

RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product: Mobile Phone

Trade Mark: Blackview

Model Name: BV8800

Family Model: N/A

Report No.: STR211129004001E

Prepared for

DOKE COMMUNICATION (HK) LIMITED.

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090
Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Report No.: STR211129004001E

Applicant's name: DOKE COMMUNICATION (HK) LIMITED.
Address: RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA.
Manufacturer's Name: Shenzhen DOKE Electronic Co.,Ltd.
Address 801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China.
Product description
Product name: Mobile Phone
Trademark: Blackview
Model Name: BV8800
Family Model: N/A
Standards: ETSI EN 300 328 V2.2.2 (2019-07)
This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document. Date of Test
Date (s) of performance of tests Nov 29. 2021 ~ Dec 29. 2021
Date of Issue Dec 29. 2021
Test ResultPass
Testing Engineer : Multi Lee (Mukzi Lee)
Authorized Signatory: (Alex Li)
(tion Li)

	Table of Contents	Page
1	. GENERAL INFORMATION	7
	1.1 GENERAL DESCRIPTION OF EUT	7
	1.2 INFORMATION ABOUT THE EUT	8
	1.3 TEST CONDITIONS	13
	1.4 TEST CONFIGURATION OF EUT	13
	1.5 DESCRIPTION OF TEST CONDITIONS	14
	1.6 DESCRIPTION OF SUPPORT UNITS	15
	1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS	16
2	. SUMMARY OF TEST RESULTS	17
	2.1 TEST FACILITY	18
3	. RF OUTPUT POWER	19
	3.1 LIMITS OF RF OUTPUT POWER	19
	3.2 TEST PROCEDURE	19
	3.3 DEVIATION FROM TEST STANDARD	19
	3.4 TEST SETUP	19
	3.5 TEST RESULTS	20
4	. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AN	D HOPPING
S	EQUENCE	21
	4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPA	TION AND
	HOPPING SEQUENCE	21
	4.2 TEST PROCEDURE	21
	4.3 DEVIATION FROM TEST STANDARD	21
	4.4 TEST SETUP	22
	4.5 TEST RESULTS	22
5	. OCCUPIED CHANNEL BANDWIDTH	23
	5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	23
	5.2 TEST PROCEDURE	23
	5.3 DEVIATION FROM TEST STANDARD	24
	5.4 TEST SETUP	24
	5.5 TEST RESULTS	24
6	. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DO	OMAIN 25
	6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-	BAND

Table of Contents	Page
DOMAIN	25
6.2 TEST PROCEDURE	25
6.3 DEVIATION FROM TEST STANDARD	26
6.4 TEST SETUP	26
6.5 TEST RESULTS	26
7 . HOPPING FREQUENCY SEPARATION	27
7.1 LIMITS OF HOPPING FREQUENCY SEPARATION	27
7.2 TEST PROCEDURE	27
7.3 DEVIATION FROM TEST STANDARD	27
7.4 TEST SETUP	28
7.5 TEST RESULTS	28
8 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOI	MAIN 29
8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS	S IN THE
SPURIOUS DOMAIN	29
8.2 TEST PROCEDURE	29
8.3 DEVIATION FROM TEST STANDARD	29
8.4 TEST SETUP	30
8.5 TEST RESULTS (Radiated measurement)	31
8.6 TEST RESULTS (Conducted measurement)	32
9 . RECEIVER SPURIOUS EMISSIONS	33
9.1 LIMITS OF RECEIVER SPURIOUS RADIATION	33
9.2 TEST PROCEDURE	33
9.3 DEVIATION FROM TEST STANDARD	33
9.4 TEST SETUP	34
9.5 TEST RESULTS (Radiated measurement)	35
9.6 TEST RESULTS (Conducted measurement)	36
10. RECEIVER BLOCKING	37
10.1 PERFORMANCE CRITERIA	37
10.2 LIMITS OF RECEIVER BLOCKING	37
10.3 TEST PROCEDURE	38
10.4 DEVIATION FROM TEST STANDARD	39
10.5 TEST SETUP	39
10.6 TEST RESULTS	40
11. TEST RESULTS	41

Table of Contents	Page
11.1 Accumulated Transmit Time	41
11.2 Frequency Occupation	48
11.3 One Pulse Dwell Time	55
11.4 RF Output Power	64
11.5 Hopping Frequency Separation	66
11.6 Occupied Channel Bandwidth	70
11.7 Transmitter unwanted emissions in the out-of-band domain	73
11.8 Transmitter unwanted emissions in the spurious domain	76
11.9 Receiver spurious emissions	84
11.10 Hopping Sequence	89
12. EUT TEST PHOTO	91
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	91

Revision History

Report No.	Version	Description	Issued Date
STR211129004001E	Rev.01	Initial issue of report	Dec 29. 2021
	A 3		\$\frac{1}{2}\$
4			4
		\$ 13. 5	
		<u> </u>	10t 4
* 30 4			4
		4	* *
A 300	6		417 417
A-		4	
A 38			
4		10 4	
*	100		45
* 500		_	<u> </u>
3	₩		्र के इ

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone			
Trade Mark	Blackview			
Model Name.	BV8800			
Family Model	N/A			
Model Difference	N/A	N/A		
	The EUT is Mobile Phone			
	Operation Frequency:	2402~2480 MHz		
	Modulatin Type:	GFSK,π/4-DQPSK,8-DPSK		
	Modulation Technology:	FHSS		
	Adaptive/non-adaptive	Adaptive equipment		
	Receiver categories	2		
Product Description	Number Of Channel	79CH		
	Antenna Designation:	PIFA Antenna		
	Antenna Gain(Peak)	1.48dBi		
		I. TOOD!		
	Based on the application exhibited in User's Manu	n, features, or specification nal, the EUT is considered as an More details of EUT technical		
Channel List	Based on the application exhibited in User's Manu	n, features, or specification nal, the EUT is considered as an More details of EUT technical		
Channel List Adapter	Based on the application exhibited in User's Manu ITE/Computing Device. It is specification, please reference Refer to below Table Model: QA-0300CE03 Input: AC 100-240V~50/Output: DC 5.0V—-3.0A	in, features, or specification and, the EUT is considered as an wore details of EUT technical er to the User's Manual. 60Hz 0.8A or DC 9.0V==3.0A or A or DC 15.0V==2.0A or		
	Based on the application exhibited in User's Manu ITE/Computing Device. It specification, please reference Refer to below Table Model: QA-0300CE03 Input: AC 100-240V~50/Output: DC 5.0V=-3.0A DC 12.0V=-2.5/	in, features, or specification and, the EUT is considered as an More details of EUT technical er to the User's Manual. 60Hz 0.8A or DC 9.0V3.0A or A or DC 15.0V2.0A or		
Adapter	Based on the application exhibited in User's Manu ITE/Computing Device. It specification, please reference Refer to below Table Model: QA-0300CE03 Input: AC 100-240V~50/Output: DC 5.0V3.0A DC 12.0V2.5/ODC 20.0V1.5/ODC 20.0V1.5/ODC	in, features, or specification and, the EUT is considered as an More details of EUT technical er to the User's Manual. 60Hz 0.8A or DC 9.0V——3.0A or A or DC 15.0V——2.0A or A		
Adapter Battery Rating	Based on the application exhibited in User's Manu ITE/Computing Device. It specification, please reference Refer to below Table Model: QA-0300CE03 Input: AC 100-240V~50/Output: DC 5.0V3.0A DC 12.0V2.5/OC 20.0V1.5/OC 20.0V1.5/OC 3.85V, 8380mAh, 32	in, features, or specification and, the EUT is considered as an More details of EUT technical er to the User's Manual. 60Hz 0.8A or DC 9.0V——3.0A or A or DC 15.0V——2.0A or A		
Adapter Battery	Based on the application exhibited in User's Manu ITE/Computing Device. It specification, please reference Refer to below Table Model: QA-0300CE03 Input: AC 100-240V~50/Output: DC 5.0V=-3.0A DC 12.0V=-2.5/ODC 20.0V=-1.5/ODC 3.85V, 8380mAh, 32 DC 3.85V from battery o	in, features, or specification all, the EUT is considered as an More details of EUT technical er to the User's Manual. 60Hz 0.8A or DC 9.0V3.0A or A or DC 15.0V2.0A or A 2.263Wh or DC 5V from Adapter.		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

79 channels are provided to (GFSK, π/4-DQPSK, 8-DPSK)

I A	, , , , , , , , , , , , , , , , , , , ,
Channel	Frequency (MHz
00	2402
01	2403
, <u>.</u>	
	A
77	2479
78	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:
other forms of modulation
b) In case of FHSS modulation:
In case of non-Adaptive Frequency Hopping equipment:
The number of Hopping Frequencies:
In case of Adaptive Frequency Hopping Equipment:
The maximum number of Hopping Frequencies: 79
The minimum number of Hopping Frequencies: 79
The (average) Dwell Time: 325.44s Maximum
c) Adaptive / non-adaptive equipment:
non-adaptive Equipment
adaptive Equipment without the possibility to switch to a non-adaptive mode
adaptive Equipment which can also operate in a non-adaptive mode
d) In case of adaptive equipment:
The maximum Channel Occupancy Time implemented by the equipment:/ ms
☐ The equipment has implemented an LBT based DAA mechanism
In case of equipment using modulation different from FHSS:
The equipment is Frame Based equipment
The equipment is Load Based equipment
☐ The equipment can switch dynamically between Frame Based and Load Based equipment
The CCA time implemented by the equipment:/ µs
The equipment has implemented a non-LBT based DAA mechanism
The equipment can operate in more than one adaptive mode

e) In case of non-adaptive Equipment: The maximum RF Output Power (e.i.r.p.):
The maximum (corresponding) Duty Cycle:
Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations
of duty cycle and corresponding power levels to be declared):
f) The worst case operational mode for each of the following tests:
RF Output Power
GFSK
Power Spectral Density
N/A
Duty cycle, Tx-Sequence, Tx-gap
N/A
Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
8-DPSK
Hopping Frequency Separation (only for FHSS equipment)
π/4-DQPSK
Medium Utilization
N/A
Adaptivity
N/A
Receiver Blocking
GFSK
Nominal Channel Bandwidth
8-DPSK
Transmitter unwanted emissions in the OOB domain
8-DPSK
Transmitter unwanted emissions in the spurious domain
GFSK
Receiver spurious emissions
π/4-DQPSK
g) The different transmit operating modes (tick all that apply):
Operating mode 1: Single Antenna Equipment
Equipment with only one antenna
Equipment with two diversity antennas but only one antenna active at any moment in time
Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only
one antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming Single english stream / Standard throughput / (e.g. IEEE 803.11 M ii 31 logges) mode)
Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1

stand-alone equipment

___ test jig

combined (or host) equipment

Report No.: STR211129004001E Page 10 of 91 NOTE 1: Add more lines if more channel bandwidths are supported. Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode) High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1 High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2 NOTE 2: Add more lines if more channel bandwidths are supported. h) In case of Smart Antenna Systems: • The number of Receive chains: The number of Transmit chains: ... symmetrical power distribution asymmetrical power distribution In case of beam forming, the maximum (additional) beam forming gain: dB NOTE: The additional beam forming gain does not include the basic gain of a single antenna. i) Operating Frequency Range(s) of the equipment: Operating Frequency Range 1: 2402 MHz to 2480 MHz Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported. i) Nominal Channel Bandwidth(s): Nominal Channel Bandwidth 1: 1.181MHz • Nominal Channel Bandwidth 2:/..... MHz NOTE: Add more lines if more channel bandwidths are supported. k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.): Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment) Plug-in radio device (Equipment intended for a variety of host systems) The normal and the extreme operating conditions that apply to the equipment: Normal operating conditions (if applicable): Operating temperature: 15°C~35°C Other (please specify if applicable): Extreme operating conditions: Operating temperature range: Minimum: -10°C Maximum 40°C Other (please specify if applicable): Minimum: Maximum . Details provided are for the:

	on(s) of the radio equipr		s and one or more antenna
ssemblies and their co	rresponding e.i.r.p. leve	ls:	
Antenna Type: PIFA Ante	enna		
Integral Antenna (info	ormation to be provided in	case of conducted n	neasurements)
Antenna Gain: 1.48	dBi		
If applicable, additiona	I beamforming gain (exclu	uding basic antenna	gain):/ dB
Temporary RF c	onnector provided		
☐ No temporary RI	F connector provided		
☐ Dedicated Anter	nnas (equipment with ante	enna connector)	
☐ Single power lev	el with corresponding ant	enna(s)	
Multiple power s	ettings and corresponding	g antenna(s)	
Number of different	t Power Levels:		
Power Level 1:	dBm		
Power Level 2:			
Power Level 3:	dBm		
NOTE 1: Add more	lines in case the equipme	ent has more power	levels.
NOTE 2: These por	wer levels are conducted	power levels (at ante	enna connector).
For each of the Power Le	vels, provide the intended	antenna assemblies	s, their corresponding gains
6) and the resulting e.i.r.p Power Level 1:	. levels also taking into ac	count the beamform	ing gain (Y) if applicable
Power Level 1: Number of antenna	dBm a assemblies provided for	this power level:	
Power Level 1: Number of antenna	dBm a assemblies provided for Gain (dBi)	this power level: e.i.r.p. (dBm)	
Power Level 1: Number of antenna Assembly #	dBm a assemblies provided for	this power level:	
Power Level 1: Number of antenna Assembly #	dBm a assemblies provided for Gain (dBi)	this power level: e.i.r.p. (dBm)	
Power Level 1: Number of antenna Assembly #	dBm assemblies provided for Gain (dBi) 1.48	this power level: e.i.r.p. (dBm) 9.05	Part number or model name
Power Level 1: Number of antenna Assembly # NOTE 3: Add more Power Level 2:	dBm a assemblies provided for Gain (dBi) 1.48 rows in case more anten	e.i.r.p. (dBm) 9.05 na assemblies are se	Part number or model name
Power Level 1: Number of antenna Assembly # NOTE 3: Add more Power Level 2: Number of antenna	dBm a assemblies provided for Gain (dBi) 1.48 rows in case more anten dBm	e.i.r.p. (dBm) 9.05 na assemblies are se	Part number or model name
Power Level 1: Number of antenna Assembly # NOTE 3: Add more Power Level 2: Number of antenna Assembly #	dBm a assemblies provided for Gain (dBi) 1.48 rows in case more anten dBm assemblies provided for	e.i.r.p. (dBm) 9.05 na assemblies are su	Part number or model name upported for this power level.
Power Level 1: Number of antenna Assembly # NOTE 3: Add more Power Level 2: Number of antenna Assembly #	dBm a assemblies provided for Gain (dBi) 1.48 rows in case more anten dBm assemblies provided for	e.i.r.p. (dBm) 9.05 na assemblies are su	Part number or model name upported for this power level.
Power Level 1: Number of antenna Assembly # NOTE 3: Add more Power Level 2: Number of antenna Assembly #	dBm a assemblies provided for Gain (dBi) 1.48 rows in case more anten dBm assemblies provided for	e.i.r.p. (dBm) 9.05 na assemblies are su	Part number or model name upported for this power level.
Power Level 1: Number of antenna Assembly # NOTE 3: Add more Power Level 2: Number of antenna Assembly #	assemblies provided for Gain (dBi) 1.48 rows in case more anten assemblies provided for Gain (dBi)	this power level: e.i.r.p. (dBm) 9.05 na assemblies are su this power level: e.i.r.p. (dBm)	Part number or model name upported for this power level.
Power Level 1: Number of antenna Assembly # 1 2 3 NOTE 3: Add more Power Level 2: Number of antenna Assembly # 1 2 3 NOTE 4: Add more Power Level 3:	assemblies provided for Gain (dBi) 1.48 rows in case more anten assemblies provided for Gain (dBi) rows in case more anten assemblies provided for Gain (dBi)	this power level: e.i.r.p. (dBm) 9.05 na assemblies are si this power level: e.i.r.p. (dBm)	Part number or model name upported for this power level Part number or model name
Power Level 1: Number of antenna Assembly # 1 2 3 NOTE 3: Add more Power Level 2: Number of antenna Assembly # 1 2 3 NOTE 4: Add more Power Level 3: Number of antenna	dBm assemblies provided for Gain (dBi) 1.48 rows in case more anten assemblies provided for Gain (dBi) rows in case more anten assemblies provided for dBm assemblies provided for dBm assemblies provided for	this power level: e.i.r.p. (dBm) 9.05 na assemblies are su this power level: e.i.r.p. (dBm)	Part number or model name upported for this power level. Part number or model name upported for this power level.
Power Level 1: Number of antenna Assembly # 1 2 3 NOTE 3: Add more Power Level 2: Number of antenna Assembly # 1 2 3 NOTE 4: Add more Power Level 3: Number of antenna Assembly #	assemblies provided for Gain (dBi) 1.48 rows in case more anten assemblies provided for Gain (dBi) rows in case more anten assemblies provided for Gain (dBi)	this power level: e.i.r.p. (dBm) 9.05 na assemblies are si this power level: e.i.r.p. (dBm)	Part number or model name upported for this power level Part number or model name
Power Level 1: Number of antenna Assembly # 1 2 3 NOTE 3: Add more Power Level 2: Number of antenna Assembly # 1 2 3 NOTE 4: Add more Power Level 3: Number of antenna Assembly # 1	dBm assemblies provided for Gain (dBi) 1.48 rows in case more anten assemblies provided for Gain (dBi) rows in case more anten assemblies provided for dBm assemblies provided for dBm assemblies provided for	this power level: e.i.r.p. (dBm) 9.05 na assemblies are su this power level: e.i.r.p. (dBm)	Part number or model name upported for this power level. Part number or model name upported for this power level.
Power Level 1: Number of antenna Assembly # 1 2 3 NOTE 3: Add more Power Level 2: Number of antenna Assembly # 1 2 3 NOTE 4: Add more Power Level 3:	dBm assemblies provided for Gain (dBi) 1.48 rows in case more anten assemblies provided for Gain (dBi) rows in case more anten assemblies provided for dBm assemblies provided for dBm assemblies provided for	this power level: e.i.r.p. (dBm) 9.05 na assemblies are su this power level: e.i.r.p. (dBm)	Part number or model name upported for this power level. Part number or model name upported for this power level.

n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the
combined (host) equipment or test jig in case of plug-in devices:
Details provided are for the:
combined (or host) equipment
☐ test jig
Supply Voltage AC mains State AC voltage V
DC State DC voltage: DC 3.85V
In case of DC, indicate the type of power source
☐ Internal Power Supply
☐ Other:
o) Describe the test modes available which can facilitate testing:
See clause 1.4
p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802.15.4™ [i.4], proprietary, etc.):
Bluetooth®
q) If applicable, the statistical analysis referred to in clause 5.4.1 q)
(to be provided as separate attachment)
r) If applicable, the statistical analysis referred to in clause 5.4.1 r)
(to be provided as separate attachment)
s) Geo-location capability supported by the equipment:
□ Yes
The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or
clause 4.3.2.12.2 is not accessible to the user
⊠ No
t) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or
clause 4.3.2.11.3):
GFSK(CH00) =0.92%

1.3 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	-10℃ ~ 40℃ Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.85V	1

Note:

- (1) The HT 40 $^{\circ}$ C and LT -10 $^{\circ}$ C was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.
- (2) The measurements are performed at the highest, middle, lowest available channels.

1.4 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing			
Bluetooth mode Data rate Modulation type			
BR	1Mbps	GFSK	
EDR	2Mbps	π/4-DQPSK	
EDR	3Mbps	8-DPSK	

Test Channel Frequencies Configuration			
Test Channel EUT Channel Test Frequency (I			
Lowest	CH00	2402	
Middle	CH39	2441	
Highest	CH78	2480	

1.5 DESCRIPTION OF TEST CONDITIONS E-1 EUT

1.6 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Mobile Phone	BV8800	N/A	EUT
	4	~		
		4 30		
	*			
*				, 4
		.0	3	
		4 5	Ÿ	

Item	Shielded Type	Ferrite Core	Length	Note
			J. 2	
		*	3	1 AL 30
	* 3		4	
				₹, 4
		,		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in "Length, column."

1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrat ion period
EMI Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
Turn Table	EM	SC100 1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2021.03.29	2022.03.28	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2021.04.27	2022.04.26	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835S E	980246	2021.07.01	2022.06.30	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2021.04.27	2022.04.26	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2021.07.01	2022.06.30	1 year
Power Splitter	Mini-Circuits/U SA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2021.07.01	2022.06.30	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2021.04.27	2022.04.26	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2021.07.01	2022.06.30	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
Temperature & Humitidy Chamber	GIANT FORCE	GTH-056P	GF-94454-1	2021.04.27	2022.04.26	1 year

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
	TRANSMITTER PARAMETERS	
4.3.1.2	RF Output Power	Pass
4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2
4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
4.3.1.5	Hopping Frequency Separation	Pass
4.3.1.6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2
4.3.1.7	Adaptivity	Not Applicable (See Note 1)
4.3.1.8	Occupied Channel Bandwidth	Pass
4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	7
4.3.1.11	Receiver Spurious Emissions	Pass
4.3.1.12	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add.: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District,

Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.:9270A-1

CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Maximum measurement uncertainty

No.	Item	Uncertainty
1 ,	Occupied Channel Bandwidth	± 5%
2	RF output Power,conducted	±1.5dB
3	Power Spectral Density, conducted	± 3dB
4	Unwanted emissions, conducted	± 3dB
5	All emissions,radiated	± 6dB
6	Temperature	± 3°C
7	Humidity	± 3%
9	Time	± 5%

TRANSMITTER PARAMETERS

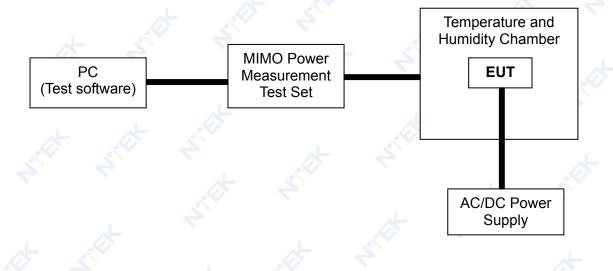
3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER

Refer to chapter 4.3.1.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER		
Condition	Limit	
☐ Non-adaptive frequency hopping systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.	
	equal to or less than 20 dBm.	

3.2 TEST PROCEDURE


Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement		
	Radiated measurement	

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

3.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	20℃	Relative Humidity:	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK		T 160 C

Test data reference attachment

4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Refer to chapter 4.3.1.4.3 of ETSI EN 300 328 V2.2.2 (2019-07)

Accumulated Transmit Time			
Condition	Limit		
Non-adaptive frequency hopping systems	≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]		
Adaptive frequency hopping systems	≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]		
MINIMUM	FREQUENCY OCCUPATION TIME		
Condition	Limit		
Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not		
Adaptive frequency hopping systems	exceeding four times the product of the dwell time and the number of hopping frequencies in use.		
Н	IOPPING SEQUENCE (S)		
Condition	Limit		
Non-adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum		
	Operating over a minimum of 70% of the Operating in the band 2.4 GHz to 2.4835 GHz		
hopping systems	≥15 hopping frequencies or 15/minimum		

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of ETSI EN 300 328 V2.2.2 (2019-07)

Me	easurement
	Radiated measurement

4.3 DEVIATION FROM TEST STANDARD

No deviation

4.4 TEST SETUP

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

4.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	26°C	Relative Humidity	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	est Mode : BT-GFSK/π/4-DQPSK /8-DPSK-Hopping Mode		

Test data reference attachment

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH Refer to chapter 4.3.1.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	COCHER CHANNEL DA	NIDA (IDT)	
	OCCUPIED CHANNEL BANDWIDTH		
Condition		Limit	
All types of equipment		Shall fall completely within the band 2400 to 2483.5 MHz	
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz	
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz	

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Me	easurement	
⊠Conducted	☐ Conducted measurement ☐ Radiated measure		ement
The setting of the Spec	trum Analyzer	300	
Center Frequency	The centre frequence	cy of the channel under test	4
Frequency Span	2 × Nominal Channe	el Bandwidth	
Detector	RMS	J 10 2	
RBW	~ 1 % of the span w	rithout going below 1 %	
VBW	3 × RBW		4
Trace	Max hold	4	
Sweep time	1s	4	ک بلہ خ

5.3 DEVIATION FROM TEST STANDARD

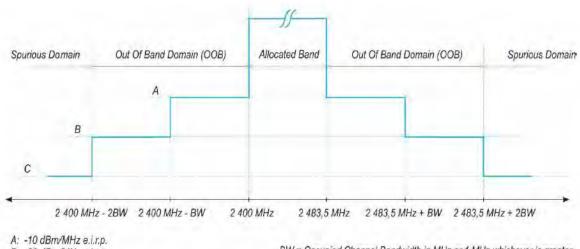
No deviation

5.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

5.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	st Mode : BT-GFSK/π/4-DQPSK /8-DPSK-(CH00/CH78)		


Test data reference attachment

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition Limit		
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	

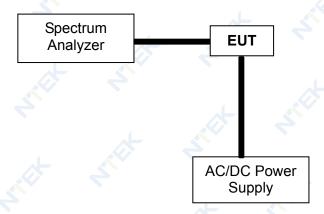
- B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits

BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

Figure 1: Transmit mask

6.2 TEST PROCEDURE

Refer to chapter 5.4.8.2of ETSI EN 300 328 V2.2.2 (2019-07)


Measurement				
The setting of the Spectrum Ana	llyzer		4	
Span	0Hz	, 4		大
Filter Mode	Channel Filter		大	
Trace Mode	Clear/Write	*		
Trigger Mode	Video Trigger			4
Detector	RMS			
Sweep Point / Sweep Mode	5000 / Continuous			4
RBW / VBW	1MHz / 3MHz	.OF 43		

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

6.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	Mode : BT-GFSK/π/4-DQPSK /8-DPSK-(CH78)		

Test data reference attachment

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	HOPPING FREQUENCY SEPARATION		
Condition		Limit	
	☐ Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.	
		The minimum Hopping Frequency Separation shall be 100 kHz.	

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Me	easurement			
⊠Conducted n	neasurement	Radia	ted measurer	ment	
The setting of the Spect	rum Analyzer	<u> </u>			
Center Frequency	Centre of the two ad	djacent hopping freque	ncies		
Frequency Span	Sufficient to see the frequencies	complete power enve	lope of both h	nopping	
Detector	Max Peak	4	4		- 5
RBW	~ 1 % of the span				
VBW	3 × RBW		4		
Trace	Max hold				
Sweep Time	Auto				4

7.3 DEVIATION FROM TEST STANDARD

No deviation

7.4 TEST SETUP

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

7.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-(0	CH00/CH39/CH78)	* *

Test data reference attachment

Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz.

2. The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Refer to chapter 4.3.1.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN		
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

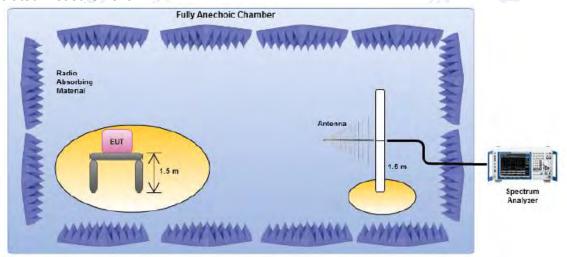
8.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

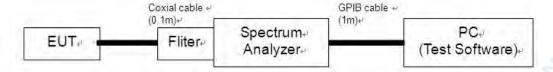
Me	easurement
	⊠Radiated measurement

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)
VBW	300K(<1GHz) / 3M(>1GHz)


8.3 DEVIATION FROM TEST STANDARD

No deviation



8.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

BV8800

8.5 TEST RESULTS (Radiated measurement)

BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)

EUT: Model Name : 24 ℃ 54% Relative Humidity Temperature:

DC 3.85V 1010 hPa Pressure: Test Power:

Test Mode BT-GFSK (CH00)

Mobile Phone

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	43.994	-74.03	10.89	-63.14	-36	-27.14	peak
V	107.862	-70.48	11.32	-59.16	-54	-5.16	peak
V	209.768	-72.57	11.25	-61.32	-54	-7.32	peak
V	334.643	-77.97	11.25	-66.72	-36	-30.72	peak
V	497.873	-72.29	9.57	-62.72	-54	-8.72	peak
Н	31.048	-70.9	10.46	-60.44	-36	-24.44	peak
Н	99.554	-69.48	10.24	-59.24	-54	-5.24	peak
Н	191.61	-76.99	10.88	-66.11	-54	-12.11	peak
Н	270.712	-67.81	11.22	-56.59	-36	-20.59	peak
Н	527.709	-68.42	11.04	-57.38	-54	-3.38	peak
_							

Remark:

1. Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.

2. All the modes had been tested, but only the worst data recorded in the report.

ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

Report No.: STR211129004001E

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK (CH00/CH39/CH78)		T 160 Z

	Meter		Fmission			
Frequency	Reading	Factor	Level	Limits	Margin	Remark
(MHz)	(MHz) (dBm)	(dB)	(dBm)	(dBm)	(dB)	
	ope	eration freq	uency:2402			
2036.458	-72.05	10.33	-61.72	-30	-31.72	peak
5396.058	-77.58	9.79	-67.79	-30	-37.79	peak
2654.608	75.13	11.01	-64.12	-30	-34.12	peak
4011.935	-72.89	9.93	-62.96	30	-32.96	peak
2043.646	-74.76	10.57	-64.19	-30	-34.19	peak
3143.214	-77.15	11.23	-65.92	-30	-35.92	peak
2617.285	-73.8	10.22	-63.58	-30	-33.58	peak
5246.631	-73.02	10.40	-62.62	-30	-32.62	peak
	ope	eration freq	uency:2441		<u></u>	
2551.395	-75.13	10.21	-64.92	-30	-34.92	peak
3971.234	-77.11	10.23	-66.88	-30	-36.88	peak
2586.057	-75.4	10.48	-64.92	-30	-34.92	peak
5568.923	-77.84	10.91	-66.93	-30	-36.93	peak
2763.872	-67.35	9.95	-57.40	-30	-27.40	peak
4678.166	-74.57	9.63	-64.94	-30	-34.94	peak
2668.299	-73.72	9.72	-64.00	-30	-34.00	peak
3365.298	-72.06	11.34	-60.72	-30	-30.72	peak
_		eration freq	uency:2480	4		
2027.722		10.13	-64.32	-30	-34.32	peak
3608.788	-74.4	9.68	-64.72	-30	-34.72	peak
2829.976	-71.02	10.78	-60.24	-30	-30.24	peak
3546.236	-67.7	10.82	-56.88	-30	-26.88	peak
2768.14	-72.89	11.38	-61.51	-30	-31.51	peak
3322.554	-74.6	10.36	-64.24	-30	-34.24	peak
2457.438	-76.54	10.60	-65.94	-30	-35.94	peak
5505.282	-74.79	10.51	-64.28	-30	-34.28	peak
	2036.458 5396.058 2654.608 4011.935 2043.646 3143.214 2617.285 5246.631 2551.395 3971.234 2586.057 5568.923 2763.872 4678.166 2668.299 3365.298 2027.722 3608.788 2829.976 3546.236 2768.14 3322.554 2457.438	(MHz) (dBm) 2036.458 -72.05 5396.058 -77.58 2654.608 -75.13 4011.935 -72.89 2043.646 -74.76 3143.214 -77.15 2617.285 -73.8 5246.631 -73.02 2551.395 -75.13 3971.234 -77.11 2586.057 -75.4 5568.923 -77.84 2763.872 -67.35 4678.166 -74.57 2668.299 -73.72 3365.298 -72.06 2027.722 -74.45 3608.788 -74.4 2829.976 -71.02 3546.236 -67.7 2768.14 -72.89 3322.554 -74.6 2457.438 -76.54	(MHz) (dBm) (dB) 2036.458 -72.05 10.33 5396.058 -77.58 9.79 2654.608 -75.13 11.01 4011.935 -72.89 9.93 2043.646 -74.76 10.57 3143.214 -77.15 11.23 2617.285 -73.8 10.22 5246.631 -73.02 10.40 operation freq 2551.395 -75.13 10.21 3971.234 -77.11 10.23 2586.057 -75.4 10.48 5568.923 -77.84 10.91 2763.872 -67.35 9.95 4678.166 -74.57 9.63 2668.299 -73.72 9.72 3365.298 -72.06 11.34 0peration freq 2027.722 -74.45 10.13 3608.788 -74.4 9.68 2829.976 -71.02 10.78 3546.236 -67.7 10.82 2768.14 <td> Column</td> <td>(MHz) (dBm) (dB) (dBm) (dBm) operation frequency:2402 2036.458 -72.05 10.33 -61.72 -30 5396.058 -77.58 9.79 -67.79 -30 2654.608 -75.13 11.01 -64.12 -30 4011.935 -72.89 9.93 -62.96 -30 2043.646 -74.76 10.57 -64.19 -30 3143.214 -77.15 11.23 -65.92 -30 2617.285 -73.8 10.22 -63.58 -30 5246.631 -73.02 10.40 -62.62 -30 operation frequency:2441 2551.395 -75.13 10.21 -64.92 -30 3971.234 -77.11 10.23 -66.88 -30 2586.057 -75.4 10.48 -64.92 -30 5568.923 -77.84 10.91 -66.93 -30 2668.299 -73.72 9.72 -64.00 -30</td> <td> Comparison Com</td>	Column	(MHz) (dBm) (dB) (dBm) (dBm) operation frequency:2402 2036.458 -72.05 10.33 -61.72 -30 5396.058 -77.58 9.79 -67.79 -30 2654.608 -75.13 11.01 -64.12 -30 4011.935 -72.89 9.93 -62.96 -30 2043.646 -74.76 10.57 -64.19 -30 3143.214 -77.15 11.23 -65.92 -30 2617.285 -73.8 10.22 -63.58 -30 5246.631 -73.02 10.40 -62.62 -30 operation frequency:2441 2551.395 -75.13 10.21 -64.92 -30 3971.234 -77.11 10.23 -66.88 -30 2586.057 -75.4 10.48 -64.92 -30 5568.923 -77.84 10.91 -66.93 -30 2668.299 -73.72 9.72 -64.00 -30	Comparison Com

- 1. Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
- 2. All the modes had been tested, but only the worst data recorded in the report.

