

RADIO TEST REPORT-BT ETSI EN 300 328 V2.2.2 (2019-07)

Product: Mobile Phone

Trade Mark: Blackview

Model Name: BV6600

Family Model: N/A

Report No.: STR201229002001E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI

HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China

Tel. 400-800-6106, 0755-3699 5508

Website: http://www.ntek.org.cn

Applicant's name: DOKE COMMUNICATION (HK) LIMITED

TEST RESULT CERTIFICATION

Report No.: STR201229002001E

Address	: RM 1902 EASEY C WANCHAI HK CHIN	113 6	HENNESSY ROAD
Manufacturer's Name	: Shenzhen DOKE E	lectronic Co.,Ltd	4
Address	Room 801, Building Yutang Street, Guar	g 3, 7th Industrial Zono ngming District, Shen	e, Yulv Community, zhen,China
Product description	4 5	45	4
Product name		1 5	A C
Trademark	: Blackview	Q /	+ >
Model Name	: BV6600	d 5	*
Family Model	: N/A	\$200	A E
Standards	: ETSI EN 300 328 V	/2.2.2 (2019-07)	300
This device described above equipment under test (EUT) requirements. And it is application This report shall not be reproducement may be altered or	is in compliance with the able only to the tested aduced except in full, wi	ne of article 3.2 of the sample identified in the ithout the written appropriate the second contract the s	Directive 2014/53/EU ne report. roval of NTEK, this
the document.	14	A 5	14 5
Date of Test		5	4 7
Date (s) of performance of tes			Let b
Date of Issue	19 Jan. 202	1	2 1 2
Test Result	Pass	ALT A	At & All A
Testing Eng	jineer :	Many. Hu	
Technical M	Manager :	(Mary Hu)	t lat
- F 1	<u>_</u>	Jasonches	<u> </u>
# 5	x 300	(Jason Chen)	\$
Authorized	Signatory :	Alex	At All
at Ser	* >	(Alex Li)	2 15
67	347	1	1

5	Table of Contents	Page
	* * * * * * * * * * * * * * * * * * *	
<u>_1</u>	. GENERAL INFORMATION	× 74
7	1.1 GENERAL DESCRIPTION OF EUT	7
	1.2 INFORMATION ABOUT THE EUT	8
	1.3 TEST CONDITIONS	13
+	1.4 TEST CONFIGURATION OF EUT	13
	1.5 DESCRIPTION OF TEST CONDITIONS	14
	1.6 DESCRIPTION OF SUPPORT UNITS	15
	1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS	16
2	. SUMMARY OF TEST RESULTS	17
	2.1 TEST FACILITY	18
3	. RF OUTPUT POWER	19
5	3.1 LIMITS OF RF OUTPUT POWER	19
	3.2 TEST PROCEDURE	19
_	3.3 DEVIATION FROM TEST STANDARD	19
E. C.	3.4 TEST SETUP	19
	3.5 TEST RESULTS	20
4	. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND I	HOPPING
SI	EQUENCE	∠ 21
	4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION	ON AND
	HOPPING SEQUENCE	21
+	4.2 TEST PROCEDURE	21_
4	4.3 DEVIATION FROM TEST STANDARD	21
	4.4 TEST SETUP	22
	4.5 TEST RESULTS	23
5	. OCCUPIED CHANNEL BANDWIDTH	24
	5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	24
	5.2 TEST PROCEDURE	24
	5.3 DEVIATION FROM TEST STANDARD	25
	5.4 TEST SETUP	25
	5.5 TEST RESULTS	26
6	. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DON	1AIN 27
5	6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BA	ND

+	Table of Contents	Page	Ś
	DOMAIN	27	4
	6.2 TEST PROCEDURE	A 27	Ø
	6.3 DEVIATION FROM TEST STANDARD	28	
	6.4 TEST SETUP	28	
	6.5 TEST RESULTS	29	K
7	. HOPPING FREQUENCY SEPARATION	30	7
	7.1 LIMITS OF HOPPING FREQUENCY SEPARATION	30	
	7.2 TEST PROCEDURE	30	+
	7.3 DEVIATION FROM TEST STANDARD	30	4
1	7.4 TEST SETUP	31	
	7.5 TEST RESULTS	32	
8	. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	J 33	
5	8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN	ГНЕ	
	SPURIOUS DOMAIN	33	
	8.2 TEST PROCEDURE	33	
24	8.3 DEVIATION FROM TEST STANDARD	33	
>	8.4 TEST SETUP	34	
	8.5 TEST RESULTS (Radiated measurement)	35	A
*	8.6 TEST RESULTS (Conducted measurement)	J 36	2
9	. RECEIVER SPURIOUS EMISSIONS	37	
	9.1 LIMITS OF RECEIVER SPURIOUS RADIATION	37	
_	9.2 TEST PROCEDURE	37	Ś
7	9.3 DEVIATION FROM TEST STANDARD	37	
	9.4 TEST SETUP	38	
	9.5 TEST RESULTS (Radiated measurement)	39	4
	9.6 TEST RESULTS (Conducted measurement)	40	×
10). RECEIVER BLOCKING	41	
	10.1 PERFORMANCE CRITERIA	41	
	10.2 LIMITS OF RECEIVER BLOCKING	41	
	10.3 TEST PROCEDURE	42	
	10.4 DEVIATION FROM TEST STANDARD	43	
/	10.5 TEST SETUP	43	
K	10.6 TEST RESULTS	<u>\$ 44</u>	

	Table of Contents Pag	e
5	4 5	
11	. TEST RESULTS	46
-	11.1 ACCUMULATED TRANSMIT TIME	46
	11.2 FREQUENCY OCCUPATION	50
	11.3 ONE PULSE DWELL TIME	54
	11.4 RF OUTPUT POWER	59
	11.5 HOPPING FREQUENCY SEPARATION	61
	11.6 OCCUPIED CHANNEL BANDWIDTH	65
	11.7 TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	68
	11.8 RECEIVER SPURIOUS EMISSIONS	73
1	11.9 HOPPING SEQUENCE	77
	11.10 TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	78
12	2. PHOTOGRAPHS OF THE TEST CONFIGURATION	80
SF	PURIOUS EMISSIONS MEASUREMENT PHOTOS	80

Page 6 of 80

Report No.: STR201229002001E

Revision History

	27	41 2	1 7 5
Report No.	Version	Description	Issued Date
STR201229002001E	Rev.01	Initial issue of report	19 Jan. 2021
7 350 1	\$	1 2 5	* 30 5
1 5	Á	7 2	5
L E	4 8	P	d &
4	Š	L AT - 1	+ 5
4 3		7 7 15 5	*
\$ 1		* 5	# 5
L #	ما ا	54 15	\$
THE STATE OF THE S	- 29	A 10	Ø.
		# 8	4
LE	4	2 1	S A
AL.	2	A -	, 35
d 50		4	A.
* 5	10	THE STATE OF THE S	1 1 ×
of	5	L A 2	d &
	- 4	7 -	

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

A		AU AU AU		
Equipment	Mobile Phone			
Trade Mark	Blackview			
Model Name.	BV6600			
Family Model	N/A	N/A		
Model Difference	N/A	L 5"		
	The EUT is Mobile Phon	e Ø		
	Operation Frequency:	2402~2480 MHz		
	Modulatin Type:	GFSK,∏/4-DQPSK,8-DPSK		
	Modulation Technology:	FHSS		
	Adaptive/non-adaptive	Adaptive equipment		
	Receiver categories	2		
Product Description	Number Of Channel	79CH		
	Antenna Designation:	FPC Antenna		
	Antenna Gain(Peak)	0.8 dBi		
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as a ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.			
Channel List	Refer to below Table	Refer to below Table		
Adapter	Model No.:203008611AH Input: 100-240V~50/60Hz 0.6A Output: 5V3000mA 9V2000mA 12V1500mA 18.0W			
Battery	DC 3.85V, 8580mAh, 33.03Wh			
Rating	DC 3.85V from battery or DC 5V from Adapter			
I/O Ports	Refer to users manual	A 2		
Hardware Version	ZN128 MBB3 BOM10	ZN128 MBB3 BOM10		
Software Version	BV6600_EEA_ZN128F_	BV6600_EEA_ZN128F_V1.0		
1		2 2		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

79 channels are provided to BT(GFSK, ∏/4-DQPSK, 8-DPSK)

13 charmes are provided to DT(OI OIX	, / I Bal Cit, C Bi Cit)
Channel	Frequency (MHz
00	2402
01	2403
<i>IF M</i> <	L 24 5
5 2	Ø ≥ × × ×
Ø L	5 4 7
(& Ø	2
77	2479
78	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:
other forms of modulation
b) In case of FHSS modulation:
In case of non-Adaptive Frequency Hopping equipment:
The number of Hopping Frequencies:
In case of Adaptive Frequency Hopping Equipment:
The maximum number of Hopping Frequencies: 79
The minimum number of Hopping Frequencies: 79
The (average) Dwell Time: 358.112ms Maximum
c) Adaptive / non-adaptive equipment:
non-adaptive Equipment
adaptive Equipment without the possibility to switch to a non-adaptive mode
adaptive Equipment which can also operate in a non-adaptive mode
d) In case of adaptive equipment:
The maximum Channel Occupancy Time implemented by the equipment:/ ms
☐ The equipment has implemented an LBT based DAA mechanism
In case of equipment using modulation different from FHSS:
The equipment is Frame Based equipment
☐ The equipment is Load Based equipment
☐ The equipment can switch dynamically between Frame Based and Load Based equipment
The CCA time implemented by the equipment:/ µs
The equipment has implemented a non-LBT based DAA mechanism
The equipment can operate in more than one adaptive mode

) In case of non-adaptive Equipment:
The maximum RF Output Power (e.i.r.p.):
The maximum (corresponding) Duty Cycle:
Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations
of duty cycle and corresponding power levels to be declared):
The worst case operational mode for each of the following tests:
RF Output Power
GFSK
Power Spectral Density
N/A L
Duty cycle, Tx-Sequence, Tx-gap
N/A
• Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
8-DPSK
Hopping Frequency Separation (only for FHSS equipment)
∏/4-DQPSK
Medium Utilization
N/A
Adaptivity
N/A A A A
Receiver Blocking
GFSK
Nominal Channel Bandwidth
8-DPSK
Transmitter unwanted emissions in the OOB domain
8-DPSK
Transmitter unwanted emissions in the spurious domain
GFSK ● Receiver spurious emissions
GFSK
The different transmit operating modes (tick all that apply):
Operating mode 1: Single Antenna Equipment
Equipment with only one antenna
Equipment with two diversity antennas but only one antenna active at any moment in time
Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only
one antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming
Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)

High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
AT A S
NOTE 1: Add more lines if more channel bandwidths are supported.
☐ Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
☐ Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
NOTE 2: Add more lines if more channel bandwidths are supported.
h) In case of Smart Antenna Systems:
The number of Receive chains:
The number of Transmit chains:
symmetrical power distribution
asymmetrical power distribution
In case of beam forming, the maximum (additional) beam forming gain: dB
NOTE: The additional beam forming gain does not include the basic gain of a single antenna.
i) Operating Frequency Range(s) of the equipment:
Operating Frequency Range 1: 2402 MHz to 2480 MHz
Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported.
j) Nominal Channel Bandwidth(s):
Nominal Channel Bandwidth 1: 1.203MHz
Nominal Channel Bandwidth 2:/ MHz
NOTE: Add more lines if more channel bandwidths are supported. k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.):
Stand-alone
Combined Equipment (Equipment where the radio part is fully integrated within another type of
equipment)
Plug-in radio device (Equipment intended for a variety of host systems)
Other I) The normal and the extreme operating conditions that apply to the equipment:
Normal operating conditions (if applicable):
Operating temperature: 15℃~35℃
W 1 2
Other (please specify if applicable):
Extreme operating conditions:
Operating temperature range: Minimum: -10℃ Maximum 40℃ Other (please specify if applicable): Minimum: Maximum
Details provided are for the:
stand-alone equipment
combined (or host) equipment
test jig

