GH -7.83 dB
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T	41111 		-2.06 dB 599750 GH -7.83 dB
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T			-2.06 dB 599750 GH -7.83 dB
Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T		5.7	-2.06 dB 599750 Gł -7.83 dB 428200 Gł
Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T		5.7	-2.06 dB 599750 GH -7.83 dB
Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T		5.7	-2.06 dB 599750 Gł -7.83 dB 428200 Gł
Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T		5.7	-2.06 dB 599750 Gł -7.83 dB 428200 Gł
Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T		5.7	-2.06 dB 599750 Gł -7.83 dB 428200 Gł
Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T		5.7	-2.06 dB 599750 Gł -7.83 dB 428200 Gł
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T		5.7	-2.06 dB -99750 Gł -7.83 dB #28200 Gł
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki	D 5755	Auto FF	T		5.7	-2.06 dB 599750 Gł -7.83 dB 428200 Gł
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.755 GH Marker	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB 🖷 2.7 µs 🖶	RBW 100 ki VBW 300 ki	D 5755	Auto FF	T		5.7	-2.06 dB 599750 GF -7.83 dB 428200 GF
Ref Level Att SGL Count 3 SGL Count 3 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -60 dBm -70 dBm	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB 2.7 μs (NWA)	RBW 100 ki VBW 300 ki sulumente sulu	D 5755	Auto FF	T	functio	5.7	-2.06 dB 599750 GF -7.83 dB 428200 GF
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.755 GH Marker	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB • 2.7 µs • <u>аму (чомо)</u>	RBW 100 ki VBW 300 ki Mulumontuku 1001 Y-value -2.06 dB	D 5755	Auto FF	T	Functio	5.7	-2.06 dB 599750 GF -7.83 dB 428200 GF
Ref Level Att SGL Count 3 SGL Count 3 IPk Max 10 dBm 0 dBm -20 dBm -30 dBm -60 dBm -60 dBm -70 dBm	20.00 dBm 30 dB 100/100	Offset 10 SWT 13	.04 dB ● 2.7 μs ● (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	RBW 100 ki VBW 300 ki sulumente sulu	D 5755	Auto FF	T	Functic	5.7	-2.06 dB 599750 GF -7.83 dB 428200 GF

Page 54 of 73

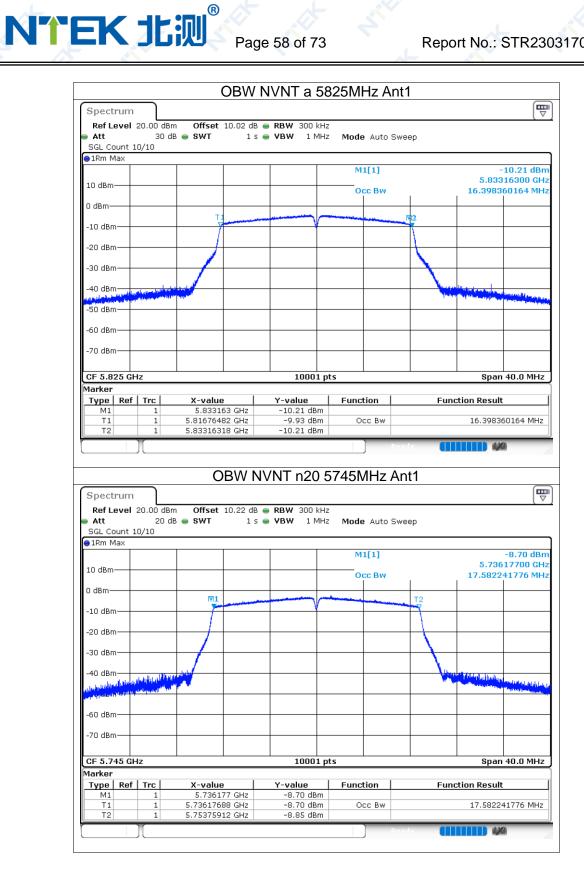
Report No.: STR230317002005E

Spectrum				NT ac4					ſ
Ref Level 20	0.00 dBm 30 dB			RBW 100 k		1.1. FF			l
SGL Count 100		5 8 1 1	.32.7 µs 🖷	VBW 300 k	HZ MOGE	AUTO FF	1		
∋1Pk Max									
					М	1[1]			-2.06 dB
10 dBm					м	2[1]		5.7	924830 GI -6.80 dB
0 dBm				M1		-[-]		5.7	786800 GI
U UBIII		M2		Anter burning	norto-hate		M	3	
-10 dBm		- Jos	ply production	Maria Mariana	ware weathing	Mrs Mary Mary	underford and and and and and and and and and an		
-20 dBm	(1	{				
20 0011	/							N I	
-30 dBm	- f							<u> </u>	
-40 dBm	JN .							Wy dlas	a ser an ale
14808Rymhthart	lar							1 V/V/M	hanaraa
-50 dBm									
-60 dBm									
-70 dBm									
CF 5.795 GHz				1001	pts			Spa	n 60.0 MH
Marker Type Ref ⁻	Trc	X-value	1	Y-value	Func	tion	Eun	ction Resu	lt
M1	1	5.79248		-2.06 dB			T diff	ction Resu	
M2	1		58 GHz	-6.80 dB					
M3	1	5.8125	52 GHz	-6.63 dB	m				
		EF	3W NV	NT ac8	0 5775	MHz A	Ant1		
Chastering		EE	BW NV	NT ac8	0 57751	MHz A	Ant1		
Spectrum						MHz A	Ant1		
Spectrum Ref Level 20).00 dBm 30 dB	Offset	9.94 dB 👄	(NT ac8) RBW 100 ki VBW 300 ki	Hz				
Ref Level 20 Att SGL Count 100	30 dB	Offset	9.94 dB 👄	RBW 100 k	Hz				
Ref Level 20 Att SGL Count 100	30 dB	Offset	9.94 dB 👄	RBW 100 k	Hz Hz Mode	Auto FF			
Ref Level 20 Att SGL Count 100 1Pk Max	30 dB	Offset	9.94 dB 👄	RBW 100 k	Hz Hz Mode				-4.81 dB
Ref Level 20 Att SGL Count 100	30 dB	Offset	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF		5.	
Ref Level 20 Att SGL Count 100 1Pk Max	30 dB	Offset	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF			-4.81 dB 778720 Gi
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm	30 dB	M2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF ⁻	т		-4.81 dB 778720 Gł -10.71 dB
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm	30 dB	Offset SWT 2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF ⁻		5.	-4.81 dB 778720 Gł -10.71 dB
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm	30 dB	M2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF ⁻	т	5.	-4.81 dB 778720 Gł -10.71 dB
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	30 dB	M2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF ⁻	т	5.	-4.81 dB 778720 Gł -10.71 dB
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm	30 dB	M2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF ⁻	т	5.	-4.81 dB 778720 Gł -10.71 dB
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	M2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF ⁻	т	5. M3	-4.81 dB 778720 G -10.71 dB 741160 G
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	M2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF ⁻	т	5. M3	-4.81 dB 778720 Gł -10.71 dB
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	M2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF ⁻	т	5. M3	-4.81 dB 778720 G -10.71 dB 741160 G
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	30 dB 0/100	M2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF ⁻	т	5. M3	-4.81 dB 778720 G -10.71 dB 741160 G
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	30 dB 0/100	M2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF ⁻	т	5. M3	-4.81 dB 778720 G -10.71 dB 741160 G
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	30 dB 0/100	M2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M	Auto FF ⁻	т	5. M3	-4.81 dB 778720 G -10.71 dB 741160 G
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	30 dB 0/100	M2	9.94 dB 👄	RBW 100 ki	Hz Hz Mode M M1 M1	Auto FF ⁻	т	5.	-4.81 dB 778720 G -10.71 dB 741160 G
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	30 dB 0/100	M2	9.94 dB 👄	RBW 100 k	Hz Hz Mode M M1 M1	Auto FF ⁻	т	5.	-4.81 dB 778720 G -10.71 dB 741160 G
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm	30 dB 2/100	M2 M2 M2	9.94 dB • 65.5 µs •	RBW 100 k VBW 300 k	Hz Mode	Auto FF		5.	-4.81 dB 778720 Gł -10.71 dB 741160 Gł
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB 2/100	M2 M2 X-value	9.94 dB • 65.5 µs •	RBW 100 ki	Hz Hz Mode M M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M	Auto FF		5.	-4.81 dB 778720 Gł -10.71 dB 741160 Gł
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB 3/100	M2 X-value 5.7787 5.7411	9.94 dB 65.5 µs	RBW 100 k VBW 300 k	Hz Hz Mode M M M M M M M M M M M M M M M M M M M	Auto FF		5.	-4.81 dB 778720 Gł -10.71 dB 741160 Gł

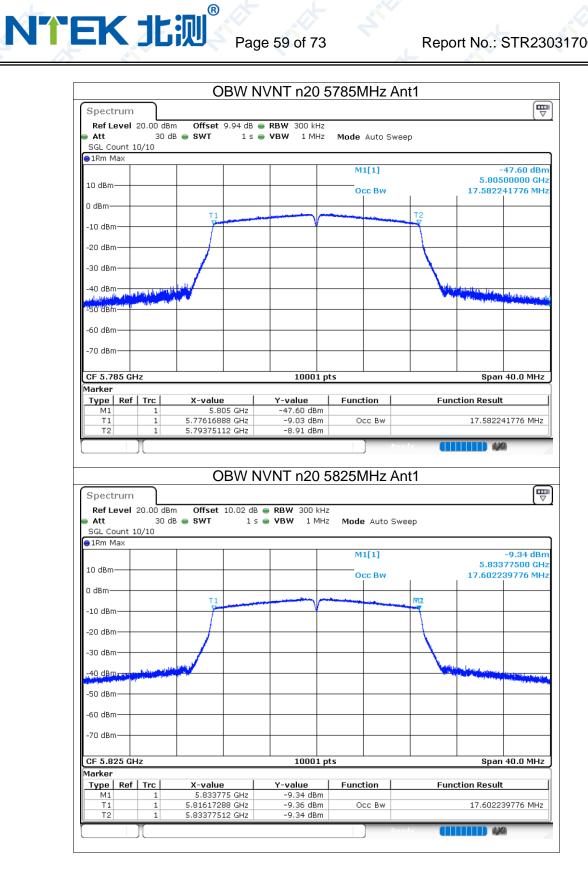
Page 55 of 73

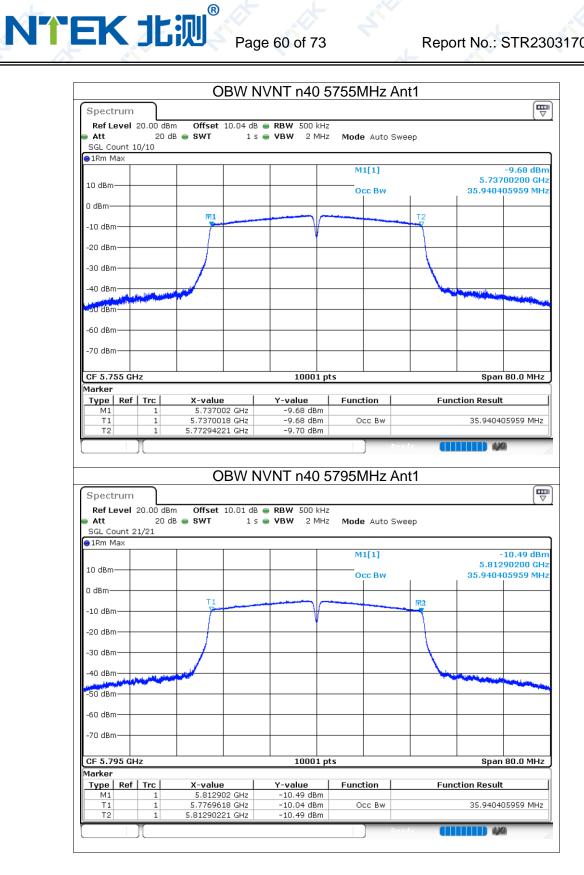

NTEK 北河[®] Page 56 of 73

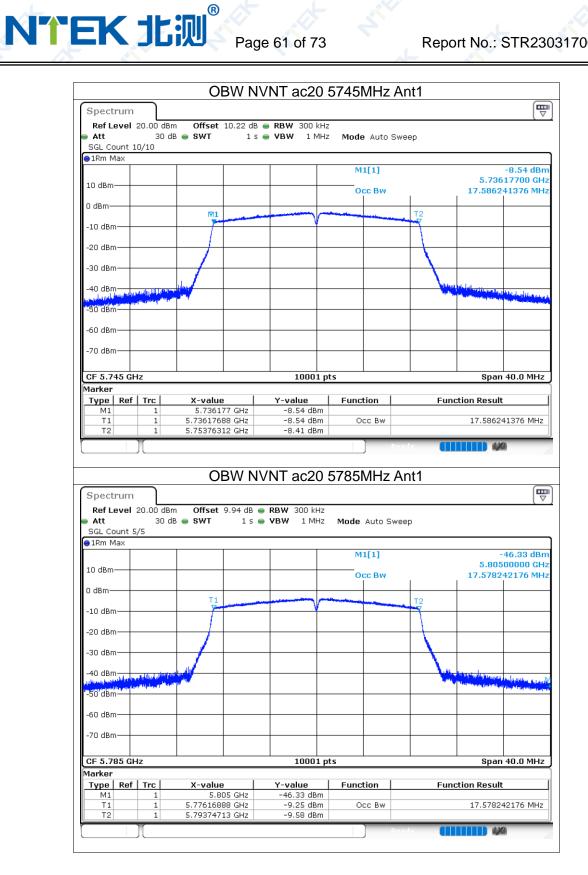
Report No.: STR230317002005E

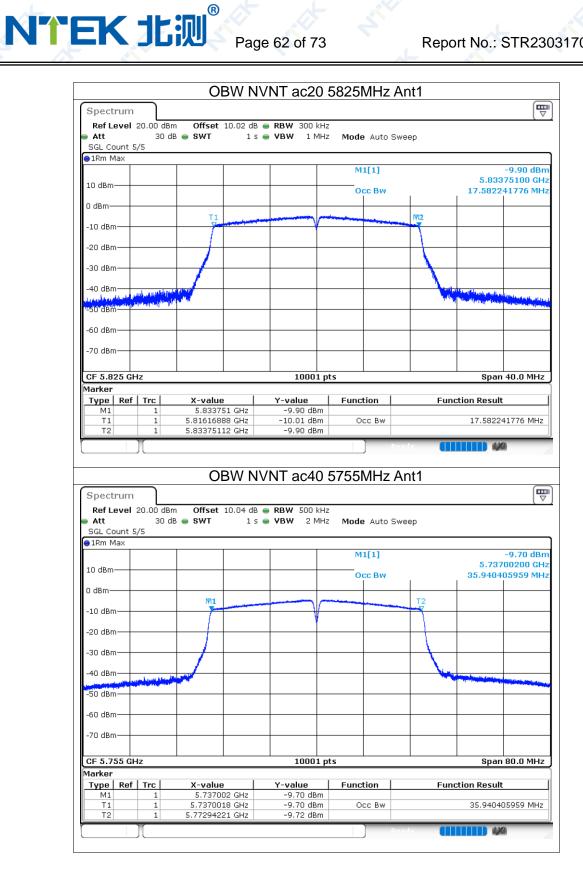

10.3 OCCUPIED CHANNEL BANDWIDTH

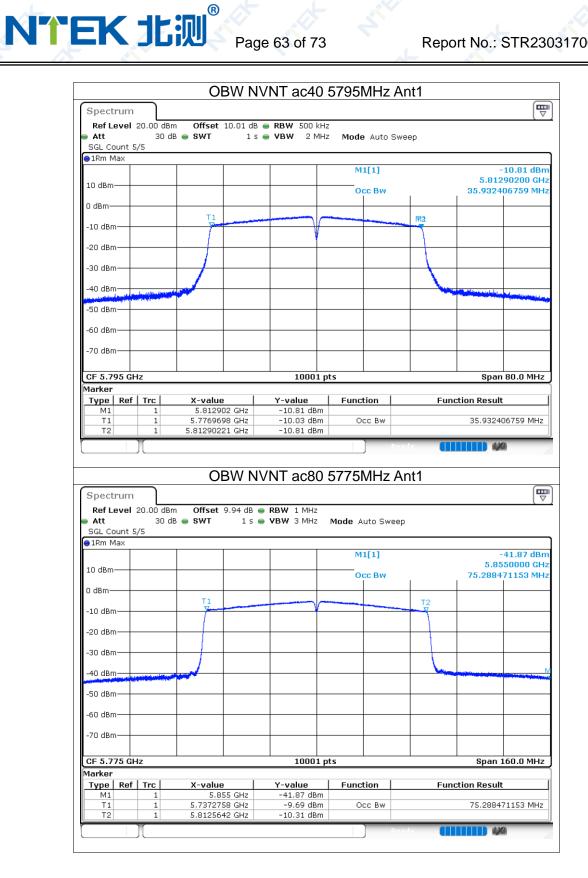
Condition	Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Verdict
NVNT	а	5745	Ant1	5744.972	16.39	Pass
NVNT	а	5785	Ant1	5784.962	16.386	Pass
NVNT	а	5825	Ant1	5824.964	16.398	Pass
NVNT	n20	5745	Ant1	5744.968	17.582	Pass
NVNT	n20	5785	Ant1	5784.96	17.582	Pass
NVNT	n20	5825	Ant1	5824.974	17.602	Pass
NVNT	n40	5755	Ant1	5754.972	35.94	Pass
NVNT	n40	5795	Ant1	5794.932	35.94	Pass
NVNT	ac20	5745	Ant1	5744.97	17.586	Pass
NVNT	ac20	5785	Ant1	5784.958	17.578	Pass
NVNT	ac20	5825	Ant1	5824.96	17.582	Pass
NVNT	ac40	5755	Ant1	5754.972	35.94	Pass
NVNT	ac40	5795	Ant1	5794.936	35.932	Pass
NVNT	ac80	5775	Ant1	5774.92	75.288	Pass


Page 57 of 73


Page 58 of 73


Page 59 of 73


Page 60 of 73

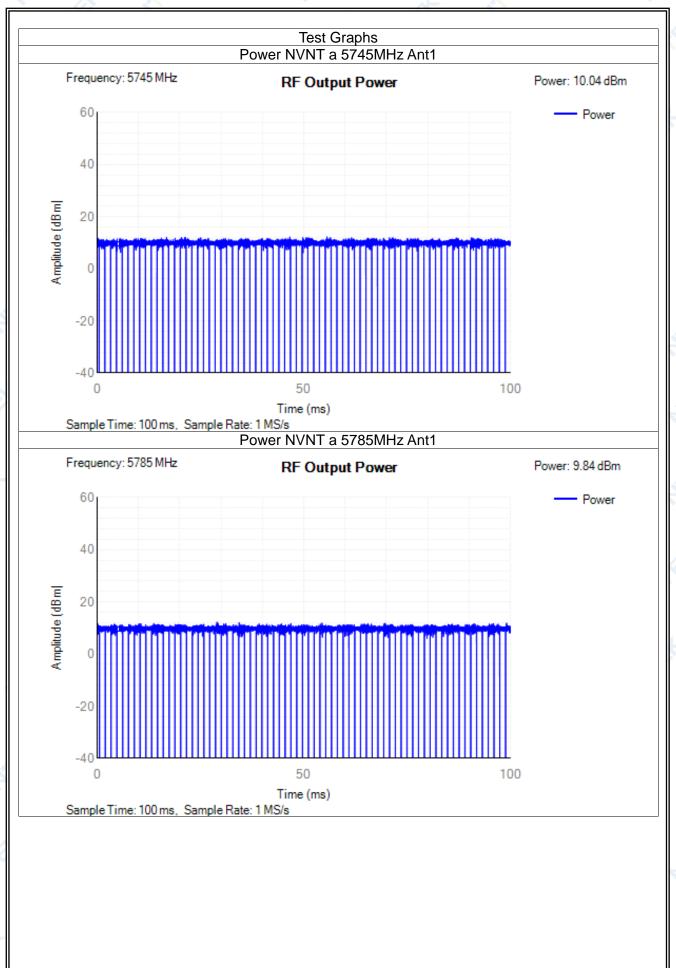

Page 61 of 73

Page 62 of 73

Page 63 of 73

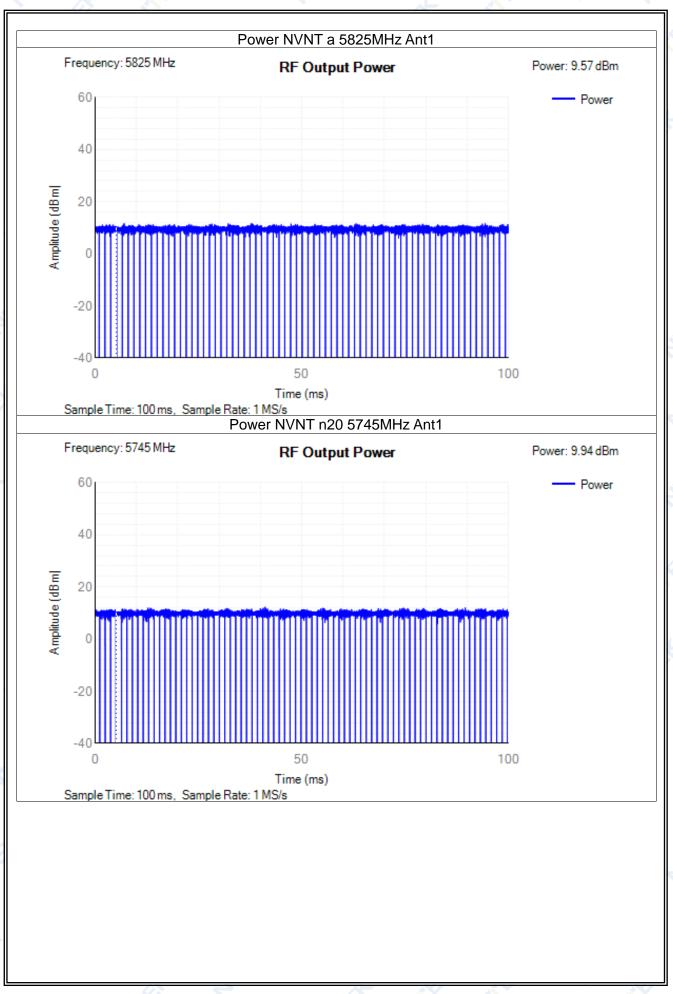
Page 64 of 73

Report No.: STR230317002005E

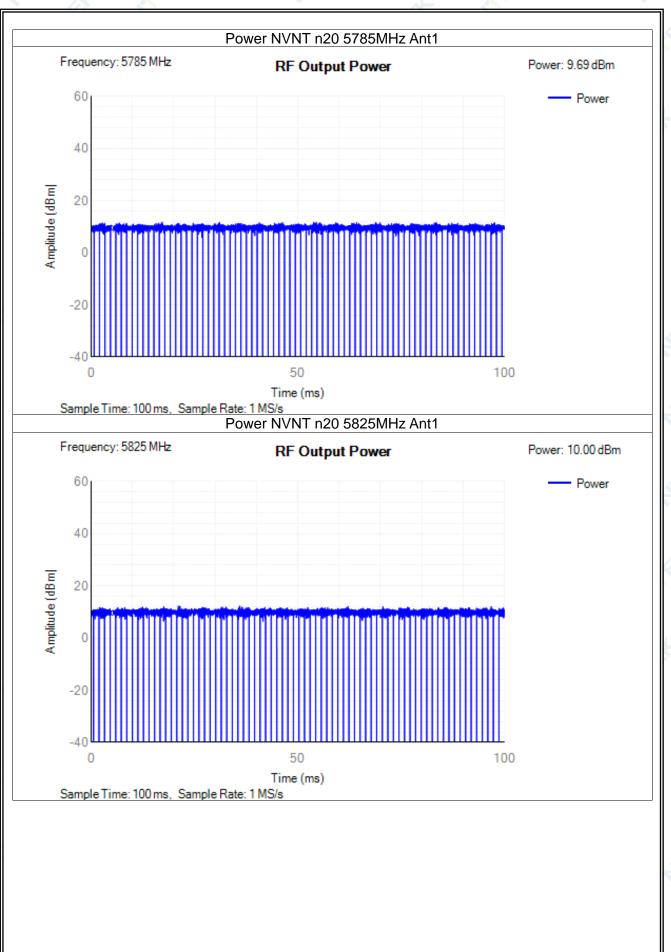

10.4 RF OUTPUT POWER

				Max				
Condition	Mode	Frequency (MHz)	Antenna	Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	а	5745	Ant1	10.04	72	10.35	13.98	Pass
NVNT	а	5785	Ant1	9.84	72	10.15	13.98	Pass
NVNT	а	5825	Ant1	9.57	72	9.88	13.98	Pass
NVNT	n20	5745	Ant1	9.94	77	10.25	13.98	Pass
NVNT	n20	5785	Ant1	9.69	77	10	13.98	Pass
NVNT	n20	5825	Ant1	10	75	10.31	13.98	Pass
NVNT	n40	5755	Ant1	10.43	149	10.74	13.98	Pass
NVNT	n40	5795	Ant1	9.43	149	9.74	13.98	Pass
NVNT	ac20	5745	Ant1	9.91	77	10.22	13.98	Pass
NVNT	ac20	5785	Ant1	9.69	76	10	13.98	Pass
NVNT	ac20	5825	Ant1	9.48	77	9.79	13.98	Pass
NVNT	ac40	5755	Ant1	10.48	148	10.79	13.98	Pass
NVNT	ac40	5795	Ant1	9.43	147	9.74	13.98	Pass
NVNT	ac80	5775	Ant1	10	278	10.31	13.98	Pass
LVLT	а	5745	Ant1	9.95	72	10.26	13.98	Pass
LVLT	а	5785	Ant1	9.73	72	10.04	13.98	Pass
LVLT	а	5825	Ant1	9.52	72	9.83	13.98	Pass
LVLT	n20	5745	Ant1	9.86	77	10.17	13.98	Pass
LVLT	n20	5785	Ant1	9.65	77	9.96	13.98	Pass
LVLT	n20	5825	Ant1	9.93	75	10.24	13.98	Pass
LVLT	n40	5755	Ant1	10.30	149	10.61	13.98	Pass
LVLT	n40	5795	Ant1	9.31	149	9.62	13.98	Pass
LVLT	ac20	5745	Ant1	9.79	77	10.10	13.98	Pass
LVLT	ac20	5785	Ant1	9.64	76	9.95	13.98	Pass
LVLT	ac20	5825	Ant1	9.37	77	9.68	13.98	Pass
LVLT	ac40	5755	Ant1	10.35	148	10.66	13.98	Pass
LVLT	ac40	5795	Ant1	9.37	147	9.68	13.98	Pass
LVLT	ac80	5775	Ant1	9.91	278	10.22	13.98	Pass
LVHT	а	5745	Ant1	10.01	72	10.32	13.98	Pass
LVHT	а	5785	Ant1	9.66	72	9.97	13.98	Pass
LVHT	а	5825	Ant1	9.42	72	9.73	13.98	Pass
LVHT	n20	5745	Ant1	9.87	77	10.18	13.98	Pass
LVHT	n20	5785	Ant1	9.64	77	9.95	13.98	Pass
LVHT	n20	5825	Ant1	9.80	75	10.11	13.98	Pass
LVHT	n40	5755	Ant1	10.31	149	10.62	13.98	Pass
LVHT	n40	5795	Ant1	9.29	149	9.60	13.98	Pass
LVHT	ac20	5745	Ant1	9.74	77	10.05	13.98	Pass
LVHT	ac20	5785	Ant1	9.64	76	9.95	13.98	Pass
LVHT	ac20	5825	Ant1	9.48	77	9.79	13.98	Pass
LVHT	ac40	5755	Ant1	10.47	148	10.78	13.98	Pass
LVHT	ac40	5795	Ant1	9.39	147	9.70	13.98	Pass
LVHT	ac80	5775	Ant1	9.91	278	10.22	13.98	Pass
HVHT	а	5745	Ant1	9.84	72	10.15	13.98	Pass

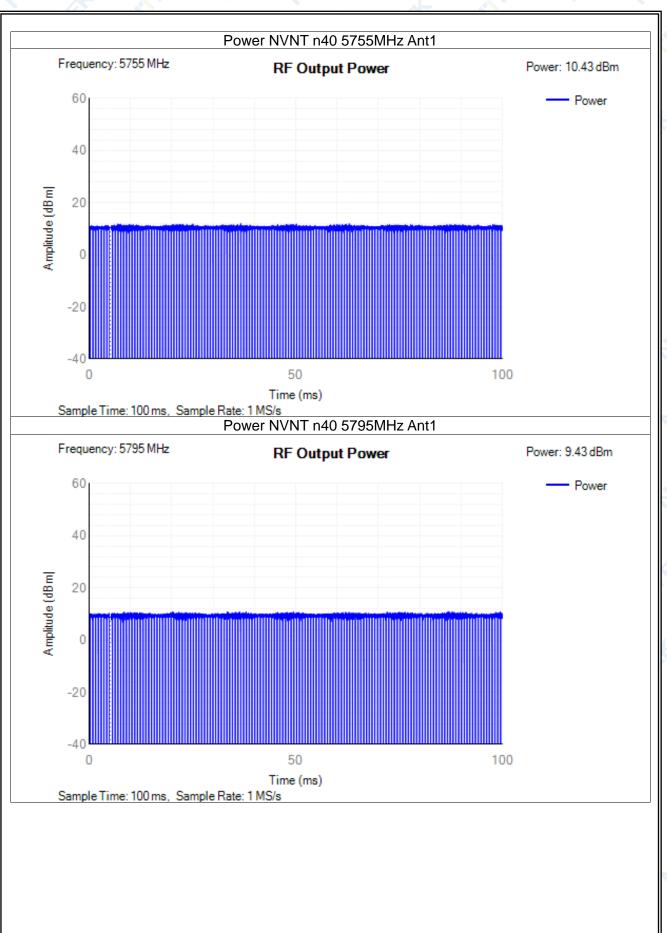
Page 65 of 73


×									
	HVHT	а	5785	Ant1	9.72	72	10.03	13.98	Pass
	HVHT	а	5825	Ant1	9.36	72	9.67	13.98	Pass
	HVHT	n20	5745	Ant1	9.83	77	10.14	13.98	Pass
	HVHT	n20	5785	Ant1	9.69	77	10.00	13.98	Pass
	HVHT	n20	5825	Ant1	9.83	75	10.14	13.98	Pass
	HVHT	n40	5755	Ant1	10.40	149	10.71	13.98	Pass
Ī	HVHT	n40	5795	Ant1	9.32	149	9.63	13.98	Pass
	HVHT	ac20	5745	Ant1	9.81	77	10.12	13.98	Pass
	HVHT	ac20	5785	Ant1	9.50	76	9.81	13.98	Pass
-	HVHT	ac20	5825	Ant1	9.39	77	9.70	13.98	Pass
	HVHT	ac40	5755	Ant1	10.30	148	10.61	13.98	Pass
	HVHT	ac40	5795	Ant1	9.27	147	9.58	13.98	Pass
-	HVHT	ac80	5775	Ant1	9.90	278	10.21	13.98	Pass
Ī	HVLT	а	5745	Ant1	9.97	72	10.28	13.98	Pass
Ī	HVLT	а	5785	Ant1	9.84	72	10.15	13.98	Pass
	HVLT	а	5825	Ant1	9.40	72	9.71	13.98	Pass
	HVLT	n20	5745	Ant1	9.86	77	10.17	13.98	Pass
	HVLT	n20	5785	Ant1	9.59	77	9.90	13.98	Pass
	HVLT	n20	5825	Ant1	9.88	75	10.19	13.98	Pass
	HVLT	n40	5755	Ant1	10.29	149	10.60	13.98	Pass
	HVLT	n40	5795	Ant1	9.39	149	9.70	13.98	Pass
	HVLT	ac20	5745	Ant1	9.89	77	10.20	13.98	Pass
	HVLT	ac20	5785	Ant1	9.66	76	9.97	13.98	Pass
	HVLT	ac20	5825	Ant1	9.43	77	9.74	13.98	Pass
	HVLT	ac40	5755	Ant1	10.31	148	10.62	13.98	Pass
	HVLT	ac40	5795	Ant1	9.31	147	9.62	13.98	Pass
	HVLT	ac80	5775	Ant1	9.99	278	10.30	13.98	Pass

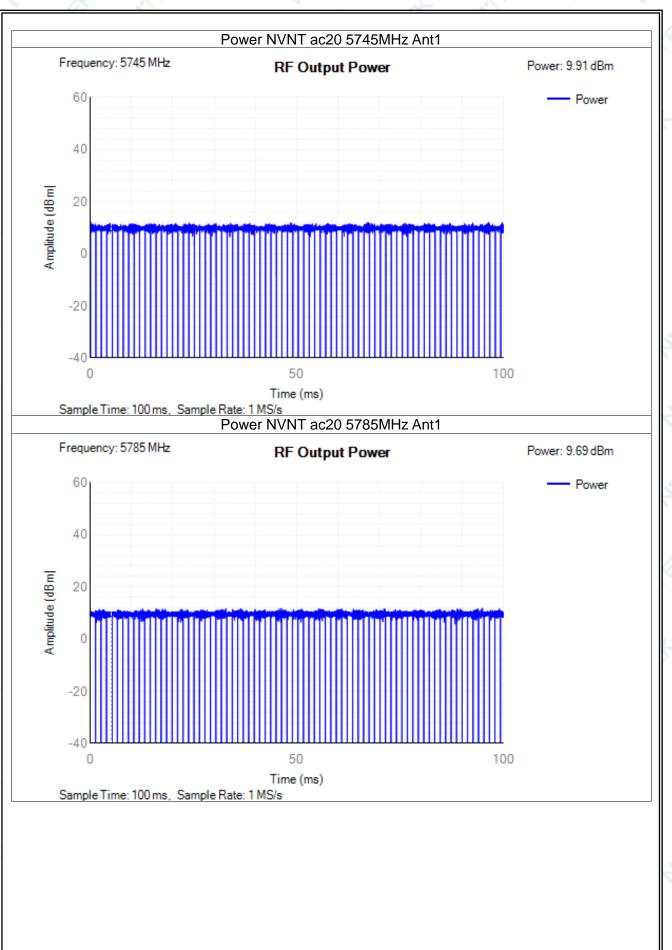
Report No.: STR230317002005E



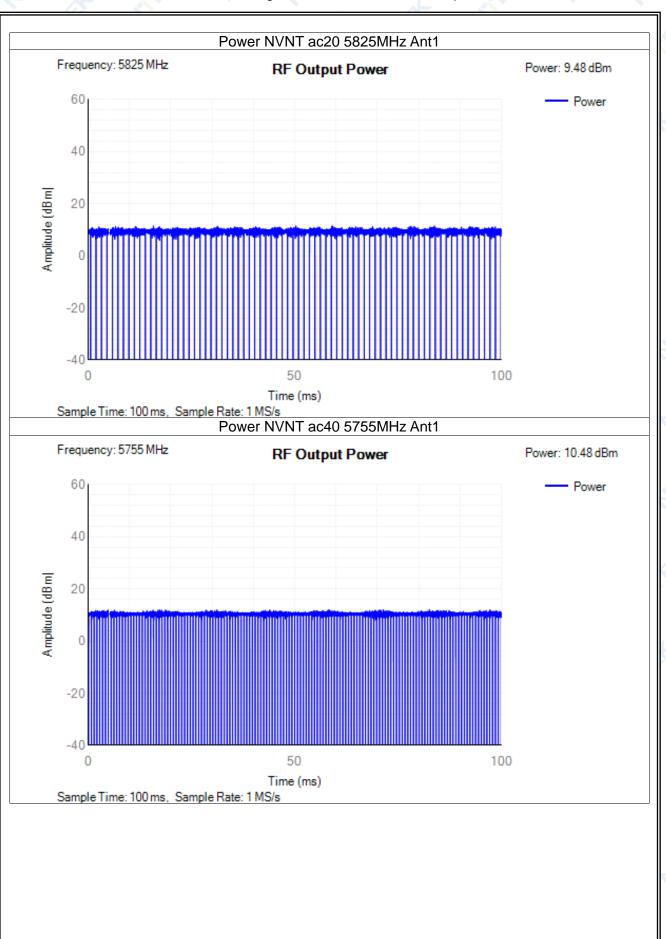
Page 66 of 73


Report No.: STR230317002005E

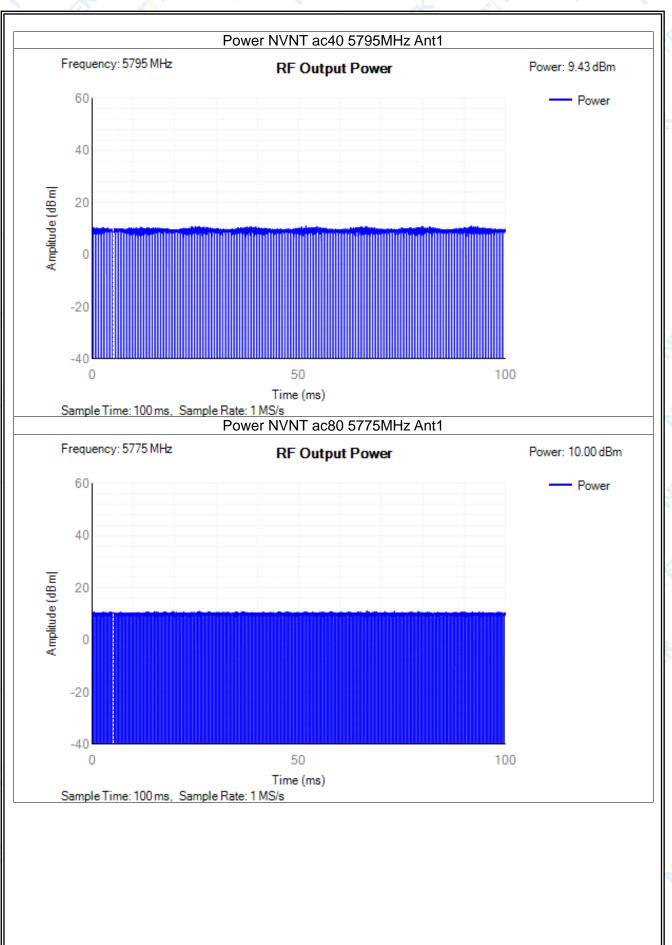
Page 67 of 73



Page 68 of 73


Page 69 of 73

NTEK 北测®



Page 70 of 73

NTEK LM Page 71 of 73

NTEK 北视® Page 72 of 73

Page 73 of 73

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

Report No.: STR230317002005E

11. EUT TEST PHOTO

END OF REPORT