B.6 TEST RESULTS (Conducted measurement) Test data reference attachment

9. RECEIVER SPURIOUS EMISSIONS

9.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.1.11.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS						
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth				
30 MHz ~ 1 GHz	-57dBm	100KHz				
1 GHz ~ 12.75 GHz	-47dBm	1MHz				

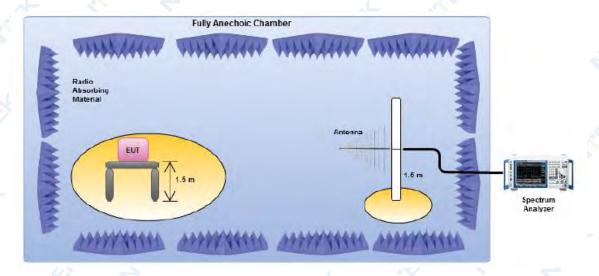
9.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

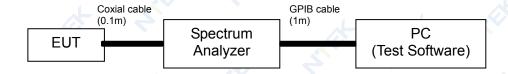
	Me	easurement		
⊠Conducted mea	asurement		⊠Radiated measurement	
			•	,

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)	太	
VBW	300K(<1GHz) / 3M(>1GHz)		


9.3 DEVIATION FROM TEST STANDARD

No deviation



9.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

9.5 TEST RESULTS (Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK(CH00)	A .K	7

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	43.355	-80.5	12.28	-68.22	-57	-11.22	peak
V	115.209	-83.96	16.16	-67.80	-57	-10.80	peak
V	200.394	-84.76	14.08	-70.68	-57	-13.68	peak
V	428.499	-81.13	17.04	-64.09	57	-7.09	peak
V	481.87	-81.18	15.60	-65.58	-57	-8.58	peak
Н	30.188	-80.96	14.70	-66.26	-57	-9.26	peak
H	98.141	-82.35	17.92	-64.43	-57	-7.43	peak
Н	182.982	-84.31	16.72	-67.59	-57	-10.59	peak
Н	280.576	-83.91	15.89	-68.02	-57	-11.02	peak
Н	673.372	-84.67	17.59	-67.08	-57	-10.08	peak

Remark:

- Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

RX ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

Report No.: STR211129004001E

		<u>▼</u>	
EUT:	Mobile Phone	Model Name :	BV8800
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK (CH00)		* 3

		*	4			
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
2788.329	-84.87	10.47	-74.40	-47	-27.40	peak
3132.95	-81.55	10.28	-71.27	-47	-24.27	peak
2659.672	-78.19	10.57	-67.62	-47	-20.62	peak
5386.729	-79.87	16.97	-62.90	-47	-15.90	peak
2116.25	-81.96	10.35	-71.61	-47	-24.61	peak
5365.49	-84.83	11.35	-73.48	-47	-26.48	peak
2645.882	-78.2	6.87	-71.33	-47	-24.33	peak
5974.452	-81.15	15.15	-66.00	-47	-19.00	peak
	(MHz) 2788.329 3132.95 2659.672 5386.729 2116.25 5365.49 2645.882	requency Reading (MHz) (dBm) 2788.329 -84.87 3132.95 -81.55 2659.672 -78.19 5386.729 -79.87 2116.25 -81.96 5365.49 -84.83 2645.882 -78.2	(MHz) (dBm) (dB) 2788.329 -84.87 10.47 3132.95 -81.55 10.28 2659.672 -78.19 10.57 5386.729 -79.87 16.97 2116.25 -81.96 10.35 5365.49 -84.83 11.35 2645.882 -78.2 6.87	(MHz) (dBm) (dB) (dBm) 2788.329 -84.87 10.47 -74.40 3132.95 -81.55 10.28 -71.27 2659.672 -78.19 10.57 -67.62 5386.729 -79.87 16.97 -62.90 2116.25 -81.96 10.35 -71.61 5365.49 -84.83 11.35 -73.48 2645.882 -78.2 6.87 -71.33	(MHz) (dBm) (dB) (dBm) (dBm) 2788.329 -84.87 10.47 -74.40 -47 3132.95 -81.55 10.28 -71.27 -47 2659.672 -78.19 10.57 -67.62 -47 5386.729 -79.87 16.97 -62.90 -47 2116.25 -81.96 10.35 -71.61 -47 5365.49 -84.83 11.35 -73.48 -47 2645.882 -78.2 6.87 -71.33 -47	(MHz) (dBm) (dB) (dBm) (dBm)

9.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504	-34	CW
(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524	4, 4,	STOP.
	2584 2674	4	

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

2 504

2 3002 584

or (-74 dBm + 10 dB) whichever is less

(see note 2)

Report No.: STR211129004001E

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	4	
(see note 2)	2 300	A 160	
(000 0000 = 7	2 584	1	* ·

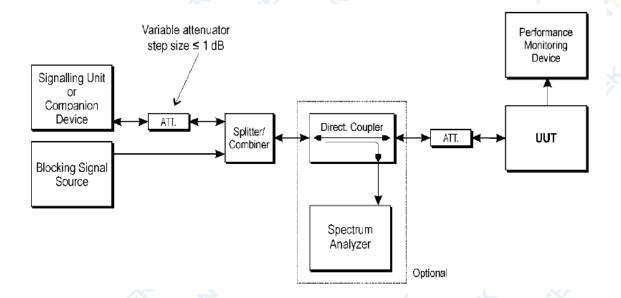
NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

10.3 TEST PROCEDURE

Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)


N	1easurement	
☐Conducted measurement	☐Radiated measurement	*

10.4 DEVIATION FROM TEST STANDARD

No deviation

10.5 TEST SETUP

10.6 TEST RESULTS

EUT:	Mobile Phone	Model Name :	BV8800
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK Hopping mode (RX)	, ,	

CH00

receiver category 2

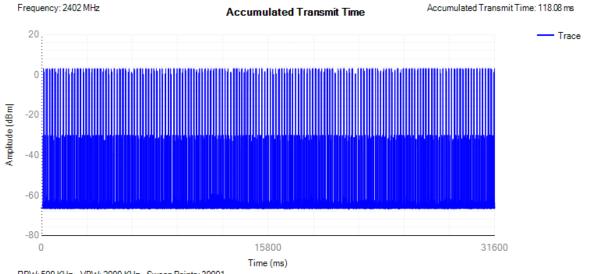
Wanted signal mean power	Blocking signal	Blocking signal	大	PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)				%
	2 380		0.22%	≤10
-70.16	2 504	-34	0.91%	≥10
-70.10	2 300	-34	0.92%	≤10
	2 584	, 4,	0.46%	210

CH78

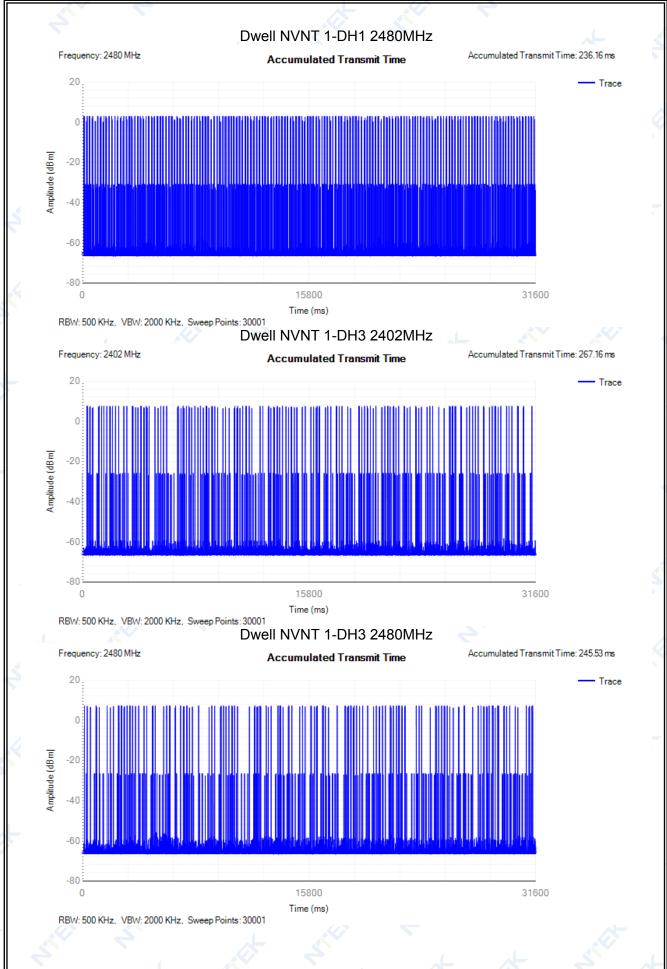
receiver category 2

Wanted signal mean power	Blocking signal	Blocking signal		PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)				%
	2 380		0.28%	10
70.16	2 504	24	0.20%	≤10
-70.16	2 300	-34	0.04%	<10
	2 584	4	0.46%	≤10

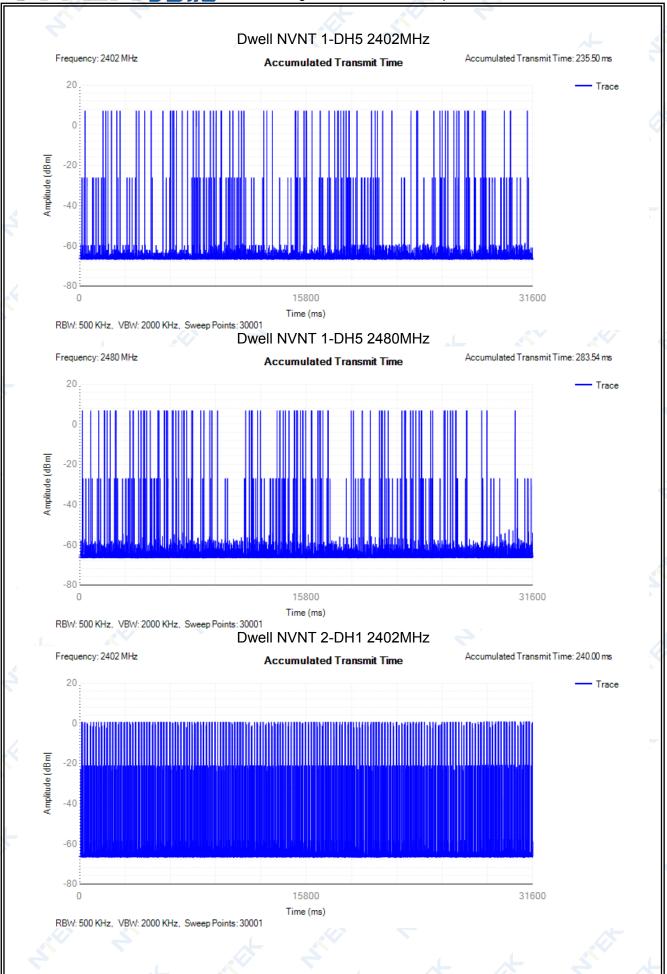
Note: (1) The above results were obtained from laboratory tests.

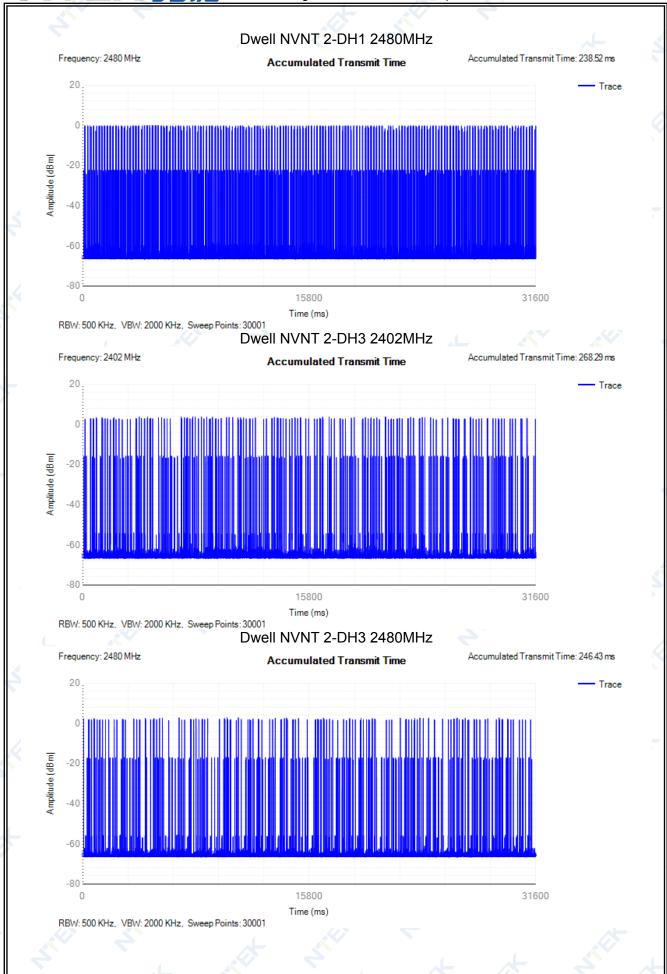


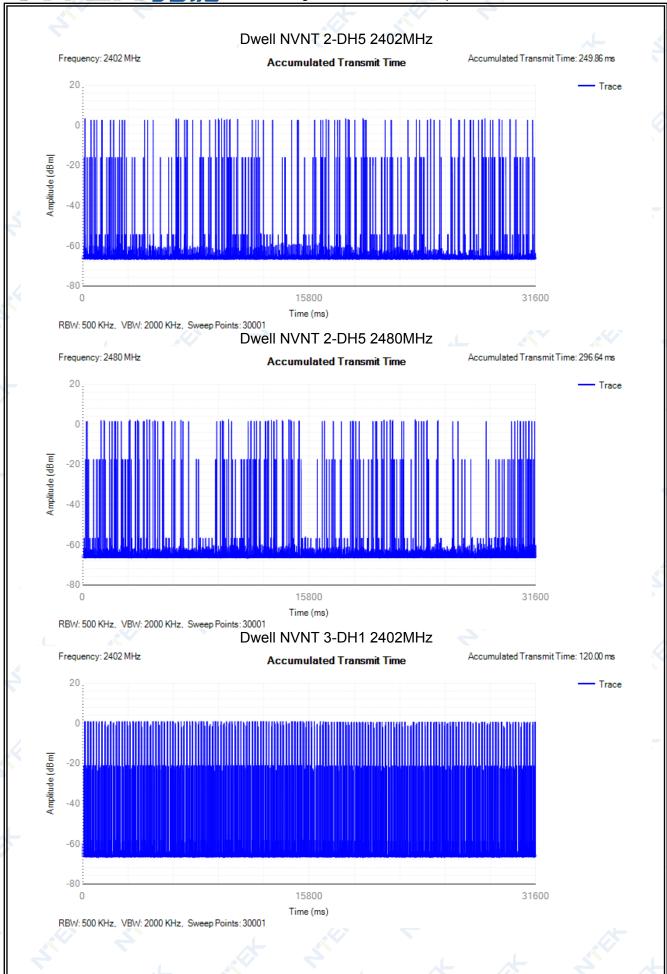
11. TEST RESULTS

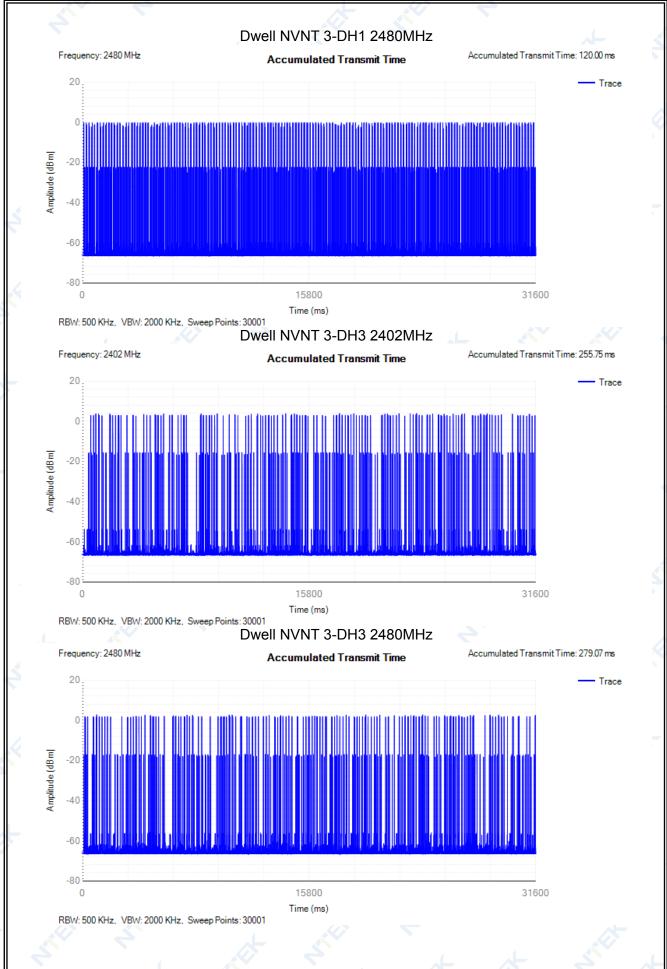

11.1 Accumulated Transmit Time

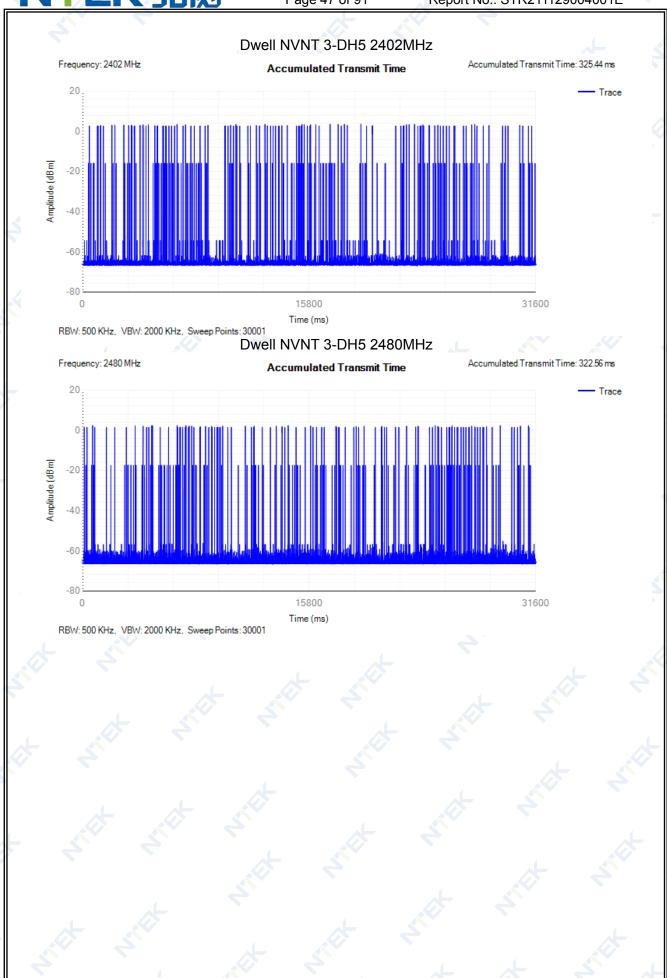
Condition	Mode	Frequency (MHz)	Accumulated Transmit Time (ms)	Limit (ms)	Sweep Time (ms)	Burst Number	Verdict
NVNT	1-DH1	2402	118.08	400	31600	320	Pass
NVNT	1-DH1	2480	236.16	400	31600	640	Pass
NVNT	1-DH3	2402	267.156	400	31600	164	Pass
NVNT	1-DH3	2480	245.526	400	31600	151	Pass
NVNT	1-DH5	2402	235.504	400	31600	82	Pass
NVNT	1-DH5	2480	283.536	400	31600	99	Pass
NVNT	2-DH1	2402	240	400	31600	640	Pass
NVNT	2-DH1	2480	238.518	400	31600	631	Pass
NVNT	2-DH3	2402	268.29	400	31600	165	Pass
NVNT	2-DH3	2480	246.432	400	31600	151	Pass
NVNT	2-DH5	2402	249.864	400	31600	87	Pass
NVNT	2-DH5	2480	296.64	400	31600	103	Pass
NVNT	3-DH1	2402	120	400	31600	320	Pass
NVNT	3-DH1	2480	120	400	31600	320	Pass
NVNT	3-DH3	2402	255.753	400	31600	157	Pass
NVNT	3-DH3	2480	279.072	400	31600	171	Pass
NVNT	3-DH5	2402	325.44	400	31600	113	Pass
NVNT	3-DH5	2480	322.56	400	31600	112	Pass

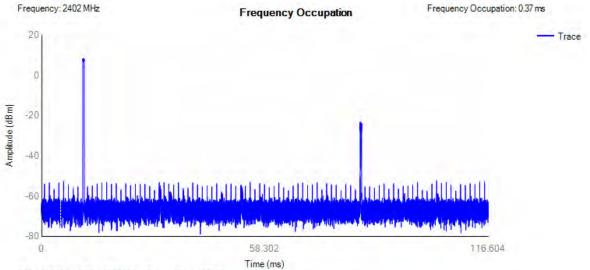

Dwell NVNT 1-DH1 2402MHz

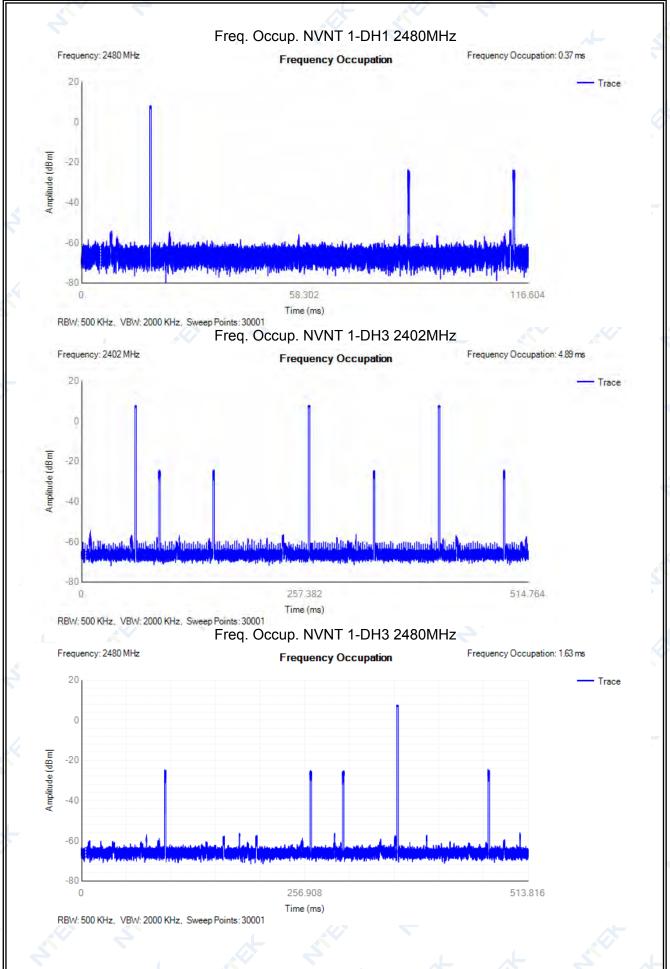




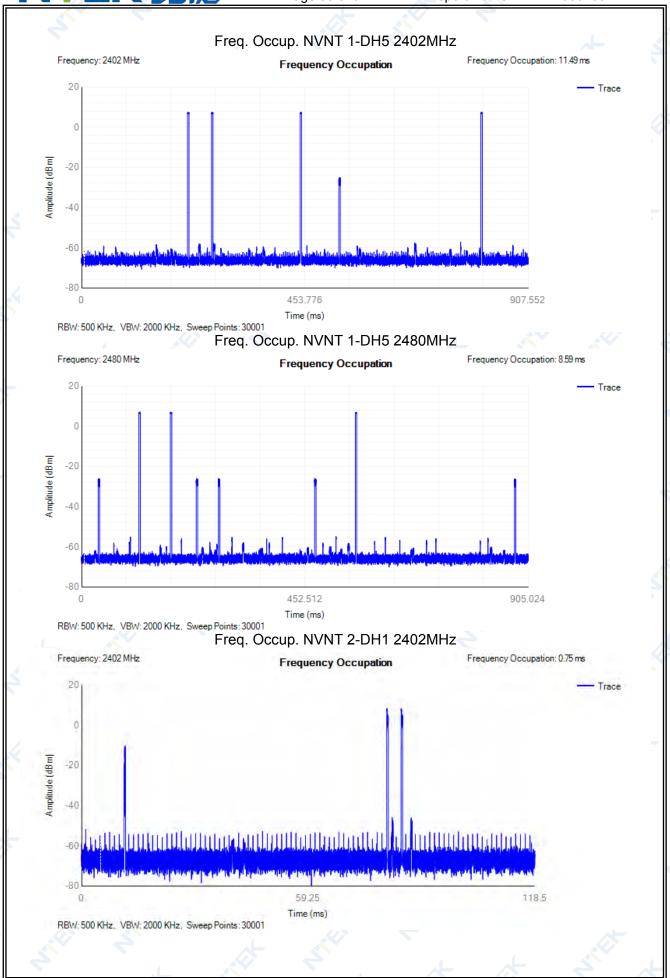




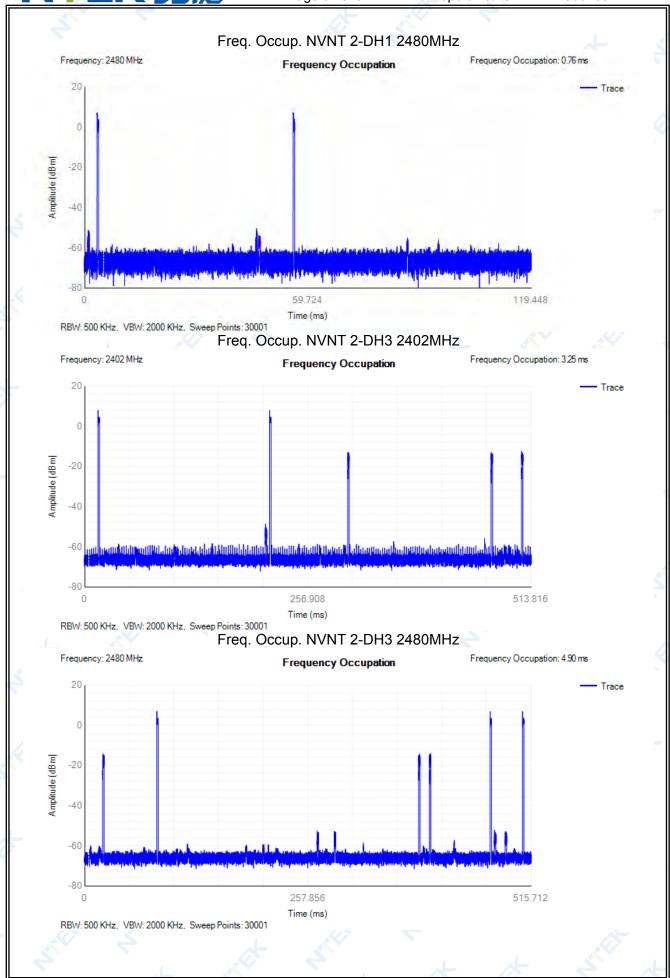


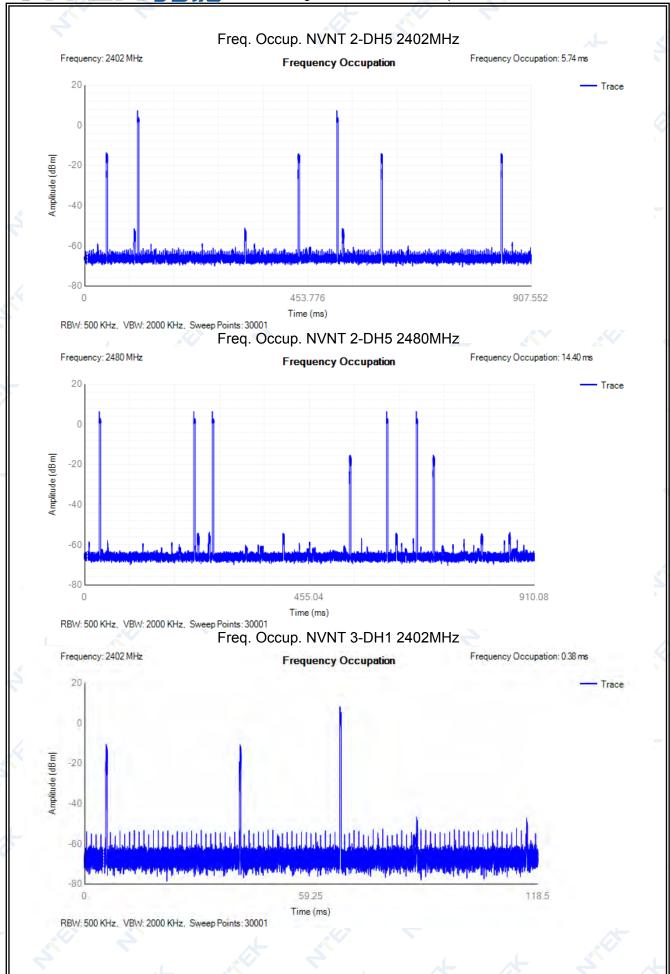

Condition	Mode	Frequency	Frequency	Limit	Sweep	Burst	Verdict
Condition	Mode	(MHz)	Occupation (ms)	(ms)	Time (ms)	Number	verdict
NVNT	1-DH1	2402	0.369	0	116.604	1	Pass
NVNT	1-DH1	2480	0.369	0	116.604	1	Pass
NVNT	1-DH3	2402	4.887	0	514.764	3	Pass
NVNT	1-DH3	2480	1.626	0	513.816	1	Pass
NVNT	1-DH5	2402	11.488	0	907.552	4	Pass
NVNT	1-DH5	2480	8.592	0	905.024	3	Pass
NVNT	2-DH1	2402	0.75	0	118.5	2	Pass
NVNT	2-DH1	2480	0.756	0	119.448	2	Pass
NVNT	2-DH3	2402	3.252	0	513.816	2	Pass
NVNT	2-DH3	2480	4.896	0	515.712	3	Pass
NVNT	2-DH5	2402	5.744	0	907.552	2	Pass
NVNT	2-DH5	2480	14.4	0	910.08	5	Pass
NVNT	3-DH1	2402	0.375	0	118.5	1	Pass
NVNT	3-DH1	2480	0.75	0	118.5	2	Pass
NVNT	3-DH3	2402	3.258	0	514.764	2	Pass
NVNT	3-DH3	2480	4.896	0	515.712	3	Pass
NVNT	3-DH5	2402	11.52	0	910.08	4	Pass
NVNT	3-DH5	2480	8.64	0	910.08	3	Pass

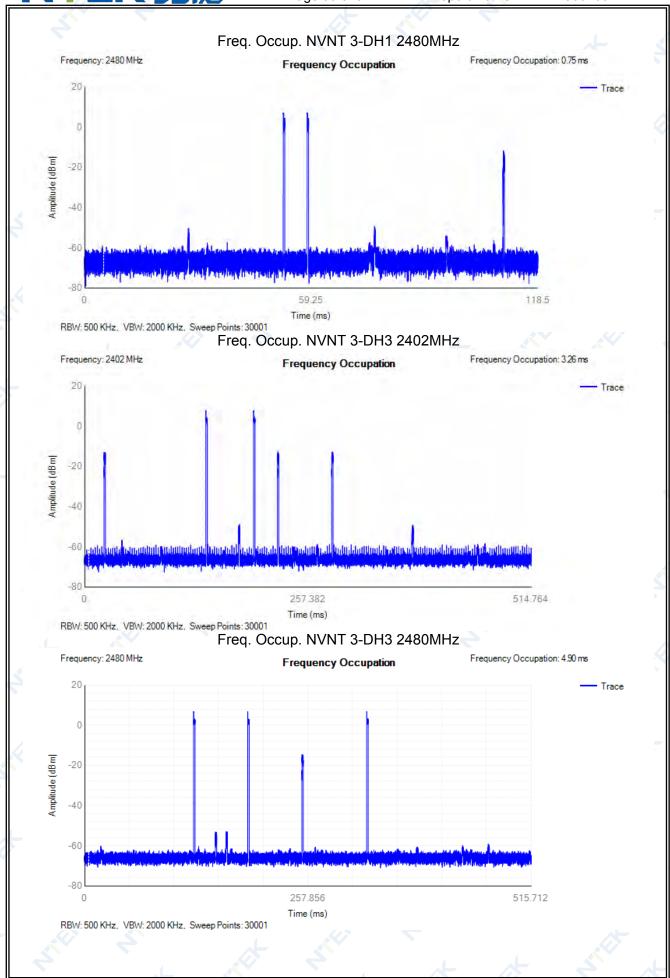
Freq. Occup. NVNT 1-DH1 2402MHz

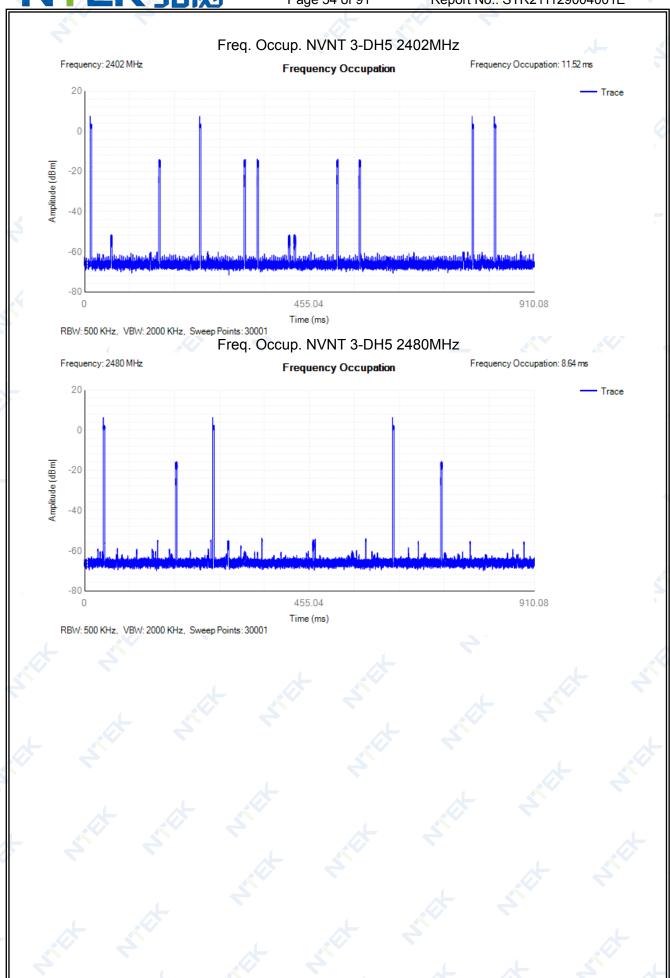


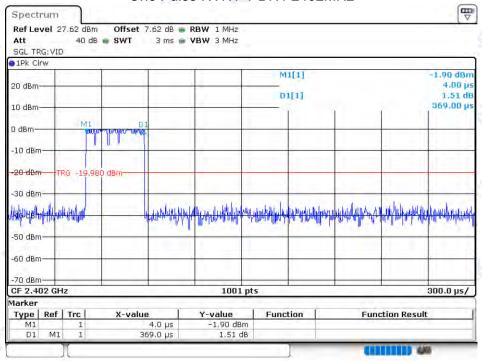
RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

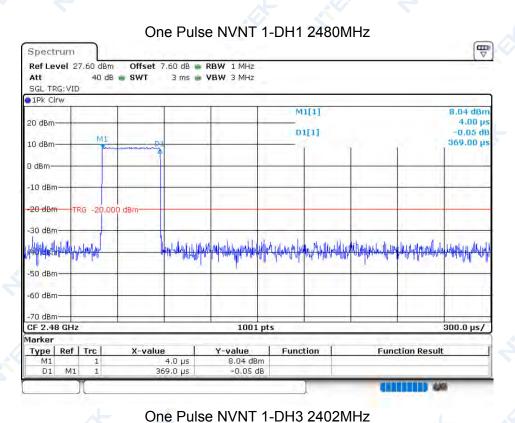


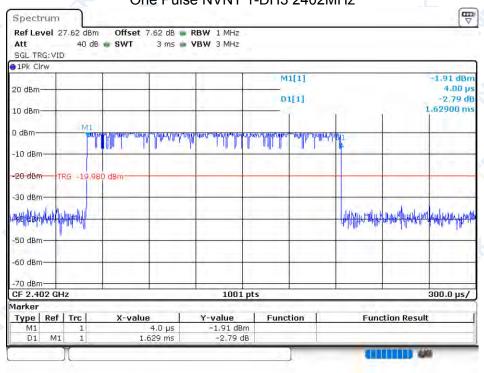




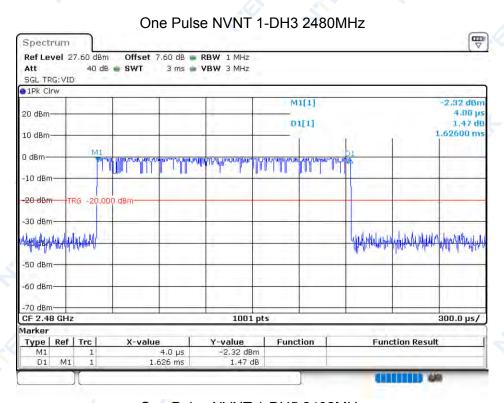


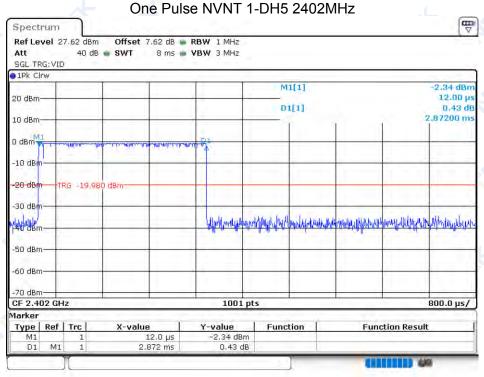


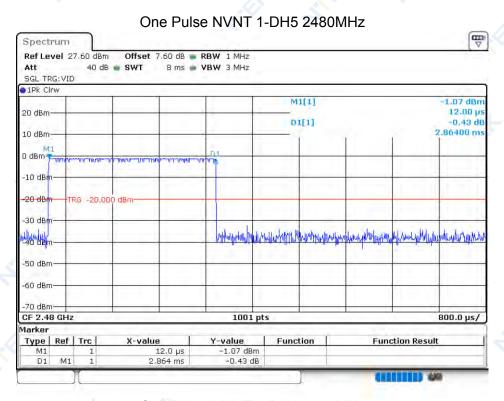

11.3 One Pulse Dwell Time

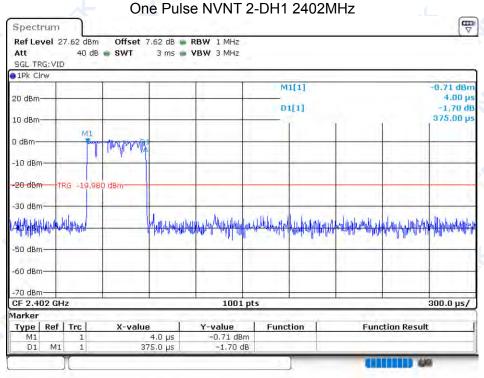

Condition	Mode	Frequency (MHz)	Pulse Time (ms)
NVNT	1-DH1	2402	0.369
NVNT	1-DH1	2480	0.369
NVNT	1-DH3	2402	1.629
NVNT	1-DH3	2480	1.626
NVNT	1-DH5	2402	2.872
NVNT	1-DH5	2480	2.864
NVNT	2-DH1	2402	0.375
NVNT	2-DH1	2480	0.378
NVNT	2-DH3	2402	1.626
NVNT	2-DH3	2480	1.632
NVNT	2-DH5	2402	2.872
NVNT	2-DH5	2480	2.88
NVNT	3-DH1	2402	0.375
NVNT	3-DH1	2480	0.375
NVNT	3-DH3	2402	1.629
NVNT	3-DH3	2480	1.632
NVNT	3-DH5	2402	2.88
NVNT	3-DH5	2480	2.88

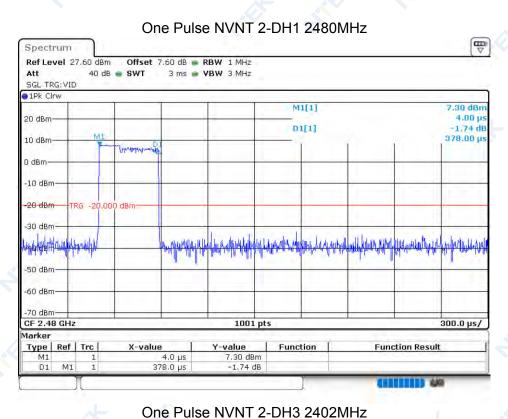
One Pulse NVNT 1-DH1 2402MHz

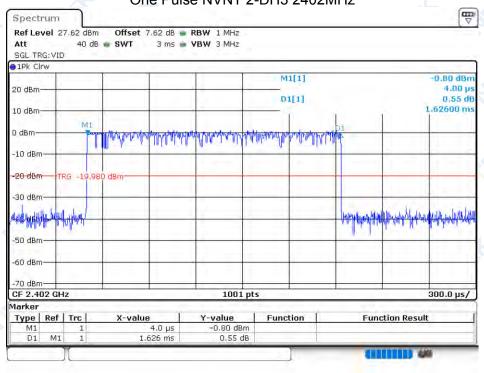


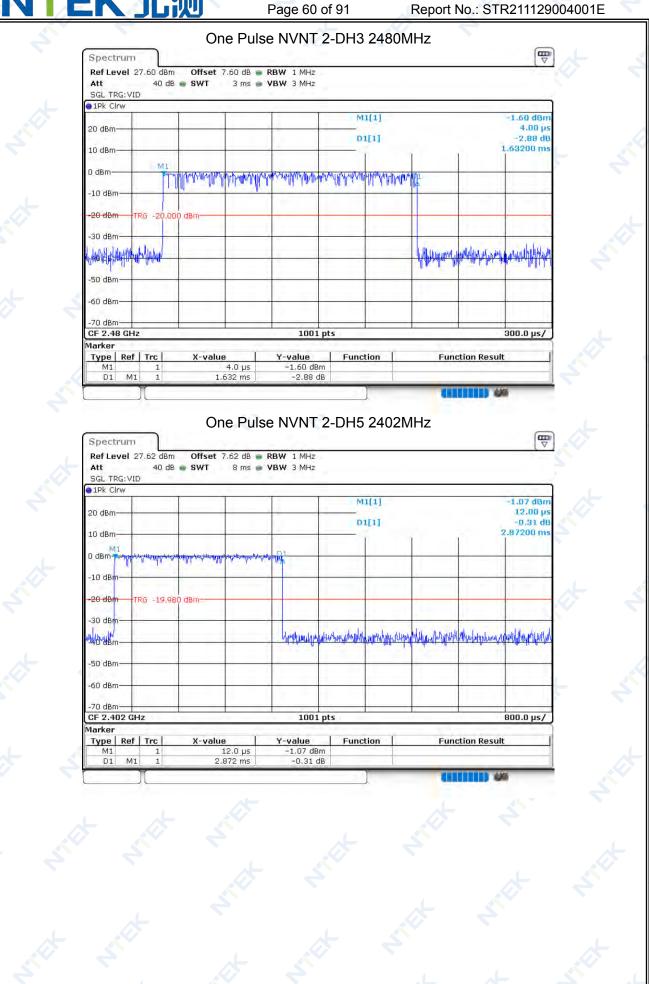


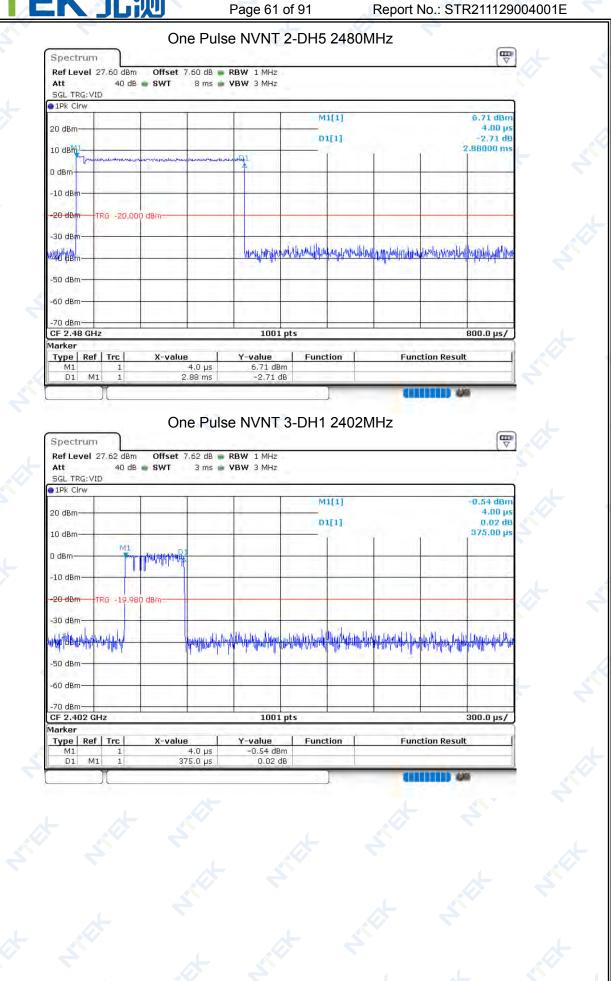


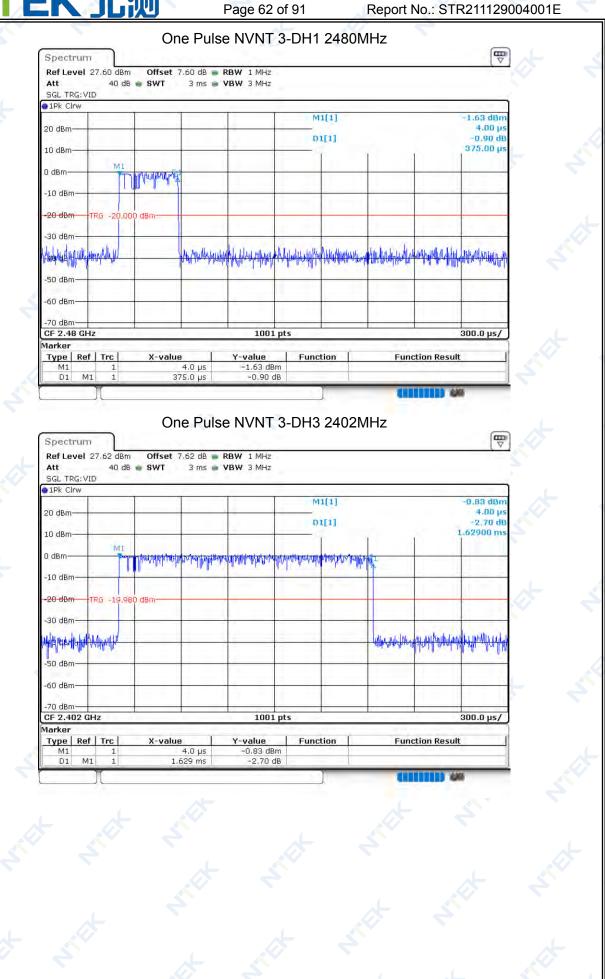


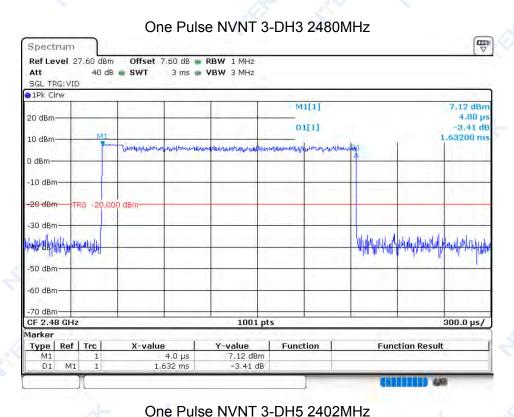


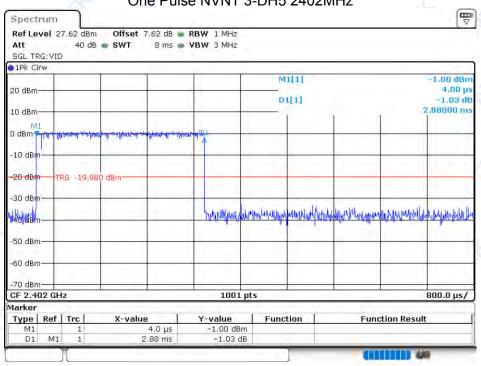




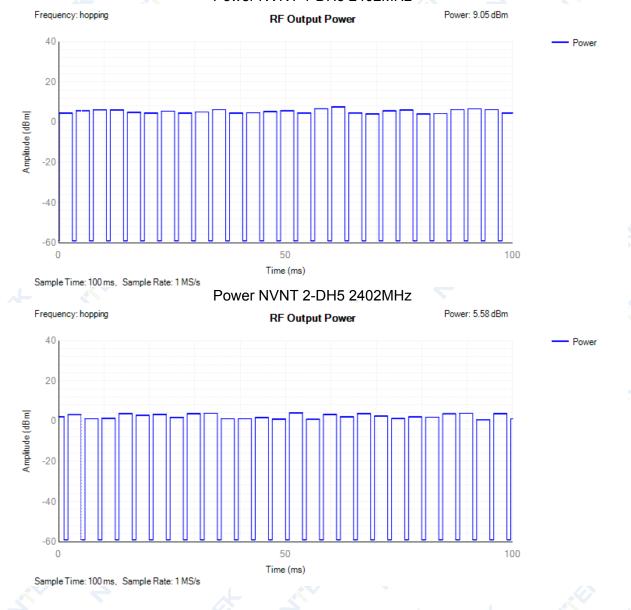




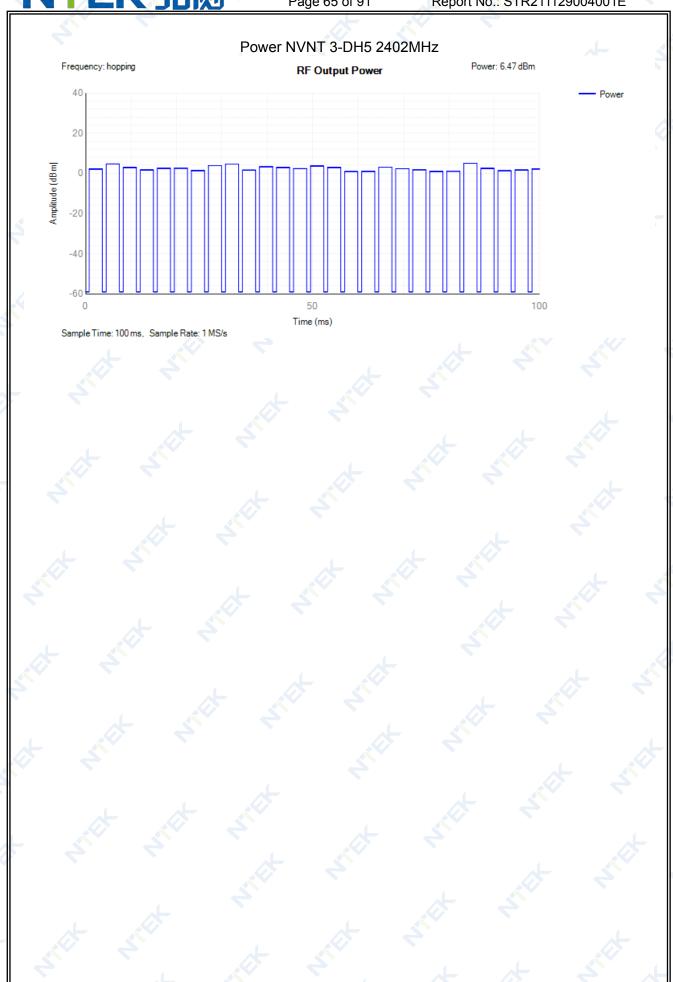




One Pulse NVNT 3-DH5 2480MHz

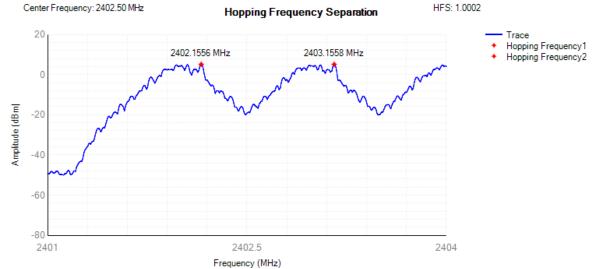


11.4 RF Output Power

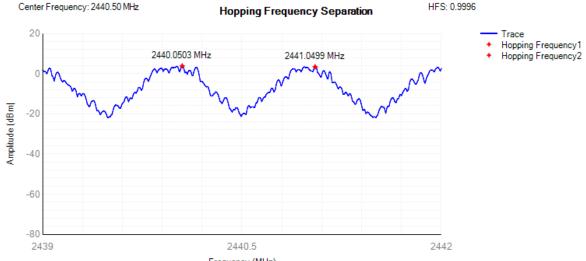

NTEK 北测

Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	hopping	7.57	27	9.05	20	Pass
NVNT	2-DH5	hopping	4.1	28	5.58	20	Pass
NVNT	3-DH5	hopping	4.99	27	6.47	20	Pass
NVLT	1-DH5	hopping	7.26	27	8.74	20	Pass
NVLT	2-DH5	hopping	3.93	28	5.41	20	Pass
NVLT	_ 3-DH5	hopping	4.79	27	6.27	20	Pass
NVHT	1-DH5	hopping	7.1	27	8.58	20	Pass
NVHT	2-DH5	hopping	3.87	28	5.35	20	Pass
NVHT	3-DH5	hopping 🔏	4.5	27	5.98	20	Pass

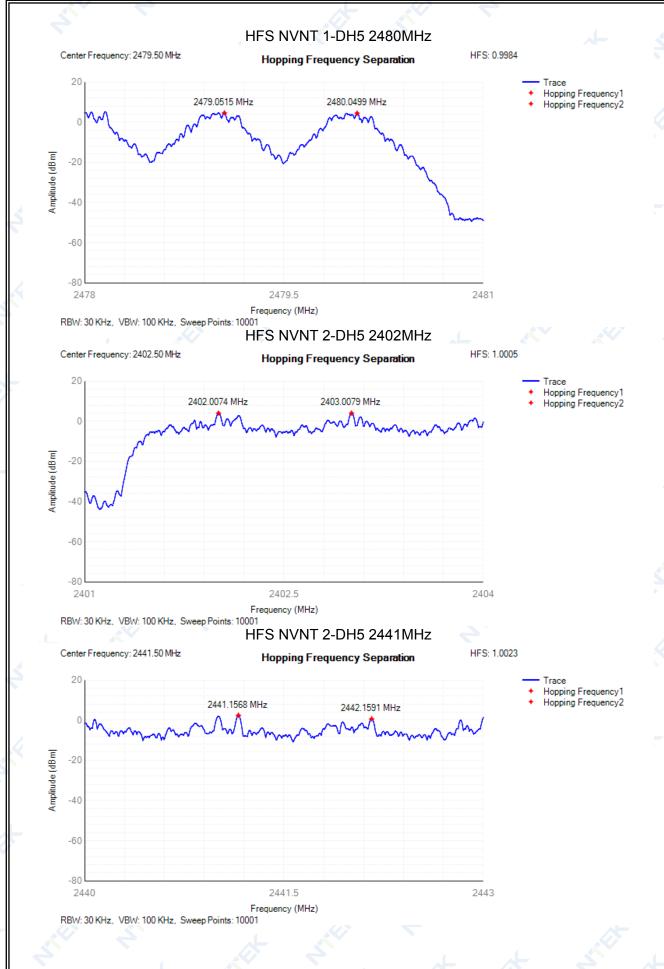
Power NVNT 1-DH5 2402MHz



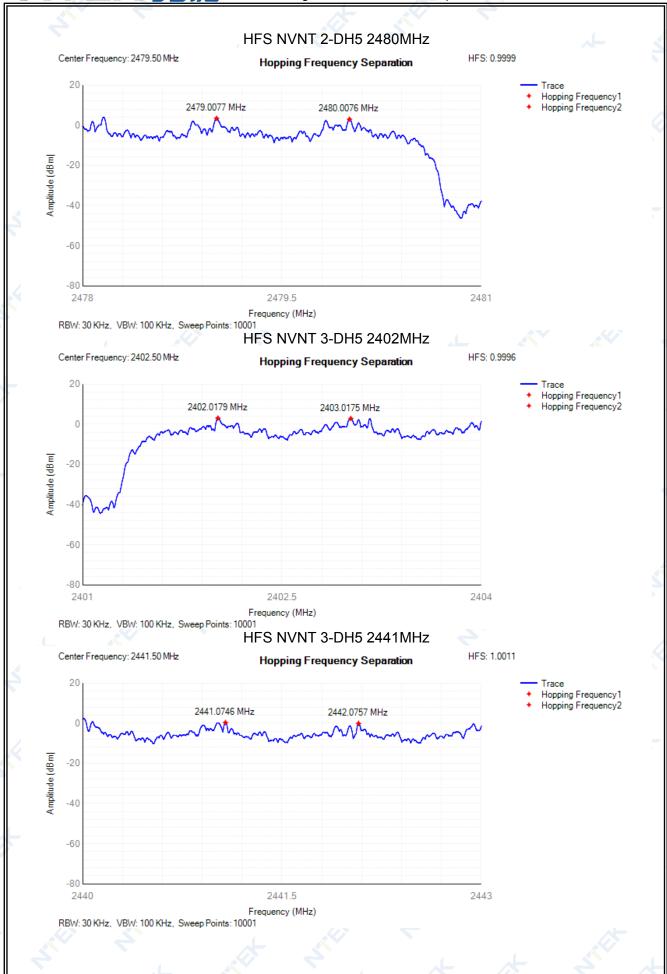
11.5 Hopping Freque	ncy Separation
---------------------	----------------


		·				
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
Condition		(MHz)	(MHz)	(MHz)	(MHz)	verdict
NVNT	1-DH5	2402.1556	2403.1558	1.0002	0.1	Pass
NVNT	1-DH5	2440.0503	2441.0499	0.9996	0.1	Pass
NVNT	1-DH5	2479.0515	2480.0499	0.9984	0.1	Pass
NVNT	2-DH5	2402.0074	2403.0079	1.0005	0.1	Pass
NVNT	2-DH5	2441.1568	2442.1591	1.0023	0.1	Pass
NVNT	2-DH5	2479.0077	2480.0076	0.9999	0.1	Pass
NVNT	3-DH5	2402.0179	2403.0175	0.9996	0.1	Pass
NVNT	3-DH5	2441.0746	2442.0757	1.0011	0.1	Pass
NVNT	3-DH5	2479.1559	2480.1561	1.0002	0.1	Pass

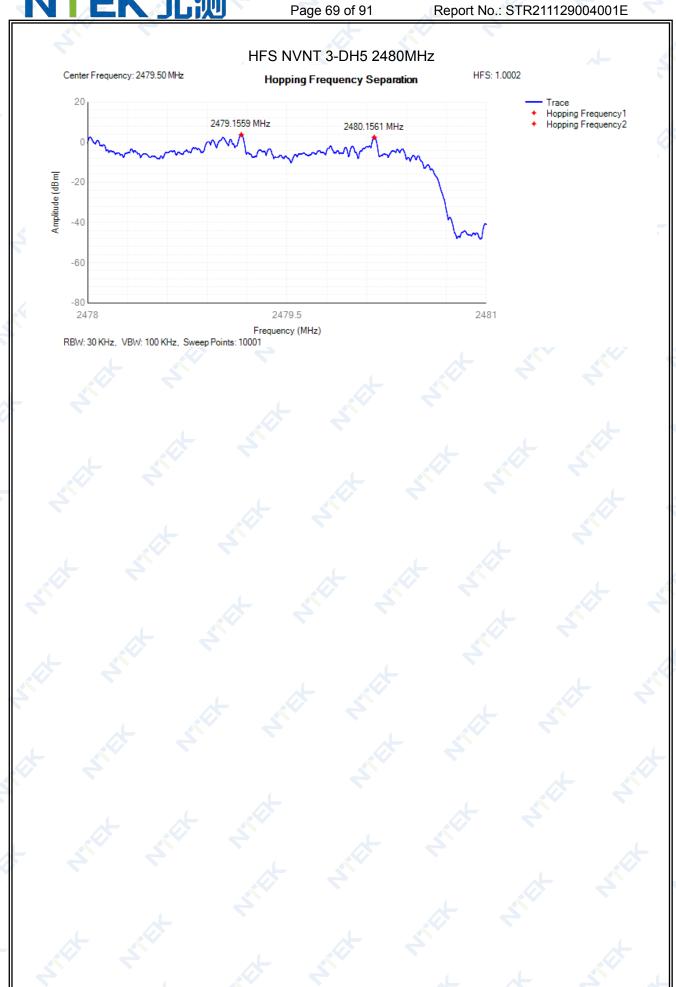
HFS NVNT 1-DH5 2402MHz


RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001

HFS NVNT 1-DH5 2441MHz



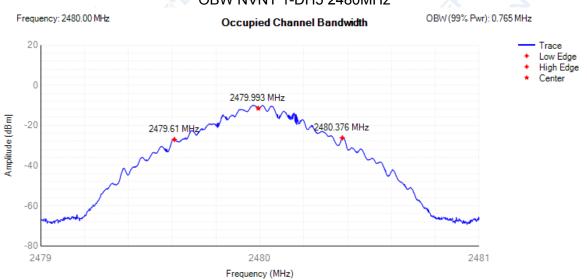
RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001



2403

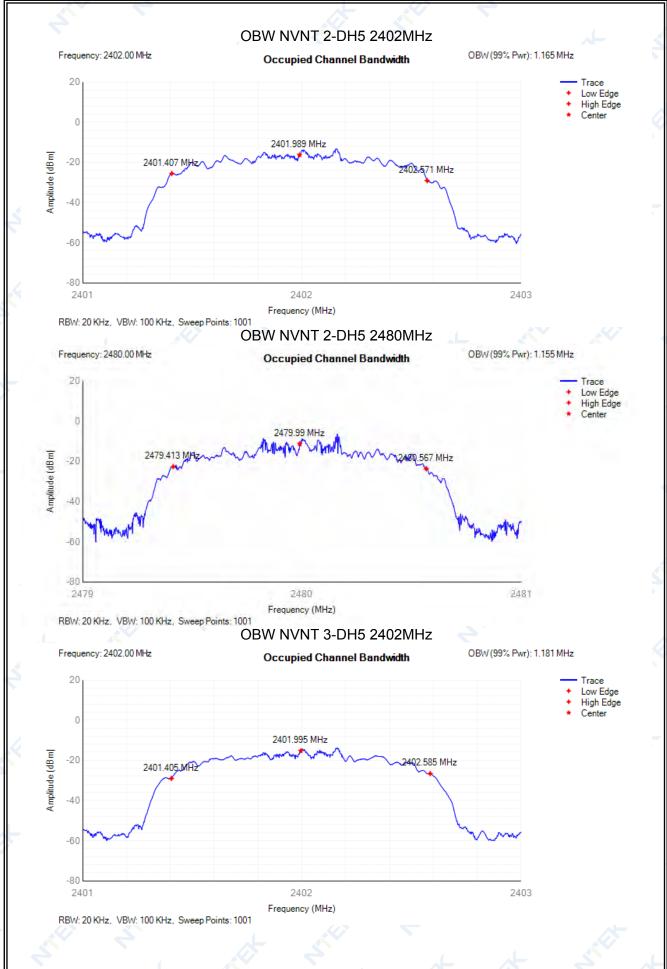
h	1.6 Occupie	d Chann	el Bandwidth	ı ,					
	Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
	NVNT	1-DH5	2402	2401.995	0.765	2401.612	2402.378	2400 - 2483.5MHz	Pass
	NVNT	1-DH5	2480	2479.993	0.765	2479.61	2480.376	2400 - 2483.5MHz	Pass
	NVNT	2-DH5	2402	2401.989	1.165	2401.407	2402.571	2400 - 2483.5MHz	Pass
	NVNT	2-DH5	2480	2479.99	1.155	2479.413	2480.567	2400 - 2483.5MHz	Pass
	NVNT	3-DH5	2402	2401.995	1.181	2401.405	2402.585	2400 - 2483.5MHz	Pass
	NVNT	3-DH5	2480	2479.994	1.179	2479.405	2480.583	2400 - 2483.5MHz	Pass

Frequency: 2402.00 MHz Occupied Channel Bandwidth OBW (99% Pwr): 0.765 MHz Trace Low Edge High Edge Center

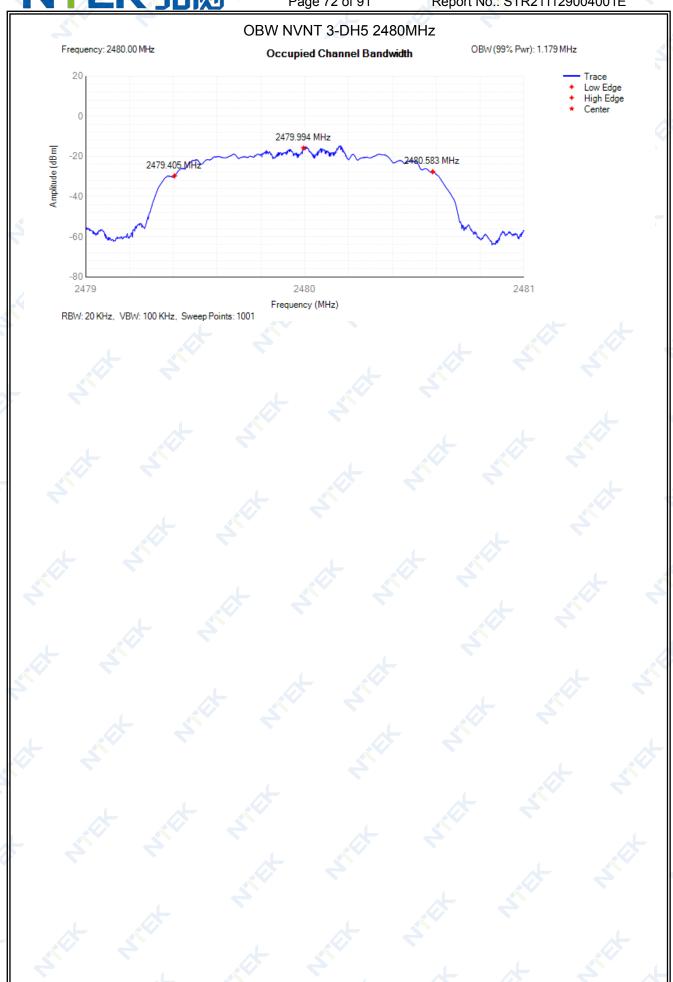

OBW NVNT 1-DH5 2402MHz

RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

OBW NVNT 1-DH5 2480MHz

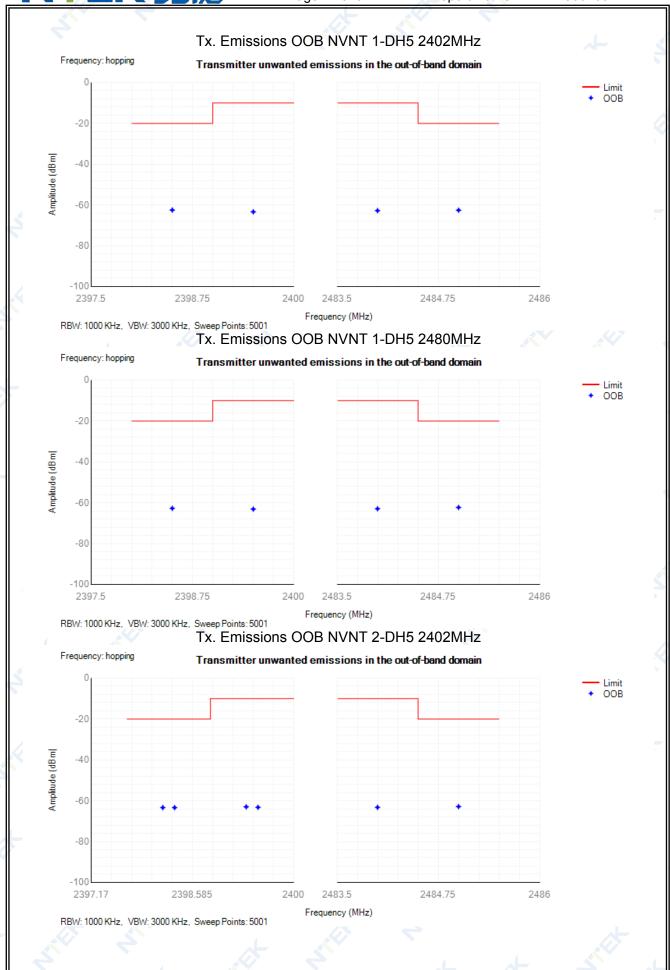

2402

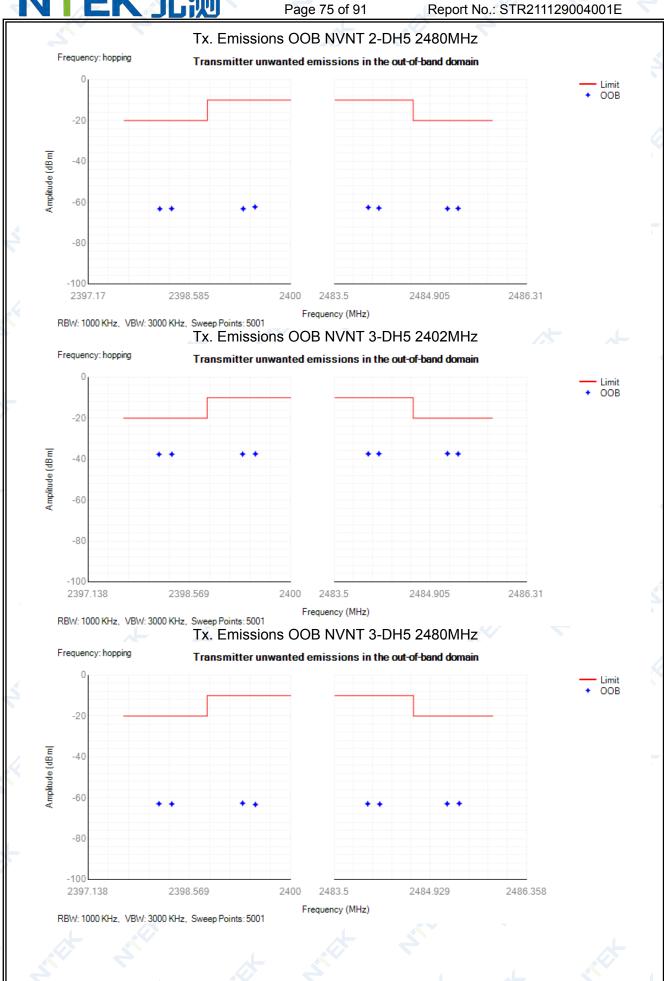
Frequency (MHz)



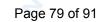
RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

-80 2401



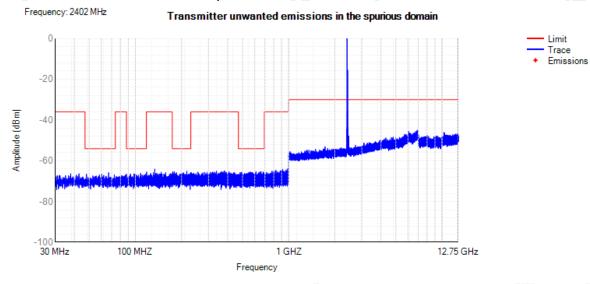

lh 1	7 T	ranemitter	unwanted	amissions	in the	out-of-band	domain
		ıansınılı	unwanteu	GIIIISSIUIIS	HII LIIE	OUL-OI-Dailu	uullalli

Condition	Mode	Frequency (MHz)	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	1-DH5	hopping	2399.5	-63.37	-10	Pass
NVNT	1-DH5	hopping	2398.5	-62.48	-20	Pass
NVNT	1-DH5	hopping	2484	-62.77	-10	Pass
NVNT	1-DH5	hopping	2485	-62.55	-20	Pass
NVNT	1-DH5	hopping	2399.5	-63.11	-10	Pass
NVNT	1-DH5	hopping	2398.5	-62.73	-20	Pass
NVNT	1-DH5	hopping	2484	-62.94	-10	Pass
NVNT	1-DH5	hopping	2485	-62.29	-20	Pass
NVNT	2-DH5	hopping	2399.5	-63.21	-10	Pass
NVNT	2-DH5	hopping	2399.335	-62.98	-10	Pass
NVNT	2-DH5	hopping	2398.335	-63.36	-20	Pass
NVNT	2-DH5	hopping	2398.17	-63.34	-20	Pass
NVNT	2-DH5	hopping	2484	-63.23	-10	Pass
NVNT	2-DH5	hopping	2485	-62.85	-20	Pass
NVNT	2-DH5	hopping	2399.5	-62.29	-10	Pass
NVNT	2-DH5	hopping	2399.335	-63.19	-10	Pass
NVNT	2-DH5	hopping	2398.335	-63.12	-20	Pass
NVNT	2-DH5	hopping	2398.17	-63.22	-20	Pass
NVNT	2-DH5	hopping	2484	-62.53	-10	Pass
NVNT	2-DH5	hopping	2484.155	-62.85	-10	Pass
NVNT	2-DH5	hopping	2485.155	-63.11	-20	Pass
NVNT	2-DH5	hopping	2485.31	-63.01	-20	Pass
NVNT	3-DH5	hopping	2399.5	-37.48	-10	Pass
NVNT	3-DH5	hopping	2399.319	-37.57	-10	Pass
NVNT	3-DH5	hopping	2398.319	-37.64	-20	Pass
NVNT	3-DH5	hopping	2398.138	-37.68	-20	Pass
NVNT	3-DH5	hopping	2484	-37.46	-10	Pass
NVNT	3-DH5	hopping	2484.155	-37.41	-10	Pass
NVNT	3-DH5	hopping	2485.155	-37.32	-20	Pass
NVNT	3-DH5	hopping	2485.31	-37.46	-20	Pass
NVNT	3-DH5	hopping	2399.5	-63.32	-10	Pass
NVNT	3-DH5	hopping	2399.319	-62.67	-10	Pass
NVNT	3-DH5	hopping	2398.319	-63.06	-20	Pass
NVNT	3-DH5	hopping	2398.138	-62.92	-20	Pass
NVNT	3-DH5	hopping	2484	-62.96	-10	Pass
NVNT	3-DH5	hopping	2484.179	-63.13	-10	Pass
NVNT	3-DH5	hopping	2485.179	-62.95	-20	Pass
NVNT	3-DH5	hopping	2485.358	-62.8	-20	Pass

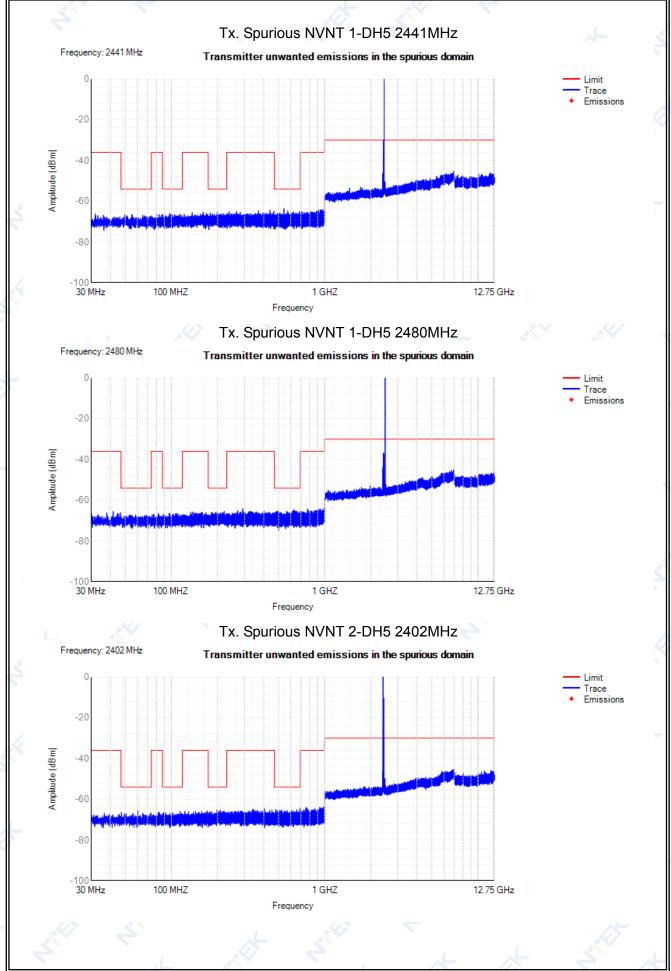

Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	30 MHz -47 MHz	37.85	-66.38	NA	-36	Pass
NVNT	1-DH5	2402	47 MHz -74 MHz	66.95	-65.78	NA	-54	Pass
NVNT	1-DH5	2402	74 MHz -87.5 MHz	87.35	-66.57	NA	-36	Pass
NVNT	1-DH5	2402	87.5 MHz -118 MHz	108.25	-66.11	NA	-54	Pass
NVNT	1-DH5	2402	118 MHz -174 MHz	133.75	-64.05	NA	-36	Pass
NVNT	1-DH5	2402	174 MHz -230 MHz	216.7	-65.02	NA	-54	Pass
NVNT	1-DH5	2402	230 MHz -470 MHz	381.55	-64.86	NA	-36	Pass
NVNT	1-DH5	2402	470 MHz -694 MHz	660.4	-65.24	NA	-54	Pass
NVNT	1-DH5	2402	694 MHz -1000 MHz	985.25	-63.92	NA	-36	Pass
NVNT	1-DH5	2402	1000 MHz -2398 MHz	2393.5	-52.08	NA	-30	Pass
NVNT	1-DH5	2402	2485.5 MHz -12750 MHz	6894	-44.97	NA	-30	Pass
NVNT	1-DH5	2441	30 MHz -47 MHz	31.85	-66.04	NA	-36	Pass
NVNT	1-DH5	2441	47 MHz -74 MHz	55.2	-66.4	NA	-54	Pass
NVNT	1-DH5	2441	74 MHz -87.5 MHz	80.15	-65.93	_NA	-36	Pass
NVNT	1-DH5	2441	87.5 MHz -118 MHz	97.25	-66.1	NA	-54	Pass
NVNT	1-DH5	2441	118 MHz -174 MHz	161.15	-65.25	NA	-36	Pass
NVNT	1-DH5	2441	174 MHz -230 MHz	199.25	-65.34	NA NA	-54	Pass
NVNT	1-DH5	2441	230 MHz -470 MHz	439.95	-64.42	NA	-36	Pass
NVNT	1-DH5	2441	470 MHz -694 MHz	542.4	-63.6	NA	-54	Pass
NVNT	1-DH5	2441	694 MHz -1000 MHz	950.45	-64.08	NA	-36	Pass
NVNT	1-DH5	2441	1000 MHz -2398 MHz	2391	-46.75	NA	-30	Pass

NVNT	1-DH5	2441	2485.5 MHz -12750 MHz	6927	-45.42	NA	-30	Pass
NVNT	1-DH5	2480	30 MHz -47 MHz	41.75	-65.45	NA	-36	Pass
NVNT	1-DH5	2480	47 MHz -74 MHz	58.45	-67.06	NA	-54	Pass
NVNT	1-DH5	2480	74 MHz -87.5 MHz	82	-66.36	NA NA	-36	Pass
NVNT	1-DH5	2480	87.5 MHz -118 MHz	97.8	-66.38	NA	-54	Pass
NVNT	1-DH5	2480	118 MHz -174 MHz	137.75	-65.68	NA	-36	Pass
NVNT	1-DH5	2480	174 MHz -230 MHz	221.6	-65.45	NA	-54	Pass
NVNT	1-DH5	2480	230 MHz -470 MHz	291.7	-64.18	NA	-36	Pass
NVNT	1-DH5	2480	470 MHz -694 MHz	629.8	-64.57	NA	-54	Pass
NVNT	1-DH5	2480	694 MHz -1000 MHz	994.4	-63.84	NA	-36	Pass
NVNT	1-DH5	2480	1000 MHz -2398 MHz	2394	-44.23	NA	-30	Pass
NVNT	1-DH5	2480	2485.5 MHz -12750 MHz	6932	-45.04	NA	-30	Pass
NVNT	2-DH5	2402	30 MHz -47 MHz	36.5	-66.79	NA	-36	Pass
NVNT	2-DH5	2402	47 MHz -74 MHz	60.5	-65.6	NA	-54	Pass
NVNT	2-DH5	2402	74 MHz -87.5 MHz	82.4	-66.29	NA	-36	Pass
NVNT	2-DH5	2402	87.5 MHz -118 MHz	114	-65.81	NA	-54	Pass
NVNT	2-DH5	2402	118 MHz -174 MHz	170.85	-65.64	NA	-36	Pass
NVNT	2-DH5	2402	174 MHz -230 MHz	198.65	-65.33	NA	-54	Pass
NVNT	2-DH5	2402	230 MHz -470 MHz	404.45	-64.56	NA	-36	Pass
NVNT	2-DH5	2402	470 MHz -694 MHz	690.95	-64.32	NA	-54	Pass
NVNT	2-DH5	2402	694 MHz -1000 MHz	979.75	-63.87	NA	-36	Pass
NVNT	2-DH5	2402	1000 MHz -2398 MHz	2390.5	-46.32	NA	-30	Pass

NVNT	2-DH5	2402	2485.5 MHz -12750 MHz	6952.5	-45.33	NA	-30	Pass
NVNT	2-DH5	2441	30 MHz -47 MHz	34.85	-65.98	NA	-36	Pass
NVNT	2-DH5	2441	47 MHz -74 MHz	59.95	-66.75	NA	-54	Pass
NVNT	2-DH5	2441	74 MHz -87.5 MHz	83.55	-66.65	L NA	-36	Pass
NVNT	2-DH5	2441	87.5 MHz -118 MHz	98.05	-64.92	NA	-54	Pass
NVNT	2-DH5	2441	118 MHz -174 MHz	140.3	-65.34	NA	-36	Pass
NVNT	2-DH5	2441	174 MHz -230 MHz	175.65	-65.42	NA	-54	Pass
NVNT	2-DH5	2441	230 MHz -470 MHz	255.4	-64.57	NA	-36	Pass
NVNT	NVNT 2-DH5 2441		470 MHz -694 MHz	499.55	-65.19	NA	-54	Pass
NVNT	2-DH5	2441	694 MHz -1000 MHz	947.85	947.85 -63.56		-36	Pass
NVNT	2-DH5	2441	1000 MHz -2398 MHz		-52.3	NA	-30	Pass
NVNT	2-DH5	2441	2485.5 MHz -12750 MHz	6977	-44.53	NA	-30	Pass
NVNT	2-DH5	2480	30 MHz -47 MHz	46.9604790419162	-65.96	NA	-36	Pass
NVNT	2-DH5	2480	47 MHz -74 MHz	58.1125748502994	-65.31	NA	-54	Pass
NVNT	2-DH5	2480	74 MHz -87.5 MHz	78.9065868263473	-65.98	NA	-36	Pass
NVNT	2-DH5	2480	87.5 MHz -118 MHz	104.347305389222	-65.88	NA	-54	Pass
NVNT	2-DH5	2480	118 MHz -174 MHz	149.536526946108	-64.03	NA	-36	Pass
NVNT	2-DH5	2480	174 MHz -230 MHz	208.08502994012	-63.99	NA	-54	Pass
NVNT	2-DH5	2480	230 MHz -470 MHz	463.421556886228	-64.26	NA	-36	Pass
NVNT	2-DH5	2480	470 MHz -694 MHz	471.437125748503	-64.04	NA	-54	Pass
NVNT	2-DH5	2480	694 MHz -1000 MHz	959.341317365269	-62.94	NA	-36	Pass
NVNT	2-DH5	2480	1000 MHz -2398 MHz	2394.52095808383	-43.21 NA		-30	Pass
NVNT	2-DH5	2480	2485.5 MHz -12750 MHz	6929.88023952096	-44.52	NA	-30	Pass

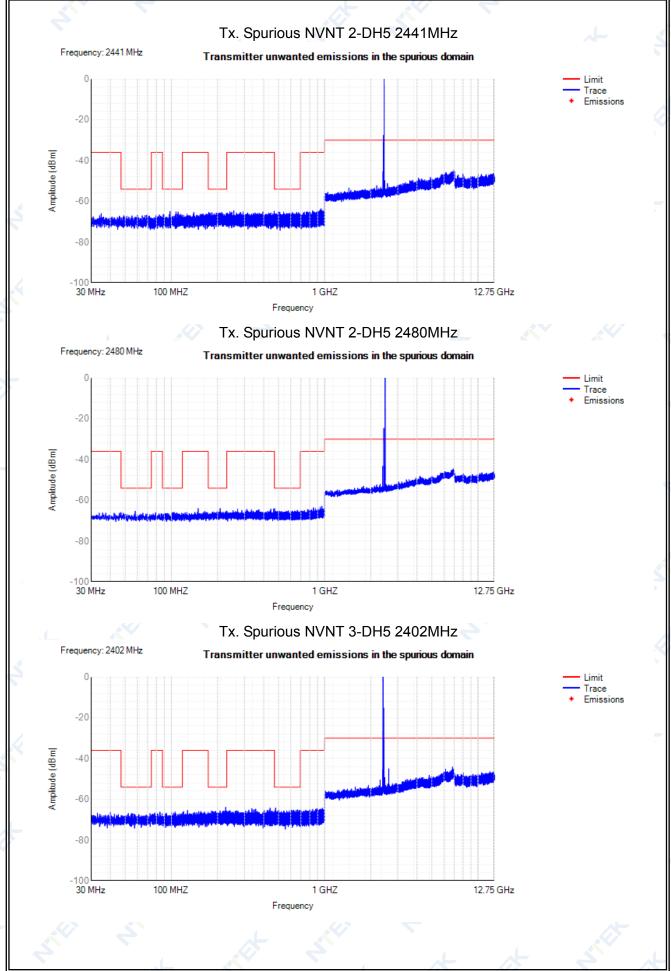


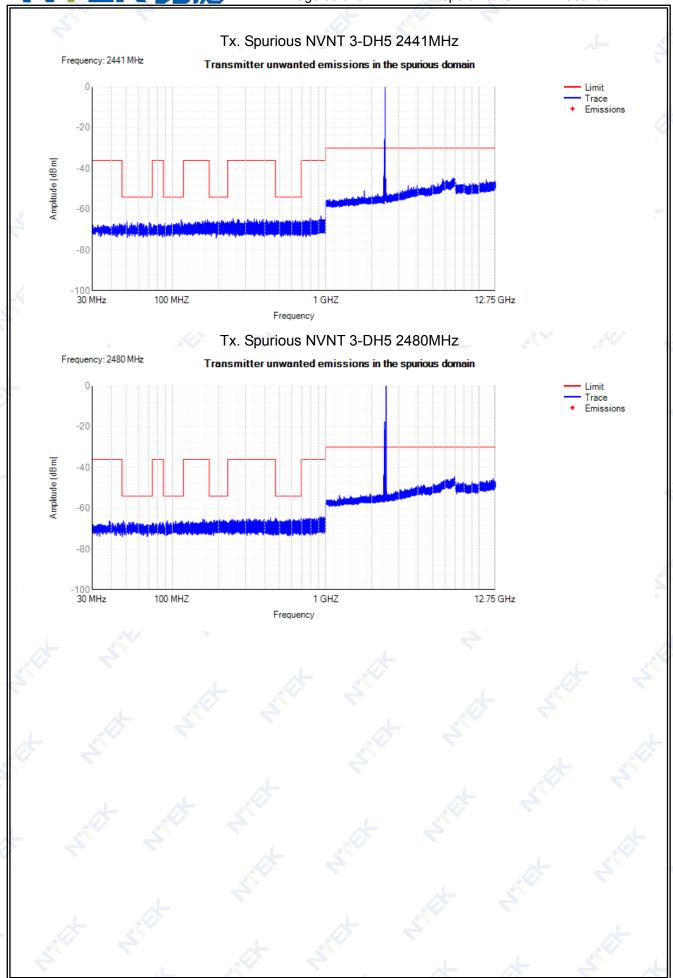
NVNT	3-DH5	2402	30 MHz	40.05	-66.23	NA	-36	Pass
			-47 MHz 47 MHz					
NVNT	3-DH5	2402	-74 MHz	52.4	-66.92	NA	-54	Pass
NVNT	3-DH5	2402	-87.5 MHz	84.3	-66.22	NA	-36	Pass
NVNT	3-DH5	2402	87.5 MHz -118 MHz	100.15	-66.03	NA	-54	Pass
NVNT	3-DH5	2402	118 MHz -174 MHz	127.55	-65.47	NA S	-36	Pass
NVNT	3-DH5	2402	174 MHz -230 MHz	226.35	-63.87	NA	-54	Pas
NVNT	3-DH5	2402	230 MHz -470 MHz	440.55	-64.25	NA NA	-36	Pass
NVNT	3-DH5	2402	470 MHz -694 MHz	478.2	-64.24	NA	-54	Pas
NVNT	3-DH5	2402	694 MHz -1000 MHz	965.65	-64.37	NA	-36	Pas
NVNT	3-DH5	2402	1000 MHz -2398	2391	-45.41	NA	-30	Pas
NVNT	3-DH5	2402	MHz 2485.5 MHz -12750 MHz	6822	-44.14	NA	-30	Pas
NVNT	3-DH5	2441	30 MHz -47 MHz	45.25	-67.01	NA	-36	Pas
NVNT	3-DH5	2441	47 MHz -74 MHz	50.35	-65.87	NA	-54	Pas
NVNT	3-DH5	2441	74 MHz -87.5 MHz	83.8	-67.23	NA	-36	Pas
NVNT	3-DH5	2441	87.5 MHz -118 MHz	114.1	-65.05	NA	-54	Pas
NVNT	3-DH5	2441	118 MHz -174 MHz	169.65	-65.05	NA	-36	Pas
NVNT	3-DH5	2441	174 MHz -230 MHz	209.85	-65.37	NA	-54	Pas
NVNT	3-DH5	2441	230 MHz -470 MHz	248.75	-64.5	NA NA	-36	Pas
NVNT	3-DH5	2441	470 MHz -694 MHz	636.2	-65.26	NA	-54	Pas
NVNT	3-DH5	2441	694 MHz -1000 MHz	932.15	-63.25	NA	-36	Pas
NVNT	3-DH5	2441	1000 MHz -2398 MHz	2394.5	-44.12	NA	-30	Pas
NVNT	3-DH5	2441	2485.5 MHz -12750 MHz	6783.5	-44.55	NA	-30	Pas
NVNT	3-DH5	2480	30 MHz -47 MHz	38.75	-66.11	NA	-36	Pas



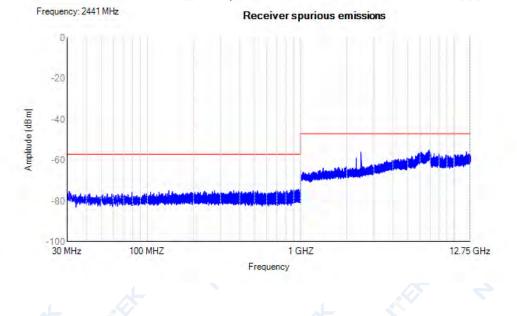
NVNT	3-DH5	2480	47 MHz -74 MHz	47.95	-66.14	NA	-54	Pass
NVNT	3-DH5	2480	74 MHz -87.5 MHz	83.2	-66.8	NA	-36	Pass
NVNT	3-DH5	2480	87.5 MHz -118 MHz	92.7	-66.16	NA	-54	Pass
NVNT	3-DH5	2480	118 MHz -174 MHz	158.55	-65.26	NA	-36	Pass
NVNT	3-DH5	2480	174 MHz -230 MHz	204.15	-65.56	NA	-54	Pass
NVNT	3-DH5	2480	230 MHz -470 MHz	436.9	-64.72	NA	-36	Pass
NVNT	3-DH5	2480	470 MHz -694 MHz	693.1	-64.67	NA	-54	Pass
NVNT	3-DH5	2480	694 MHz -1000 MHz	919.15	-64.16	NA	-36	Pass
NVNT	3-DH5	2480	1000 MHz -2398 MHz	2392.5	-43.99	NA	-30	Pass
NVNT	3-DH5	2480	2485.5 MHz -12750 MHz	6953.5	-44.44	NA	-30	Pass

Tx. Spurious NVNT 1-DH5 2402MHz

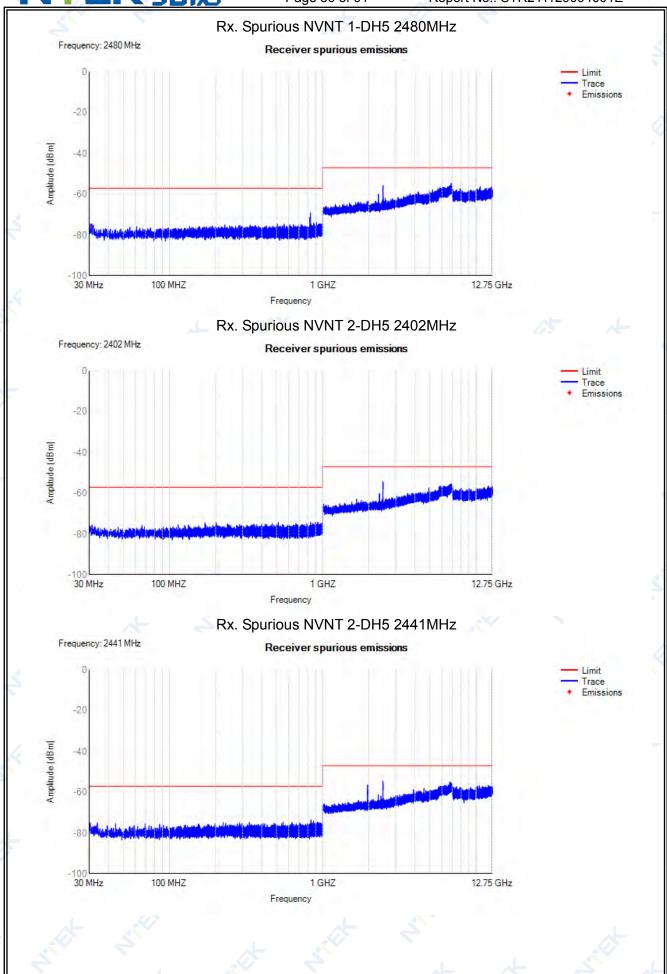




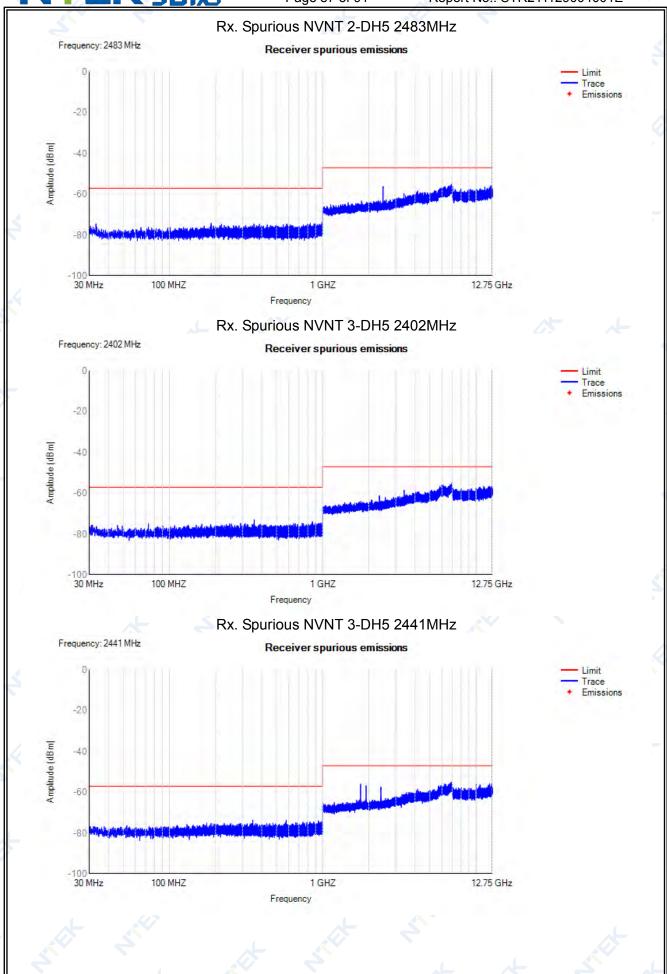
Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
			30		4			
NVNT	1-DH5	2402	MHz	986.25	-74.17	NA	-57	Pass
	1 2110	2102	-1000	000.20	7 1.17	10.0	01	1 400
			MHz	-W				
			1000 MHz	2				
NVNT	1-DH5	2402	-12750	6949.24052248649	-55.05	NA	-47	Pass
			MHz					
			30	* 3				*
NVNT	1-DH5	2441	MHz	969.4	-74.17	NA	-57	Pass
144141	1 5110	2171	-1000	000.4	7 7.17	_ 10/		1 400
	一大		MHz	1				
			1000 MHz					
NVNT	1-DH5	2441	-12750	6861	-54.94	NA	-47	Pass
		4	MHz					1
			30					
NVNT	1-DH5	2480	MHz	832.5	-69.07	NA	-57	Pass
INVINI	1-003	2400	-1000	632.5	-09.07	INA	-57	Fa55
			MHz		2			
			1000	* 2	Ť			
NVNT	1-DH5	2480	MHz -12750	6887	-54.55	NA	-47	Pass
	4		MHz		~			
			30	4				
N 10 11 11 11 11 11 11 11 11 11 11 11 11	0.0115	0.400	MHz	222.25	S-1.15	4		_
NVNT	2-DH5	2402	-1000	929.35	-74.15	NA	-57	Pass
			MHz	2				
		*	1000	,				
NVNT	2-DH5	2402	MHz	2471	-54.32	NA	-47	Pass
			-12750 MHz	L				
			30					4
2			MHz					
NVNT	2-DH5	2441	-1000	838.05	-73.48	NA	-57	Pass
	0	F 2	MHz					
			1000	4				
NVNT	2-DH5	2441	MHz	2473.5	-54.49	NA	-47	Pass
	2 21.10		-12750		01.10			. 455
			MHz 30	-				
	.		MHz					
NVNT	2-DH5	2483	-1000	988	-73.67	NA	-57	Pass
			MHz					
			1000					
NVNT	2-DH5	2483	MHz	6969.5	-54.92	NA	-47	Pass
INVINI	2-0113	2403	-12750	0909.5	-54.92	IVA	-41	1 033
			MHz					
			30					X -
NVNT	3-DH5	2402	MHz -1000	357.6	-73.04	NA	-57	Pass
			MHz	, 4				
			1000		1			
K I\ / K ! T	2 0115	2400	MHz	6000	E4 05	NIA.	47	Daas
NVNT	3-DH5	2402	-12750	6960	-54.85	NA	-47	Pass
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MHz		7			+



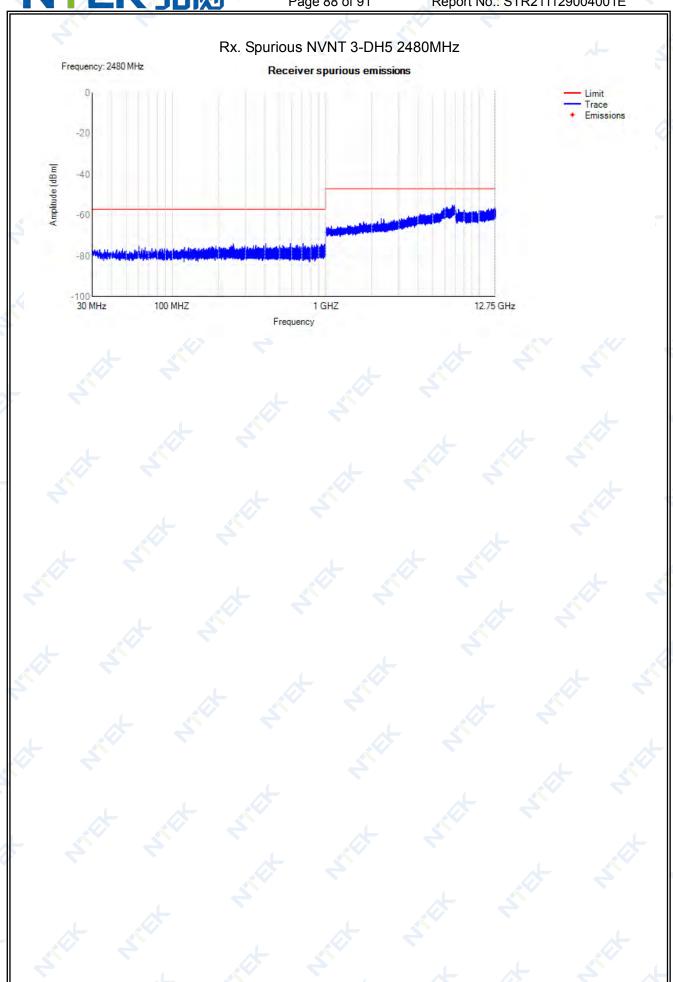
NVNT	3-DH5	2441	30 MHz -1000 MHz	350.55	-73.65	NA	-57	Pass
NVNT	3-DH5	2441	1000 MHz -12750 MHz	6896	-54.96	NA	-47	Pass
NVNT	3-DH5	2480	30 MHz -1000 MHz	588.8	-73.73	NA	-57	Pass
NVNT	3-DH5	2480	1000 MHz -12750 MHz	6721.5	-54.99	NA	-47	Pass



Rx. Spurious NVNT 1-DH5 2441MHz



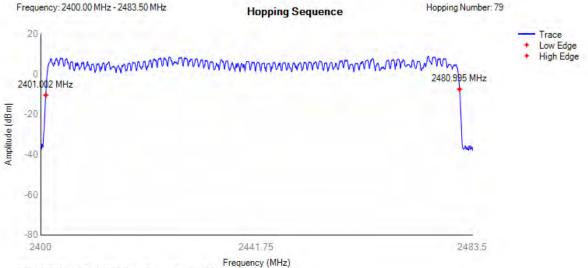
Limit Trace Emissions



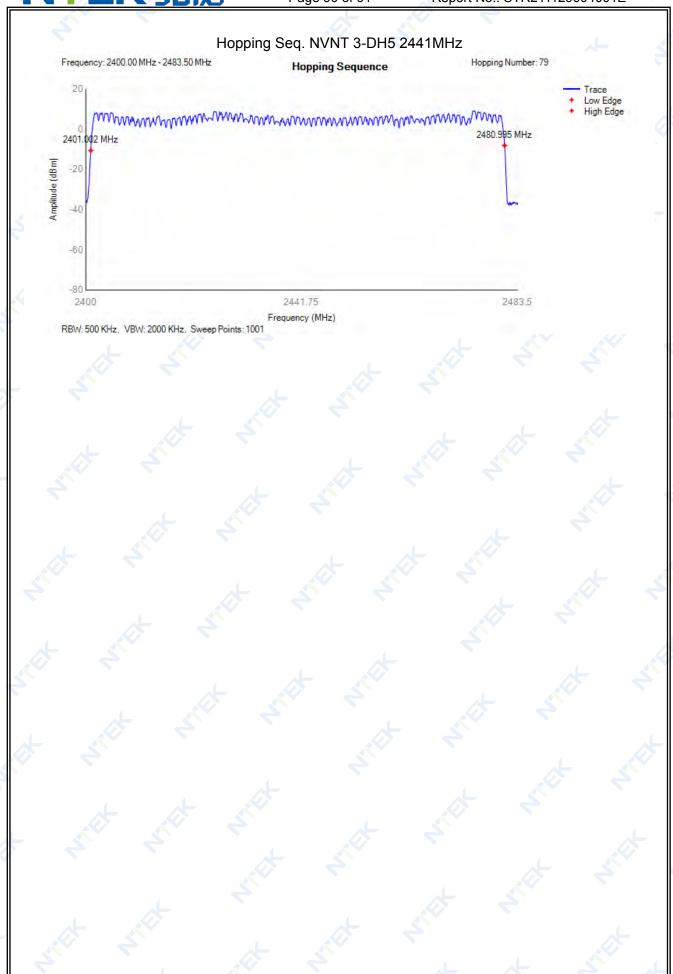

-60

2400

Report No.: STR211129004001E


2483.5

11.10 Hopping Sequence										
	Condition	Mode	Hopping Number	Limit	Band Allocation (%)	Limit Band Allocation (%)	Verdict			
	NVNT	1-DH5	79	15	95.3	70	Pass			
	NVNT	2-DH5	79	15	95.8	70	Pass			
	NI\/NIT	3 DHE	70	15	05.9	70	Dace			


Frequency (MHz) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 1001

Hopping Seq. NVNT 2-DH5 2441MHz

RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 1001

12. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT