RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product : Mobile Phone Trade Mark : Blackview Model Name : BV8800 Family Model : N/A Report No. : STR211129004002E

Prepared for

DOKE COMMUNICATION (HK) LIMITED.

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

NTEK北测

Page 2 of 67

Report No.: STR211129004002E

TEST RESULT CERTIFICATION Applicant's name.....: DOKE COMMUNICATION (HK) LIMITED. WANCHAI HK, CHINA. Manufacturer's Name: Shenzhen DOKE Electronic Co., Ltd. Guangming District, Shenzhen, China. **Product description** Product name: Mobile Phone Trademark Blackview Model Name BV8800 Family Model N/A Standards: ETSI EN 300 328 V2.2.2 (2019-07) This device described above has been tested by Shenzhen NTEK, and the test results show that the equipment under test (EUT) is in compliance with the 2014/53/EU RED Directive Art.3.2 requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personnel only, and shall be noted in the revision of the document. Date of Test Date (s) of performance of tests Nov 29, 2021 ~ Dec 29, 2021 Date of Issue Dec 29, 2021 Test Result Pass Muhri Lee **Testing Engineer** (Mukzi Lee) Authorized Signatory: (Alex Li)

N2017.06.06.0614.V.1.

Page 3 of 67

Table of Contents	Page
1. GENERAL INFORMATION	6
1.1 GENERAL DESCRIPTION OF EUT	6
1.2 INFORMATION ABOUT THE EUT	7
1.3 TEST CONDITIONS AND CHANNEL	12
1.4 DESCRIPTION OF TEST CONDITIONS	13
1.5 DESCRIPTION OF SUPPORT UNITS	14
1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	15
2 . SUMMARY OF TEST RESULTS	16
2.1 TEST FACILITY	17_
2.2 MEASUREMENT UNCERTAINTY	L X 17
3. TEST PROCEDURES AND RESUTLS	
3.1 EQUIVALENT ISOTROPIC RADIATED POWER	18
3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED	-
3.1.2 TEST PROCEDURE	18
3.1.3 TEST SETUP	
3.1.4 TEST RESULTS	19
3.2 . PEAK POWER DENSITY	20
3.2.1 LIMITS OF POWER SPECTRAL DENSITY 3.2.2 TEST PROCEDURE	20
3.2.3 TEST SETUP	20
3.2.4 TEST RESULTS	L_21
3.3 . OCCUPIED CHANNEL BANDWIDTH	22
3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	22
3.3.2 TEST PROCEDURE	22
3.3.3 DEVIATION FROM TEST STANDARD	22
3.3.5 TEST RESULTS	23
3.4 . TRANSMITTER UNWANTED EMISSIONS IN THE OUT 3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIO	
DOMAIN	24
3.4.2 TEST PROCEDURE	24
3.4.3 DEVIATION FROM TEST STANDARD	25
3.4.4 TEST SETUP	
3.4.5 TEST RESULTS	26
3.5 . ADAPTIVE (CHANNEL ACCESS MECHANISM) 3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS /	
3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS / MODULATION TECHNIQUES	AND LILIT FOR WIDE BAND
3.5.2 TEST PROCEDURE	28
	·

Table of Contents	Page
3.5.3 TEST SETUP CONFIGURATION 3.5.4 LIST OF MEASUREMENTS 3.5.5 TEST RESULTS	28 29 30
3.6 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN 3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURI	31 🔷 OUS
DOMAIN	31
3.6.2 TEST PROCEDURE	31
3.6.3 DEVIATION FROM TEST STANDARD 3.6.4 TEST SETUP	31 32
3.6.5 TEST RESULTS(Radiated measurement)	32
3.6.6 TEST RESULTS (Conducted measurement)	35
3.7 . RECEIVER SPURIOUS RADIATION	35
3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION	35
3.7.2 TEST PROCEDURE	35
3.7.3 DEVIATION FROM TEST STANDARD	35
3.7.4 TEST SETUP	36
3.7.5 TEST RESULTS(Radiated measurement) 3.7.6 TEST RESULTS (Conducted measurement)	37 38
3.8 . RECEIVER BLOCKING	39
3.8.1 PERFORMANCE CRITERIA	39
3.8.2 LIMITS OF RECEIVER BLOCKING	39
3.8.3 TEST PROCEDURE	41
3.8.4 DEVIATION FROM TEST STANDARD	41
3.8.5 TEST SETUP	41
3.8.6 TEST RESULTS	42
4. TEST RESULTS	43
	43
4.1RF Output Power	43
4.2 Power Spectral Density 4.3 Occupied Channel Bandwidth	45 47
4.4 Transmitter unwanted emissions in the spurious domain	50
4.5 Receiver spurious emissions	53
2M 2	55
4.1 RF Output Power	55
4.2 Power Spectral Density	57
4.3 Occupied Channel Bandwidth	59
4.4 Transmitter unwanted emissions in the out-of-band domain	61 62
 4.5 Transmitter unwanted emissions in the spurious domain 4.6 Receiver spurious emissions 	65
5 . EUT TEST PHOTO	67
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	67
	01

Page 5 of 67

Report No.: STR211129004002E

Depart No.	Version	Description	laguad Data
Report No.	Version	Description	Issued Date
STR211129004002E	Rev.01	Initial issue of report	Dec 29. 2021
	4.)		4
4		4 - 2° - 2	
	<u> </u>		* *
			S ^V
<u> </u>			
		~ ~	
		A A	<u> 21. 71</u>
Str. 1			
•		~	*
AL ARE	7	4	AT ST
			· · ·
		~	
			- ¢
<u>+ + </u> →			·
	AT CH	<u> </u>	* *

Page 6 of 67

Report No.: STR211129004002E

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

ile Phone Jency: 2402~2480 MHz e: GFSK		
uency: 2402~2480 MHz e: GFSK		
e: GFSK		
daptive Adaptive equipment		
ories 3		
nnel Please see Note 2.		
ation: PIFA Antenna		
eak) 1.48dBi		
CE03 40V~50/60Hz 0.8A /3.0A or DC 9.0V3.0A or V2.5A or DC 15.0V2.0A or V1.5A		
mAh, 32.263Wh		
pattery or DC 5V from Adapter.		
nanual		
TE926_MAIN_PCB_V1.1		

Note:

2

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Channel	Frequency (MHz)
00	2402
L 01 -	2404
5	
38	2478
39	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

- FHSS
- \boxtimes other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment:
 - The maximum number of Hopping Frequencies:
 - The minimum number of Hopping Frequencies:
- The (average) Dwell Time:

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- \boxtimes adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

- The maximum Channel Occupancy Time implemented by the equipment: ./. ms
- \boxtimes The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - The equipment can switch dynamically between Frame Based and Load Based equipment
 - The CCA time implemented by the equipment: / μ s
 - The equipment has implemented a non-LBT based DAA mechanism
- The equipment can operate in more than one adaptive mode

Page 8 of 67

Report No.: STR211129004002E

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.):

The maximum (corresponding) Duty Cycle:

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

- RF Output Power
- GFSK
- Power Spectral Density
 GFSK
- Duty cycle, Tx-Sequence, Tx-gap N/A
- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment) N/A
- Hopping Frequency Separation (only for FHSS equipment)
 N/A
- Medium Utilization
 N/A
- Adaptivity

N/A

- Receiver Blocking
 GFSK
- Nominal Channel Bandwidth

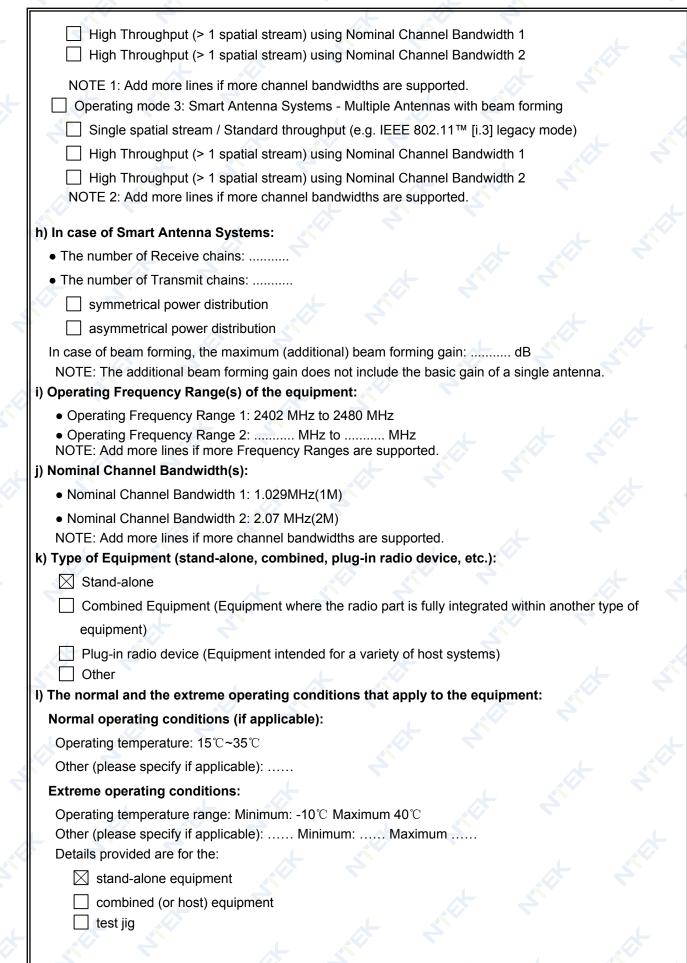
GFSK

• Transmitter unwanted emissions in the OOB domain

GFSK

- Transmitter unwanted emissions in the spurious domain GFSK
- Receiver spurious emissions
- GFSK

g) The different transmit operating modes (tick all that apply):


Operating mode 1: Single Antenna Equipment

- Equipment with only one antenna
- Equipment with two diversity antennas but only one antenna active at any moment in time
- Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one antenna is used (e.g. IEEE 802.11[™] [i.3] legacy mode in smart antenna systems)
- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
 - Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)

NTEK 北测

Page 9 of 67

Report No.: STR211129004002E

Page 10 of 67

			~~~
The intended combi	nation(s) of the radio equi	pment power settin	gs and one or more antenna
assemblies and thei	r corresponding e.i.r.p. lev	vels:	
Antenna Type: PIFA	Antenna		
Integral Antenna	(information to be provided	in case of conducted	measurements)
Antenna Gain:1	.48dBi		
If applicable, addit	tional beamforming gain (ex	cluding basic antenna	a gain): dB
Temporary I	RF connector provided		
No tempora	ry RF connector provided		
Dedicated Anten	nas (equipment with antenn	a connector)	
Single powe	er level with corresponding a	antenna(s)	
Multiple pov	ver settings and correspond	ing antenna(s)	
Number of diffe	erent Power Levels:		
Power Level 1:	: dBm		
Power Level 2:	: dBm		
Power Level 3			
NOTE 1: Add r	more lines in case the equip	ment has more powe	r levels.
NOTE 2: These	e power levels are conducte	ed power levels (at an	itenna connector).
For each of the Powe	er Levels, provide the intender	ed antenna assembli	es, their corresponding gains
Number of ante	I: dBm enna assemblies provided fo		
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
<u>1M</u>	1.48	-5.34	
2M	1.48	-5.32	
NOTE 3: Add r	nore rows in case more ante	enna assemblies are	supported for this power level.
	2: dBm		
Number of ante	enna assemblies provided fo	or this power level:	<u></u>
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1		5	
2	× ~		
3			2
NOTE 4: Add r	nore rows in case more ante	enna assemblies are	supported for this power level.
	: dBm enna assemblies provided fo	or this power level:	<u>+</u> <u></u>
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1 2 7			
2		4	× 5
3			

NOTE 5: Add more rows in case more antenna assemblies are supported for this power level.

# NTEK 北测®

Page 11 of 67

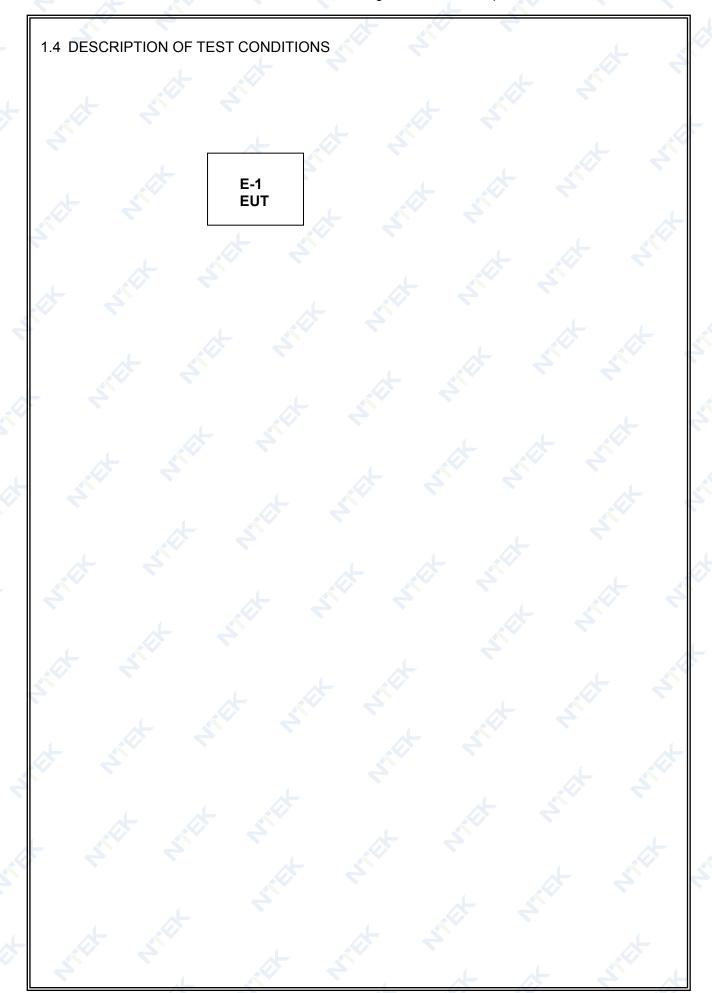
n) The nominal voltages of the stand-alone radio equipment or the n	ominal voltages of the
combined (host) equipment or test jig in case of plug-in devices:	
Details provided are for the:	
Stand-alone equipment	
Combined (or host) equipment	
🗌 test jig	
Supply Voltage 🔲 AC mains State AC voltage V	
DC State DC voltage: DC 3.85V	
In case of DC, indicate the type of power source	
Internal Power Supply	
External Power Supply or AC/DC adapter: DC 5V	
Battery: DC 3.85V	
Other:	
o) Describe the test modes available which can facilitate testing:	
See clause 1.3	
p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802	2.15.4™ [i.4], proprietary, etc.):
Bluetooth®	
q) If applicable, the statistical analysis referred to in clause 5.4.1 q)	
(to be provided as separate attachment)	
r) If applicable, the statistical analysis referred to in clause 5.4.1 r)	
(to be provided as separate attachment)	
s) Geo-location capability supported by the equipment:	
☐ Yes	
The geographical location determined by the equipment as define	ed in clause 4.3.1.13.2 or
clause 4.3.2.12.2 is not accessible to the user	
No 🔶	
t) Describe the minimum performance criteria that apply to the equip	oment (see clause 4.3.1.12.3 or
clause 4.3.2.11.3):	
GFSK(CH39)=0.54%	

### Page 12 of 67 Report No.: STR211129004002E

1.3 TEST CONDITIONS AND CHANNEL

	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	40℃ ~ -10℃ Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.85V	/

1.2			
	Test Channel	EUT Channel	Test Frequency (MHz)
	Lowest	CH00	2402
	Middle	CH19	2440
ŀ	Highest	CH39	2480


#### Note:

(1) The HT 40  $^\circ\!C$  and LT -10  $^\circ\!C$  was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

Page 13 of 67

Report No.: STR211129004002E



#### 1.5 DESCRIPTION OF SUPPORT UNITS

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

		4		
Item	Equipment	Model/Type No.	Series No.	Note
E-1	Mobile Phone	BV8800	N/A	EUT
	4		A St	4
		* *		
	X	Str. I		
t .				

Item	Туре	Shielded Type	Ferrite Core	Length	Note
		\$ \$	- 4 ⁻		
	<u>,</u>	- 4			-
X	- 5		1		4
5				4 r	×
			~		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength_a column.

#### Page 15 of 67

Report No.: STR211129004002E

### 1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra ion period
<b>EMI</b> Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
Turn Table	EM	SC100 1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna 🥢	EM	EM-AH-10180	2011071402	2021.03.29	2022.03.28	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2021.04.27	2022.04.26	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835S E	980246	2021.07.01	2022.06.30	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2021.04.27	2022.04.26	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2021.07.01	2022.06.30	1 year
Power Splitter	Mini-Circuits/U SA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2021.07.01	2022.06.30	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2021.04.27	2022.04.26	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2021.07.01	2022.06.30	1 yeai
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
Temperature & Humitidy Chamber	GIANT FORCE	GTH-056P	GF-94454-1	2021.04.27	2022.04.26	1 year

#### Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Report No.: STR211129004002E

### 2. SUMMARY OF TEST RESULTS

	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
5	TRANSMITTER PARAMETERS	
4.3.2.2	RF Output Power	Pass
4.3.2.3	Power Spectral Density	Pass
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.2.5	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.2.6	Adaptivity	Not Applicable (See Note 1)
4.3.2.7	Occupied Channel Bandwidth	Pass
4.3.2.8	Transmitter unwanted emission in the OOB domain	Pass
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	
4. <mark>3</mark> .2.10	Receiver Spurious Emissions	Pass
4.3.2.11	Receiver Blocking	Pass

#### Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

Page 17 of 67 Report No.: STR211129004002E

#### 2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

#### 2.2 MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

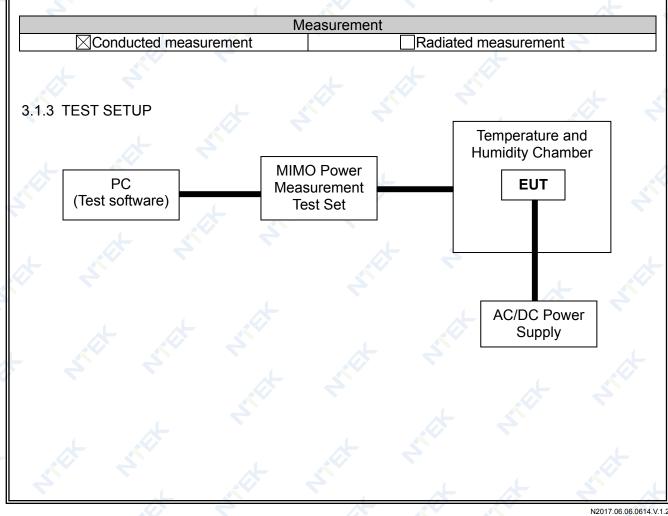
Measurement uncertainty				
No.     Item       1     Occupied Channel Bandwidth		Uncertainty (P=95)		
		± 4.7%		
2	RF output Power, conducted	± 0.9dB		
3	Power Spectral Density, conducted	± 2.6dB		
4 Unwanted emissions, conducted		± 2.2dB		
5 <	All emissions, radiated	± 5.3dB		
6	Temperature	± 0.5℃		
7	Humidity	± 2.0%		
8 🖉	Time	± 1.0%		

Page 18 of 67

Report No.: STR211129004002E

### 3. TEST PROCEDURES AND RESUTLS

3.1 EQUIVALENT ISOTROPIC RADIATED POWER


### 3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER

Refer to chapter 4.3.2.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	RF OUTPUT POWER				
	Condition	Limit			
-	Non-adaptive wide band modulations systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.			
	Adaptive wide band modulations systems	≤20dBm			

### 3.1.2 TEST PROCEDURE

### Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)



Page 19 of 67

Report No.: STR211129004002E

### 3.1.4 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	<b>20</b> ℃	Relative Humidity:	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX Low channel / Middle Channel / High Channel		

Test data reference attachment

Page 20 of 67

Report No.: STR211129004002E

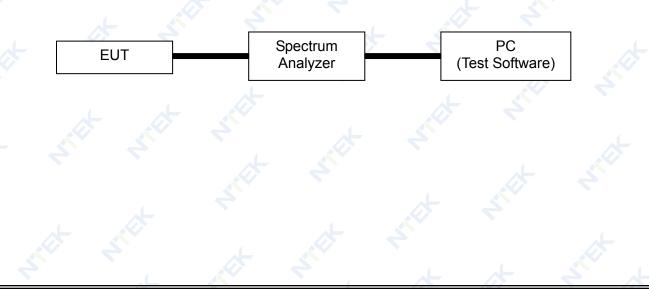
### 3.2. PEAK POWER DENSITY

### 3.2.1 LIMITS OF POWER SPECTRAL DENSITY

Refer to chapter 4.3.2.3.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER		
Condition Limit		
For equipment using wide band modulations other than FHSS	≤10 dBm/MHz	

### 3.2.2 TEST PROCEDURE


Refer to chapter 5.4.3.2 of ETSI EN 300 328 V2.2.2 (2019-07)

MedSurement				
Conducted measurement	Radiated measurement			

The setting	of the	Spectrum Analyzer	

Start Frequency	2400MHz
Stop Frequency	2483.5MHz
Detector	RMS
Sweep Point	> 8 350; for spectrum analysers not supporting this number of sweep points, the
	frequency band may be segmented
1 A	For non-continuous transmissions: 2 × Channel Occupancy Time
	× number of sweep points
Sweep time:	For continuous transmissions: 10 s; the sweep time may be
4	increased further until a value where the sweep time has no
<u>ک</u> ـ ا	further impact anymore on the RMS value of the signal.
RBW / VBW	10KHz / 30KHz

### 3.2.3 TEST SETUP



Page 21 of 67

Report No.: STR211129004002E

### 3.2.4 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	<b>26</b> ℃	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX-GFSK(CH00/CH19/CH39)		

Test data reference attachment

Page 22 of 67

Report No.: STR211129004002E

### 3.3. OCCUPIED CHANNEL BANDWIDTH

### 3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH

Refe	r to chapter 4.3.2	.7.3 of ETSI EN 300 328 V2.2.2 (20	19-07)		
7	OCCUPIED CHANNEL BANDWIDTH				
		Condition	Limit		
	All types of equipment using wide band modulations other than FHSS		Shall fall completely within the band 2400 to 2483.5 MHz		
2.	Additional	For non-adaptive using wide band modulations other than FHSS system and E.I.R.P >10 dBm	Less than 20 MHz		
¢†	requirement	For non-adaptive frequency hopping system and E.I.R.P >10 dBm	Less than 5 MHz		

### 3.3.2 TEST PROCEDURE

#### Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	M	easurement		
	Imeasurement	Radiated measurement		
The setting of the Spe	ctrum Analyzer	At and the		
Center Frequency	The centre frequence	cy of the channel under test		
Frequency Span	Frequency Span 2 × Nominal Channel Bandwidth			
Detector	RMS			
RBW	RBW ~ 1 % of the span without going below 1 %			
VBW	3 × RBW			
Trace	Max hold			
Sweep time	1s	4		

### 3.3.3 DEVIATION FROM TEST STANDARD

No deviation

### 3.3.4 TEST SETUP



These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software has been activated to set the EUT on specific status.

Page 23 of 67

Report No.: STR211129004002E

### 3.3.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX-GFSK(CH00/CH19/CH39)		×

### Test data reference attachment

### 3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

### 3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.2.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

Condition		Limit					
Under all test conditions	domain but outside	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.					
ourious Domain Out Of Band Doma	in (OOB) Allocated Band	Out Of Band Domain (OOB)	Spurious Doma				
А							
В							
c							
·			-				
-20 dBm/MHz e.i.r.p.		5 MHz 2 483,5 MHz + BW 2 483,5 upied Channel Bandwidth in MHz or 1 M					
-10 dBm/MHz e.i.r.p. -20 dBm/MHz e.i.r.p. Spurious Domain limits 3.4.2 TEST PROCEDURE	BW = Occu	upied Channel Bandwidth in MHz or 1 M					
-10 dBm/MHz e.i.r.p. -20 dBm/MHz e.i.r.p. Spurious Domain limits 3.4.2 TEST PROCEDURE	BW = Occu	upied Channel Bandwidth in MHz or 1 M 019-07)					
2 400 MHz - 2BW 2 400 MHz - -10 dBm/MHz e.i.r.p. -20 dBm/MHz e.i.r.p. Spurious Domain limits 3.4.2 TEST PROCEDURE Refer to chapter 5.4.8.2 of ETS ⊠Conducted measure	BW = Occu SI EN 300 328 V2.2.2 (2 Measuremer	upied Channel Bandwidth in MHz or 1 M 019-07)	Hz whichever is greate				
-10 dBm/MHz e.i.r.p. -20 dBm/MHz e.i.r.p. Spurious Domain limits 3.4.2 TEST PROCEDURE Refer to chapter 5.4.8.2 of ETS ⊠Conducted measure	BW = Occu SI EN 300 328 V2.2.2 (2 Measuremen ment	upied Channel Bandwidth in MHz or 1 M 019-07)	Hz whichever is greate				
-10 dBm/MHz e.i.r.p. -20 dBm/MHz e.i.r.p. Spurious Domain limits 3.4.2 TEST PROCEDURE Refer to chapter 5.4.8.2 of ETS	BW = Occu SI EN 300 328 V2.2.2 (2 Measuremen ment	upied Channel Bandwidth in MHz or 1 M 019-07)	Hz whichever is greate				
-10 dBm/MHz e.i.r.p. -20 dBm/MHz e.i.r.p. Spurious Domain limits 3.4.2 TEST PROCEDURE Refer to chapter 5.4.8.2 of ETS Conducted measure he setting of the Spectrum Ana	BW = Occu SI EN 300 328 V2.2.2 (2 Measuremen ment	upied Channel Bandwidth in MHz or 1 M 019-07)	Hz whichever is greate				
-10 dBm/MHz e.i.r.p. -20 dBm/MHz e.i.r.p. Spurious Domain limits 3.4.2 TEST PROCEDURE Refer to chapter 5.4.8.2 of ETS ⊠Conducted measure he setting of the Spectrum Ana Span	BW = Occu SI EN 300 328 V2.2.2 (2 Measuremen ment Ilyzer OHz	upied Channel Bandwidth in MHz or 1 M 019-07)	Hz whichever is greate				
-10 dBm/MHz e.i.r.p. -20 dBm/MHz e.i.r.p. Spurious Domain limits 3.4.2 TEST PROCEDURE Refer to chapter 5.4.8.2 of ETS ⊠Conducted measure he setting of the Spectrum Ana Span Filter Mode	BW = Occu SI EN 300 328 V2.2.2 (2 Measuremer ment lyzer OHz Channel Filter Max Hold	upied Channel Bandwidth in MHz or 1 M 019-07) nt Radiated measuremen ideo triggering is not possible	Hz whichever is great				
-10 dBm/MHz e.i.r.p. -20 dBm/MHz e.i.r.p. Spurious Domain limits 3.4.2 TEST PROCEDURE Refer to chapter 5.4.8.2 of ETS Conducted measure he setting of the Spectrum Ana Span Filter Mode Trace Mode	BW = Occu SI EN 300 328 V2.2.2 (2 Measuremer ment lyzer 0Hz Channel Filter Max Hold Video trigger; in case v	upied Channel Bandwidth in MHz or 1 M 019-07) nt Radiated measuremen ideo triggering is not possible	Hz whichever is great				
-10 dBm/MHz e.i.r.p. -20 dBm/MHz e.i.r.p. Spurious Domain limits 3.4.2 TEST PROCEDURE Refer to chapter 5.4.8.2 of ETS Conducted measure he setting of the Spectrum Ana Span Filter Mode Trace Mode Trigger Mode	BW = Occu SI EN 300 328 V2.2.2 (2 Measuremen ment Nyzer OHz Channel Filter Max Hold Video trigger; in case v trigger source may be to RMS	upied Channel Bandwidth in MHz or 1 M 019-07) nt Radiated measuremen ideo triggering is not possible	Hz whichever is greatent				


Page 25 of 67

Report No.: STR211129004002E

### 3.4.3 DEVIATION FROM TEST STANDARD

No deviation

3.4.4 TEST SETUP



According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

Page 26 of 67

Report No.: STR211129004002E

### 3.4.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	<b>24</b> ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V 🔔 💦
Test Mode :	TX-GFSK(CH00/CH39)		

Test data reference attachment

### 3.5. ADAPTIVE (CHANNEL ACCESS MECHANISM)

3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR WIDE BAND MODULATION TECHNIQUES

### Refer to chapter ETSI EN 300 328 V2.2.2 (2019-07)

	Operational Mode				
	LBT based Detect a		BT based Detect ar	nd Avoid	
Requirement	Non-LBT based Detect and Avoid	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as note 2)	
Minimum Clear Channel Assessment (CCA) Time	NA	not less than 18 us (see note 1)	(see note 2)	not less than 18 us (see note 1)	
Maximum Channel Occupancy (COT) Time	<40 ms	1ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)	
Minimum Idle Period	5 % minimum of 100 µs	5% of COT	(see note 2)	NA	
Extended CCA check		NA	(see note 2)	R*CCA (see note 4)	
Short Control Signalling Transmissions	Maximum duty cycle of 10% within an observation period of 50 ms (see note 5)				

Note 1: The CCA time used by the equipment shall be declared by the supplier.

Note 2: Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect as described in IEEE 802.11[™]-2012 [i.3], clause 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in IEEE 802.15.4[™]-2011 [i.4], clause 4, clause 5 and clause 8 providing the equipment complies with the conformance requirements referred to in clause 4.3.2.6.3.4.

Note 3: q is selected by the manufacturer in the range [4...32]

Note 4: The value of R shall be randomly selected in the range [1...q]

Note 5: Adaptive equipment may or may not have Short Control Signaling Transmissions.

#### Interference threshold level

The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

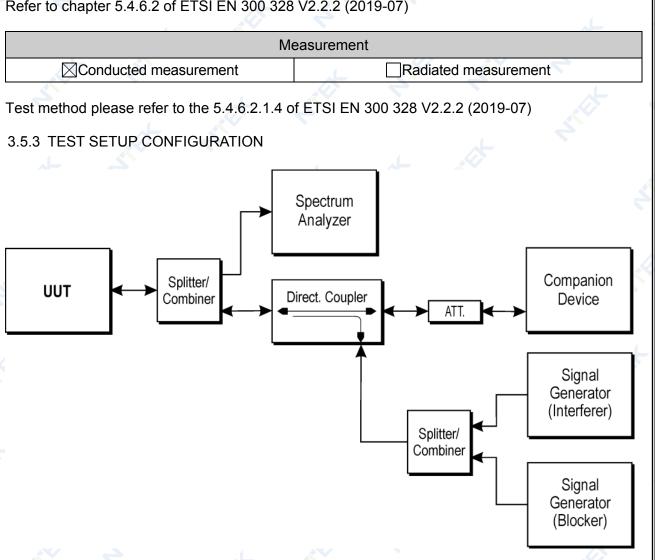

TL = -70 dBm/MHz + 10 × log10 (100 mW / Pout) (Pout in mW e.i.r.p.)

	Table 9: Unwanted Signal parameters					
	Wanted signal mean power	Unwanted signal	Unwanted CW			
	from companion device 🤝	frequency 🔬 🔨	signal power (dBm)			
	(dBm)	(MHz)				
7	-30/ sufficient to maintain the	2 395 or 2 488,5	-35			
	link(see note 2)	(see note 1)	(see note 2)			

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1. NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz. NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.

### 3.5.2 TEST PROCEDURE

Refer to chapter 5.4.6.2 of ETSI EN 300 328 V2.2.2 (2019-07)



N2017.06.06.0614.V.1.

Report No.: STR211129004002E

### 3.5.4 LIST OF MEASUREMENTS

UUT operational Mode				
Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced)		

Test Parameter	Remarks	PASS/FAIL
Adaptive (Frame Based Equipment)	Not Applicable	N/A
Adaptive (Load Based Equipment)	N/A	N/A
Short Control Signaling Transmissions	N/A	N/A
	Adaptive (Frame Based Equipment) Adaptive (Load Based Equipment)	Adaptive (Frame Based Equipment)Not ApplicableAdaptive (Load Based Equipment)N/A

N2017.06.06.0614.V.1.2

Page 30 of 67

Report No.: STR211129004002E

### 3.5.5 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	<b>24</b> ℃	Relative Humidity :	54%
Pressure :	1010 hPa 🔶 📈	Test Power :	N/A 🔔 🏑
Test Mode :	N/A		

Note: Not Applicable

Report No.: STR211129004002E

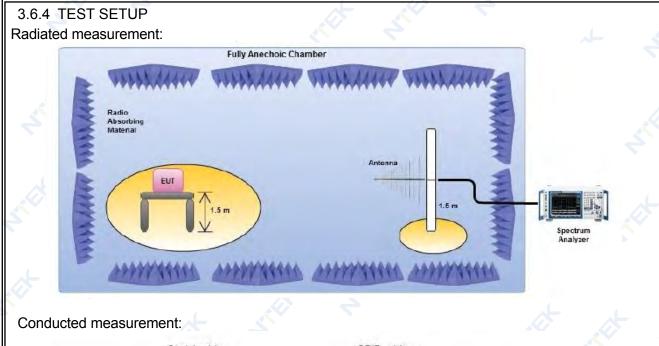
3.6. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Refer to chapter 4.3.2.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

### 3.6.2 TEST PROCEDURE


Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Me	asurement			
Conduc	ted measurement	⊠Radia	ted measurer	ment	
The setting of the S	pectrum Analyzer	.1	4		
RBW	100K(<1GHz) / 1M	(>1GHz)			Ś
VBW	300K(<1GHz) / 3M	(>1GHz)	×		

### 3.6.3 DEVIATION FROM TEST STANDARD

No deviation

Page 32 of 67 Report No.: STR211129004002E





- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

Page 33 of 67

Report No.: STR211129004002E

### 3.6.5 TEST RESULTS(Radiated measurement)

BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)					
EUT :	Mobile Phone Model Name : BV8800				
Temperature :	24°C	Relative Humidity :	57 %		
Pressure :	1012 hPa	Test Voltage :	DC 3.85V		
Test Mode :	TXGFSK(CH39)				

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Kemark
V	46.66	-68.79	11.09	-57.70	-36	-21.70	peak
V	89.32	-72.86	10.01	-62.85	-54	-8.85	peak
V	189.43	-76.85	11.11	-65.74	-54	-11.74	peak
V	353.59	-72.32	9.68	-62.64	-36	-26.64	peak
V	487.51	-75.28	10.96	-64.32	-54	-10.32	peak
H	46.37	-71.97	10.51	-61.46	-36	-25.46	peak
Н	102.55	-70.55 🧷	9.92	-60.63	-54	-6.63	peak
Н	221.77	-77.90	9.77	-68.13	-54	-14.13	peak
Н	464.89 💉	-74.28	11.41	-62.87	-36	-26.87	<pre>&gt; peak</pre>
H	540.44	-75.02	10.39	-64.63	-54	-10.63	peak

### Remark:

1.Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level. 2.All the modes had been tested, but only the worst data recorded in the report.

Report No.: STR211129004002E

ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)					
EUT :	Mobile Phone	Model Name :	BV8800		
Temperature :	<b>26°</b> ℃	Relative Humidity :	60 %		
Pressure :	1012 hPa	Test Voltage :	DC 3.85V		
Test Mode : TX-GFSK (CH00/CH19/CH39)					
			~ ~		

Polar	Frequency (MHz)	Meter Reading (dBm)	Factor (dB)	Emission	Limits	Margin	Remark
(H/V)				Level (dBm)	(dBm)	(dB)	
				quency:2402			
V	2284.104	-74.31	10.04	-64.27	-30	-34.27	peak
V	3452.427	-68.59	9.58	-59.01	-30	-29.01	peak
V	2253.17	-68.39	10.53	-57.86	-30	-27.86	peak
V	4640.047	-72.68	10.65	-62.03	-30	-32.03	peak
H	2799.761	-69.08	10.83	-58.25	-30	-28.25	peak
Н	3356.831	-69.15	11.07	-58.08	-30	-28.08	peak
НĘ	2750.027	-70.35	10.74	-59.61	-30	-29.61	peak
Н	4410.444	-72.64 🗸	11.31	-61.33	-30	-31.33	peak
		L or	peration free	quency:2440			
V	2842.232	-68.96	10.97	-57.99	-30	-27.99	peak
V	3001.601	-77.4	9.77	-67.63	-30	-37.63	peak
V	2288.811	-77.94	11.48	-66.46	-30	-36.46	peak
V	3298.091	-73.86	10.84	-63.02	-30	-33.02	peak
Н	2025.502	-67.75	9.93	-57.82	-30	-27.82	peak
Н	5178.789	-73.37	11.34	-62.03	-30	-32.03	peak
H	2202.66	-77.92	9.65	-68.27	-30	-38.27	peak
Н	4540.28	-70.49	9.59	-60.90	-30	-30.90	peak
		op op	peration free	quency:2480			6
V	2996.709	-73.36	9.93	-63.43	-30	-33.43	peak
V	5883.181	-71.72	10.19	-61.53	-30	-31.53	peak
V	2779.686	-72.26	10.59	-61.67	-30	-31.67	peak
V	4638.781	-75.78	11.39	-64.39	-30	-34.39	peak
Н	2098.709	-75.95	9.99	-65.96	-30	-35.96	<ul> <li>peak</li> </ul>
Н	5520.383	-75.16	11.47	63.69	-30	-33.69	peak
Н	2461.322	-77	10.96	-66.04	-30	-36.04	peak
Н	4001.854	-73.72	10.50	-63.22	-30	-33.22	peak

#### Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 35 of 67

Report No.: STR211129004002E

3.6.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

### 3.7. RECEIVER SPURIOUS RADIATION

### 3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.2.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS					
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth			
💎 30 MHz ~ 1 GHz	-57dBm	100KHz			
1 GHz ~ 12.75 GHz	-47dBm	1MHz			

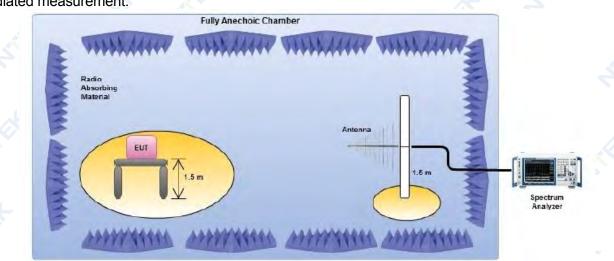
### 3.7.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

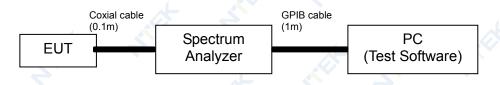
М	easurement		
Conducted measurement	Rac	diated measurement	i 🖉
			5

### The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)	×		
VBW	300K(<1GHz) / 3M(>1GHz)		~	×


### 3.7.3 DEVIATION FROM TEST STANDARD

No deviation


Page 36 of 67 Report No.: STR211129004002E

3.7.4 TEST SETUP

Radiated measurement:



Conducted measurement:



- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

Page 37 of 67

Report No.: STR211129004002E

#### 3.7.5 TEST RESULTS(Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)								
EUT :	Mobile Phone	Model Name :	BV8800					
Temperature :	26°C	Relative Humidity :	60 %					
Pressure :	1012 hPa	Test Voltage :	DC 3.85V					
Test Mode :	RX Mode-GFSK(CH39)		×					

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB) (dBm)		(dBm)	(dB)	Keinark
- V	43.276	-81.6	13.07	-68.53	-57	-11.53	peak
V	116.801	-83.34	11.74	-71.60	-57	-14.60	peak
V	183.22	-80.36	18.94	-61.42	-57	-4.42	peak
V	425.342	-81.41	11.66	-69.75	-57	-12.75	peak
V	477.607	-77.34	11.45	-65.89	-57	-8.89	peak
H	46.53	-79.2	18.64	-60.56	-57	-3.56	peak
H	115.94	-80.15	18.16	-61.99	-57	-4.99	peak
Н	207.153	-77.52	10.34	-67.18	-57	-10.18	peak
Н	316.319	-77.57	15.04	-62.53	-57	-5.53	peak
Н	666.654	-77.26	14.67	-62.59 🧷	-57	-5.59	peak

#### Remark:

Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
 All the modes had been tested, but only the worst data recorded in the report.

Report No.: STR211129004002E

	RX ABOVE 1 GHz WORST- CASE DATA(1GHz ~ 12.75GHz)								
EUT :	Mobile Phone	Model Name :	BV8800						
Temperature :	<b>24</b> ℃	Relative Humidity	54%						
Pressure :	1010 hPa 🔶 🦽	Test Power :	DC 3.85V						
Test Mode :	RX Mode-GFSK(CH39)								

-	Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(	(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
	V	2664.784	-83.01	10.02	-72.99	-47	-25.99	peak
	V	5127.482	-83.53	9.86	-73.67	-47	-26.67	peak
0	V	2120.8	-83.54	10.03	-73.51	-47	-26.51	peak
	V	5412.934	-84.71	16.24	-68.47	-47	-21.47	peak
	Н	2760.405	-81.26	10.18	-71.08	-47	-24.08	peak
	Н	4743.32	-83.04	10.70	-72.34	-47	-25.34	peak
	Н	2999.397	-78.04	7.03	-71.01 🔨	-47	-24.01	peak
	H	3305.479	-83.22	14.63	-68.59 🔍	-47	-21.59	peak
	1. En	nission Level	= Meter Reading	g + Factor	, Margin= Emiss	sion Level	- Limit	
	2. All	the modes h	ad been tested,	but only th	ne worst data re	corded in t	he report.	

3.7.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

### 3.8. RECEIVER BLOCKING

### 3.8.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

### 3.8.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504	-34	cw
(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524 2584 2674	AND AND	AN EX

#### Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

#### NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 40 of 67

Report No.: STR211129004002E

Table 15: Receiver Blocking parameters receiver category 2 equipment								
Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking					
companion device (dBm)	Frequency (MHz)	(dBm) (see note 3)	signal					
(see notes 1 and 3)								
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB)	2 380	-34	CW					
or (-74 dBm + 10 dB) whichever is less	2 504							
(see note 2)	2 300							
	2 584							

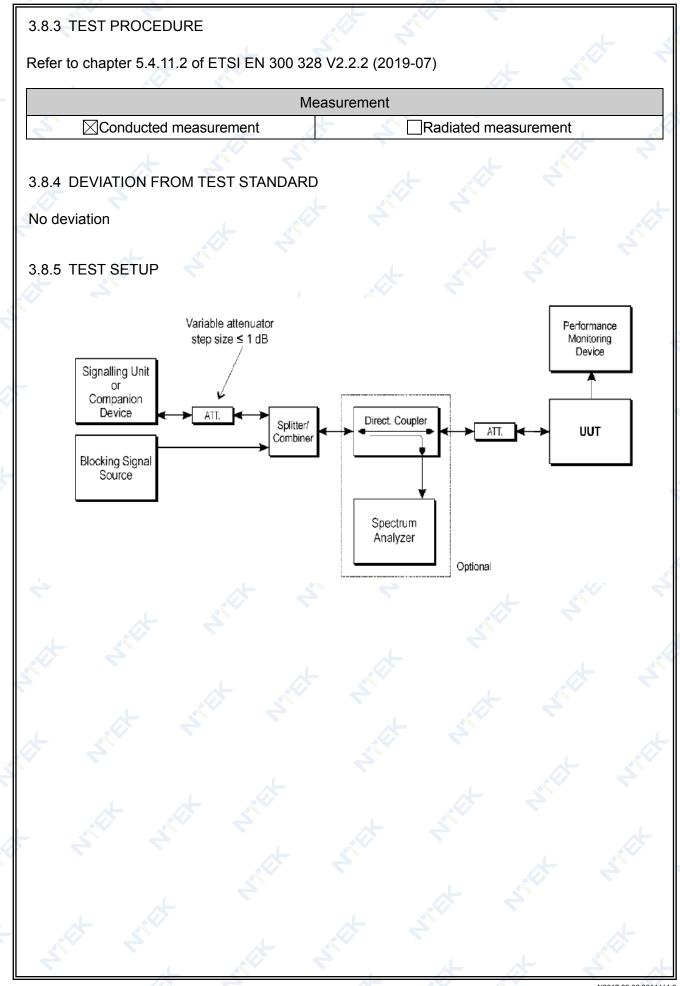
NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

#### Table 16: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log₁₀(OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	4	<
(see note 2)	2 300		
	2 584		


NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 41 of 67

Report No.: STR211129004002E



Page 42 of 67

Report No.: STR211129004002E

### 3.8.6 TEST RESULTS

EUT :	Mobile Phone	Model Name :	BV8800
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.85V
Test Mode :	GFSK-RX Mode (CH00/CH39)	4	<u>k</u> <u>s</u>

### CH00:

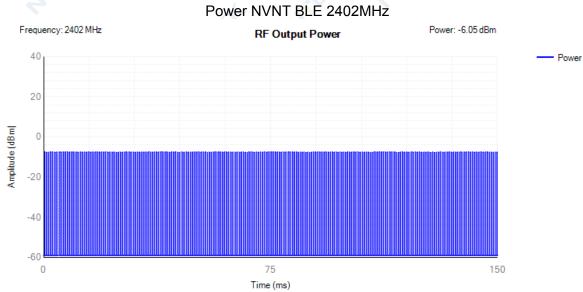
	rec	eiver category 3	•	
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit %
	2 380	4	0.48%	≤10%
-58.63	2 504	-34	0.33%	- All
	2 584	A A	0.37%	≤10%

### CH39:

receiver category 3								
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit				
	2 380		0.54%	<u>≤</u> 10%				
-58.63	2 504	34	0.38%					
-58.05	2 300		0.36%	≤10%				
	2 584		0.44%					

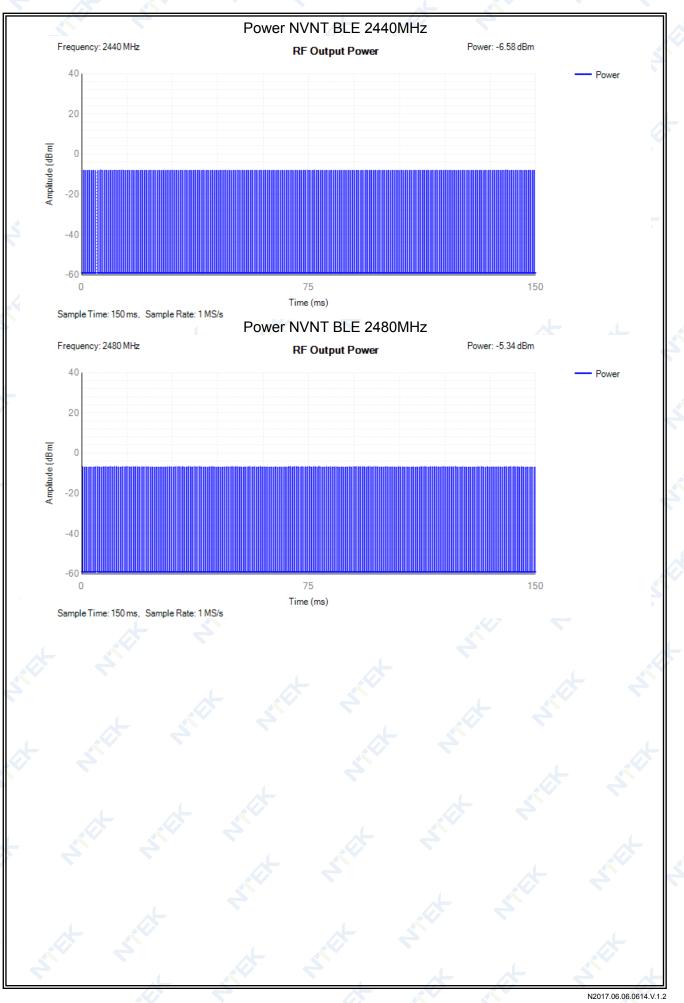
Note: (1) The above results were obtained from laboratory tests.

Page 43 of 67


Report No.: STR211129004002E

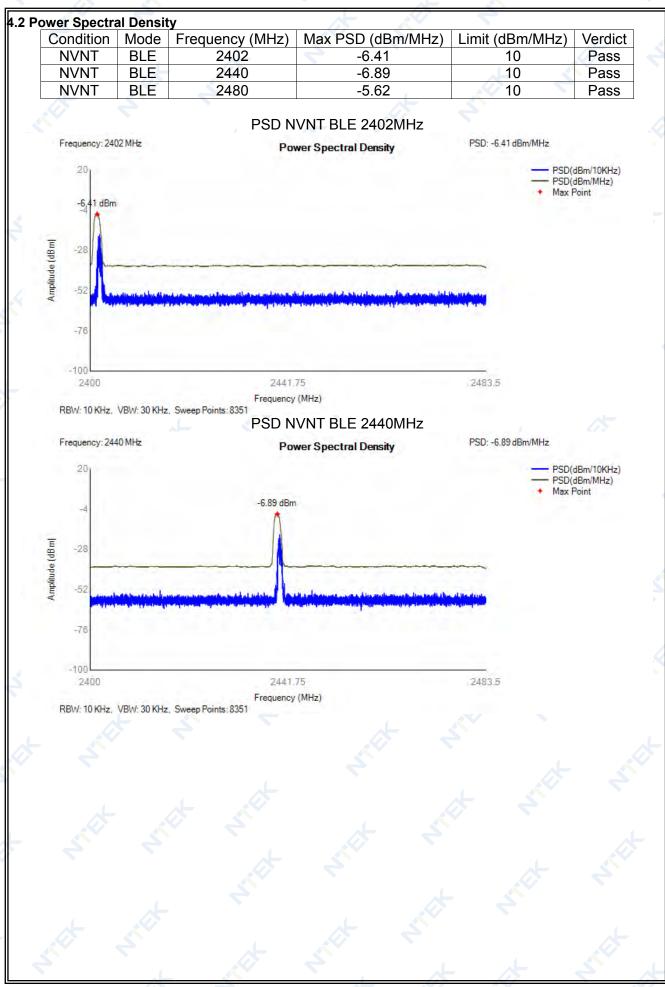
### 4. TEST RESULTS

#### ĺМ

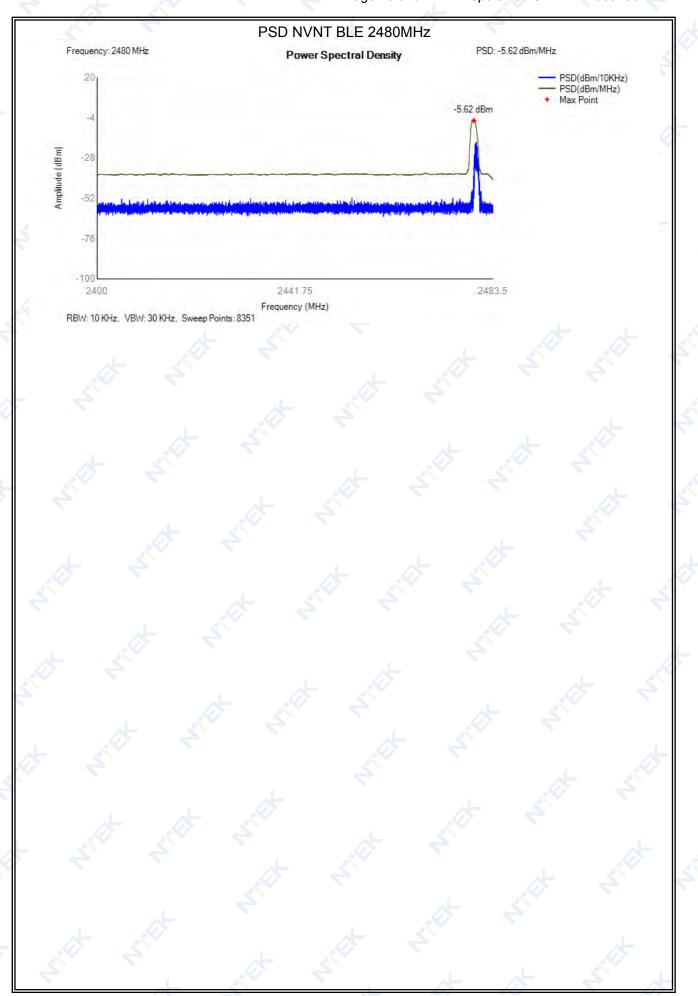

#### 4.1RF Output Power

Conditi	ion Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVN	T BLE	2402	-7.53	240	-6.05	20	Pass
NVN	T BLE	2440	-8.06	240	-6.58	20	Pass
NVN	T BLE	2480	-6.82	240	-5.34	20	Pass
NVL	T BLE	2402	-7.88	240	-6.4	20	Pass
NVL	T BLE	2440	-8.39	240	-6.91	20	Pass
NVL ⁻	T BLE	2480	-7	240	-5.52	20	Pass
NVH	T BLE	2402 🔨	-7.99	240	-6.51	20	Pass
NVH	T BLE	2440	-8.39	240	-6.91	20	Pass
NVH	T BLE	2480	-7.32	240	-5.84	20	Pass
							*




Sample Time: 150 ms, Sample Rate: 1 MS/s

Page 44 of 67




Page 45 of 67

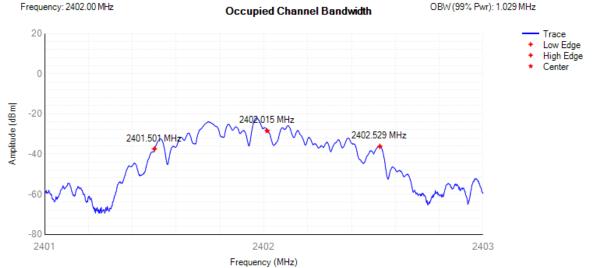
Report No.: STR211129004002E



Page 46 of 67



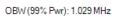
Page 47 of 67


Report No.: STR211129004002E



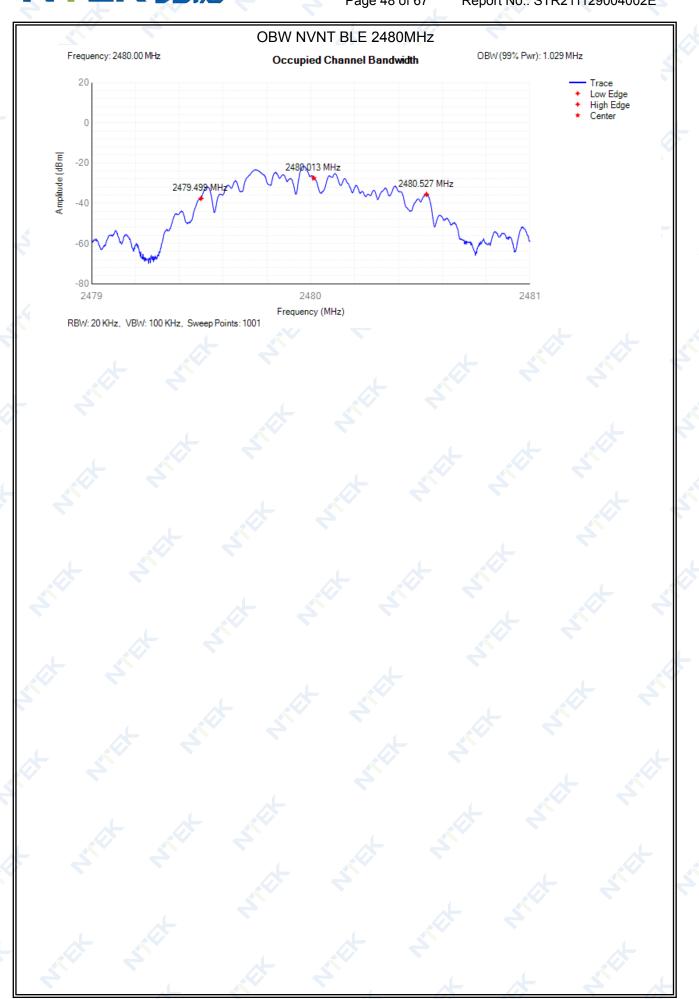
.3	Occupied U	Jnanne	Bandwidth							
	Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict	2
	NVNT	BLE	2402	2402.015	1.029	2401.501	2402.529	2400 - 2483.5MHz	Pass	
	NVNT	BLE	2440	2440.013	1.029	2439.499	2440.527	2400 - 2483.5MHz	Pass	
	NVNT	BLE	2480	2480.013	1.029	2479.499	2480.527	2400 - 2483.5MHz	Pass	




### **OBW NVNT BLE 2402MHz**



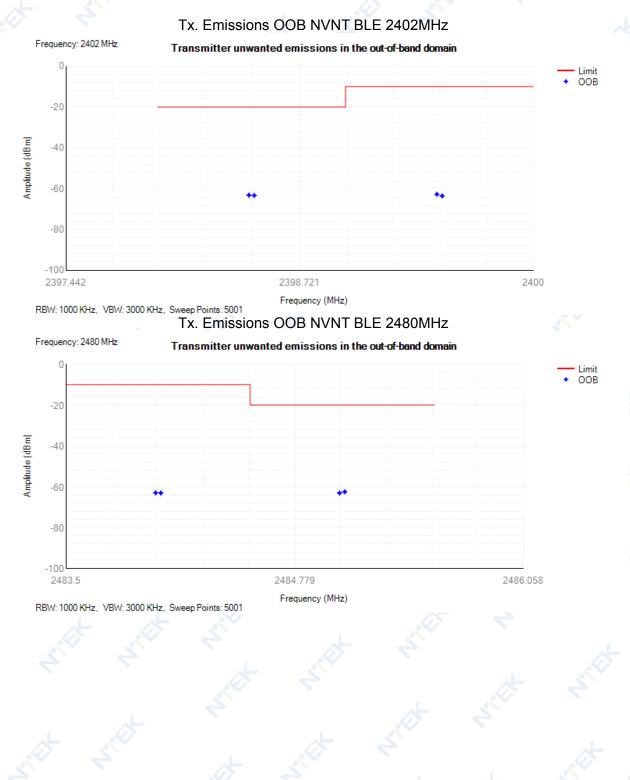
RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001 **OBW NVNT BLE 2440MHz** 


Frequency: 2440.00 MHz

Occupied Channel Bandwidth





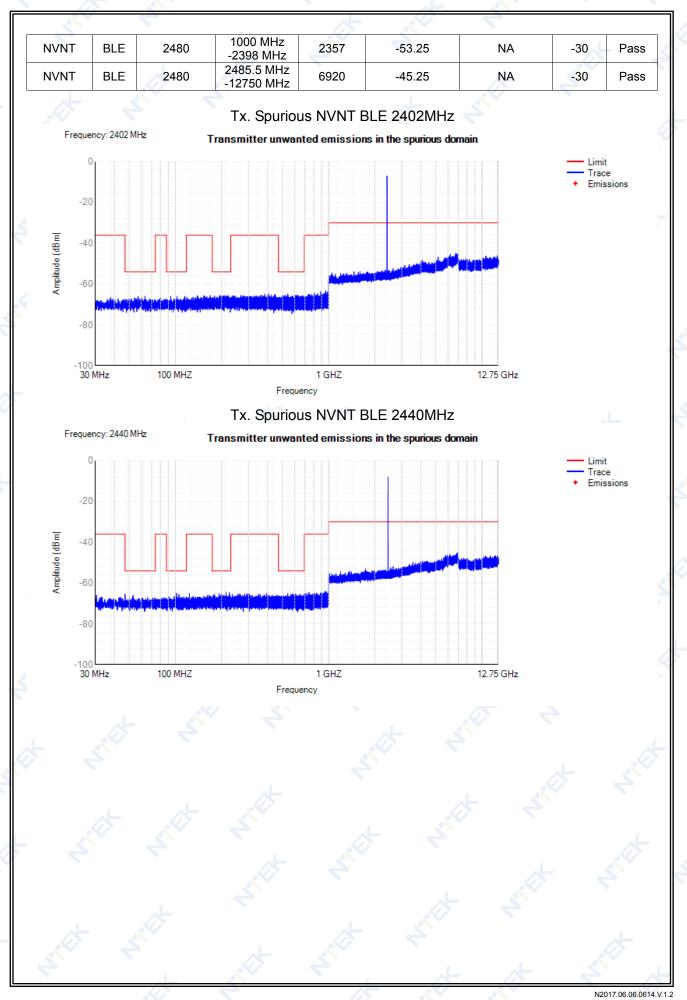

Page 48 of 67



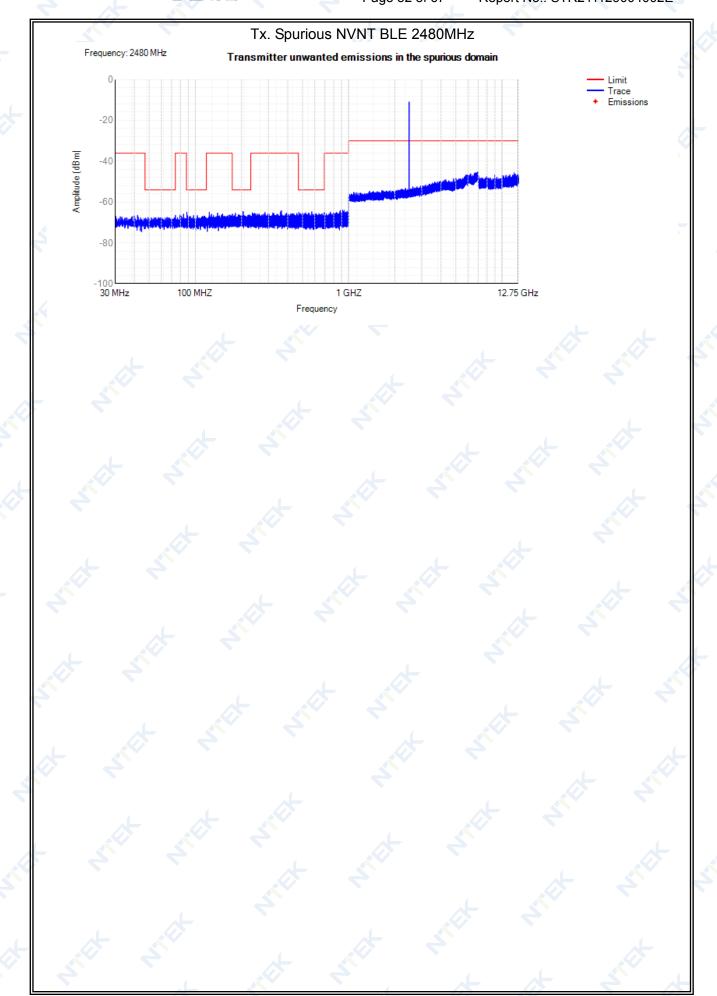
Page 49 of 67

Report No.: STR211129004002E

Б.	4.8 Transm	itter unv	wanted emissions	in the out-of-band do	omain		
	Condition	Mode	Frequency	OOB Frequency	Level	Limit	Verdict
	Condition	MOUE	(MHz)	(MHz)	(dBm/MHz)	(dBm/MHz)	veruict
	NVNT	BLE	2402	2399.5	-63.51	-10	Pass
	NVNT	BLE	2402	2399.471	-62.71 📿	-10	Pass
	NVNT	BLE	2402	2398.471	-63.28	-20	Pass
	NVNT	BLE	2402	2398.442	-63.14	-20	Pass
	NVNT	BLE	2480	2484	-62.97	-10	Pass
	NVNT	BLE	2480	2484.029	-63.06	-10	Pass
	NVNT	BLE	2480	2485.029	-63.07	-20	Pass
	NVNT	BLE	2480	2485.058	-62.48	-20	Pass




Page 50 of 67

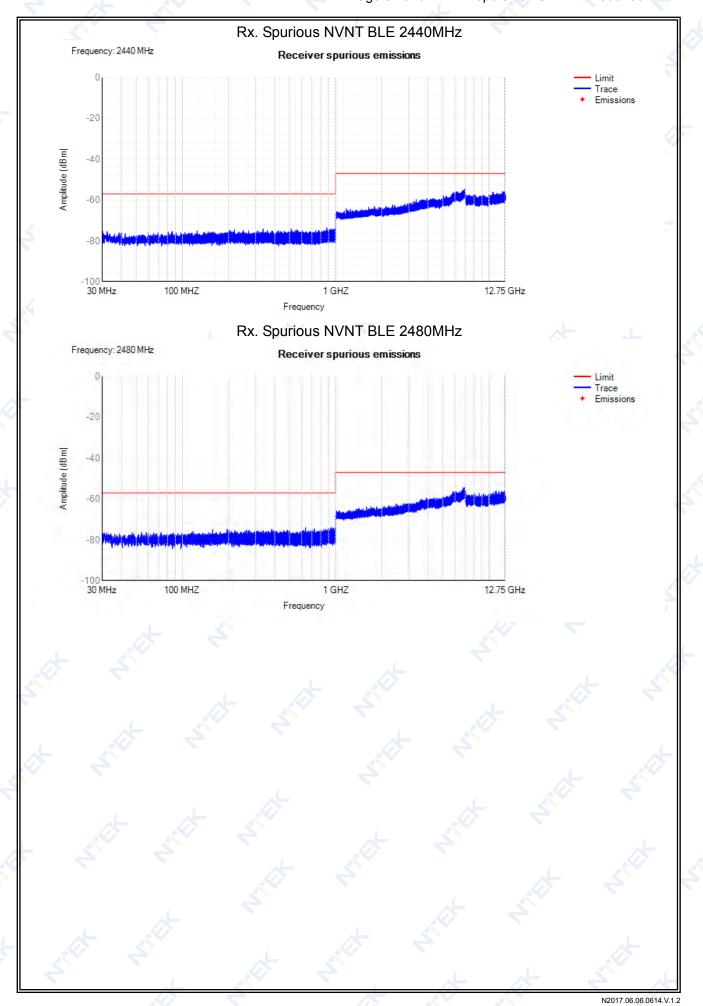

Report No.: STR211129004002E

Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
NVNT	BLE	2402	30 MHz -47 MHz	37.8	-66.56	NA	-36	Pass
NVNT	BLE	2402	47 MHz -74 MHz	57	-65.98	NA	-54	Pass
NVNT	BLE	2402	74 MHz -87.5 MHz	80.1	-66.62	NA	-36	Pass
NVNT	BLE	2402	87.5 MHz -118 MHz	93.25	-65.97	NA	-54	Pass
NVNT	BLE	2402	118 MHz -174 MHz	168.5	-65.57	NA	-36	Pass
NVNT	BLE	2402	174 MHz -230 MHz	221	-65.55	NA	-54	Pass
NVNT	BLE	2402	230 MHz -470 MHz	406.15	-64.82	NA	-36	Pass
NVNT	BLE	2402	470 MHz -694 MHz	539	-64.87	NA	-54	Pass
NVNT	BLE	2402	694 MHz -1000 MHz	958.75	-63.34	NA	-36	Pass
NVNT	BLE	2402	1000 MHz -2398 MHz	2362	-53.07	NA	-30	Pass
NVNT	BLE	2402	2485.5 MHz -12750 MHz	6759.5	-44.88	NA	-30	Pass
NVNT	BLE	2440	30 MHz -47 MHz	30.55	-65.99	NA	-36	Pass
NVNT	BLE	2440	47 MHz -74 MHz	52.95	-66.04	NA	-54	Pass
NVNT	BLE	2440	74 MHz -87.5 MHz	85.2	-67.12	NA	-36	Pass
NVNT	BLE	2440	87.5 MHz -118 MHz	101.7	-65	NA	-54	Pass
NVNT	BLE	2440	118 MHz -174 MHz	123.5	-65.14	NA	-36	Pass
NVNT	BLE	2440	174 MHz -230 MHz	214.1	-64.41	NA	-54	Pass
NVNT	BLE	2440	230 MHz -470 MHz	393.8	-64.95	NA	-36	Pass
NVNT	BLE	2440	470 MHz -694 MHz	540.6	-65.17	NA	-54	Pass
NVNT	BLE	2440	694 MHz -1000 MHz	950.1	-63.97	NA	-36	Pass
NVNT	BLE	2440	1000 MHz -2398 MHz	1736.5	-53.01	NA NA	-30	Pass
NVNT	BLE	2440	2485.5 MHz -12750 MHz	6949	-45.08	NA	-30	Pass
NVNT	BLE	2480	30 MHz -47 MHz	41.95	-66.47	NA	-36	Pass
NVNT	BLE	2480	47 MHz -74 MHz	49.2	-67.47	NA	-54	Pass
NVNT	BLE	2480	74 MHz -87.5 MHz	83.65	-65.9	NA	-36	Pass
NVNT	BLE	2480	87.5 MHz -118 MHz	88	-64.89	NA	-54	Pass
NVNT	BLE	2480	118 MHz -174 MHz	123.25	-64.92	NA	-36	Pass
NVNT	BLE	2480	174 MHz -230 MHz	205.1	-64.55	NA	-54	Pass
NVNT	BLE	2480	230 MHz -470 MHz	363.9	-64.18	NA	-36	Pass
NVNT	BLE	2480	470 MHz -694 MHz	574.55	-64.72	NA	-54	Pass
NVNT	BLE	2480	694 MHz -1000 MHz	911.95	-63.84	NA	-36	Pass

Page 51 of 67



Page 52 of 67




Page 53 of 67

Report No.: STR211129004002E

		BLE BLE	(MHz) 2402 2402 2440	Range 30 MHz -1000 MHz 1000 MHz -12750 MHz 30 MHz	(MHz) 948.881 6958.5	Peak(dBm) -73.53 -54.68	RMS(dBm)	(dBm) -57 -47	Pass
	/NT /NT	BLE	2402	MHz -1000 MHz 1000 MHz -12750 MHz 30		£1.	<u>ل</u> م	A.	V
NV	/NT	4	×	1000 MHz -12750 MHz 30	6958.5	-54.68	NA	-47	Page
N۱	7	BLE	2440			<u> </u>			r ass
	/NT			-1000 MHz	875.25	-73.58	NA S	-57	Pass
NI		BLE	2440	1000 MHz -12750 MHz	6996.5	-54.58	NA	-47	Pass
	/NT	BLE	2480	30 MHz -1000 MHz	938.5	-73.91	NA	-57	Pass
N۱	/NT	BLE	2480	1000 MHz -12750 MHz	6931	-54.24	NA	-47	Pass
	Frequency	: 2402 MHz			iver spurious	BLE 2402MHz			
	01			neee	iver spanous		00.0	— Lin	nit
	-20							- Tra	ace iissions
Amplitude (dBm]	-40								
Amplitut	-60		1	الماري والتقامين الم					
	-80	nte den förder och s							
	-100 30 MH	z	100 MHZ		1 GHZ		12.75 GHz		
				Frequ					

Page 54 of 67




Page 55 of 67

7 Report No.: STR211129004002E

### 4.1 RF Output Power

ŻМ

5	Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
	NVNT	BLE	2402	-7.51	160	-6.03	20 🦲	Pass
		BLE	2440	-7.96	160	-6.48	20	Pass
	NVNT	BLE	2480	-6.8	160	-5.32	20	Pass
	NVLT	BLE	2402	-7.69	160	-6.21	20	Pass
	NVLT	BLE	2440	-8.22	160	-6.74	20	Pass
	NVLT	BLE	2480	-7.05	160	-5.57	20	Pass
	NVHT	BLE	2402	-8	160	-6.52	20	Pass
	NVHT	BLE	2440	-8.53	<u> </u>	-7.05	20	Pass
	NVHT	BLE	_ 2480 🔨	-7.39	160	-5.91	20	Pass

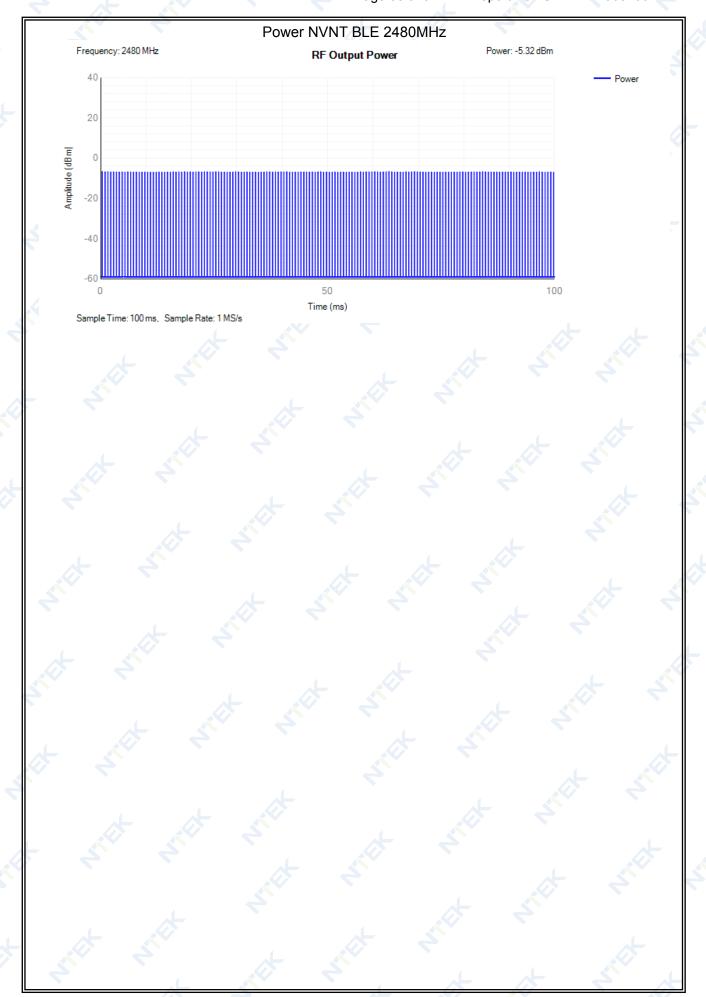


#### Sample Time: 100 ms, Sample Rate: 1 MS/s

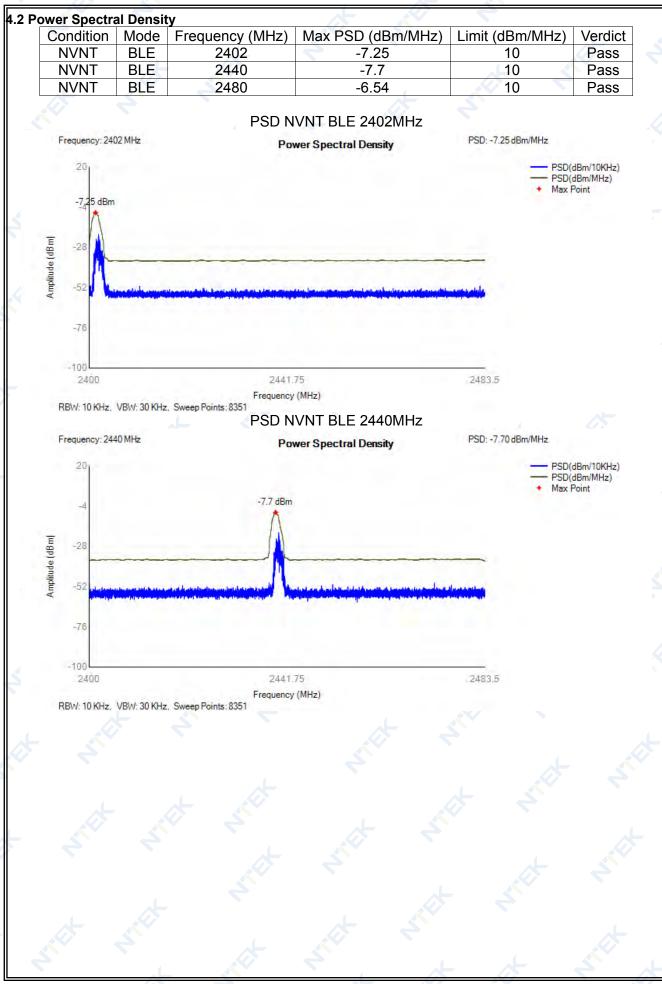
Frequency: 2440 MHz

Power NVNT BLE 2440MHz RF Output Power

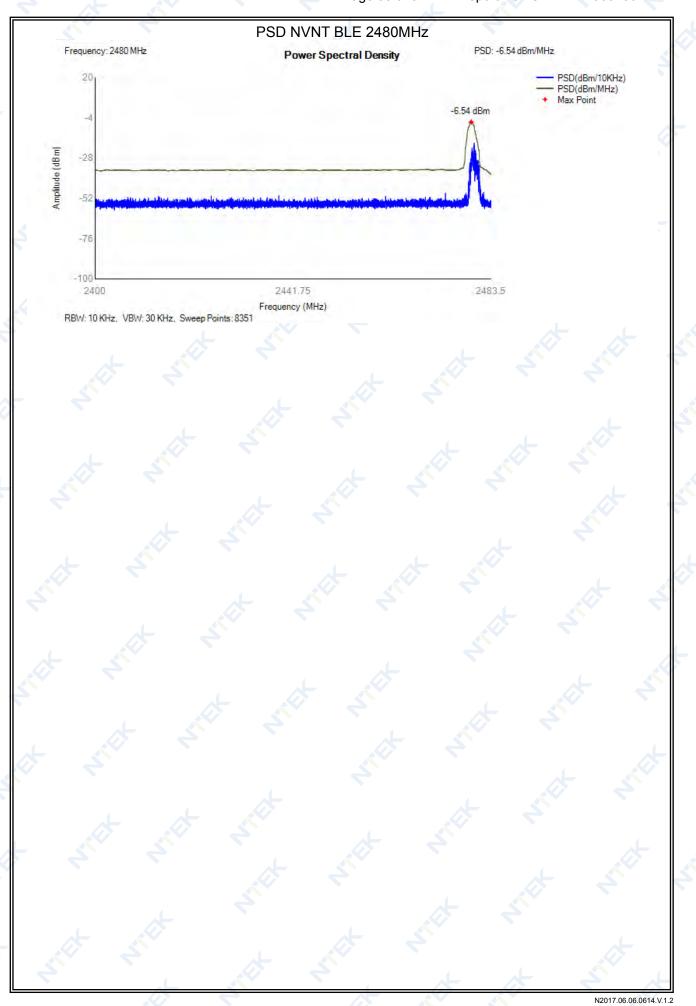
Power: -6.48 dBm




N2017.06.06.0614.V.1.2


Power

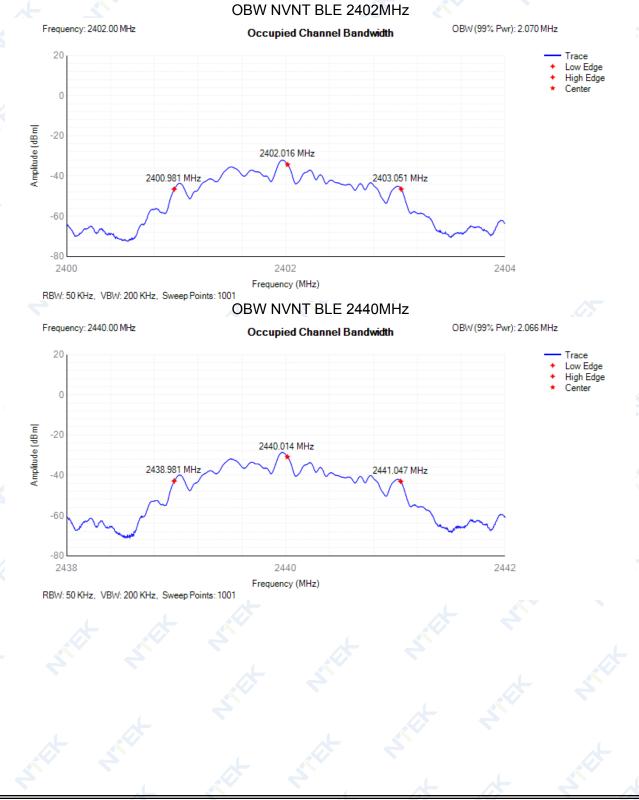
Power


Page 56 of 67



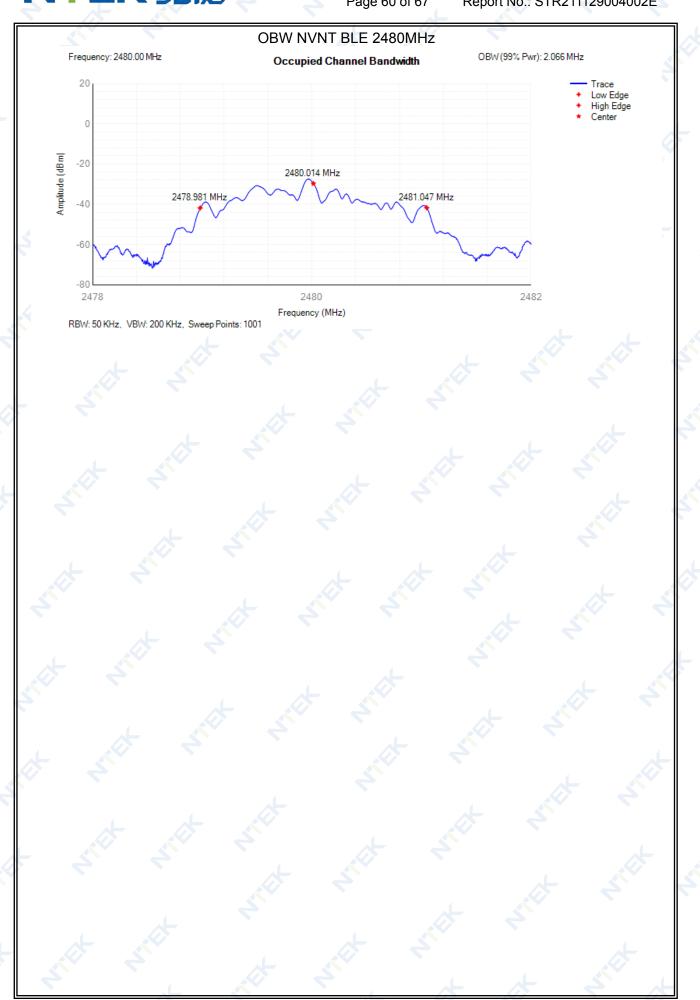
Page 57 of 67




Page 58 of 67



Page 59 of 67


Report No.: STR211129004002E

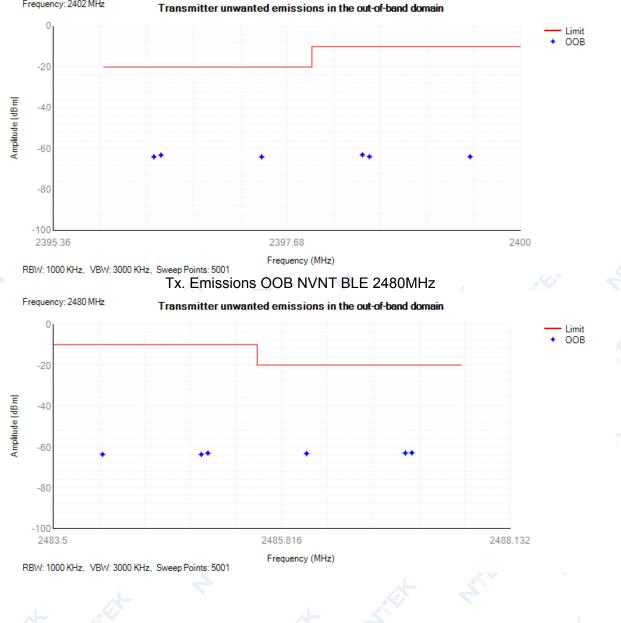
4	.3 Occupied	l Chann	el Bandwidth				7		
	Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
	NVNT	BLE	2402	2402.016	2.07	2400.981	2403.051	2400 - 2483.5MHz	Pass
	NVNT	BLE	2440	2440.014	2.066	2438.981	2441.047	2400 - 2483.5MHz	Pass
	NVNT	BLE	2480	2480.014	2.066	2478.981	2481.047	2400 - 2483.5MHz	Pass



Page 60 of 67

Report No.: STR211129004002E




Page 61 of 67

Report No.: STR211129004002E

Condition	Mode	Frequency	OOB Frequency	Level	Limit	Verdict
Condition	woue	(MHz)	(MHz)	(dBm/MHz)	(dBm/MHz)	veruici
NVNT	BLE	2402	2399.5	-63.89	-10	Pass
NVNT	BLE	2402	2398.5	-63.85	-10	Pass
NVNT	BLE	2402	2398.43	-62.96	-10	Pass
<b>NVNT</b>	BLE	2402	2397.43	-63.96	-20	Pass
NVNT	BLE	2402	2396.43	-63.12	-20	Pass
NVNT	BLE	2402	2396.36	-63.93	-20	Pass
NVNT	BLE	2480	2484	-63.73	-10	Pass
NVNT	BLE	2480	2485	-63.75	-10	Pass
NVNT	BLE	2480	2485.066	-63.13	-10	Pass
NVNT	BLE	2480	2486.066	-63.32	-20	Pass
NVNT	BLE	2480	2487.066	-63.09	-20	Pass
NVNT	BLE	2480	2487.132	-62.97	-20	Pass

#### Tx. Emissions OOB NVNT BLE 2402MHz

Frequency: 2402 MHz

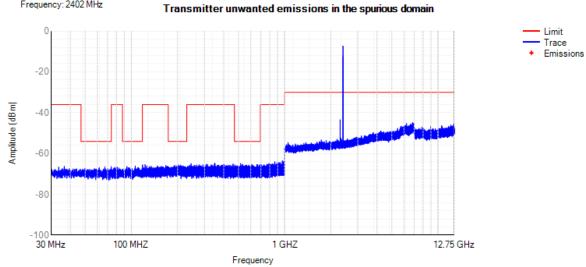


# NTEK 北测®

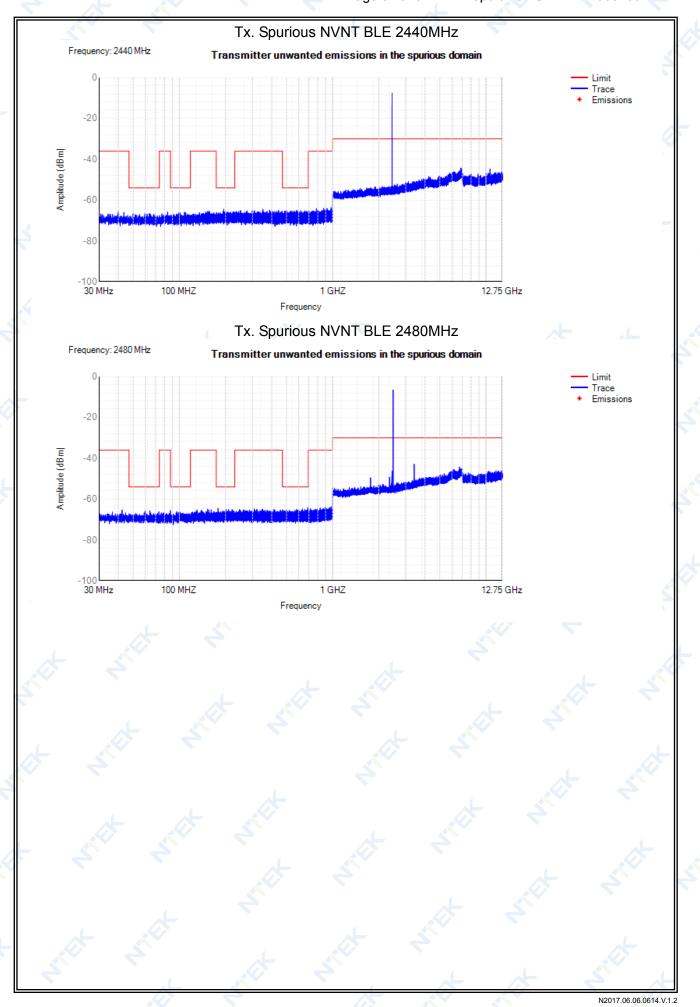
Page 62 of 67

Report No.: STR211129004002E

Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
NVNT	BLE	2402	30 MHz -47 MHz	36.5	-66.16	NA	-36	Pass
NVNT	BLE	2402	47 MHz -74 MHz	73.9	-66.37	NA	-54	Pass
NVNT	BLE	2402	74 MHz -87.5 MHz	80.65	-66.54	NA	-36	Pass
NVNT	BLE	2402	87.5 MHz -118 MHz	106.05	-66.01	NA	-54	Pass
NVNT	BLE	2402	118 MHz -174 MHz	123	-65.4	NA	-36	Pass
NVNT	BLE	2402	174 MHz -230 MHz	203	-65.61	NA	-54	Pass
NVNT	BLE	2402	230 MHz -470 MHz	350.75	-64.72	NA	-36	Pass
NVNT	BLE	2402	470 MHz -694 MHz	516.3	-64.81	NA	-54	Pass
NVNT	BLE	2402	694 MHz -1000 MHz	965.15	-63.49		-36	Pass
NVNT	BLE	2402	1000 MHz -2396 MHz 2487.5	2300	-43.44	NA	-30	Pass
NVNT	BLE	2402	-12750 MHz	6823	-44.85	NA	-30	Pass
NVNT	BLE	2440	30 MHz -47 MHz	39.9	-65.67	NA	-36	Pass
NVNT	BLE	2440	47 MHz -74 MHz	63.45	-66.43	NA	-54	Pass
NVNT	BLE	2440	74 MHz -87.5 MHz	83.8	-65.82	NA	-36	Pass
NVNT	BLE	2440	87.5 MHz -118 MHz	107.9	-65.9	NA	-54	Pass
NVNT	BLE	2440	118 MHz -174 MHz	153.35	-65.34	NA	-36	Pass
NVNT	BLE	2440	174 MHz -230 MHz	194.9	-64.46	NA	-54	Pass
NVNT	BLE	2440	230 MHz -470 MHz	350.75	-64.5	NA	-36	Pass
NVNT	BLE	2440	470 MHz -694 MHz	580.45	-65.08	NA	-54	Pass
NVNT	BLE	2440	694 MHz -1000 MHz	976.45	-63.68	NA	-36	Pass
NVNT	BLE	2440	1000 MHz -2396 MHz	2109	-53.39		-30	Pass
NVNT	BLE	2440	2487.5 MHz -12750 MHz	6834.5	-44.29	NA	-30	Pass
NVNT	BLE	2480	30 MHz -47 MHz	42.35	-65.29	NA	-36	Pass
NVNT	BLE	2480	47 MHz -74 MHz	60	-65.65	NA	-54	Pass


Page 63 of 67

Report No.: STR211129004002E


NVNT	BLE	2480	74 MHz -87.5 MHz	87.3	-65.54	NA	-36	Pass
NVNT	BLE	2480	87.5 MHz -118 MHz	96.15	-66.15	NA	-54	Pass
NVNT	BLE	2480	118 MHz -174 MHz	152.95	-64.88	NA	-36	Pass
NVNT	BLE	2480	174 MHz -230 MHz	178.85	-64.52	NA	-54	Pass
NVNT	BLE	2480	230 MHz -470 MHz	307.65	-64.73	NA	-36	Pass
NVNT	BLE	2480	470 MHz -694 MHz	688.75	-64.12	NA	-54	Pass
NVNT	BLE	2480	694 MHz -1000 MHz	976.1	-63.66	NA	-36	Pass
	BLE	2480	1000 MHz -2396 MHz	2347.5	-49.23	NA	-30	Pass
NVNT	BLE	2480	2487.5 MHz -12750 MHz	3402.5	-42.82	NA	-30	Pass

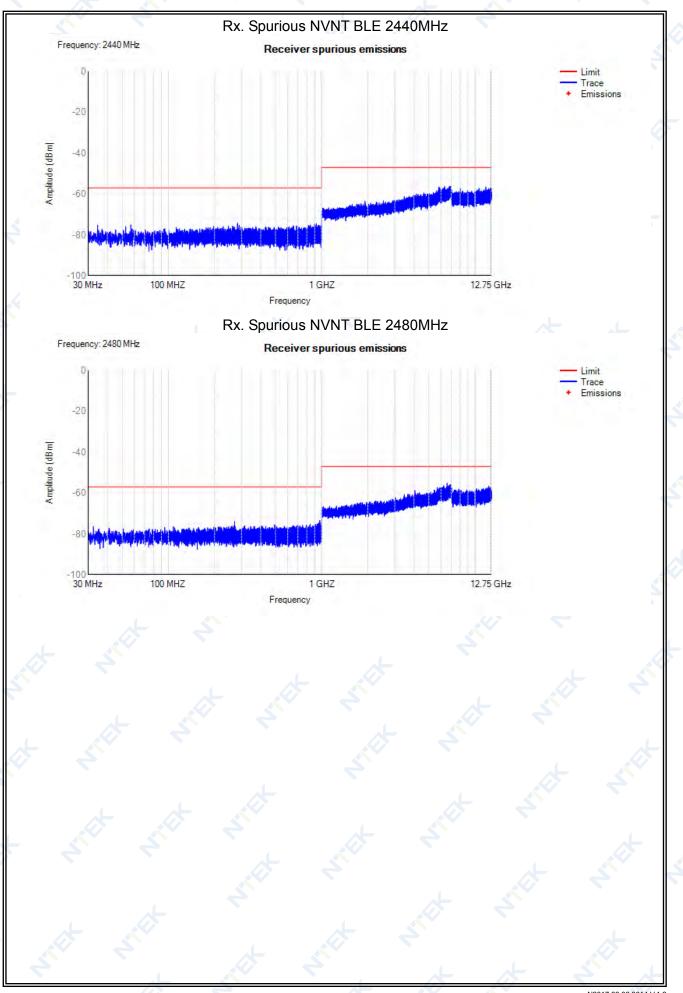
#### Tx. Spurious NVNT BLE 2402MHz

Frequency: 2402 MHz



Page 64 of 67




# NTEK 北测®

Page 65 of 67

Receiver	spurious	s emissions		Spur		<b>V</b>		
Condition	Mode	Frequency (MHz)	Range	Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	30 MHz -1000 MHz	863.95	-74.59	NA	-57	Pass
NVNT	BLE	2402	1000 MHz -12750 MHz	6853	-55.03	NA	-47	Pass
NVNT	BLE	2440	30 MHz -1000 MHz	282.45	-74.24	NA	-57	Pass
NVNT	BLE	2440	1000 MHz -12750 MHz	6972.5	-56.14	NA S	-47	Pass
NVNT	BLE	2480	30 MHz -1000 MHz	971.05	-73.35	NA	-57	Pass
NVNT	BLE	2480	1000 MHz -12750 MHz	6575.5	-55.24	NA	-47	Pass
Freque	ency: 2402 MHz			us NVNT E iver spurious	BLE 2402MHz emissions			
-21	D D						- Lim Tra + Em	it ce ssions
<b>₩ 8</b> ₽)	0							
Amplitude (dBm  -9-	0							
-81	· Hutenpartel	ulan alayahan						
-10 30	0 MHz	100 MHZ	Frequ	1 GHZ ency		12.75 GHz		

Page 66 of 67

Report No.: STR211129004002E



Page 67 of 67

Report No.: STR211129004002E