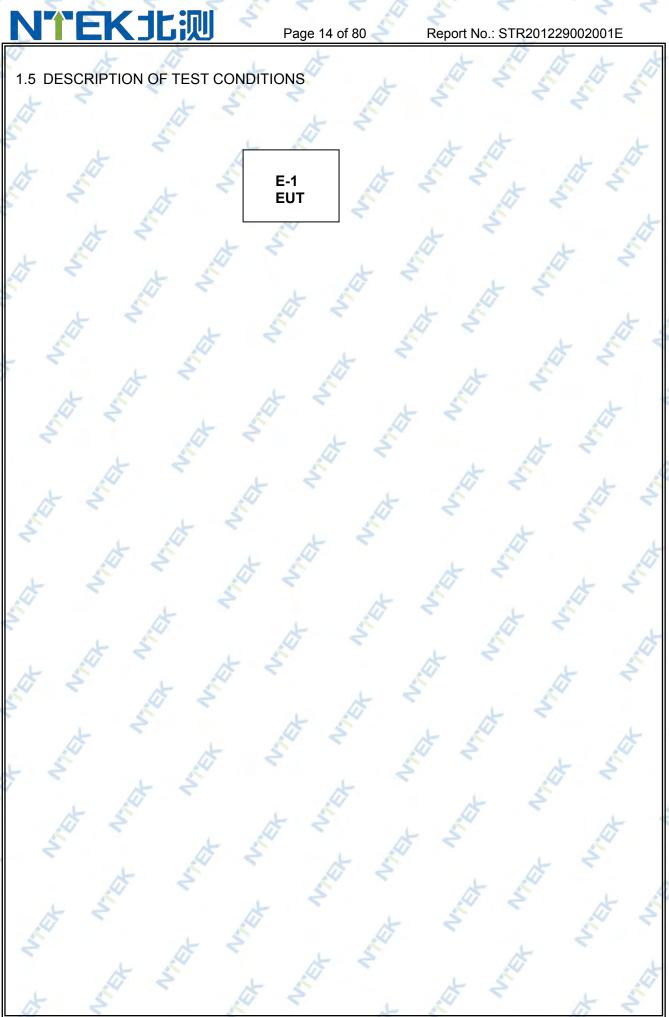
The intended combin	nation(s) of the radio ed	uinment nower settings	and one or more antenna
_	corresponding e.i.r.p.	- N	and one of more antenna
• Antenna Type: FPC		J	L
_	* *	ed in case of conducted m	eacurements)
Antenna Gain: 0		ed in case of conducted in	edsurements)
	-	ovaluding basis antonno a	ioin): / dP
_ (.47	excluding basic antenna g	all1)/ UD
	RF connector provided	4	4
_	y RF connector provided	4	19 5
	ntennas (equipment with		4 >
	r level with corresponding		5° 1
1	er settings and correspo	nding antenna(s)	L 29
	rent Power Levels:	A	A 5
Power Level 1:	dBm	E"	A 2
Power Level 2:	24/	T 1 2	X.
Power Level 3:	A -	A Part of the same	
	A Committee of the Comm	uipment has more power le cted power levels (at ante	
17%			, their corresponding gains
	477	to account the beamforming	//
Power Level 1	The second secon	no account the bearmonning	ng gain (1) ii applicable
	enna assemblies provide	d for this power level:	05
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
4	0.8	8.95	· ·
2	+	4 3	1
3	7	2	A F
NOTE 3: Add n	. 40	antenna assemblies are su	pported for this power level.
Power Level 2		d for this power level:	A Comment
		- 2	1
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1 37	Ø 3	- 3	* 5
2	-	1	
3		1	5 5
	.54.7	antenna assemblies are su	pported for this power level.
Power Level 3:	///	d for this power level:	L 5
1			
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
2		AT S	5
	47	4- 5	1
3	2	47	1

Report No.: STR201229002001E n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined (host) equipment or test jig in case of plug-in devices: Details provided are for the: stand-alone equipment combined (or host) equipment lest jig Supply Voltage AC mains State AC voltage V DC State DC voltage: DC 3.85V In case of DC, indicate the type of power source Internal Power Supply External Power Supply or AC/DC adapter: DC 5V Battery: DC 3.85V Other: o) Describe the test modes available which can facilitate testing: See section 1.4 p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802.15.4™ [i.4], proprietary, etc.): Bluetooth® q) If applicable, the statistical analysis referred to in clause 5.4.1 q) (to be provided as separate attachment) r) If applicable, the statistical analysis referred to in clause 5.4.1 r) (to be provided as separate attachment) s) Geo-location capability supported by the equipment: ☐ Yes The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user t) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or clause 4.3.2.11.3): □/4-DQPSK /Per=0.95%

1.3 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	-10℃ ~ 40℃ Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.85V	- 145

Note:


- (2) The measurements are performed at the highest, middle, lowest available channels.

1.4 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing			
Bluetooth mode	Data rate	Modulation type	
BR	1Mbps	GFSK	
EDR	2Mbps	∏/4-DQPSK	
EDR	3Mbps	8-DPSK	

Par gener				
Test Channel Frequencies Configuration				
Test Channel	EUT Channel	Test Frequency (MHz)		
Lowest	CH00	2402		
Middle	CH39	2441		
Highest	CH78	2480		

1.6 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

and the same of	6/3	A Comment			
Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	Mobile Phone	Blackview	BV6600	N/A	EUT
	15	4	5	0	
de	\$	19	4	\$ Q	-
	Ø	-	4 24	4 5	
	* >		20 4	# 5	×
	5	A.		\$. 2
		4	4	* 500	

	Item	Shielded Type	Ferrite Core	Length			Note	
Ī	10		A	7	17		4	7
Ī		大	-	29		-لـ	M	
		_ &		4	-	P	7	4 3
	A	-		5	D	7		7,0

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

N2017.06.06.0614.V.1.3

1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS

	-	4					
1	EQUIPMENT	Manufacturer	Type No.	Serial No.	Last	Calibrated	Calibration
٥	TYPE				calibration	until	period
7	EMI Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
	Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
	Turn Table	EM 🥖	SC100_1	60531	N/A	N/A	N/A
Ź	Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
	Horn Antenna	EM	EM-AH-10180	2011071402	2020.04.11	2021.04.10	1 year
	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2020.05.11	2021.05.10	1 year
	Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
4	Test Cable (1-18GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
5	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
	Pre-Amplifier	EMC	EMC051835SE	980246	2020.07.13	2021.07.12	1 year
	Spectrum Analyzer	Agilent	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
	Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
	Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
_	Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
	MXA Signal Analyzer	Agilent	N9020A	MY49100060	2020.07.13	2021.07.12	1 year
	ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2020.05.11	2021.05.10	1 year
	PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2020.07.13	2021.07.12	1 year
	Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
	Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
	Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
	Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
	Power Meter	DARE	RPR3006W	15I00041SNO 84	2020.07.13	2021.07.12	1 year
4	MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2020.05.11	2021.05.10	1 year
	Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2020.05.11	2021.05.10	1 year
	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

<u> </u>		4
	EN 300 328 V2.2.2	
Clause	Test Item	Results
	TRANSMITTER PARAMETERS	-
4.3.1.2	RF Output Power	Pass
4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
4.3.1.5	Hopping Frequency Separation	Pass
4.3.1.6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.1.7	Adaptivity	Not Applicable (See Note 1)
4.3.1.8	Occupied Channel Bandwidth	Pass
4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	
4.3.1.11	Receiver Spurious Emissions	Pass
4.3.1.12	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add.: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District,

Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.:9270A-1

CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively 95 % and 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Maximum measurement uncertainty

Maximum measurement uncertainty				
No.	Item 🗸	Uncertainty		
1	Occupied Channel Bandwidth	± 5%		
2	RF output Power,conducted	±1.5dB		
3	Power Spectral Density, conducted	± 3dB 🦟		
4	Unwanted emissions, conducted	± 3dB		
5	All emissions,radiated	± 6dB		
6	Temperature	± 3°C		
17	Humidity	± 3%		
9	Time	± 5%		

TRANSMITTER PARAMETERS

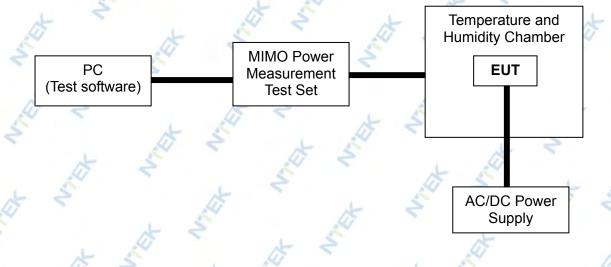
3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER

Refer to chapter 4.3.1.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER		
Condition	Limit	
	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.	
	equal to or less than 20 dBm.	

3.2 TEST PROCEDURE


Refer to chapter 5.4.2.2 of ETSI EN 300328 V2.2.2 (2019-07)

Measurement		
	Radiated measurement	

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

Page 20 of 80

of 80 Report No.: STR201229002001E

3.5 TEST RESULTS

EUT:	Mobile Phone	Model Name :	BV6600
Temperature :	20°C	Relative Humidity:	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V (Normal)
Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK	4	THE AT A

Test data reference attachment

4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Refer to chapter 4.3.1.4.3 of ETSI EN 300 328 V2.2.2 (2019-07)

Accumulated Transmit Time			
Condition	Limit		
Non-adaptive frequency hopping systems	≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]		
Adaptive frequency hopping systems	≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]		
MINIMUM	FREQUENCY OCCUPATION TIME		
Condition	Limit		
Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not		
777	exceeding four times the product of the dwell time and the number of hopping frequencies in use.		
Н	OPPING SEQUENCE (S)		
Condition	Limit		
Non-adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum		
Adaptive frequency	Operating over a minimum of 70% of the Operating in the band 2.4 GHz to 2.4835 GHz		
hopping systems	≥15 hopping frequencies or 15/minimum		

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of ETSI EN 300328 V2.2.2 (2019-07)

Measurement			
☐ Conducted measurement ☐ Radiated measurement			

4.3 DEVIATION FROM TEST STANDARD

No deviation

4.4 TEST SETUP

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

4.5 TEST RESULTS

EUT:	Mobile Phone	Model Name :	BV6600
Temperature :	26°C	Relative Humidity	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	BT- GFSK/∏/4-DQPSK /8-DPSK	Hopping Mode	2 1 2 5

Test data reference attachment

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH Refer to chapter 4.3.1.8.3 of ETSI EN 300328 V2.2.2 (2019-07)

567					
	OCCUPIED CHANNEL BANDWIDTH				
Condition		Limit			
All types of equipment		Shall fall completely within the band 2400 to 2483.5 MHz			
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz			
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz			

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300328 V2.2.2 (2019-07)

	Me	easurement				
⊠Conducted m	easurement	4	Radiated	measurement	AT.	10
The setting of the Spectr	um Analyzer	L &		*	3	
Center Frequency	The centre frequence	cy of the chan	nel under tes	it 🏈 🗀		2
Frequency Span	2 × Nominal Channe	el Bandwidth	4		+	5
Detector	RMS	45			M	
RBW	~ 1 % of the span w	ithout going b	elow 1 %	AT S		
VBW	3 × RBW		*	2		M
Trace	Max hold		10	4	*	4
Sweep time	1s 3	4	7	4 3		

5.3 DEVIATION FROM TEST STANDARD

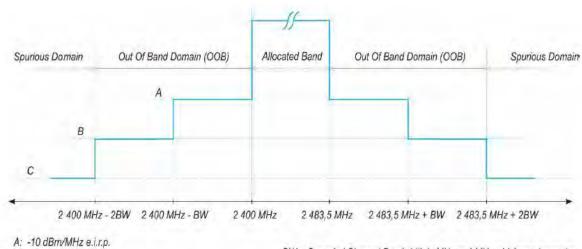
No deviation

5.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

5.5 TEST RESULTS

EUT:	Mobile Phone	Model Name :	BV6600
Temperature :	26°C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	BT- GFSK/∏/4-DQPSK /8-DPSK	(CH00/CH78)	2 1 1 2


Test data reference attachment

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition Limit		
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	

- B: -20 dBm/MHz e.i.r.p.
- C: Spurious Domain limits

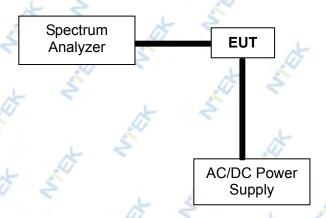
BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

Report No.: STR201229002001E

Figure 1: Transmit mask

6.2 TEST PROCEDURE

Refer to chapter 5.4.8.2of ETSI EN 300328 V2.2.2 (2019-07)


Measurement			
⊠Conducted measure	ment Radiated measurement		
The setting of the Spectrum Ana	lyzer		
Span	0Hz		
Filter Mode	Channel Filter		
Trace Mode	Clear/Write		
Trigger Mode	Video Trigger		
Detector	RMS		
Sweep Point / Sweep Mode	5000 / Continuous		
RBW / VBW	1MHz / 3MHz		

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

6.5 TEST RESULTS

EUT:	Mobile Phone	Model Name :	BV6600
Temperature :	26°C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	BT- GFSK/∏/4-DQPSK /8-DPSK	(CH00/CH78)	2 1 1 2

Test data reference attachment

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of ETSI EN 300328 V2.2.2 (2019-07)

	7.8 30	
HOPPING FREQUENCY SEPARATION		
Condition	Limit	
☐ Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.	
Adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be 100 kHz.	

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of ETSI EN 300328 V2.2.2 (2019-07)

	Measurement
	measurement
24	L & 2 2
The setting of the Spec	ctrum Analyzer
Center Frequency	Centre of the two adjacent hopping frequencies
Frequency Span	Sufficient to see the complete power envelope of both hopping frequencies
Detector	Max Peak
RBW 🙏 🍣	~ 1 % of the span
VBW	3 × RBW
Trace	Max hold
Sweep Time	Auto
175	

7.3 DEVIATION FROM TEST STANDARD

No deviation

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

7.5 TEST RESULTS

		A W		_
EUT:	Mobile Phone	Model Name :	BV6600	
Temperature :	26°C	Relative Humidity:	60 %	4
Pressure:	1012 hPa	Test Voltage :	DC 3.85V	>
Test Mode :	BT- GFSK/∏/4-DQPSK /8-DPSK (CH00/CH39/CH78)			

Test data reference attachment

Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz. 2.The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Refer to chapter 4.3.1.10.3 of ETSI EN 300328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN			
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth	
30 MHz to 47 MHz	-36dBm	100 kHz	
47 MHz to 74 MHz	-54dBm	100 kHz	
74 MHz to 87.5 MHz	-36dBm	100 kHz	
87.5 MHz to 118 MHz	-54dBm	100 kHz	
118 MHz to 174 MHz	-36dBm	100 kHz	
174 MHz to 230 MHz	-54dBm	100 kHz	
230 MHz to 470 MHz	-36dBm	100 kHz	
470 MHz to 694 MHz	-54dBm	100 kHz	
694 MHz to 1 GHz	-36dBm	100 kHz	
1 GHz ~ 12.75 GHz	-30dBm	1 MHz	

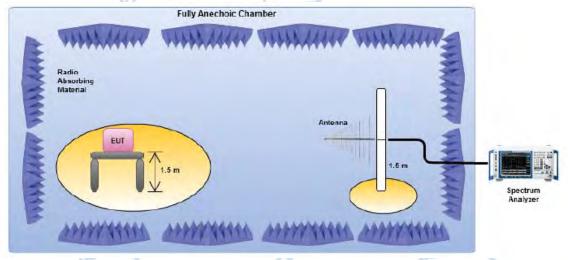
8.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300328 V2.2.2 (2019-07)

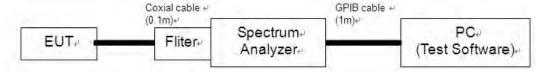
Me	easurement
⊠Conducted measurement	⊠Radiated measurement

The setting of the Spectrum Analyzer

RBW A	100K(<1GHz) / 1M(>1GHz)	AT S	, A
VBW	300K(<1GHz) / 3M(>1GHz)	2	4


8.3 DEVIATION FROM TEST STANDARD

No deviation



8.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

8.5 TEST RESULTS (Radiated measurement)

BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)

EUT:	Mobile Phone	Model Name :	BV6600
Temperature :	24 ℃	Relative Humidity	54%
Pressure:	1010 hPa	Test Power :	DC 3.85V
Test Mode :	BT- GFSK (CH00)	# 5	7 1 1 2

Polai	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	31.72	-76.23	10.77	-65.46	-36	-29.46	peak
V	99.885	-71.22	11.26	-59.96	-54	-5.96	peak
V 🗷	194.58	-72.86	11.22	-61.64	-54	-7.64	peak
V	311.678	-77.72	11.19	-66.53	-36	-30.53	peak
V	515.31	-74.49	9.53	-64.96	-54	-10.96	peak
Н	42.715	-68.2	10.45	-57.75	-36	-21.75	peak
H	100.805	-74.51	10.20	-64.31	-54	-10.31	peak
H	196.919	-69.38	10.83	-58.55	-54	-4.55	peak
Ŧ	411.289	-77.42	11.11	-66.31	-36	-30.31	peak
Н	511.908	-74.03	11.03	-63.00	-54	-9.00	peak

Remark:

- Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit.
 All the modes had been tested, but only the worst data recorded in the report.

ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

Report No.: STR201229002001E

EUT:	Mobile Phone	Model Name :	BV6600
Temperature	24 ℃	Relative Humidity	54%
Pressure:	1010 hPa	Test Power :	DC 3.85V
Test Mode :	BT- GFSK (CH00/CH39/CH78)	15	2 4 5

V 27 V 52 V 28 V 45 H 20 H 30 H 27 H 54	(MHz) (00.029 234.65 300.759 518.556	-73.42 -76.74	10.22	(dBm) quency:2402	(dBm)	(dB)	Remark	
V 52 V 28 V 45 H 20 H 30 H 27 H 54	234.65 300.759	-73.42 -76.74	10.22		4		1	
V 52 V 28 V 45 H 20 H 30 H 27 H 54	234.65 300.759	-76.74	111	00.00		5		
V 28 V 45 H 20 H 30 H 27 H 54	800.759			-63.20	-30	-33.20	peak	
V 45 H 20 H 30 H 27 H 54		T .	9.68	-67.06	-30	-37.06	peak	
H 20 H 30 H 27 H 54	18.556	-67.84	10.95	-56.89	-30	-26.89	peak	
H 30 H 27 H 54 V 21		-73.88	9.85	-64.03	-30	-34.03	peak	
H 27 H 54 V 21	052.31	-67.97	10.50 🔏	-57.47	-30	-27.47	peak	
H 54	23.378	-74.34	11.22	-63.12	-30	-33.12	peak	
V 21	63.536	-71.33	10.13	-61.20	30	-31.20	peak	
	71.646	-75.75	10.38	-65.37	-30	-35.37	peak	
	operation frequency:2441							
\	72.672	-70.49	10.17	-60.32	-30	-30.32	peak	
V 54	56.606	-67.37	10.22	-57.15	-30	-27.15	peak	
V 22	219.078	-77.28	10.42	-66.86	-30	-36.86	peak	
V 36	646.262	-68.79	10.79	-58.00	-30	-28.00	peak	
H 22	240.483	-75.04	9.82	-65.22	-30	-35.22	peak	
	89.854	-76.82	9.57	-67.25	-30	-37.25	peak	
H 27	28.416	-67.87	9.66	-58.21	30 =	-28.21	peak 🦼	
H 52	288.437	-74.52	11.33	-63.19	-30	-33.19	peak	
/				quency:2480			4	
	26.028	-77.68	10.13	-67.55	-30	-37.55	peak	
	70.594	-70.87	9.68	-61.19	-30 🧢	-31.19	peak	
	56.105	-77.74	10.78	-66.96	-30	-36.96	peak 🦽	
	048.62	-74.05	10.82	-63.23	-30	-33.23	peak	
H 28	315.326	-75.77	11.38	-64.39	-30	-34.39	peak	
	51.596	-76.74	10.36	-66.38	-30	-36.38	peak	
H 29	008.033	-70.24	10.60	-59.64	-30	-29.64	peak	
H. 43				-60.73		_0.0.		

- Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit.
 All the modes had been tested, but only the worst data recorded in the report.

8.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

9. RECEIVER SPURIOUS EMISSIONS

9.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.1.11.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS				
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth		
30 MHz ~ 1 GHz	-57dBm	100KHz		
1 GHz ~ 12.75 GHz	-47dBm	1MHz		

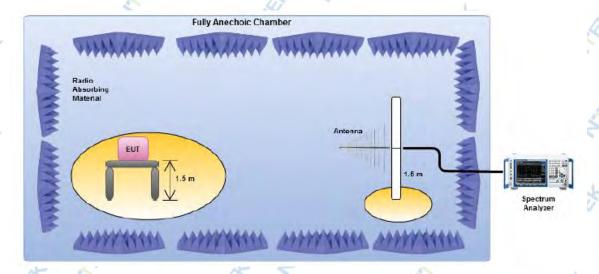
9.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300328 V2.2.2 (2019-07)

M	easurement	

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)
VBW	300K(<1GHz) / 3M(>1GHz)


9.3 DEVIATION FROM TEST STANDARD

No deviation

9.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

9.5 TEST RESULTS (Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)

		. (- /
EUT:	Mobile Phone	Model Name :	BV6600
Temperature:	24 ℃	Relative Humidity	54%
Pressure:	1010 hPa	Test Power :	DC 3.85V
Test Mode :	BT- GFSK (CH00)	1	5 5

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	30.309	-79.21	12.25	-66.96	-57	-9.96	peak
V	102.775	-79.37	16.13	-63.24	-57	-6.24	peak
V	202.031	-81.68	14.05	-67.63	-57	-10.63	peak
V	404.74	-80.87	17.01	-63.86	-57	-6.86	peak
V	497.035	-81.1	15.51 🏑	-65.59	-57	-8.59	peak
H	37.47	-79.22	14.62	-64.60	-57	-7.60	peak
HØ	101.057	-84.91	7 17.87	-67.04	57	-10.04	peak
4	219.37	-77.55	16.70	-60.85	-57	-3.85	peak
Н	387.916	-79.91	15.79	-64.12	-57	-7.12	peak
Н	579.97	-79.03	17.54	-61.49	-57	-4.49	peak

Remark: M

- Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit.
 All the modes had been tested, but only the worst data recorded in the report.

Page 40 of 80

RX ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

Report No.: STR201229002001E

		, hard	
EUT:	Mobile Phone	Model Name :	BV6600
Temperature:	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	BT- GFSK (CH00)	, Q	1 4

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	T C T T C T T C T T T T T T T T T T T T
V	2248.857	-80.81	10.46	-70.35	-47	-23.35	peak
V	3996.549	-79.43	10.21	-69.22	-47	-22.22	peak
V	2923.998	-79.43	10.57	-68.86	-47	-21.86	peak
V	5254.195	-81.85	16.88	-64.97	-47	-17.97	peak
H	2438.428	-78.94	10.29	-68.65	-47	-21.65	peak
Ð	5882.625	-81.88	11.29	-70.59	-47	-23.59	peak
Н	2428.415	-77.82	6.79 🏑	71.03	-47	-24.03	peak
H	3632.693	-80.31	15.06	-65.25	-47	-18.25	peak

9.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit.
 All the modes had been tested, but only the worst data recorded in the report.

10. RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

■ Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal Frequency	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(see notes 1 and 4)	(MHz)	4	24
(-133 dBm + 10 × log₁₀(OCBW))	2 380 2 504	-34	CW
or -68 dBm whichever is less (see note 2)	* 5	# 5	A 3
(-139 dBm + 10 × log ₁₀ (OCBW))	2 300	7	
T 2	2 330	-	7
or -74 dBm whichever is less	2 360	47	
(see note 3)	2524		4
	2584	4 -	
大 子 大	2674	24	4 4

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

☐ ☐ Table 7: Receiver Blocking parameters receiver category 2 equipment

Wanted signal mean power from	Block <mark>i</mark> ng signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 3)	signal
(see notes 1 and 3)	45	,	
(-139 dBm + 10 × log₁₀(OCBW) + 10 dB)	2 380	-34	CW
or (-74 dBm + 10 dB) whichever is less	2 504	FZZL	14 5
(see note 2)	2 300	AT .	2
	2 584		A

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	* 5	1
(see note 2)	2 300	_ &	4
4	2 584	. 7	

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

10.3 TEST PROCEDURE

Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement
⊠Conducted measurement	Radiated measurement
	A

10.4 DEVIATION FROM TEST STANDARD No deviation 10.5 TEST SETUP Variable attenuator Performance step size ≤ 1 dB Monitoring Device Signalling Unit Companion Device Direct. Coupler Splitter/ Combiner UUT Blocking Signal Source Spectrum Analyzer Optional

10.6 TEST RESULTS

	The second secon		
EUT:	Mobile Phone	Model Name :	BV6600
Temperature :	24 ℃	Relative Humidity	54%
Pressure:	1010 hPa	Test Power :	DC 3.85V
Test Mode :	BT-GFSK Hopping mode (RX)	D &	5 T 16 5.

receiver category 2

L S		ivo: category =		/8
Wanted signal mean	Blocking signal	Blocking signal	PER	PER Limit
power from companion	Frequency (MHz)	power	%	%
device (dBm) Note(1)	T .	(dBm)	* -	
. 5	2 380		0.74%	
45	2 504	A.	0.62%	≤10%
-69.61	2 300	-34	0.49%	≤10%
大	2 584	LT.	0.67%	≥10%

EUT:	Mobile Phone	Model Name :	BV6600	
Temperature:	24 ℃	Relative Humidity	54%	
Pressure:	1010 hPa	Test Power :	DC 3.85V	
Test Mode :	BT-∏/4-DQPSK Hopping mode (F	5 5		

receiver category 2

Wanted signal mean power from companion device (dBm) Note(1)	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit %
* >	2 380		0.95%	4
	2 504	05	0.46%	≤10%
-68.30	2 300	-34	0.77%	≤10%
4	2 584		0.85%	≥10%

EUT: Mobile Phone Model Name: BV6600

Temperature: 24 °C Relative Humidity 54%

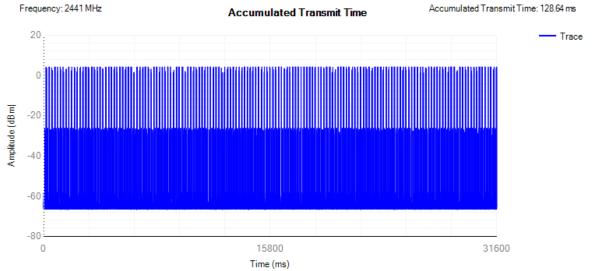
Pressure: 1010 hPa Test Power: DC 3.85V

Test Mode: BT-8-DPSK Hopping mode (RX)

receiver category 2

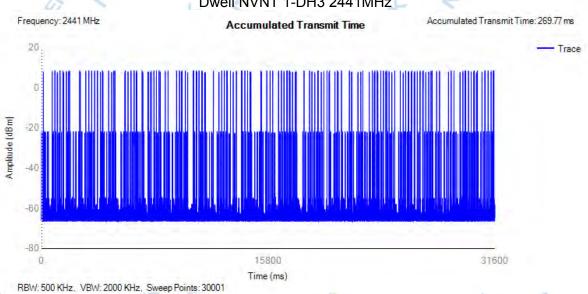
Wanted signal mean power from companion device (dBm) Note(1)	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit
Note(1)	2 380 2 504	At Air	0.69% 0.39%	≤10%
-68.27	2 300	-34	0.58%	≤10%
4	2 584	45	0.63%	=10/0

Note: (1) The above results were obtained from laboratory tests.



11. TEST RESULTS

11.1 ACCUMULATED TRANSMIT TIME


Ć	Condition	Mode	Frequency	Accumulated	Limit	Sweep	Burst	Verdict
•			(MHz)	Transmit Time	(ms)	Time	Number	A.
	L 6	J.	24	(ms)		(ms)	x	14
1	> NVNT	1-DH1	2441	128.64	400	31600	320	Pass
Ċ	NVNT	1-DH3	2441	269.765	400	31600	163	Pass
	NVNT	1-DH5	2441	298.288	400	31600	103	Pass
	NVNT	2-DH1	2441	125.76	400 🙏	31600	320	Pass
	NVNT	2-DH3	2441	261.555	400	31600	159	Pass
1	TNVN	2-DH5	2441	334.08	400	31600	116	Pass
S	TNVN	3-DH1	2441	120	400	31600	320	Pass
	NVNT	3-DH3	2441	264.87	400	31600	162	Pass
	NVNT	3-DH5	2441	358.112	400	31600	124	Pass

Dwell NVNT 1-DH1 2441MHz

RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

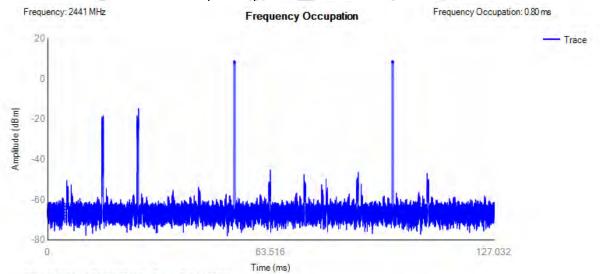
Dwell NVNT 1-DH3 2441MHz

RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

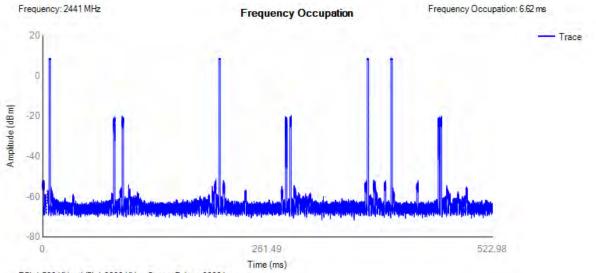
'EK北测 Page 47 of 80 Report No.: STR201229002001E Dwell NVNT 1-DH5 2441MHz Frequency: 2441 MHz Accumulated Transmit Time: 298.29 ms **Accumulated Transmit Time** Trace Amplitude (dBm) -80 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 2-DH1 2441MHz Accumulated Transmit Time: 125.76 ms Frequency: 2441 MHz **Accumulated Transmit Time** 20 Trace Amplitude (dBm) -40 -60 -80 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 2-DH3 2441MHz Frequency: 2441 MHz Accumulated Transmit Time: 261.56 ms **Accumulated Transmit Time** 20 Trace Amplitude (dBm) -80 15800 31600

'EK北测 Page 48 of 80 Report No.: STR201229002001E Dwell NVNT 2-DH5 2441MHz Frequency: 2441 MHz Accumulated Transmit Time: 334.08 ms **Accumulated Transmit Time** Trace Amplitude (dBm) -80 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH1 2441MHz Accumulated Transmit Time: 120.00 ms Frequency: 2441 MHz **Accumulated Transmit Time** 20 Trace Amplitude (dBm) -40 -60 -80 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH3 2441MHz Frequency: 2441 MHz Accumulated Transmit Time: 264.87 ms **Accumulated Transmit Time** 20 Trace Amplitude (dBm) 15800 31600

RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001


Page 49 of 80 Report No.: STR201229002001E Dwell NVNT 3-DH5 2441MHz Frequency: 2441 MHz Accumulated Transmit Time: 358.11 ms **Accumulated Transmit Time** Amplitude (dBm) 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

11	2 F	RFQI	JENCY	OCCI	JPATION
и.		$I \setminus L \cup L$			

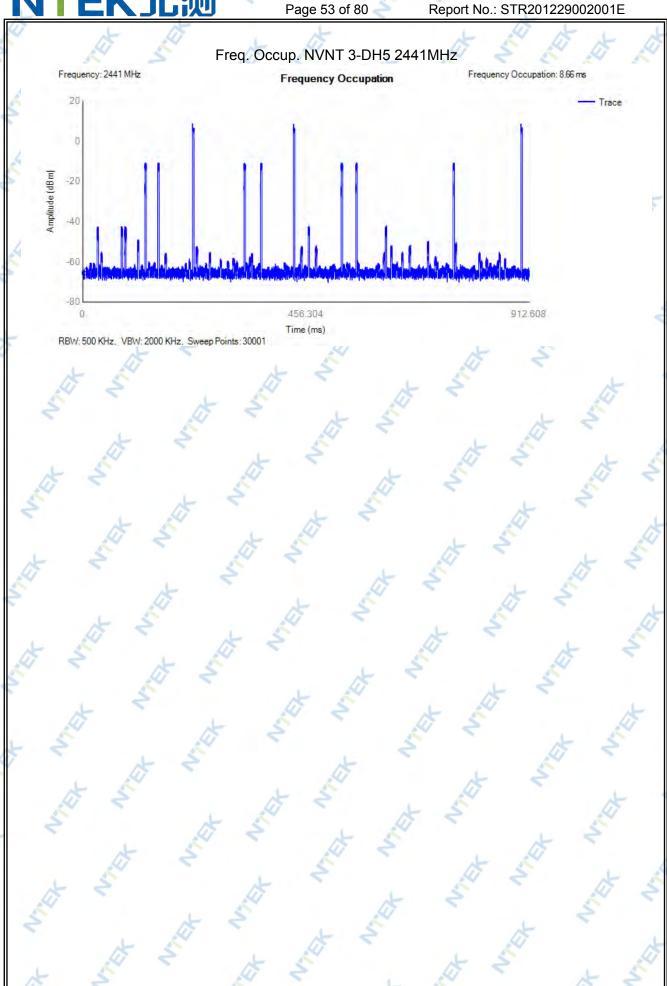

Condition	Mode	Frequency	Frequency	Limit	Sweep	Burst	Verdict
65		(MHz)	Occupation (ms)	(ms)	Time (ms)	Number	
NVNT	1-DH1	2441	0.804	0	127.032	2	Pass
NVNT	1-DH3	2441	6.62	0	522.98	4	Pass
NVNT /	1-DH5	2441	17.376	0	915.136	6	Pass
NVNT	2-DH1	2441	0.393	0	124.188	_ 1	Pass
NVNT	2-DH3	2441	4.935	0	519.82	3	Pass
NVNT	2-DH5	2441	20.16	0	910.08	7	Pass
NVNT /	3-DH1	2441	0.75	0	118.5	2	Pass
NVNT	3-DH3	2441	6.54	0 💉	516.66	4	Pass
NVNT	3-DH5	2441	8.664	0	912.608	3	Pass

Freq. Occup. NVNT 1-DH1 2441MHz

RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

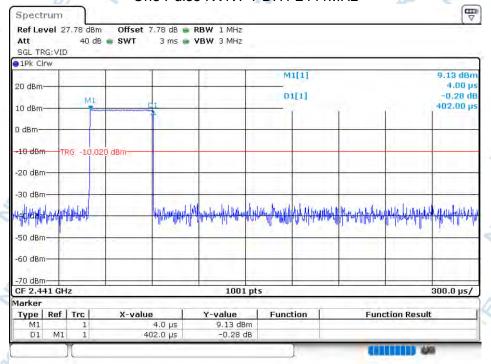
Freq. Occup. NVNT 1-DH3 2441MHz

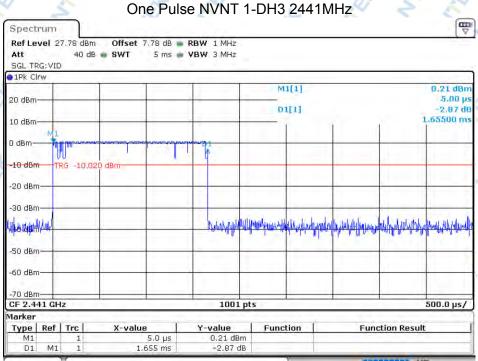
RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001


Report No.: STR201229002001E Freq. Occup. NVNT 1-DH5 2441MHz Frequency: 2441 MHz Frequency Occupation: 17.38 ms **Frequency Occupation** Trace Amplitude (dBm) -20 -40 -80 457.568 915.136 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Freq. Occup. NVNT 2-DH1 2441MHz Frequency: 2441 MHz Frequency Occupation: 0.39 ms Frequency Occupation 20 Trace Amplitude (dBm) -20 -40 -80 62.094 124.188 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 10001 Freq. Occup. NVNT 2-DH3 2441MHz Frequency: 2441 MHz Frequency Occupation: 4.94 ms **Frequency Occupation** Amplitude (dBm) -20 -40 259.91 519.82 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

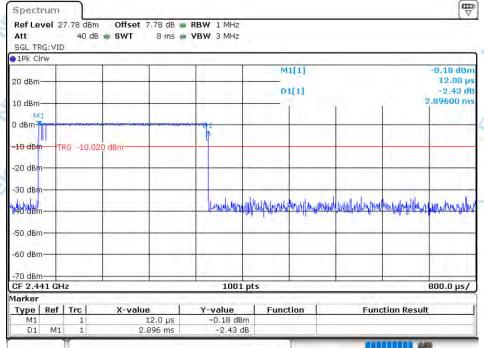
RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 10001

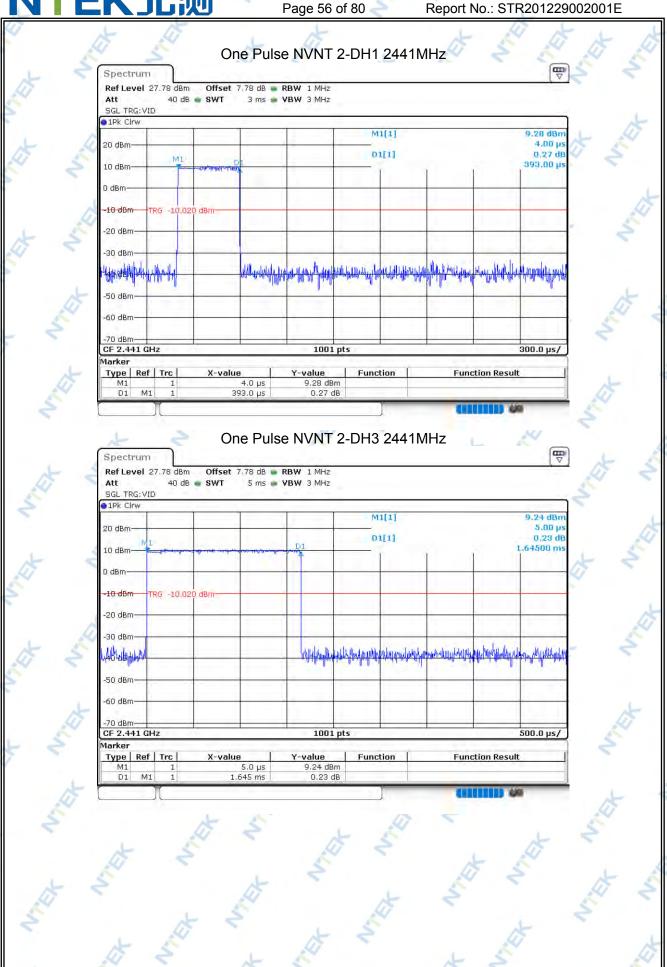
Page 52 of 80 Report No.: STR201229002001E Freq. Occup. NVNT 2-DH5 2441MHz Frequency: 2441 MHz Frequency Occupation: 20.16 ms **Frequency Occupation** Trace Amplitude (dBm) -20 -40 -60 -80 455.04 910.08 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Freq. Occup. NVNT 3-DH1 2441MHz Frequency: 2441 MHz Frequency Occupation: 0.75 ms **Frequency Occupation** 20 Trace Amplitude (dBm) -20 -40 -80 59.25 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 10001 Freq. Occup. NVNT 3-DH3 2441MHz Frequency: 2441 MHz Frequency Occupation: 6.54 ms **Frequency Occupation** Amplitude (dBm) -20 -40 258:33 516.66 Time (ms)



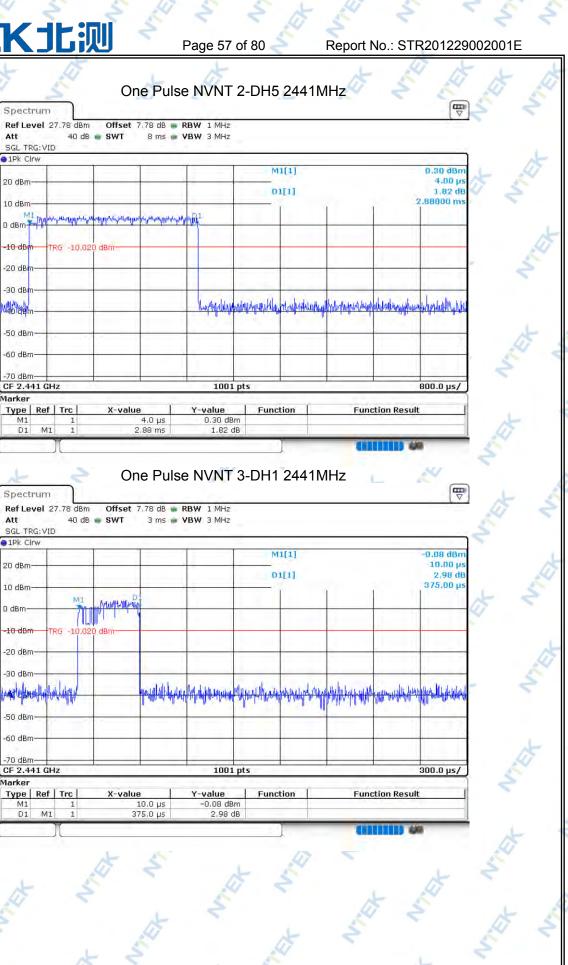

11.3 ONE PULSE DWELL TIME

	1.765	A Committee of the Comm	
Condition	Mode	Frequency (MHz)	Pulse Time (ms)
NVNT	1-DH1	2441	0.402
NVNT	1-DH3	2441	1.655
NVNT	1-DH5	2441	2.896
NVNT	2-DH1	2441	0.393
NVNT	2-DH3	2441	1.645
NVNT	2-DH5	2441	2.88
NVNT	3-DH1	2441	0.375
NVNT	3-DH3	2441	1.635
NVNT	3-DH5	2441	2.888


One Pulse NVNT 1-DH1 2441MHz



One Pulse NVNT 1-DH5 2441MHz



20 dB

Att

Spectrum

1Pk Clrw

0 dBm -10 dBm

-20 dBm -30 dBm

70 dBm CF 2.441 GHz

Marker

M1 D1

Spectrum Ref Level 27.78 dBm

Att SGL TRG: VID 1Pk Clrw

20 dBm

-10 dBm -20 dBm -30 dBm

-50 dBm -60 dBm 70 dBm-CF 2.441 GHz

Marker

Type Ref Trc

Type | Ref | Trc

Ref Level 27.78 dBm

40 dB 🌚 SWT

TRG -10,020 dBm

40 dB . SWT

X-value

12.0 µs 2.888 ms

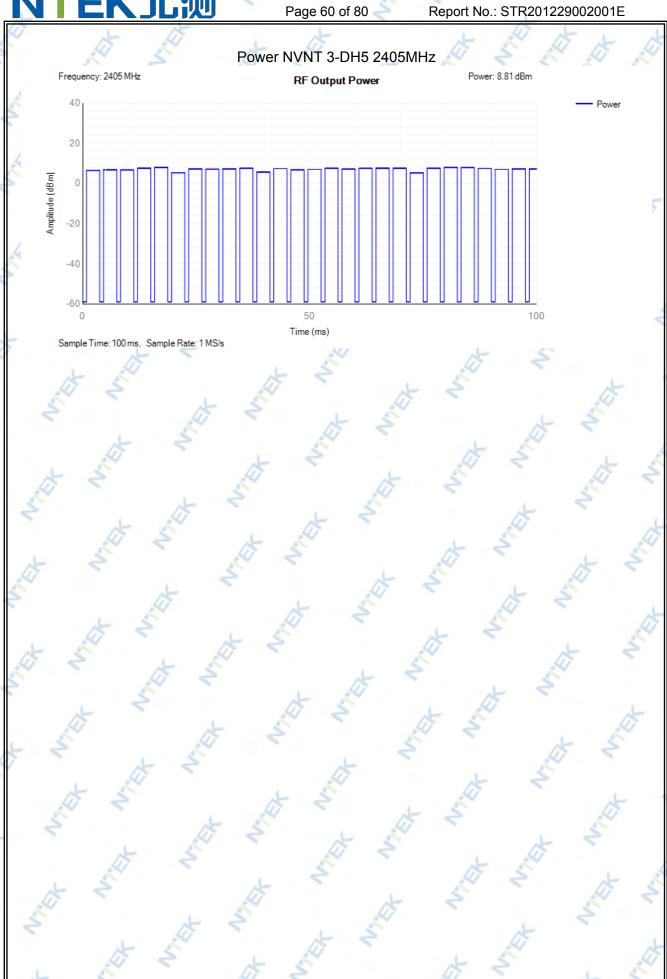
10.0 μs 1.635 ms

Report No.: STR201229002001E One Pulse NVNT 3-DH3 2441MHz Offset 7.78 dB RBW 1 MHz 5 ms 🍅 VBW 3 MHz 10.00 p 0.63 dB 01[1] .63500 ms declination of the state of the 1001 pts 0.00 dBm 0.63 dB One Pulse NVNT 3-DH5 2441MHz Offset 7.78 dB RBW 1 MHz 8 ms · VBW 3 MHz M1[1] 0.05 dBn 01[1] 0.07 dB 2.88800 ms president in the transfer of the president 1001 pts 800.0 µs/ Y-value 0.05 dBm Function **Function Result** 0.07 dB

11.4	RF	OUT	PUT	POV	NER

Condition	Mode	Frequency	Max Burst	Burst	Max EIRP	Limit	Verdict
Ø		(MHz)	RMS Power	Number	(dBm)	(dBm)	
		1	(dBm)				
NVNT	1-DH5	hopping	8.15	27	8.95	20	Pass
NVNT	2-DH5	hopping	7.92	28	8.72	20	Pass
NVNT	3-DH5	hopping	8.01	27	8.81	20	Pass
NVLT	1-DH5	hopping	7.47	27	8.27	20	Pass
NVLT	2-DH5	hopping	7.33	28	8.13	20	Pass
NVLT	3-DH5	hopping	7.44	27	8.24	20	Pass
NVHT	1-DH5	hopping	7.44	27	8.24	20	Pass
NVHT	2-DH5	hopping	7.23	28	8.03	20	Pass
NVHT	3-DH5/	hopping	7.24	27	8.04	20	Pass

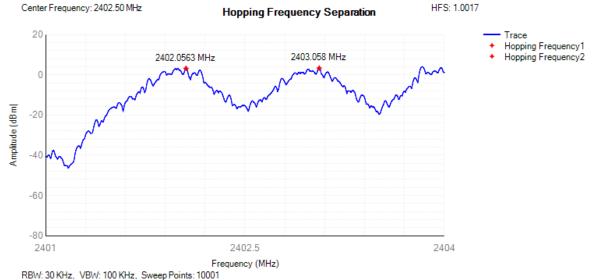
Power NVNT 1-DH5 2402MHz

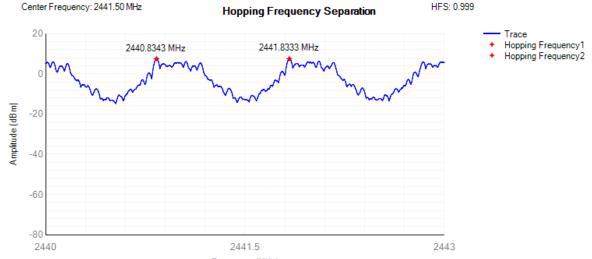


Time (ms)

Sample Time: 100 ms, Sample Rate: 1 MS/s

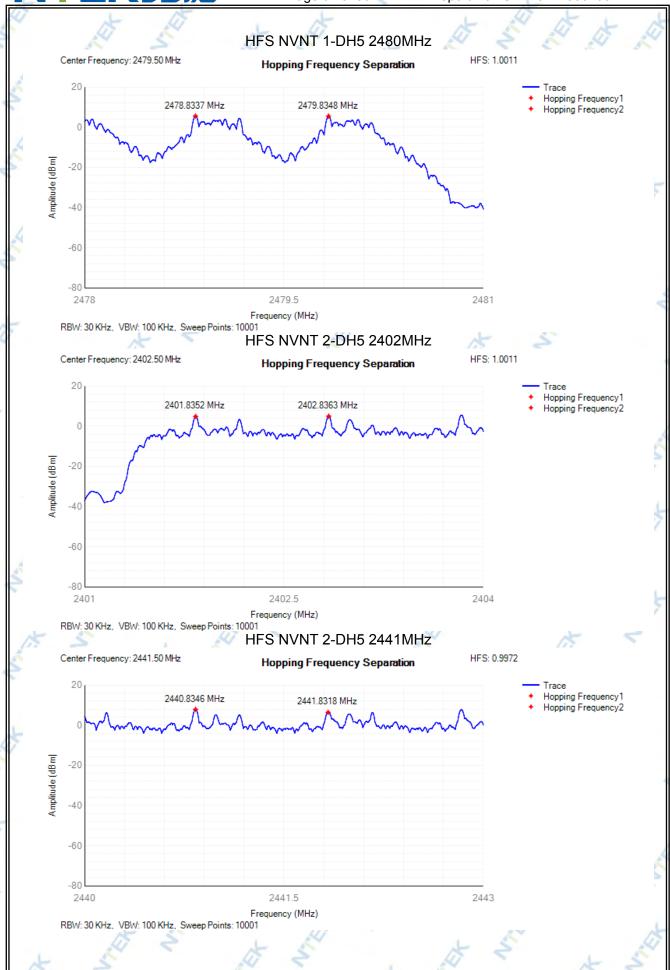
-40




11	5 HOPPI	NG FRE	DUENCY	SEPARATION
II I	.5 110661		ZULINGI	SEFAINATION

Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
65		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2402.0563	2403.058	1.0017	0.1	Pass
NVNT	1-DH5	2440.8343	2441.8333	0.999	0.1	Pass
NVNT	1-DH5	2478.8337	2479.8348	1.0011	0.1 🙏	Pass
NVNT	2-DH5	2401.8352	2402.8363	1.0011	0.1	Pass
NVNT	2-DH5	2440.8346	2441.8318	0.9972	0.1	Pass
NVNT	2-DH5	2478.8346	2479.8315	0.9969	0.1	Pass
NVNT	3-DH5	2401.8346	2402.8372	1.0026	0.1	Pass
NVNT	3-DH5	2441.164	2442.1636	0.9996	0.1	Pass
NVNT	3-DH5	2478.8337	2479.8348	1.0011	0.1	Pass

HFS NVNT 1-DH5 2402MHz



HFS NVNT 1-DH5 2441MHz

Frequency (MHz) RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001

2479.8315 MHz

2402.8372 MHz

Center Frequency: 2479.50 MHz

Amplitude (dBm)

-20

-40

-60

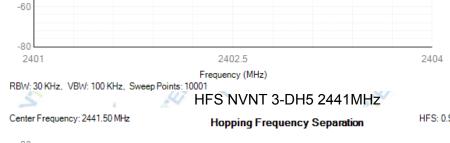
2478

20

-20

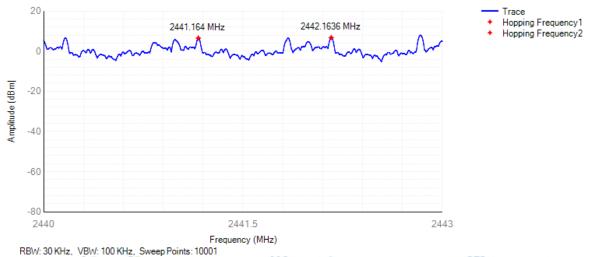
-40

Amplitude (dBm)


RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001

2401.8346 MHz

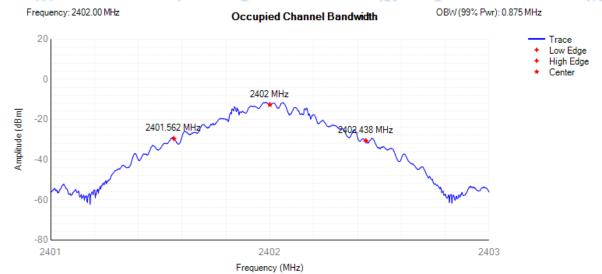
Center Frequency: 2402.50 MHz


2478.8346 MHz

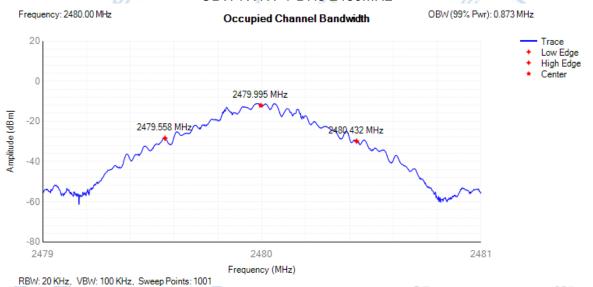
Report No.: STR201229002001E HFS NVNT 2-DH5 2480MHz HFS: 0.9969 Hopping Frequency Separation Hopping Frequency1 Hopping Frequency2 2481 HFS NVNT 3-DH5 2402MHz HFS: 1.0026 Hopping Frequency Separation Hopping Frequency1 Hopping Frequency2 2404 HFS: 0.9996

2479.5

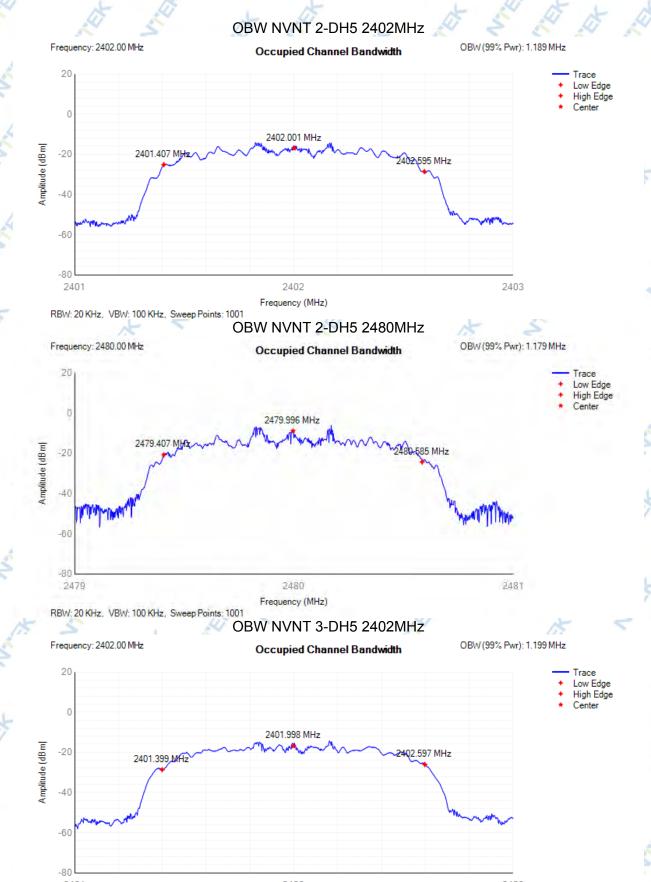
Frequency (MHz)


NTEK北测 Page 64 of 80 Report No.: STR201229002001E HFS NVNT 3-DH5 2480MHz Center Frequency: 2479.50 MHz HFS: 1.0011 Hopping Frequency Separation Hopping Frequency1 Hopping Frequency2 2478.8337 MHz 2479.8348 MHz Amplitude (dBm) -20 -40 -60 2479.5 2481 2478 Frequency (MHz) RBW: 30 KHz, VBW; 100 KHz, Sweep Points: 10001

١	11.6 OCCUP	PIED CHA	ANNEL BAND	WIDTH
ı	Condition	Mode	Frequency	Cent


Condition	Mode	Frequency	Center	OBW	Lower	Upper	Limit OBW	Verdict
1		(MHz)	Frequency	(MHz)	Edge	Edge	(MHz)	
~/		147	(MHz)	Alm	(MHz)	(MHz)		
NVNT	1-DH5	2402	2402	0.875	2401.562	2402.438	2400 -	Pass
	1		4			1	> 2483.5MHz	1
NVNT	1-DH5	2480	2479.995	0.873	2479.558	2480.432	2400 -	Pass
15	.~				1	5 2	2483.5MHz	5
NVNT	2-DH5	2402	2402.001	1.189	2401.407	2402.595	2400 -	Pass
		47			5		2483.5MHz	
NVNT	2-DH5	2480	2479.996	1.179	2479.407	2480.585	2400 -	Pass
	1	7				4	2483.5MHz	(1)
NVNT	3-DH5	2402	2401.998	1.199	2401.399	2402.597	2400 -	Pass
J 5			47				2483.5MHz	<
NVNT	3-DH5	2480	2479.996	1.203	2479.395	2480.597	2400 -	Pass
		0	4	, in	4	A	2483.5MHz	

OBW NVNT 1-DH5 2402MHz


RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

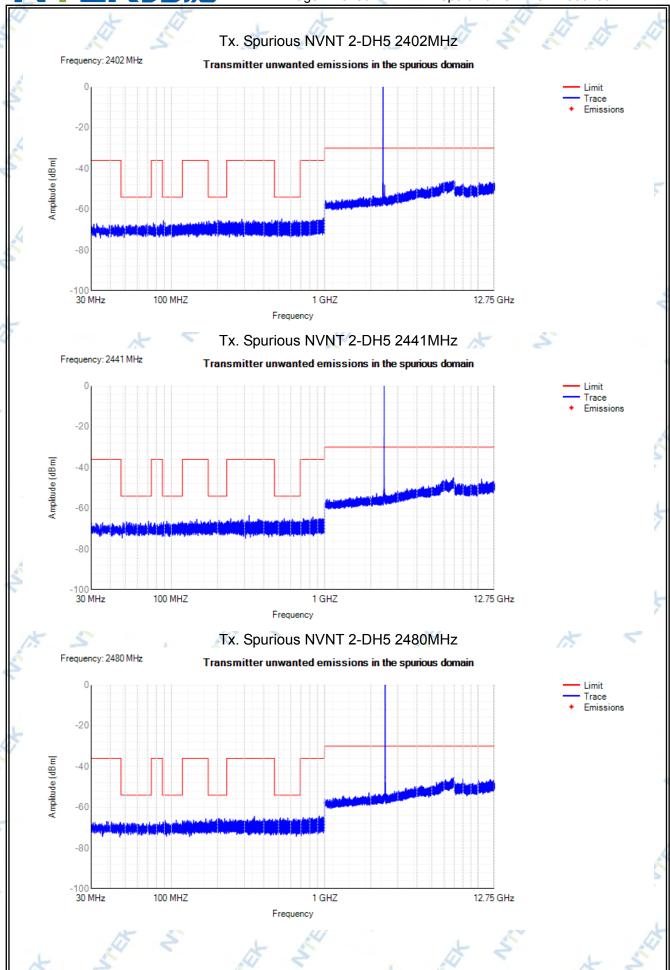
OBW NVNT 1-DH5 2480MHz

Report No.: STR201229002001E OBW (99% Pwr): 1.189 MHz Trace Low Edge High Edge Center 2402\595 MHz 2403 OBW (99% Pwr): 1.179 MHz Low Edge High Edge 2480.585 MHz

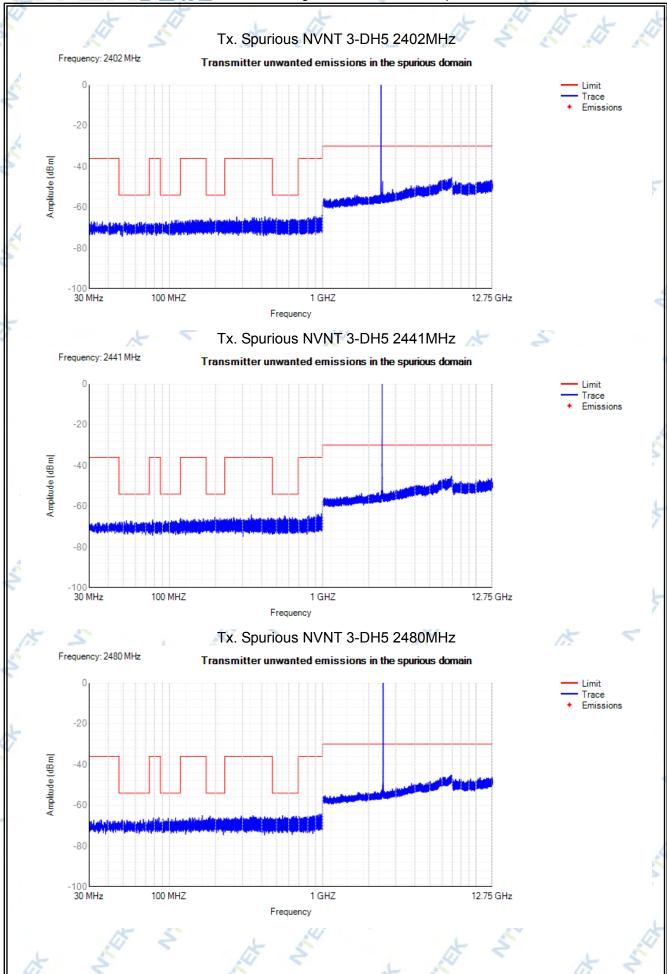
2402 2403 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

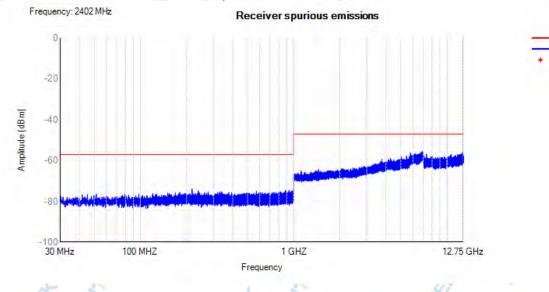
Report No.: STR201229002001E OBW NVNT 3-DH5 2480MHz Frequency: 2480.00 MHz OBW (99% Pwr): 1.203 MHz Occupied Channel Bandwidth Trace Low Edge High Edge 2479.996 MHz Amplitude (dBm) -20 2480.597 MHz 2479.395 MHz -40 -60 2480 2481 2479 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

Condition	Mode	Frequency	Range	Spur Freq	Spur Level	Spur Level	Limit	Verdict
1		(MHz)	2	(MHz)	Peak(dBm)	RMS(dBm)	(dBm)	
NVNT	1-DH5	2402	30 MHz -47 MHz	36.6	-67	NA	-36	Pass
NVNT	1-DH5	2402	47 MHz -74 MHz	59.4	-66.86	NA	-54	Pass
NVNT	1-DH5	2402	74 MHz -87.5 MHz	85.2	-66.61	√ NA	-36	Pass
NVNT	1-DH5	2402	87.5 MHz -118 MHz	115.45	-67.17	NA	-54	Pass
NVNT	1-DH5	2402	118 MHz -174 MHz	142.7	-65.37	NA	-36	Pass
NVNT	1-DH5	2402	174 MHz -230 MHz	212.2	-65.77	NA	-54	Pass
NVNT	1-DH5	2402	230 MHz -470 MHz	260.65	-64.8	NA	-36	Pass
NVNT	1-DH5	2402	470 MHz -694 MHz	671.5	-65.36	NA	-54	Pass
NVNT	1-DH5	2402	694 MHz -1000 MHz	904.35	-63.67	NA NA	-36	Pass
NVNT	1-DH5	2402	1000 MHz -2398	2393.5	-49.4	NA NA	-30	Pass
INVINI	טחט-ו	2402	1.7	2393.3	-49.4	INA	-30	rass
NIV/NIT	4 DUE	2402	MHz	CO77 F	45.0	NIA .	20	Door
NVNT	1-DH5	2402	2485.5 MHz -12750	6977.5	-45.3	NA S	-30	Pass
AD ALT	4 5115	0111	MHz	45.0	05.00	2 114	00	Б
NVNT	1-DH5	2441	30 MHz -47 MHz	45.2	-65.08	NA NA	-36	Pass
NVNT	1-DH5	2441	47 MHz -74 MHz	54.95	-67.2	NA	-54	Pass
NVNT	1-DH5	2441	74 MHz -87.5 MHz	80.55	-67.76	NA	-36	Pass
NVNT	1-DH5	2441	87.5 MHz -118 MHz	95.05	-66.77	NA	-54	Pass
NVNT	1-DH5	2441	118 MHz -174 MHz	146.3	-66.52	NA 🥖	-36	Pass
NVNT	1-DH5	2441	174 MHz -230 MHz	215.65	-65.7	NA 🧠	-54	Pass
NVNT	1-DH5	2441	230 MHz -470 MHz	235.6	-65.34	NA	-36	Pass
NVNT	1-DH5	2441	470 MHz -694 MHz	480	-65.69	NA	-54	Pass
NVNT	1-DH5	2441	694 MHz -1000 MHz	793.55	-65.07	NA	-36 🗸	Pass
NVNT	1-DH5	2441	1000 MHz -2398	2177	-53.27	NA NA	-30	Pass
INVINI	נ-חחט	2441	MHz	21/1	-55.27	IVA	-30	ra55
NVNT	1-DH5	2441		6904.5	44.2	NIA	20	Door
I INVINI	ו-טחס	244 1	2485.5 MHz -12750	6904.5	-44.3	NA	-30	Pass
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 507	0.400	MHz	10.05	07.05	-	00	
NVNT	1-DH5	2480	30 MHz -47 MHz	42.35	-67.05	NA	-36	Pass
NVNT	1-DH5	2480	47 MHz -74 MHz	56.35	-66.89	NA	-54	Pass
NVNT	1-DH5	2480	74 MHz -87.5 MHz	79.3	-67.3	NA	-36	Pass
NVNT	1-DH5	2480	87.5 MHz -118 MHz	103.9	-66.73	NA	-54	Pass
NVNT	1-DH5	2480	118 MHz -174 MHz	171.55	-65.42	NA	-36	Pass
NVNT	1-DH5	2480	174 MHz -230 MHz	200.85	-65.02	NA	-54	Pass
NVNT	1-DH5	2480	230 MHz -470 MHz	260.65	-64.83	NA	-36	Pass
NVNT	1-DH5	2480	470 MHz -694 MHz	668.2	-64.96	NA	-54	Pass
NVNT	1-DH5	2480	694 MHz -1000 MHz	818.95	-64.41	NA	-36	Pass
NVNT	1-DH5	2480	1000 MHz -2398	2184.5	-53.68	NA	-30	Pass
	. 2	47	MHz		33.33	67 1	~ ~	. 0.00
NVNT	1-DH5	2480	2485.5 MHz -12750	6855	-45.02	NA	-30	Pass
'\\'\'	1-0113	2400	MHz	0033	-43.02	N/A	-30	1 433
NVNT	2-DH5	2402	30 MHz -47 MHz	32.6	-67.07	NA	36	Pass
NVNT	2-DH5	2402	47 MHz -74 MHz	69.5	-67.08	NA .	- F 4	
							-54	Pass
NVNT	2-DH5	2402	74 MHz -87.5 MHz	76.3	-66.65	NA NA	-36	Pass
NVNT	2-DH5	2402	87.5 MHz -118 MHz	88.8	-65.57	NA NA	-54	Pass
NVNT	2-DH5	2402	118 MHz -174 MHz	169.85	-65.96	/ NA	-36	Pass
NVNT /	2-DH5	2402	174 MHz -230 MHz	203.05	-65.34	NA	-54	Pass
NVNT	2-DH5	2402	230 MHz -470 MHz	287.95	-64.82	NA	-36	Pass
NVNT	2-DH5	2402	470 MHz -694 MHz	525.35	-64.65	NA /	-54	Pass
NVNT	2-DH5	2402	694 MHz -1000 MHz	977.05	-64.21	NA 🌅	-36	Pass
NVNT	2-DH5	2402	1000 MHz -2398	2395	-47.26	NA	-30	Pass
طہ	- 1		MHz		45			
NVNT	2-DH5	2402	2485.5 MHz -12750	6935	-45.88	NA	-30	Pass
	7		MHz					4
NVNT	2-DH5	2441	30 MHz -47 MHz	35.6	-66.97	NA .	-36	Pass
NVNT	2-DH5	2441	47 MHz -74 MHz	70.85	-66.33	NA	-54	Pass
NVNT	2-DH5	2441	74 MHz -87.5 MHz	85.75	-67.05	NA NA	-36	Pass
NVNT	2-DH5	2441	87.5 MHz -118 MHz	93.5	-66.38	NA NA	-54	Pass
NVNT	2-DH5	2441	118 MHz -174 MHz	146.55	-65.32	NA	-36	Pass
NVNT	2-DH5	2441	174 MHz -230 MHz	179.3	-65.66	NA	-54	Pass
NVNT	2-DH5	2441	230 MHz -470 MHz	321.5	-63.46	NA	-36	Pass
NVNT	2-DH5	2441	470 MHz -694 MHz	544.35	-65.06	NA	-54	Pass
NVNT	2-DH5	2441	694 MHz -1000 MHz	838.2	-64.21	NA	-36	Pass
NVNT	2-DH5	2441	1000 MHz -2398	2181	-52.69	NA	-30	Pass
ساء	2		MHz		40			
NVNT	2-DH5	2441	2485.5 MHz -12750	6936.5	-44.94	NA	-30	Pass
		-	_	147		4	N201	7.06.06.0614.V.1

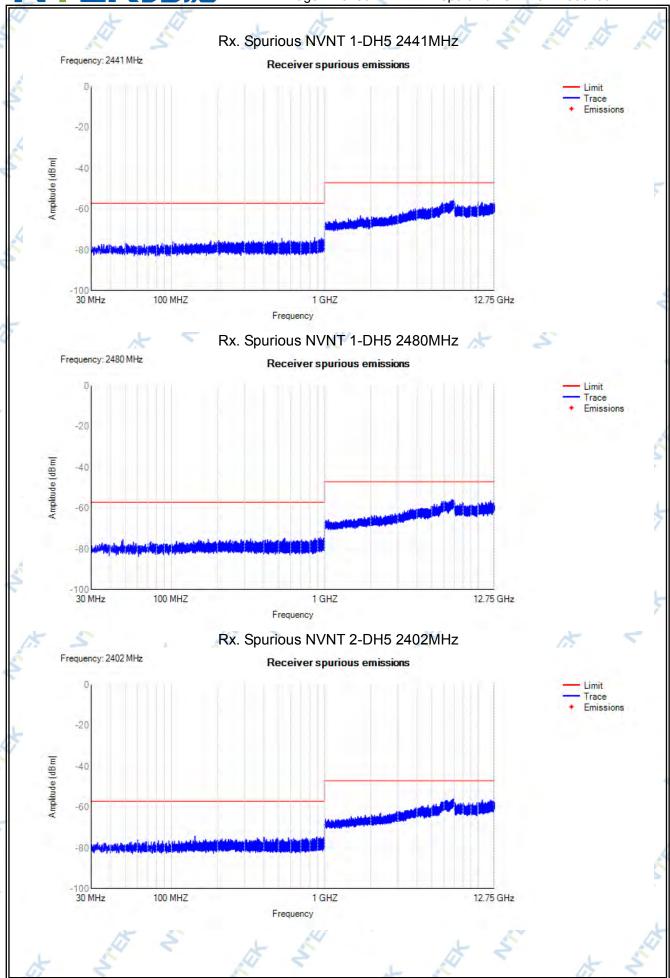

Page 69 of 80

117		A	4			133	1	
	1	10	MHz		A-	24 /	7	- 13
NVNT	2-DH5	2480	30 MHz -47 MHz	37.85	-66.86	NA 🔍	-36	Pass
NVNT	2-DH5	2480	47 MHz -74 MHz	72.05	-67.3	NA	-54	Pass
NVNT	2-DH5	2480	74 MHz -87.5 MHz	83.95	-67.28	NA	-36	Pass
NVNT	2-DH5	2480	87.5 MHz -118 MHz	107.55	-66.26	NA	-54	Pass
NVNT	2-DH5	2480	118 MHz -174 MHz	167.95	-65.59	NA	-36	Pass
NVNT	2-DH5	2480	174 MHz -230 MHz	202.7	-65.37	/ NA	-54	Pass
NVNT	2-DH5	2480	230 MHz -470 MHz	348.25	-64.43	NA	-36	Pass
NVNT	2-DH5	2480	470 MHz -694 MHz	513.7	-65.13	NA	-54	Pass
NVNT	2-DH5	2480	694 MHz -1000 MHz	922.75	-64.21	NA	-36	Pass
NVNT	2-DH5	2480	1000 MHz -2398	1941.5	-52.89	NA	-30	Pass
1			MHz					- (-
NVNT	2-DH5	2480	2485.5 MHz -12750	6975	-45	NA	-30	Pass
	47		MHz		67			
NVNT	3-DH5	2402	30 MHz -47 MHz	32.3	-67.03	NA 🕢	-36	Pass
NVNT	3-DH5	2402	47 MHz -74 MHz	51.25	-66.98	NA 🔏	-54	Pass
NVNT	3-DH5	2402	74 MHz -87.5 MHz	86.15	-67.58	NA NA	-36	Pass
NVNT	3-DH5	2402	87.5 MHz -118 MHz	113.85	-66.31	// NA	-54	Pass
NVNT	3-DH5	2402	118 MHz -174 MHz	148.55	-66.06	NA	-36	Pass
NVNT	3-DH5	2402	174 MHz -230 MHz	184.3	-65.4	NA	-54	Pass
NVNT	3-DH5	2402	230 MHz -470 MHz	419.5	-64.65	NA	-36	Pass
NVNT	3-DH5	2402	470 MHz -694 MHz	499.45	-65.27	NA 🏑	-54	Pass
NVNT	3-DH5	2402	694 MHz -1000 MHz	989.4	-63.82	NA 🌕	-36	Pass
NVNT	3-DH5	2402	1000 MHz -2398	2397	-51.06	NA	-30	Pass
水	· 1		MHz		2			4.7
NVNT	3-DH5	2402	2485.5 MHz -12750	6998	-45.02	NA	-30	Pass
			MHz					V
NVNT	3-DH5	2441	30 MHz -47 MHz	44.6	-67.66	NA 📗	-36	Pass
NVNT	3-DH5	2441	47 MHz -74 MHz 🦨	52.5	-67.05	NA	-54	Pass
NVNT	3-DH5	2441	74 MHz -87.5 MHz	77.75	-66.63	NA	-36	Pass
NVNT	3-DH5	2441	87.5 MHz -118 MHz	117.4	-66.79	NA	-54	Pass
NVNT	3-DH5	2441	118 MHz -174 MHz	166.65	-66.05	NA	-36	Pass
NVNT	3-DH5	2441	174 MHz -230 MHz	198.15	-65.38	NA	-54	Pass
NVNT	3-DH5	2441	230 MHz -470 MHz	342.15	-64.1	NA	-36	Pass
NVNT	3-DH5	2441	470 MHz -694 MHz	564.3	-64.69	NA	-54	Pass
NVNT	3-DH5	2441	694 MHz -1000 MHz	980.65	-63.58	NA	-36	Pass
NVNT	3-DH5	2441	1000 MHz -2398	2291	-53.28	NA	-30	Pass
A	S	2.1.1	MHz					-5
NVNT	3-DH5	2441	2485.5 MHz -12750	6964	-44.98	NA	-30	Pass
AD 0.17	0.5115	0.400	MHz	0.547	07.00	4.	- 00	_
NVNT	3-DH5	2480	30 MHz -47 MHz	35.75	-67.03	NA	-36	Pass
NVNT	3-DH5	2480	47 MHz -74 MHz	67.75	-66.79	NA	-54	Pass
NVNT	3-DH5	2480	74 MHz -87.5 MHz	85.4	-66	NA	-36	Pass
NVNT	3-DH5	2480	87.5 MHz -118 MHz	109.75	-66.12	NA	-54	Pass
NVNT	3-DH5	2480	118 MHz -174 MHz	163.85	-64.94	NA _	-36	Pass
NVNT	3-DH5	2480	174 MHz -230 MHz	184.35	-65.2	NA	-54	Pass
NVNT	3-DH5	2480	230 MHz -470 MHz	351.3	-65.04	NA NA	-36	Pass
NVNT	3-DH5	2480	470 MHz -694 MHz	547.5	-65.02	NA NA	-54	Pass
NVNT	3-DH5	2480	694 MHz -1000 MHz	959.8	-64.3	NA	-36	Pass
NVNT	3-DH5	2480	1000 MHz -2398	2183.5	-53.31	NA	-30	Pass
ND ALT	2 0115	0400	MHz	6040.5	45.47	NIA A	- 00	Date
NVNT	3-DH5	2480	2485.5 MHz -12750	6942.5	-45.17	NA	-30	Pass
1 1		117	MHz	117	4			

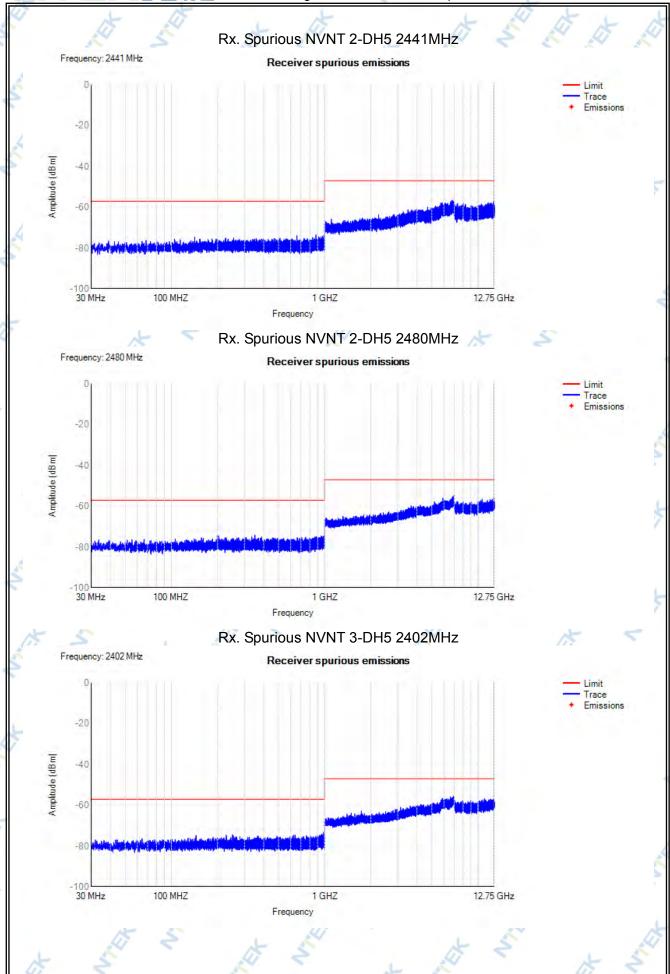




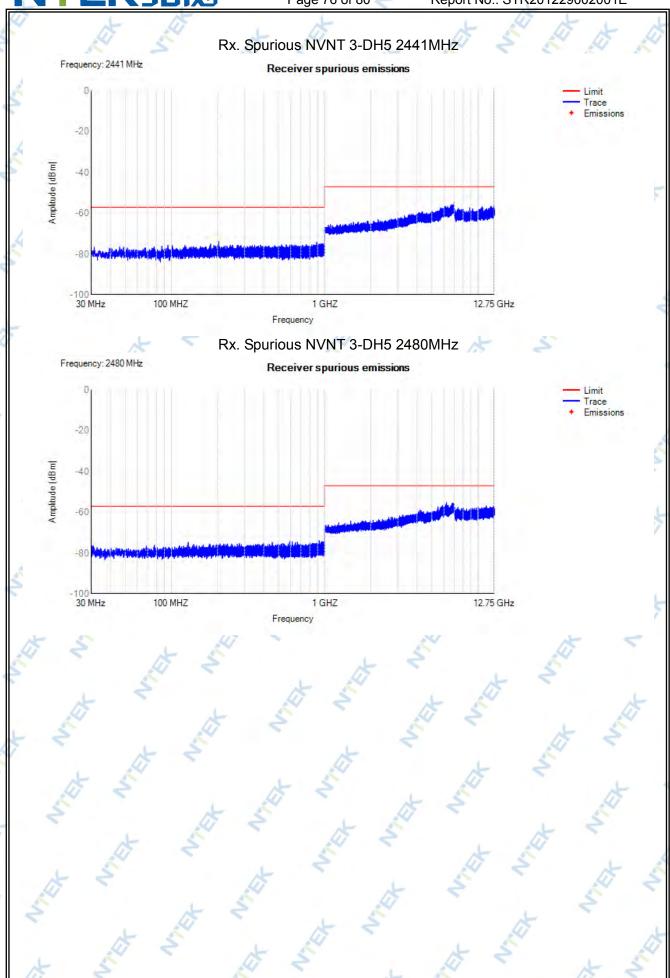
11.8 RECEIVER SPURIOUS EMISSIONS

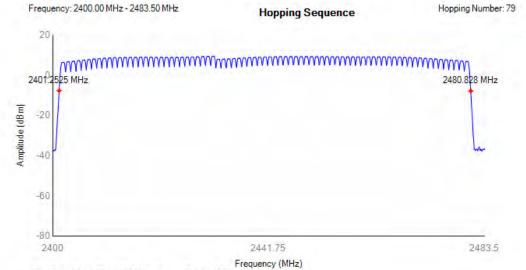

Condition	Mode	Frequency	Range	Spur Freq	Spur Level	Spur Level	Limit	Verdict
15		(MHz)	7	(MHz)	Peak(dBm)	RMS(dBm)	(dBm)	
NVNT	1-DH5	2402	30 MHz -1000 MHz	217.45	-73.96	NA	-57	Pass
NVNT	1-DH5	2402	1000 MHz -12750	6966.5	-55.41	NA	-47	Pass
			MHz		1	67	3	1
NVNT	1-DH5	2441	30 MHz -1000 MHz	861.95	-73.82	NA	-57	Pass
NVNT	1-DH5	2441	1000 MHz -12750	6985.5	-54.93	NA	-47	Pass
X 2		1	MHz	24		1		
NVNT	1-DH5	2480	30 MHz -1000 MHz	934.85	-74.17	NA	-57	Pass
NVNT	1-DH5	2480	1000 MHz -12750	6996	-55.49	NA NA	-47	Pass
	·		MHz		A-			40
NVNT	2-DH5	2402	30 MHz -1000 MHz	142.6	-74.08	NA	57	Pass
NVNT	2-DH5	2402	1000 MHz -12750	6983	-55.27	NA 🏑	-47	Pass
10		4	MHz	1	<			
NVNT	2-DH5	2441	30 MHz -1000 MHz	876.9	-73.56	NA 🤝	-57	Pass
NVNT	2-DH5	2441	1000 MHz -12750	6790	-56.49	NA	-47	Pass
A A	-		MHz		15			4
NVNT	2-DH5	2480	30 MHz -1000 MHz	350.95	-74.15	NA	-57	Pass
NVNT	2-DH5	2480	1000 MHz -12750	6995.5	-54.29	NA	-47	Pass
			MHz	1		.4	7 9	
NVNT	3-DH5	2402	30 MHz -1000 MHz	983.75	-73.48 🙏	NA 🥙	-57	Pass
NVNT	3-DH5	2402	1000 MHz -12750	6916	-55.43	NA	-47	Pass
1			MHz					
NVNT	3-DH5	2441	30 MHz -1000 MHz	203.85	-73.71	NA	-57 🕢	Pass
NVNT	3-DH5	2441	1000 MHz -12750	6986	-54.79	NA	-47	Pass
		MHz	1 5		4	-		
NVNT	3-DH5	2480	30 MHz -1000 MHz	921.1	-73.84	NA	-57	Pass
NVNT	3-DH5	2480	1000 MHz -12750	6227.5	-55.22	NA	-47	Pass
4			MHz		24			- 4

Rx. Spurious NVNT 1-DH5 2402MHz



Limit Trace Emissions



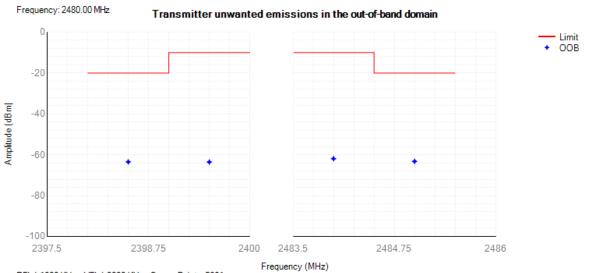

Low Edge

High Edge

11.9 HOPPING SEQUENCE

Condition	Mode	Hopping Number	Limit	Band Allocation (%)	Limit Band Allocation (%)	Verdict
NVNT	1-DH5	79	15 🔏	95.3	70	Pass

Hopping Seq. NVNT 1-DH5 2441MHz

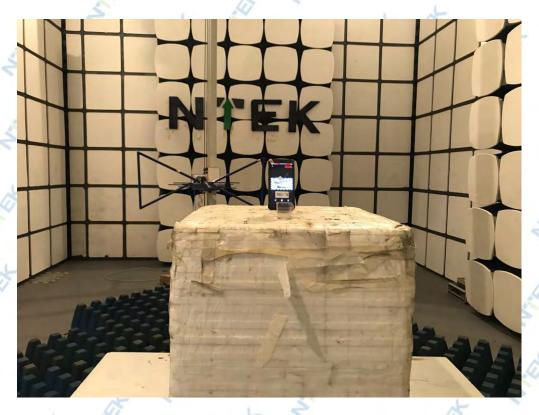

RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 1001

		A		34 X	// /
N4 40.	TDANGMITTED	LINIMANTED	EMICCIONIC II	N THE OUT	OF-BAND DOMAIN

	Condition	Mode	Frequency	OOB Frequency	Level	Limit	Verdict
	45		(MHz)	(MHz)	(dBm/MHz)	(dBm/MHz)	
Į.	NVNT	1-DH5	2480	2399.5	-63.57	-10	Pass
7	NVNT	1-DH5	2480	2398.5	-63.49	-20	Pass
	NVNT	1-DH5	2480	2484	-61.92	-10	Pass
3	> NVNT	1-DH5	2480	2485	-63.24	-20	Pass
6	NVNT	2-DH5	2480	2399.5	-62.37	-10	Pass
	NVNT	2-DH5	2480	2399.311	-63.4	-10	Pass
	NVNT	2-DH5	2480	2398.311	-63.22	-20	Pass
	NVNT	2-DH5	2480	2398.122	-63.62	-20	Pass
1	NVNT	2-DH5	2480	2484	-60.68	-10	Pass
	NVNT	2-DH5	2480	2484.179	-63.19	-10	Pass
	NVNT	2-DH5	2480	2485.179	-63.14	-20	Pass
	NVNT	2-DH5	2480	2485.358	-63.11	-20	Pass
	NVNT	3-DH5	2480	2399.5	-63.44	-10	Pass
	NVNT	3-DH5	2480	2399.301	-63.42	-10	Pass
	NVNT	3-DH5	2480	2398.301	-63.52	-20	Pass
	NVNT	3-DH5	2480	2398.102	-63.32	-20	Pass
	NVNT	3-DH5	2480	2484	-59.07	-10	Pass
	NVNT	3-DH5	2480	2484.203	-63.37	-10	Pass
	NVNT	3-DH5	2480	2485.203	-63.39	-20	Pass
	NVNT	3-DH5	2480	2485.406	-63.44	-20	Pass

Tx. Emissions OOB NVNT 1-DH5 2480MHz

RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001



Page 79 of 80 Report No.: STR201229002001E Tx. Emissions OOB NVNT 2-DH5 2480MHz Frequency: 2480.00 MHz Transmitter unwanted emissions in the out-of-band domain OOB -20 Amplitude (dBm) -40 -60 -80 2398.561 2483.5 2484.929 2486.358 2397.122 Frequency (MHz) RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001 Tx. Emissions OOB NVNT 3-DH5 2480MHz Frequency: 2480.00 MHz Transmitter unwanted emissions in the out-of-band domain Limit OOB -80 -100 2398.551 2483.5 2484.953 2486.406 2397.102 2400 Frequency (MHz) RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001

12. PHOTOGRAPHS OF THE TEST CONFIGURATION

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT