RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product : Smart phone Trade Mark : Blackview Model Name : BV8900 Family Model : N/A Report No. : S23052404801002

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

	2. 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、
Applicant's Name: DOKE COM	IMUNICATION (HK) LIMITED
Address RM 1902 EA	ASEY COMM BLDG 253-261 HENNESSY ROAD
WANCHAI F	HK CHINA
Manufacturer's Name: Shenzhen D	
Address Guangming	g3, 7th Industrial Zone, Yulv Community, Yutang Road, District, Shenzhen, China.
Product description	
Product name: Smart phone	
Trademark: Blackview	
Model Name: BV8900	
Family Model N/A	A 2 4
Standards: ETSI EN 30	0 328 V2.2.2 (2019-07)
	ed by Shenzhen NTEK, and the test results show that the e with the 2014/53/EU RED Directive Art.3.2 e tested sample identified in the report.
This report shall not be reproduced except in	n full, without the written approval of Shenzhen NTEK,
	Shenzhen NTEK, personnel only, and shall be noted in
the revision of the document.	
Test Sample Number	S230524048001
Date of Test	
Date (s) of performance of tests	May 24, 2023 ~ Jun 12, 2023
Date of Issue	Jun 12, 2023
Test Result	Pass -
Testing Engineer :	Muhri Lee (Mukri Lee)
the state of the s	(Mukzi Lee)
ST CAR	
Authorized Signatory :	Aless of service
	(Alex Li)
	At an i
	A Strain
	★ ★ ★

	Table of Contents	Page
1	. GENERAL INFORMATION	6
	1.1 GENERAL DESCRIPTION OF EUT	6
V	1.2 INFORMATION ABOUT THE EUT	- 7 🔊
	1.3 TEST CONDITIONS AND CHANNEL	12
A	1.4 DESCRIPTION OF TEST CONDITIONS	13
	1.5 DESCRIPTION OF SUPPORT UNITS	14
7	1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	15
2	. SUMMARY OF TEST RESULTS	16
X	2.1 TEST FACILITY	17
	2.2 MEASUREMENT UNCERTAINTY	17
3	. TEST PROCEDURES AND RESUTLS	18
	3.1 EQUIVALENT ISOTROPIC RADIATED POWER	18
	3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER	18
	3.1.2 TEST PROCEDURE 3.1.3 TEST SETUP	18 18
	3.1.4 TEST RESULTS	19
	3.2. PEAK POWER DENSITY	20
	3.2.1 LIMITS OF POWER SPECTRAL DENSITY	20
	3.2.2 TEST PROCEDURE	20
	3.2.3 TEST SETUP	20 21
	3.3 . OCCUPIED CHANNEL BANDWIDTH	22
	3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	22
	3.3.2 TEST PROCEDURE	22
	3.3.3 DEVIATION FROM TEST STANDARD	22
*	3.3.4 TEST SETUP 3.3.5 TEST RESULTS	22 23
	3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAI	
	3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF	
	DOMÁIN	24
X	3.4.2 TEST PROCEDURE	24
	3.4.3 DEVIATION FROM TEST STANDARD 3.4.4 TEST SETUP	25 25
	3.4.5 TEST RESULTS	26
	3.5 . ADAPTIVE (CHANNEL ACCESS MECHANISM)	27
	3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR WIE	
	MODULATION TECHNIQUES	27
	3.5.2 TEST PROCEDURE	28
	3.5.3 TEST SETUP CONFIGURATION	28

	Table of Contents	Page
	3.5.4 LIST OF MEASUREMENTS	29
	3.5.5 TEST RESULTS	30
-	3.6 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	31
	3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURI	
	DOMAIN 🖉 🧹 🤝	- 31
	3.6.2 TEST PROCEDURE	31
	3.6.3 DEVIATION FROM TEST STANDARD	31
	3.6.4 TEST SETUP 3.6.5 TEST RESULTS(Radiated measurement)	32 33
	3.6.6 TEST RESULTS (Conducted measurement)	35
	3.7 . RECEIVER SPURIOUS RADIATION	35
	3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION	35
	3.7.2 TEST PROCEDURE	35
	3.7.3 DEVIATION FROM TEST STANDARD	35
	3.7.4 TEST SETUP	36
	3.7.5 TEST RESULTS(Radiated measurement)	37
	3.7.6 TEST RESULTS (Conducted measurement)	38
	3.8 . RECEIVER BLOCKING	39
	3.8.1 PERFORMANCE CRITERIA 3.8.2 LIMITS OF RECEIVER BLOCKING	39 39
	3.8.3 TEST PROCEDURE	41
	3.8.4 DEVIATION FROM TEST STANDARD	41
	3.8.5 TEST SETUP	41
	3.8.6 TEST RESULTS	42
	4 . TEST RESULTS	43
		43
	4.1 RF Output Power	43
	4.2 Power Spectral Density	46
	4.3 Occupied Channel Bandwidth	49
	 4.4 Transmitter unwanted emissions in the out-of-band domain 4.5 Transmitter unwanted emissions in the spurious domain 	52 54 🏼
	4.6 Receiver spurious emissions	58
	2M	61
	4.1 RF Output Power	61
	4.2 Power Spectral Density	64
	4.3 Occupied Channel Bandwidth	67
	4.4 Transmitter unwanted emissions in the out-of-band domain	70
	4.5 Transmitter unwanted emissions in the spurious domain	72
	4.6 Receiver spurious emissions	76
2	5.EUT TEST PHOTO	79
	SPURIOUS EMISSIONS MEASUREMENT PHOTOS	79

Report No.	Version	Description	Issued Date
S23052404801002	Rev.01	Initial issue of report	Jun 12, 2023
4			
	4		4
4		x x x	
.L		×	
		at 2	4
			t .
	× ~	at	Str R
Str. L			
•		4.	×
A K	4		
			Å
×		2	LIVE L
F Ster			
	4		A Company
		L L	

N2017.06.06.0614.V.1.2

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart phone			
Trade Mark	Blackview			
Model Name.	BV8900			
Family Model	N/A			
Model Difference	N/A			
	The EUT is Smart phone			
	Operation Frequency: 2402~2480 MHz			
	Modulation Type: GFSK			
	Adaptive/non-adaptive Adaptive equipment			
Product Description	Receiver categories 2			
	Number Of Channel Please see Note 2.			
	Antenna Designation: PIFA Antenna			
	Antenna Gain(Peak) 1.41 dBi			
Channel List	Refer to below			
Adapter	Model: HJ-C6-33-EU Input: 100-240V~50/60Hz 0.8A Output: (PD)5.0V3.0A 15.0W or 9.0V3.0A 27.0W or 12.0V2.5A 30.0W or 15.0V2.0A 30.0W or 20.0V1.5A 30.0W (PPS) 3.3V-11.0V3.0A(33.0W MAX)			
Battery	DC 3.87V, 10000mAh, 38.7Wh			
Rating	DC 3.87V from battery or DC 5V from adapter			
I/O Ports	Refer to users manual			
Hardware Version	S920_MBA2			
Software Version	BV8900_NEU_S920_V1.0			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel	Frequency (MHz)
00	2402
01	2404
·····	×
38	2478
39	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

FHSS

other forms of modulation

b) In case of FHSS modulation:

• In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:

- In case of Adaptive Frequency Hopping Equipment:
 - The maximum number of Hopping Frequencies:

The minimum number of Hopping Frequencies:

• The (average) Dwell Time:

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The maximum Channel Occupancy Time implemented by the equipment: ./. ms

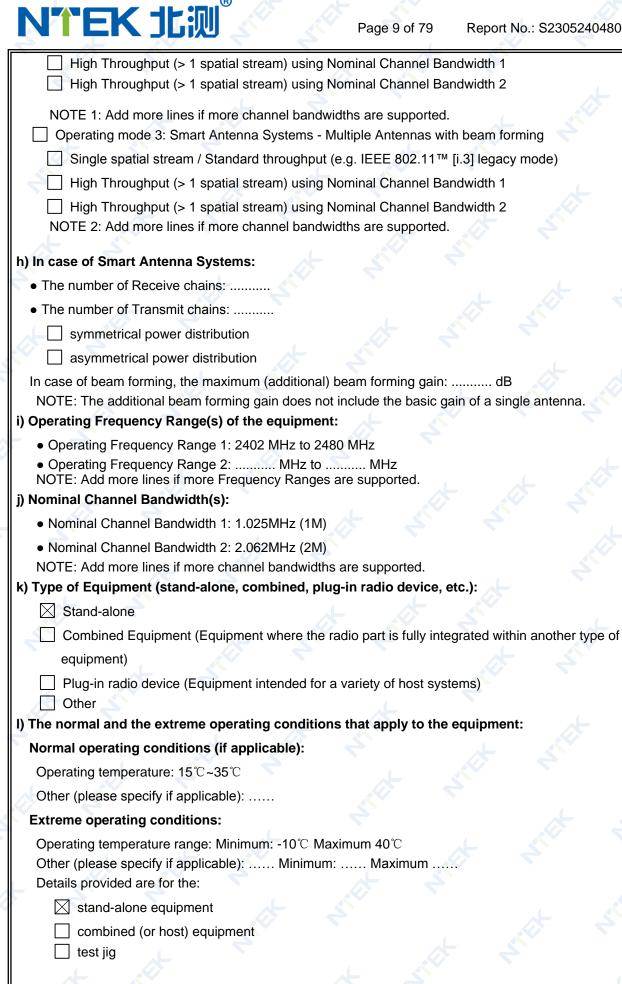
- The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - The equipment can switch dynamically between Frame Based and Load Based equipment
 - The CCA time implemented by the equipment: / µs
 -] The equipment has implemented a non-LBT based DAA mechanism
 - The equipment can operate in more than one adaptive mode

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.):

The maximum (corresponding) Duty Cycle:

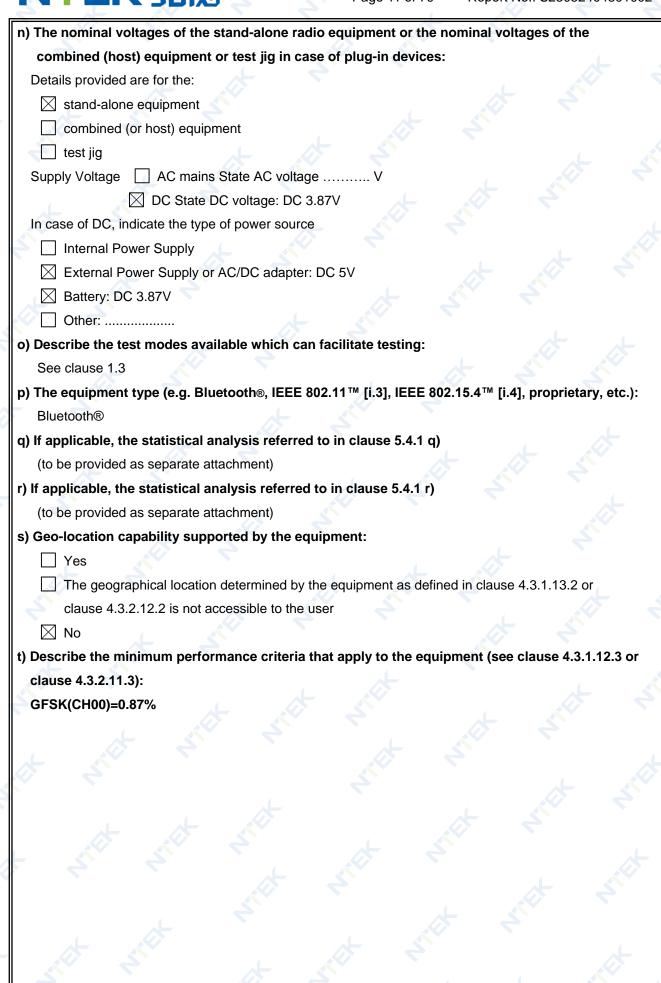
Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):


f) The worst case operational mode for each of the following tests:

- RF Output Power
- GFSK
- Power Spectral Density
 GFSK
- Duty cycle, Tx-Sequence, Tx-gap
- N/A
- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
 N/A
- Hopping Frequency Separation (only for FHSS equipment)
- N/A
- Medium Utilization
- N/A
- Adaptivity
- N/A
- Receiver Blocking
- GFSK
- Nominal Channel Bandwidth
- GFSK
- Transmitter unwanted emissions in the OOB domain GFSK
- Transmitter unwanted emissions in the spurious domain GFSK
- Receiver spurious emissions
 GFSK

g) The different transmit operating modes (tick all that apply):

- Operating mode 1: Single Antenna Equipment
 - Equipment with only one antenna
 - Equipment with two diversity antennas but only one antenna active at any moment in time
 - Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one antenna is used (e.g. IEEE 802.11[™] [i.3] legacy mode in smart antenna systems)
 - Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
 - Single spatial stream / Standard throughput / (e.g. IEEE 802.11[™] [i.3] legacy mode)


Report No.: S23052404801002

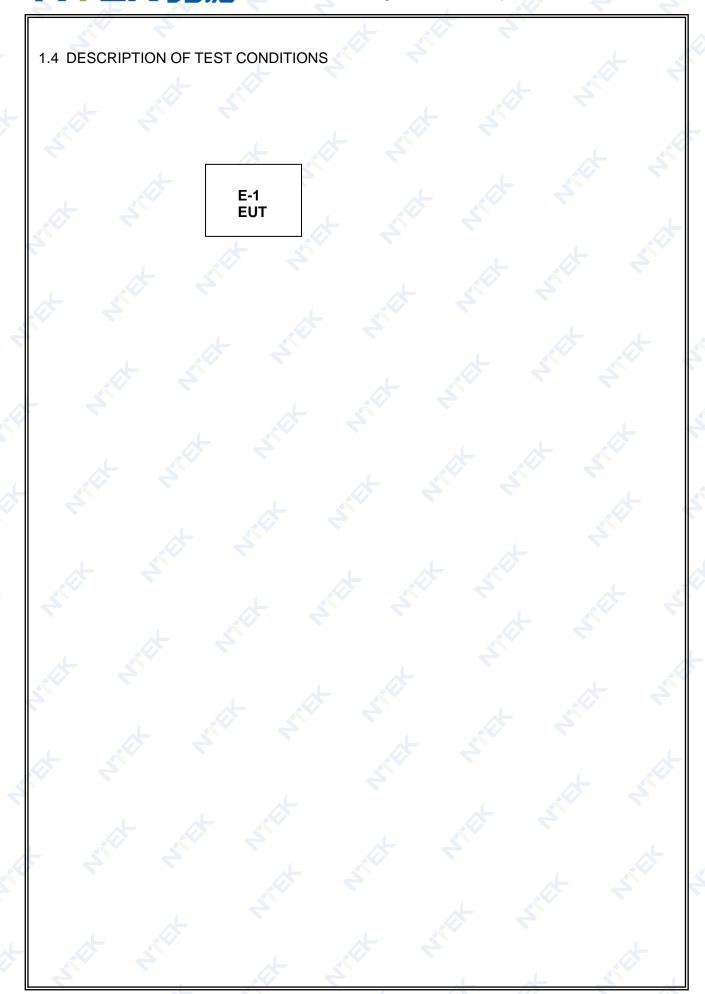
NTEK 北测®

	corresponding e.i.r.	p. levels:									
Antenna Type: PIFA											
Integral Antenna (information to be provided in case of conducted measurements)											
Antenna Gain: 1.41 dBi If applicable, additional beamforming gain (excluding basic antenna gain): dB Temporary RF connector provided No temporary RF connector provided											
								Dedicated Antenn	as (equipment with ar	ntenna connector)	
								Single power	r level with correspond	ding antenna(s)	
								Multiple powe	er settings and corresp	ponding antenna(s)	
Number of diffe	rent Power Levels:	×									
Power Level 1:	dBm										
Power Level 2:	dBm 💉										
Power Level 3:	dBm 🤝										
NOTE 1: Add m	nore lines in case the e	equipment has more powe	er levels.								
NOTE 2: These	power levels are con	ducted power levels (at ar	tenna connector).								
For each of the Power	Levels, provide the in	ntended antenna assembli	es, their corresponding gains								
			ee, alen een eepending gante								
		into account the beamfor	ming gain (Y) if applicable								
Power Level 1:	dBm										
Power Level 1:	dBm	ded for this power level:									
Power Level 1: Number of ante	: dBm nna assemblies provid	ded for this power level:									
Power Level 1: Number of ante Assembly # 1M	: dBm nna assemblies provid Gain (dBi)	ded for this power level: e.i.r.p. (dBm)									
Power Level 1: Number of ante Assembly #	dBm nna assemblies provid Gain (dBi) 1.41	ded for this power level: e.i.r.p. (dBm) 2.52									
Power Level 1: Number of ante Assembly # 1M 2M	dBm nna assemblies provio Gain (dBi) 1.41 1.41	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27	Part number or model name								
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m	dBm nna assemblies provid Gain (dBi) 1.41 1.41 1.41 nore rows in case more	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27									
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m Power Level 2:	Gain (dBm Gain (dBi) 1.41 1.41 1.41 0 0 0 0 0 0 0 0 0 0 0 0 0	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27 e antenna assemblies are	Part number or model name supported for this power level.								
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m Power Level 2: Number of ante	Gain (dBm Gain (dBi) 1.41 1.41 1.41 0 00000000000000000000000000000000000	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27 e antenna assemblies are ded for this power level:	Part number or model name supported for this power level.								
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m Power Level 2: Number of ante	Gain (dBm Gain (dBi) 1.41 1.41 1.41 0 0 0 0 0 0 0 0 0 0 0 0 0	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27 e antenna assemblies are	Part number or model name supported for this power level.								
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m Power Level 2: Number of ante Assembly # 1	Gain (dBm Gain (dBi) 1.41 1.41 1.41 0 00000000000000000000000000000000000	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27 e antenna assemblies are ded for this power level:	Part number or model name supported for this power level.								
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2	Gain (dBm Gain (dBi) 1.41 1.41 1.41 0 00000000000000000000000000000000000	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27 e antenna assemblies are ded for this power level:	Part number or model name supported for this power level.								
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3	Gain (dBi) 1.41	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27 e antenna assemblies are ded for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level.								
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3	Gain (dBi) 1.41 1.41 1.41 1.41 1.41 Dore rows in case more Gain (dBi) Gain (dBi) Gain (dBi)	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27 e antenna assemblies are ded for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level.								
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3 NOTE 4: Add m Power Level 3:	Gain (dBi) 1.41	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27 e antenna assemblies are ded for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level.								
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3 NOTE 4: Add m Power Level 3: Number of ante	Gain (dBi)	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27 e antenna assemblies are ded for this power level: e.i.r.p. (dBm) e.i.r.p. (dBm) e.i.r.p. (dBm) e.i.r.p. (dBm) e.i.r.p. (dBm) e.i.r.p. (dBm)	Part number or model name supported for this power level.								
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3 NOTE 4: Add m Power Level 3: Number of ante Assembly #	Gain (dBi) 1.41	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27 e antenna assemblies are ded for this power level: e.i.r.p. (dBm) e antenna assemblies are	Part number or model name supported for this power level.								
Power Level 1: Number of ante Assembly # 1M 2M NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3 NOTE 4: Add m Power Level 3: Number of ante	Gain (dBi)	ded for this power level: e.i.r.p. (dBm) 2.52 -0.27 e antenna assemblies are ded for this power level: e.i.r.p. (dBm) e.i.r.p. (dBm) e.i.r.p. (dBm) e.i.r.p. (dBm) e.i.r.p. (dBm) e.i.r.p. (dBm)	Part number or model name supported for this power level.								

NOTE 5: Add more rows in case more antenna assemblies are supported for this power level.

1.3 TEST CONDITIONS AND CHANNEL

	Normal Test Conditions	Extreme Test Conditions		
Temperature	15℃ - 35℃	40°C ~ -10°C Note: (1)		
Relative Humidity	20% - 75%	N/A		
Supply Voltage	DC 3.87V	1		


	Test Channel	EUT Channel	Test Frequency (MHz)
F	Lowest	CH00	2402
	Middle	CH19	2440
Ş	Highest	СН39	2480

Note:

(1) The HT 40 $^\circ\!C$ and LT -10 $^\circ\!C$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

Page 13 of 79 Report No.: S23052404801002

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

1					
	Item	Equipment	Model/Type No.	Series No.	Note
	E-1	Smart phone	BV8900	N/A	EUT
		4	4		4
		_		7	
		* *			
	F				2. 4
Ś				2	
Ī			5		

Item	Туре	Shielded Type	Ferrite Core	Length	Note
					4
		- 5			
X					1
				4 4	
			5		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.15	1 year
Turn Table	EM 💉	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	– EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	2816	2023.01.12	2024.01.11	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.11.07	2023.11.06	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2023.03.31	2024.03.30	1 year
Filter	TRILTHIC	2400MHz	29	2023.03.27	2026.03.26	3 year
Attenuator	Weinschel	33-10-33	AR4010	2023.03.27	2026.03.26	3 year
Attenuator	Weinschel	24-20-34	BP4485	2023.03.27	2026.03.26	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2023.03.21	2024.03.20	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2023.03.27	2026.03.26	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2023.03.27	2026.03.26	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	📄 3 year
Attenuator	Agilent	8495B	MY42147029	2023.03.27	2026.03.26	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

NTEK 北测

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
2	TRANSMITTER PARAMETERS	
4.3.2.2	RF Output Power	Pass
4.3.2.3	Power Spectral Density	Pass
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.2.5	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.2.6	Adaptivity	Not Applicable (See Note 1)
4.3.2.7	Occupied Channel Bandwidth	Pass
4.3.2.8	Transmitter unwanted emission in the OOB domain	Pass
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	-
4.3.2.10	Receiver Spurious Emissions	Pass
4.3.2.11	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

2.2 MEASUREMENT UNCERTAINTY

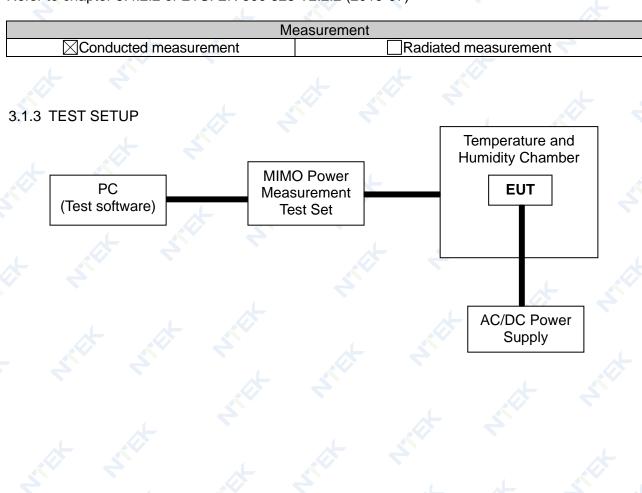
For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Measurement uncertainty				
No.	Item	Uncertainty (P=95)		
1	Occupied Channel Bandwidth	± 4.7%		
2	RF output Power,conducted	± 0.9dB		
3	Power Spectral Density, conducted	± 2.6dB		
4	Unwanted emissions, conducted	± 2.2dB		
5	All emissions, radiated	± 5.3dB		
6	Temperature	± 0.5°C		
7	Humidity	± 2.0%		
8	Time	± 1.0%		

Page 18 of 79 Report No.: S23052404801002

3. TEST PROCEDURES AND RESUTLS

3.1 EQUIVALENT ISOTROPIC RADIATED POWER


3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER

Refer to chapter 4.3.2.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER		
Condition	Limit	
Non-adaptive wide band modulations systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.	
Adaptive wide band modulations systems	≤20dBm	

3.1.2 TEST PROCEDURE

Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

N2017.06.06.0614.V.1.2

3.1.4 TEST RESULTS

EUT :	Smart phone	Model Name :	BV8900
Temperature :	20 °C	Relative Humidity:	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	TX Low channel / Middle Channel / High Channel		

Test data reference attachment

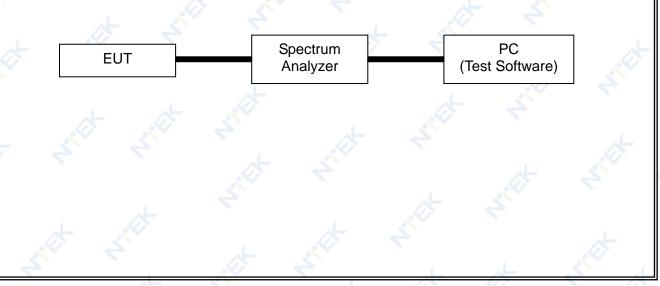
3.2. PEAK POWER DENSITY

3.2.1 LIMITS OF POWER SPECTRAL DENSITY

Refer to chapter 4.3.2.3.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT	POWER	
Condition	Limit	
For equipment using wide band modulations other than FHSS	≤10 dBm/MHz	

3.2.2 TEST PROCEDURE


Refer to chapter 5.4.3.2 of ETSI EN 300 328 V2.2.2 (2019-07)

INICASUICITICIT				
Conducted measurement	Radiated measurement			

The setting of the Spectrum Analyzer

Start Frequency	2400MHz
Stop Frequency	2483.5MHz
Detector 🔊	RMS
Sweep Point	> 8 350; for spectrum analysers not supporting this number of sweep points, the frequency band may be segmented
Sweep time:	 For non-continuous transmissions: 2 × Channel Occupancy Time × number of sweep points For continuous transmissions: 10 s; the sweep time may be increased further until a value where the sweep time has no further impact anymore on the RMS value of the signal.
RBW / VBW	10KHz / 30KHz

3.2.3 TEST SETUP

3.2.4 TEST RESULTS

EUT :	Smart phone	Model Name :	BV8900
Temperature :	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	TX-GFSK(CH00/CH19/CH39)		<u>k</u> 2

Test data reference attachment

3.3. OCCUPIED CHANNEL BANDWIDTH

3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH Refer to chapter 4.3.2.7.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	OCCUPIED CHANNEL BANDWIDTH			
	Condition	Limit		
All types of equi	pment using wide band modulations other than FHSS	Shall fall completely within the band 2400 to 2483.5 MHz		
Additional	For non-adaptive using wide band modulations other than FHSS system and E.I.R.P >10 dBm	Less than 20 MHz		
requirement	For non-adaptive frequency hopping system and E.I.R.P >10 dBm	Less than 5 MHz		

3.3.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	M	easurement		
Conducted r	neasurement	Radiated measurement		
The setting of the Spect	rum Analyzer			
Center Frequency	The centre frequence	cy of the channel under test		
Frequency Span	2 × Nominal Channel Bandwidth			
Detector	RMS			
RBW	~ 1 % of the span w	/ithout going below 1 %		
VBW	3 × RBW			
Trace	Max hold			
Sweep time	1s			

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

3.3.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software has been activated to set the EUT on specific status.

3.3.5 TEST RESULTS

EUT :	Smart phone	Model Name :	BV8900
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	TX-GFSK(CH00/CH19/CH39)		

Test data reference attachment

3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.2.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

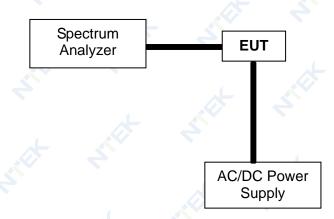
	TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition Limit			
	Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	

Spurious Domain	Out Of Band Domain (OOB)	Allocated Band	Out Of Band Domain (OOB)	Spurious Domai
	Α			
В				
с				

- A: -10 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits

BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

3.4.2 TEST PROCEDURE


Pofor to chaptor 5	1 8 2 of ETCI	EN 200 220	1/2 2 2 (2010 07)
Refer to chapter 5.	4.0.2 01 E I SI	EN 300 328	VZ.Z.Z (ZU19-07)

Measurement				
Conducted measurement				
The setting of the Spectrum Analyzer				
Span 🧹 🔶	0Hz			
Filter Mode	Channel Filter			
Trace Mode	Max Hold			
Trigger Mode	Video trigger; in case video triggering is not possible, an external trigger source may be used			
Detector	RMS			
Sweep Point / Sweep Mode Sweep Time [s] / (1 µs) or 5 000 whichever is greater/ Continuo RBW / VBW 1MHz / 3MHz				

3.4.3 DEVIATION FROM TEST STANDARD

No deviation

3.4.4 TEST SETUP

According to the ETSI EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

3.4.5 TEST RESULTS

EUT :	Smart phone	Model Name :	BV8900
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	TX-GFSK(CH00/CH39)	~	な い

Test data reference attachment

3.5. ADAPTIVE (CHANNEL ACCESS MECHANISM)

3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR WIDE BAND MODULATION TECHNIQUES

Refer to chapter ETSI EN 300 328 V2.2.2 (2019-07)

		Operational Mode			
	Requirement	LBT based Detect and		nd Avoid	
		Non-LBT based Detect and Avoid	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as note 2)
	Minimum Clear Channel Assessment (CCA) Time	NA	not less than 18 us (see note 1)	(see note 2)	not less than 18 us (see note 1)
	Maximum Channel Occupancy (COT) Time	<40 ms	1ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)
	Minimum Idle Period	5 % minimum of 100 μs	5% of COT	(see note 2)	NA
	Extended CCA check		NA	(see note 2)	R*CCA (see note 4)
	Short Control Signalling Transmissions	Maximur	n duty cycle of 10% (:	within an observationsee note 5)	on period of 50 ms

Note 1: The CCA time used by the equipment shall be declared by the supplier.

Note 2: Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect as described in IEEE 802.11[™]-2012 [i.3], clause 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in IEEE 802.15.4[™]-2011 [i.4], clause 4, clause 5 and clause 8 providing the equipment complies with the conformance requirements referred to in clause 4.3.2.6.3.4. Note 3: g is selected by the manufacturer in the range [4...32]

Note 4: The value of R shall be randomly selected in the range [1...q]

Note 5: Adaptive equipment may or may not have Short Control Signaling Transmissions.

Interference threshold level

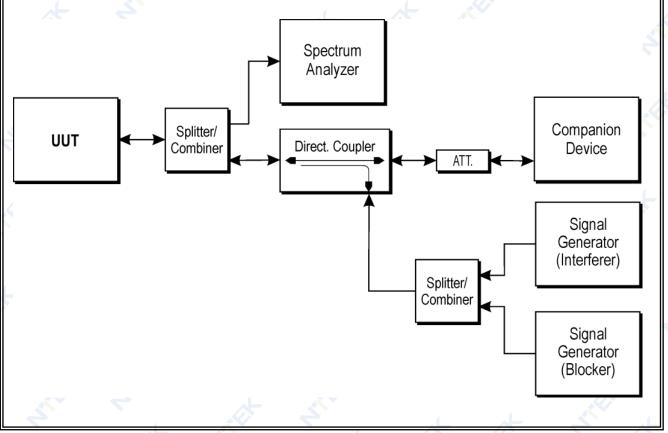
The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

TL = -70 dBm/MHz + 10 × log10 (100 mW / Pout) (Pout in mW e.i.r.p.)

NTEK 北测

Table 9	9: Unwanted Signal parameters		
Wanted signal mean power	Unwanted CW	I	
from companion device	frequency 🦾 🦯	signal power (dBm)	1
(dBm)	(MHz)		I
-30/ sufficient to maintain the	2 395 or 2 488,5	-35	Ś
link(see note 2)	(see note 1)	(see note 2)	Þ

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1. NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz. NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.


3.5.2 TEST PROCEDURE

Refer to chapter 5.4.6.2 of ETSI EN 300 328 V2.2.2 (2019-07)

NA NA	easurement
IVI	easurement
Conducted measurement	Radiated measurement

Test method please refer to the 5.4.6.2.1.4 of ETSI EN 300 328 V2.2.2 (2019-07)

3.5.3 TEST SETUP CONFIGURATION

N2017.06.06.0614.V.1.2

3.5.4 LIST OF MEASUREMENTS

UUT operational Mode		
Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced)
	V	X X .

Clause	Test Parameter	Remarks	PASS/FAIL
4.3.2.5.2.2.1	Adaptive (Frame Based Equipment)	Not Applicable	N/A
4.3.2.5.2.2.2	Adaptive (Load Based Equipment)	N/A	N/A
4.3.2.5.3	Short Control Signaling Transmissions	N/A	N/A

3.5.5 TEST RESULTS

EUT :	Smart phone	Model Name :	BV8900
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	N/A
Test Mode :	N/A		<u>k</u> 2

Note: Not Applicable

3.6. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

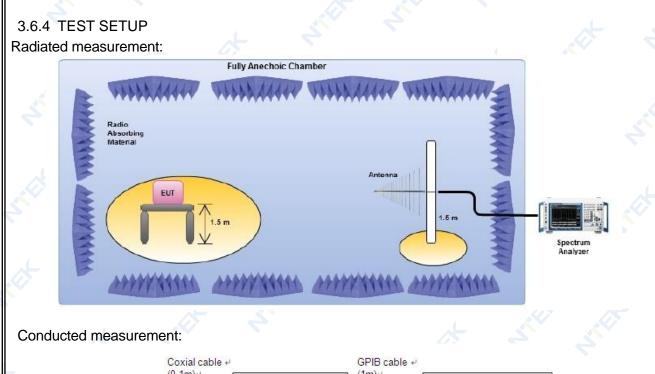
3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Refer to chapter 4.3.2.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

3.6.2 TEST PROCEDURE

NTEK 北测[®]


Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

			~	,L			
Measurement							
Conducted measurement							
The setting of the	e Spectrum Analyzer	÷	2				
RBW	100K(<1GHz) / 1M	(>1GHz)			2		
VBW	300K(<1GHz) / 3M	(>1GHz)	×				

3.6.3 DEVIATION FROM TEST STANDARD

No deviation

NTEK 北测

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.

4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

3.6.5 TEST RESULTS(Radiated measurement)

BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)							
EUT :	Smart phone	Model Name :	BV8900				
Temperature :	24°C	Relative Humidity :	57 %				
Pressure :	1012 hPa 🛛 🔨 💦	Test Voltage :	DC 3.87V				
Test Mode :	TXGFSK(CH19)						

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)		
	V	36.59	-70.96	11.11	-59.85	-36	-23.85	peak
	V	100.75	-77.64	10.01	-67.63	-54	-13.63	peak
	V	191.06	-71.88	11.13	-60.75	-54	-6.75	peak
	V	300.60	-75.08	9.63	-65.45	-36	-29.45	peak
	V	536.01	-67.43	10.94	-56.49	-54	-2.49	peak
	Н	46.45	-70.65	10.63	-60.02	-36	-24.02	peak
	Н	115.83	-75.01	9.89	-65.12	-54	-11.12	peak
	Η	226.03	-76.77 🧷	9.73	-67.04	-54	-13.04	peak
	Η	318.11	-70.72	11.39	-59.33	-36	-23.33	peak
	Н	590.17 📈	-74.02	10.39	-63.63	-54	-9.63	peak

Remark:

1.Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
2.All the modes had been tested, but only the worst data recorded in the report.

EUT : Smart phone			Model Name : BV8900				
mperati	ure : 26℃	~		Relative Humidity : 60 %			
essure :	1012 hF	Pa a	. [Test Voltage	: DC 3	3.87V	
st Mode		K (CH00/CH19	9/CH39)			-	
				•	4		
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin (dB)	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)		
		0	peration fre	quency:2402	Ļ	1	2
V	2677.592		10.15	-60.82	-30	-30.82	peak
V	3784.273	-67.43	9.64	-57.79	-30	-27.79	peak
V	2812.052	-72.33	10.64	-61.69	-30	-31.69	peak
V	5545.924	-74.65	10.69	-63.96	-30	-33.96	peak
Н	2436.909	-76.01	10.91	-65.10	-30	-35.10	peak
Н	4384.012	-77.51	11.07	-66.44	-30	-36.44	peak
Н	2312.612	-74.73	10.75	-63.98	-30	-33.98	peak
H	3778.2	-74.94	11.43	-63.51 🤍	-30	-33.51	peak
~		o	peration fre	equency:2440			
V	2356.043	-77.85	11.08	-66.77	-30	-36.77	peak
V	5609.653	-76.53	9.89	-66.64	-30	-36.64	>peak
V	2800.881	-67.77	11.54	-56.23	-30	-26.23	peak
V	5629.962	-69.46	10.94	-58.52	-30	-28.52	peak
H	2991.246	-71.37	9.99	-61.38	-30	-31.38	peak
Н	5515.843	-69.41	11.43	-57.98	-30	-27.98	peak
Н	2756.29	-73.8	9.74	-64.06	-30	-34.06	peak
H	3613.722	-73.74	9.64	-64.10	-30	-34.10	peak
			peration fre	quency:2480		•	
V	2237.637	-74.25	10.03	-64.22	-30	-34.22	peak
V	3498.004	-69.76	10.27	-59.49	-30	-29.49	peak
V	2269.441	-76.83	10.67	-66.16	-30	-36.16	peak
V	5126.071	-67.52	11.45	-56.07	-30	-26.07	peak
Н	2526.274	-76.69	10.08	-66.61	-30	-36.61	peak
Н	3160.383	-67.93	11.60	-56.33	-30	-26.33	peak
Н	2745.719	-68.81	10.98	-57.83	-30	-27.83	peak
Н	3736.121	-71.8	10.55	-61.25	-30	-31.25	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 35 of 79 Report No.: S23052404801002

3.6.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

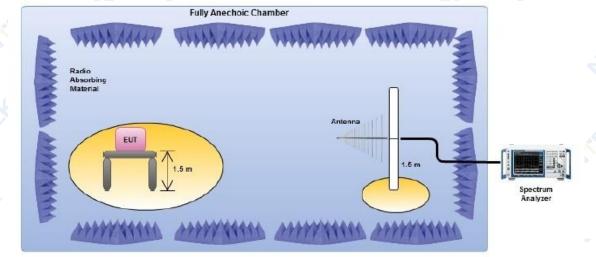
3.7. RECEIVER SPURIOUS RADIATION

3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.2.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

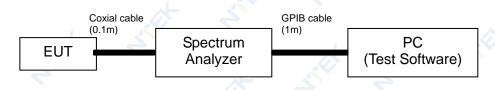
RECEIVER SPURIOUS EMISSIONS					
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth			
30 MHz ~ 1 GHz	-57dBm	100KHz			
1 GHz ~ 12.75 GHz	-47dBm	1MHz			

3.7.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)


Measurement								
Conducted measurement Radiated measurement								
The setting of the Spectru	um Analyzer							
RBW	100K(<1GHz) / 1M	(>1GHz)	X					
VBW	300K(<1GHz) / 3M	(>1GHz)		4				

3.7.3 DEVIATION FROM TEST STANDARD


No deviation

3.7.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

3.7.5 TEST RESULTS(Radiated measurement)

	RX BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)						
EUT : Smart phone Model Name : BV8900							
Temperature : 26°C		Relative Humidity :	60 %				
Pressure :	1012 hPa	Test Voltage :	DC 3.87V				
Test Mode :	RX Mode-GFSK(CH19)						

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBm) (dB)	
V	42.693	-78.61	13.06	-6 <mark>5.55</mark>	-57	-8.55	peak
- V	89.766	-79.4	11.72	-67.68	-57	-10.68	peak
V	188.577	-79.73	19.02	-60.71	-57	-3.71	peak
V	269.429	-79.39	11.67	-67.72	-57	-10.72	peak
V	605.432	-83.37	11.54	-71.83	-57	-14.83	peak
Н	44.184	-80.04	18.66	-61.38	-57	-4.38	peak
Н	105.374	-82.75	18.14	-64.61	-57	-7.61	peak
H	203.54	-83.34	10.32	-73.02	-57	-16.02	peak
Н	363.599	-81.87 📈	15.00	-66.87	-57	-9.87	peak
Н	588.223	-79.19	14.74	-64.45	-57	-7.45	peak

Remark:

1. Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit

2. All the modes had been tested, but only the worst data recorded in the report.

Page 38 of 79 Report No.: S23052404801002

NTEK 北测[®]

	RX ABOVE 1 GHz WORST- C	ASE DATA(1GHz ~	12.75GHz)
EUT :	Smart phone	Model Name :	BV8900
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	RX Mode-GFSK(CH19)	7	ک <u>لہ</u>

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	2137.72	-77.15	9.96	-67.19	-47	-20.19	peak
V	5828.967	-83.95	9.88	-74.07	-47	-27.07	peak
V	2794.537	-84.27	10.10	-74.17	-47	-27.17	peak
V	4632.851	-80.42	16.17	-64.25	-47	-17.25	peak
Н	2125.872	-80.56	10.21	-70.35	-47	-23.35	peak
Н	4368.191	-78.98	10.72	-68.26	-47	-21.26	peak
Н	2512.404	-77.48	8.81	-68.67	-47	-21.67	peak
Н	3943.81	-77.92	14.57	-63.35	-47	-16.35	peak

1. Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit

2. All the modes had been tested, but only the worst data recorded in the report.

3.7.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

3.8. RECEIVER BLOCKING

3.8.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

3.8.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency	(dBm) (see note 4)	signal
(see notes 1 and 4)	(MHz)		V
(-133 dBm + 10 × log₁₀(OCBW))	2 380	-34	CW
or -68 dBm whichever is less	2 504		×
(see note 2)			
(-139 dBm + 10 × log₁₀(OCBW))	2 300		2
	2 330	2 2	
or -74 dBm whichever is less	2 360		
(see note 3)	2524		
	2584		2
	2674		

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 40 of 79 Report No.: S23052404801002

Table 15: Receiver Blocking parameters receiver category 2 equipment							
Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking				
companion device (dBm)	Frequency (MHz)	(dBm) (see note 3)	signal				
(see notes 1 and 3)							
(-139 dBm + 10 × log₁₀(OCBW) + 10 dB)	2 380	-34	CW				
or (-74 dBm + 10 dB) whichever is less	2 504		X X				
(see note 2)	2 300						
	2 584		5				

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 16: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log₁₀(OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	×	
(see note 2)	2 300		
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

3.8.3 TEST PROCEDURE Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07) Measurement Conducted measurement Radiated measurement 3.8.4 DEVIATION FROM TEST STANDARD No deviation 3.8.5 TEST SETUP Variable attenuator Performance step size ≤ 1 dB Monitoring Device Signalling Unit or Companion Device ATT. Direct. Coupler Splitter/ ATT. UUT Combiner Blocking Signal Source Spectrum Analyzer Optional

3.8.6 TEST RESULTS

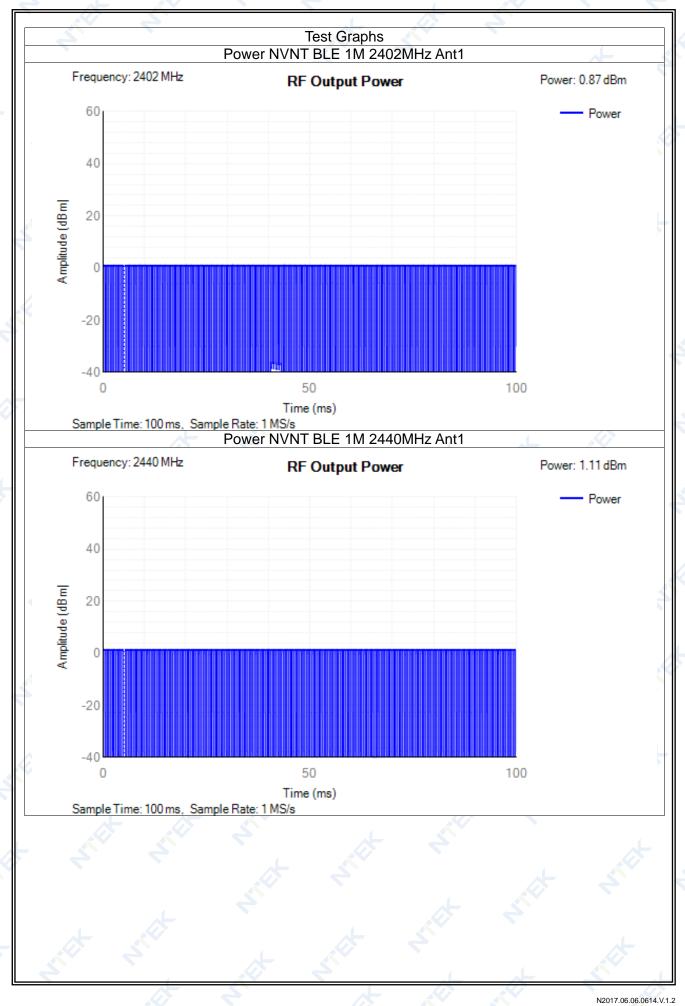
		•				
EUT:	Smart phone	Model Name :	BV8900			
Temperature :	24 °C	Relative Humidity	54%			
Pressure :	1010 hPa	Test Power :	DC 3.87V			
Test Mode :	GFSK-RX Mode (CH00/CH39)- 11	-SK-RX Mode (CH00/CH39)- 1M				

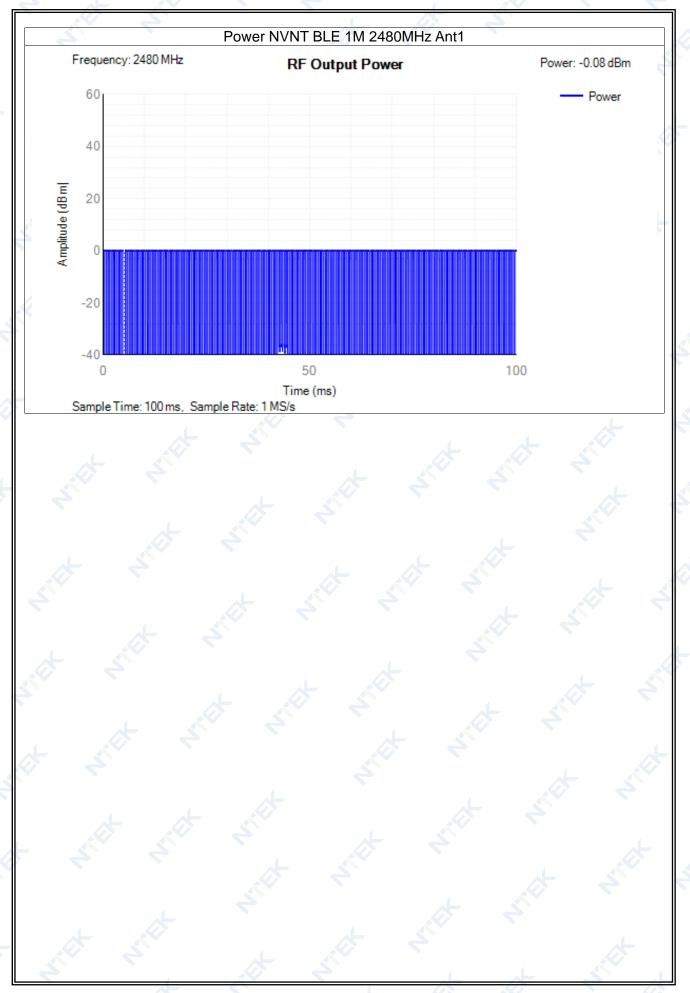
CH00:

receiver category 2						
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit %		
	2 380 2 504	4	0.53%	≤10%		
-68.89	2 300	-34	0.33%	≤10%		
	2 584	A A	0.87%	1070		

CH39:

receiver category 2							
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit			
	2 380	_	0.21%	≤10%			
-68.89	2 504	34	0.39%				
Serve and a	2 300		0.14%	≤10%			
	2 584		0.45%				

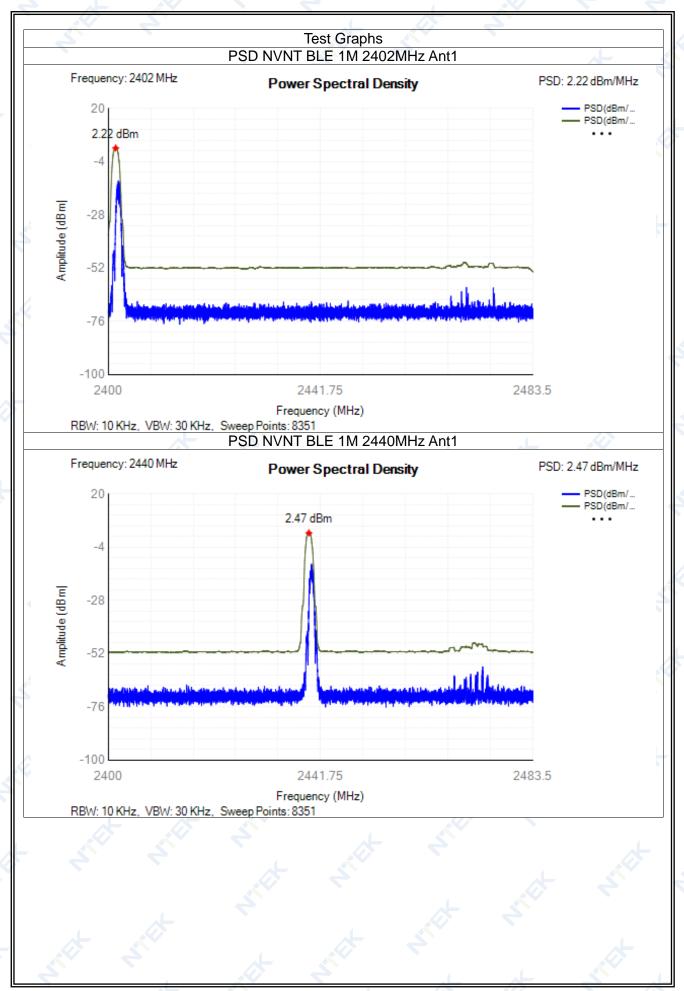

Note: (1) The above results were obtained from laboratory tests.

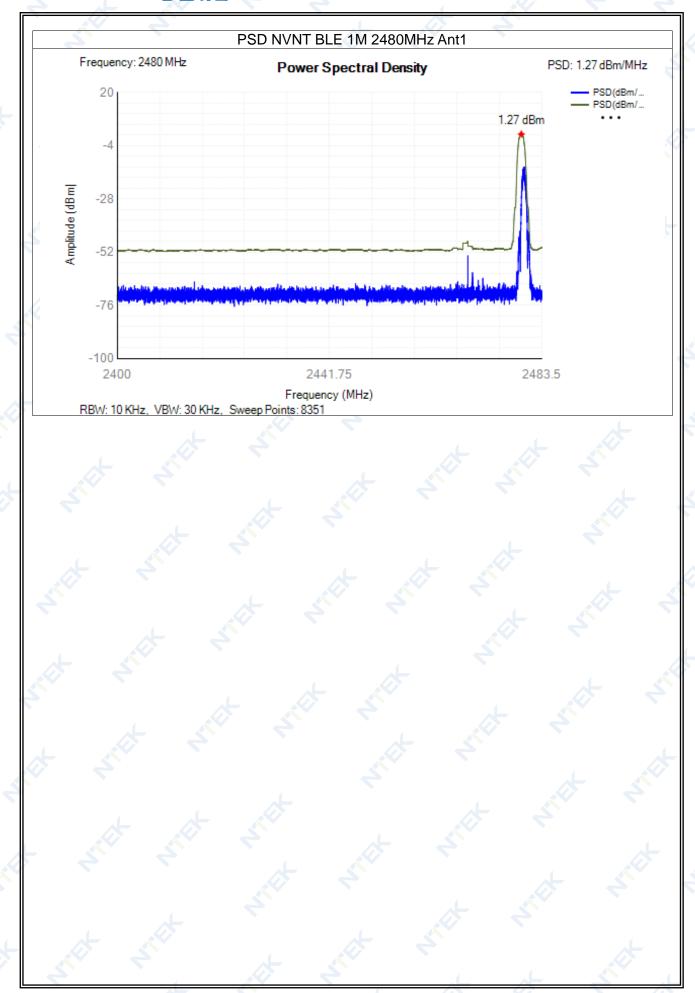

4. TEST RESULTS

1M

4.1 RF Output Power

Condition	Mode	Frequency (MHz)	Antenna	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	0.87	157	2.28	20	Pass
NVNT	BLE 1M	2440	Ant1	1.11	159	2.52	20	Pass
	BLE 1M	2480	Ant1	-0.08	157	1.33	20	Pass
NVLT	BLE 1M	2402	Ant1	0.68	157	2.09	20	Pass
NVLT	BLE 1M	2440	Ant1	0.95	159	2.36	20	Pass
NVLT	BLE 1M	2480	Ant1	-0.17	157	1.24	20	Pass
NVHT	BLE 1M	2402	Ant1	0.57	157	1.98	20	Pass
NVHT	BLE 1M	2440	Ant1	0.7	159	2.11	20	Pass
NVHT	BLE 1M	2480	Ant1	-0.47	157	0.94	20	Pass





4.2 Power Spectral Density

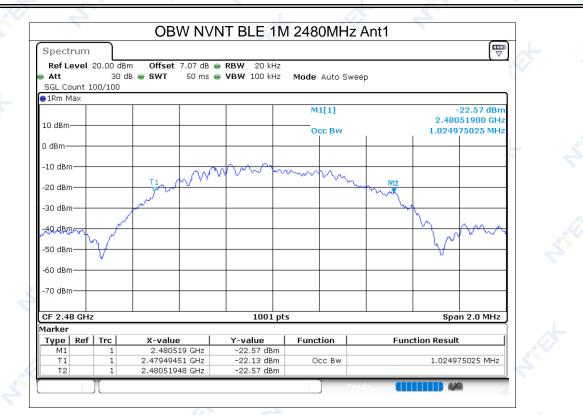
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	2.22	10	Pass
NVNT	BLE 1M	2440	Ant1	2.47	10	Pass
NVNT	BLE 1M	2480	Ant1	1.27	10	Pass

Report No.: S23052404801002

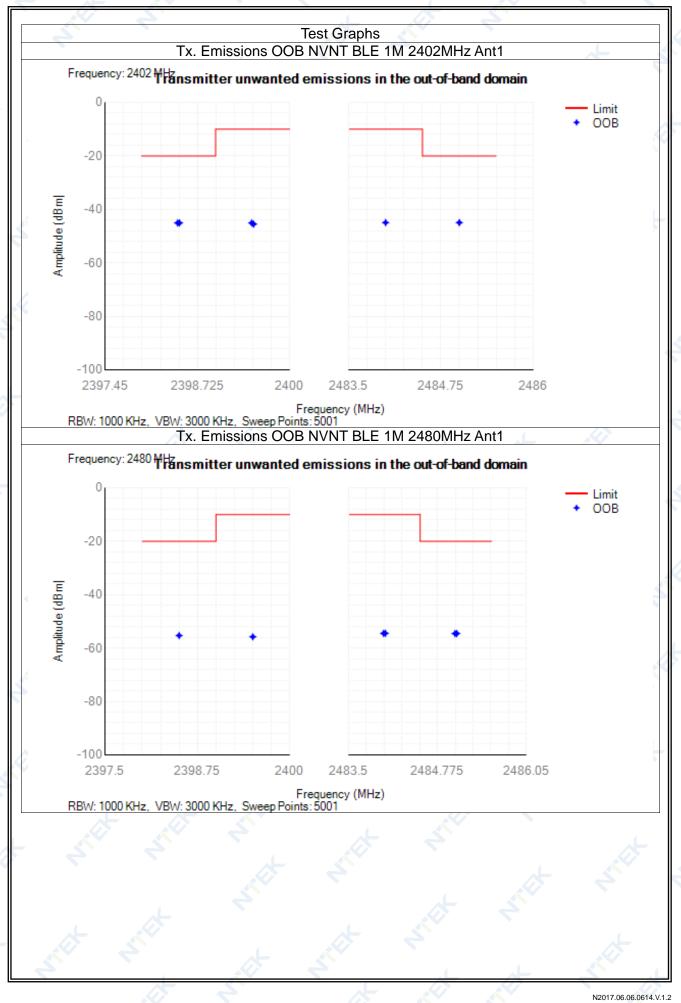
Page 49 of 79

Report No.: S23052404801002

4.3 Occupied Channel Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	2402.007	1.025	2401.495	2402.519	2400 - 2483.5MHz	Pass
NVNT	BLE 1M	2440	Ant1	2440.006	1.023	2439.495	2440.517	2400 - 2483.5MHz	Pass
NVNT	BLE 1M	2480	Ant1	2480.007	1.025	2479.495	2480.519	2400 - 2483.5MHz	Pass

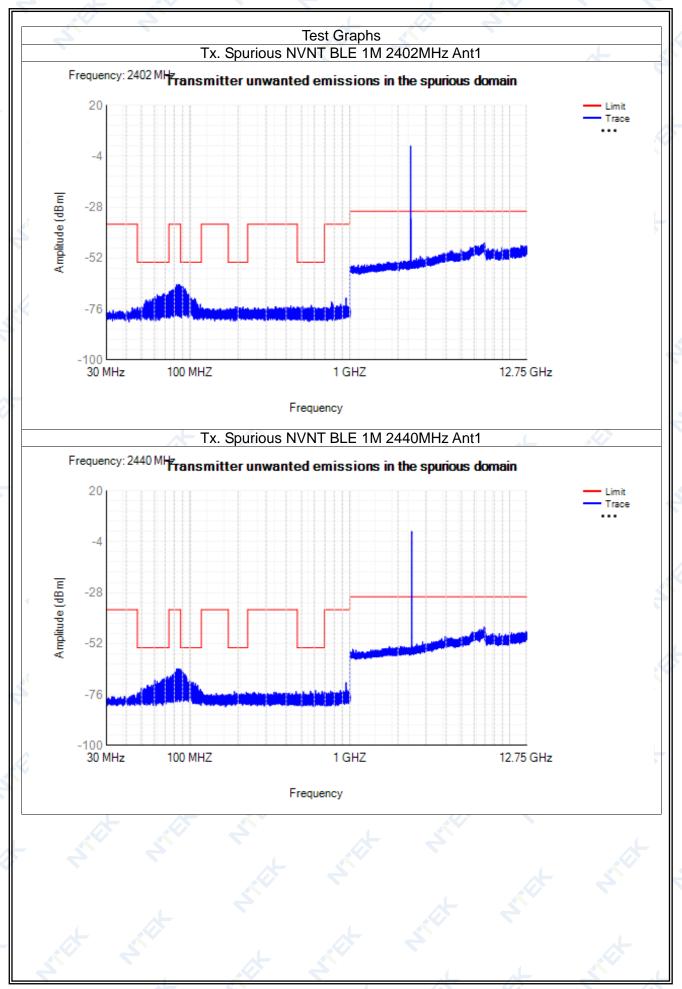
Page 50 of 79

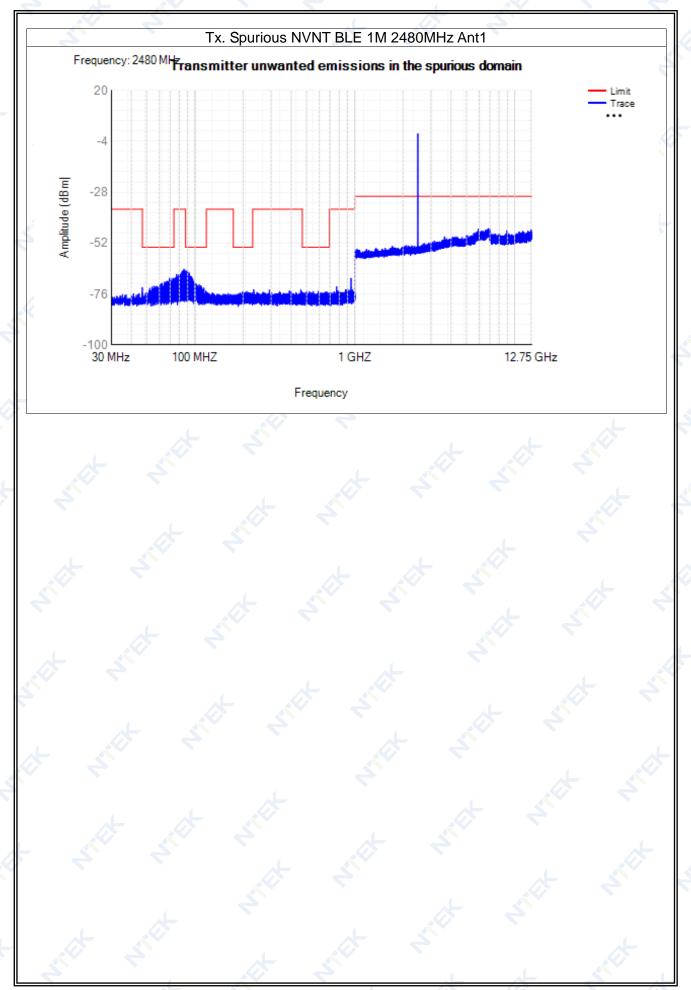


Page 51 of 79

Report No.: S23052404801002

Condition	Mode	Frequency (MHz)	Antenna	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	2399.5	-45.51	-10	Pass
NVNT	BLE 1M	2402	Ant1	2399.475	-45.06	-10	Pass
NVNT	BLE 1M	2402	Ant1	2398.475	-45.07	-20	Pass
NVNT	BLE 1M	2402	Ant1	2398.45	-45.07	-20	Pass
NVNT	BLE 1M	2402	Ant1	2484	-44.93	-10	Pass
NVNT	BLE 1M	2402	Ant1	2485	-44.94	-20	Pass
	BLE 1M	2480	Ant1	2399.5	-55.77	-10	Pass
NVNT	BLE 1M	2480	Ant1	2398.5	-55.3	-20	Pass
NVNT	BLE 1M	2480	Ant1	2484	-54.5	-10	Pass
NVNT	BLE 1M	2480	Ant1	2484.025	-54.46	-10	Pass
NVNT	BLE 1M	2480	Ant1	2485.025	-54.55	-20	Pass
NVNT	BLE 1M <	2480	Ant1	2485.05	-54.53	-20	Pass

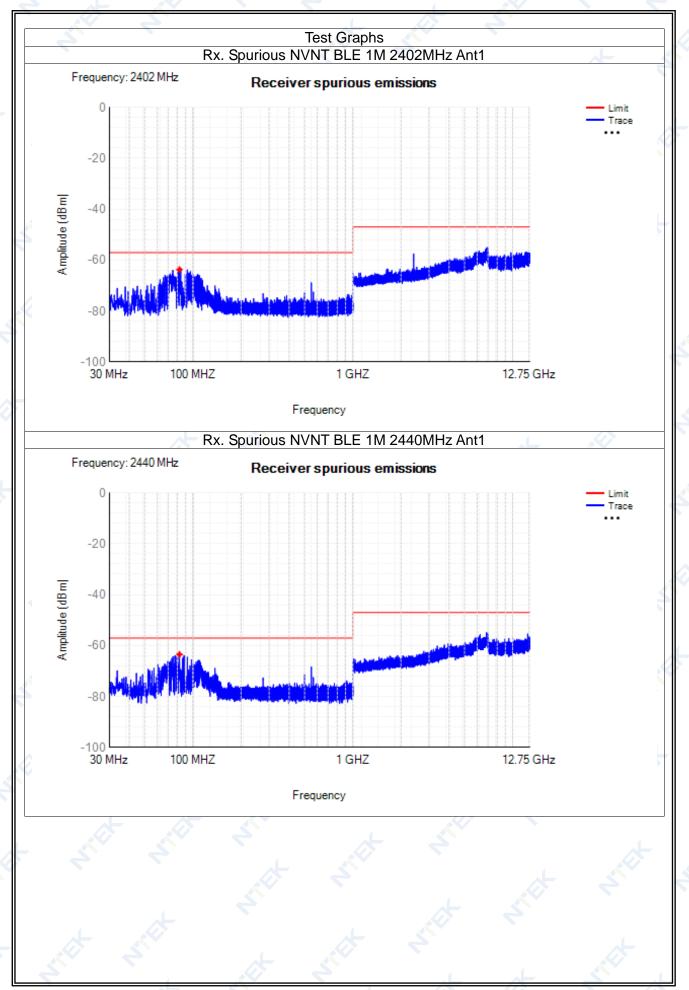



Page 54 of 79

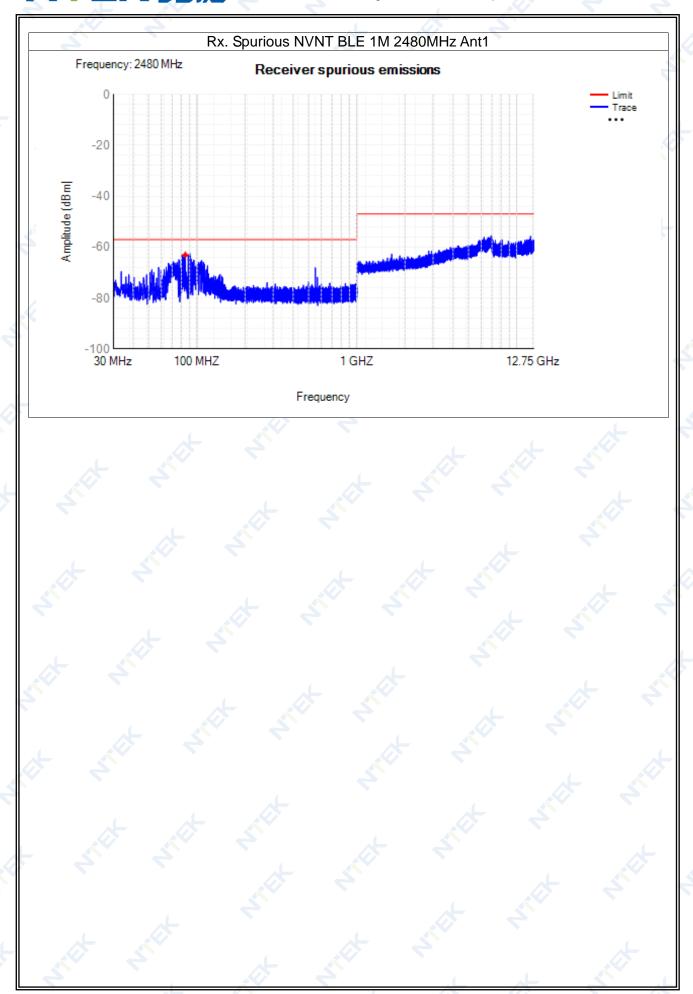
Condition		Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdic
NVNT	BLE 1M	2402	Ant1	30 -47	43.65	-75.31	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	47 -74	70.15	-68.64	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	74 -87.5	84.95	-64.36	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	87.5 -118	87.65	-65.22	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	118 -174	119.85	-75.32	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	174 -230	192.55	-74.90	NA 🧹	-54	Pass
NVNT	BLE 1M	2402	Ant1	230 -470	428.85	-74.53	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	470 -694	574.90	-74.24	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	694 -1000	948.25	-70.80	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	1000 -2398	2366.50	-53.27	NA	-30	Pass
NVNT	BLE 1M	2402	Ant1	2485.5	6935.50	-44.77	NA	-30	Pass
NVNT	BLE 1M	2440	Ant1	30 - 47	46.80	-76.12	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	47 -74	72.50	-67.50	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	74 -87.5	83.05	-63.83	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	87.5 -118	87.65	-64.09	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	118	118.25	-74.40	NA	-36	Pass
NVNT	BLE	2440 🖉	Ant1	-174	189.85	-74.54	NA	-54	Pass
NVNT	1M BLE	2440	Ant1	-230 230	461.95	-74.53	NA	-36	Pass
NVNT	1M BLE	2440	Ant1	-470 470	610.35	-73.98	NA	-54	Pass
NVNT	1M BLE	2440	Ant1	-694 694	948.20	-70.38	NA	-36	Pass
NVNT	1M BLE	2440	Ant1	-1000 1000	2080.50	-53.23	NA	-30	Pass
NVNT	1M BLE	2440	Ant1	-2398 2485.5	6911.50	-44.12	NA	-30	Pass
NVNT	1M BLE	2480	Ant1	-12750 30 -47	46.90	-72.92	NA	-36	Pass
NVNT	1M BLE	2480	Ant1	47 -74	70.35	-68.34	NA	-54	Pass
NVNT	BLE	2480	Ant1	74	85.50	-64.24	NA	-36	Pass
NVNT	1M BLE	2480	Ant1	-87.5 87.5	89.75	-64.66	NA	-54	Pass
NVNT	1M BLE	2480	Ant1	-118 118	120.30	-75.36	NA	-36	Pass
	1M BLE	_ 100	,	-174 174	0.00	. 0.00			

Page 55 of 79

								· · · · · · · · · · · · · · · · · · ·	
NVNT	BLE 1M	2480	Ant1	230 -470	459.20	-73.89	NA	-36	Pass
NVNT	BLE 1M	2480	Ant1	470 -694	589.65	-74.71	NA	-54	Pass
NVNT	BLE 1M	2480	Ant1	694 -1000	948.25	-68.56	NA	-36	Pass
NVNT	BLE 1M	2480	Ant1	1000 -2398	2088.00	-53.09	NA	-30	Pass
NVNT	BLE 1M	2480	Ant1	2485.5 -12750	6874.50	-45.11	NA	-30	Pass

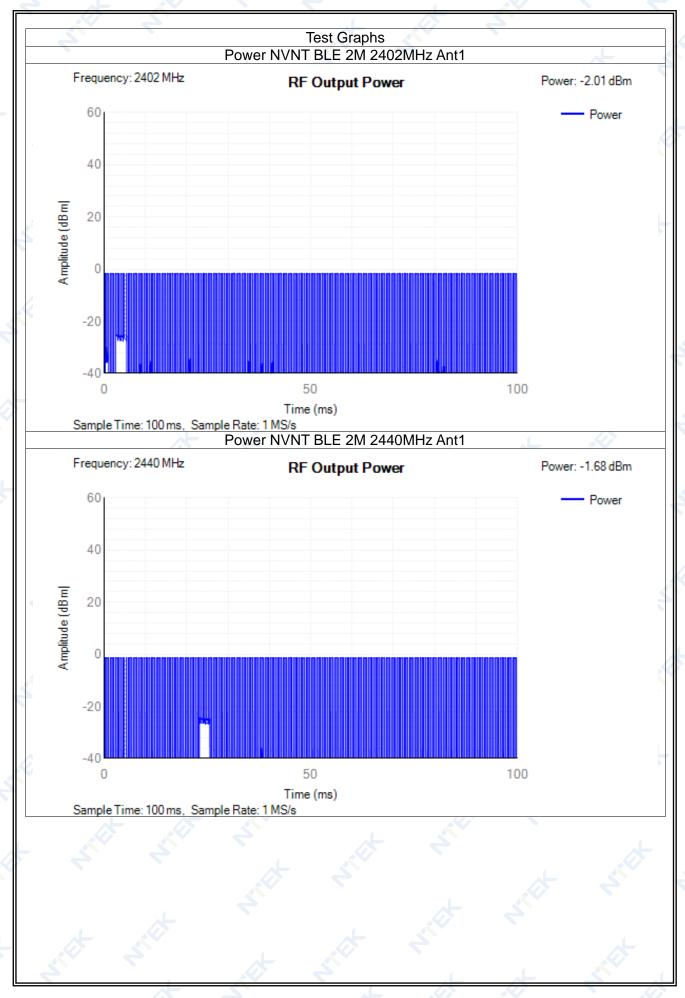


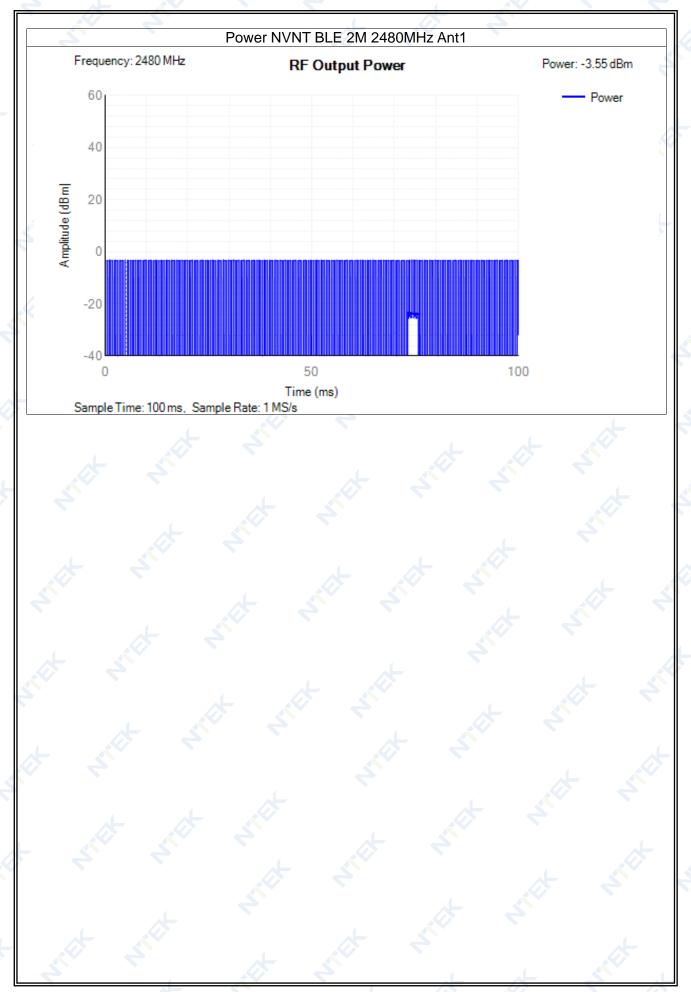
Report No.: S23052404801002


4.6 Receiver spurious emissions

		opanoad							
Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	30 -1000	82.3	-62.92	-63.73	-57	Pass
NVNT	BLE 1M	2402	Ant1	1000 -12750	6962	-54.99	NA	-47	Pass
NVNT	BLE 1M	2440	Ant1	30 -1000	82.45	-62.92	-63.45	-57	Pass
NVNT	BLE 1M	2440	Ant1	1000 -12750	6872.5	-54.93	NA	-47	Pass
NVNT	BLE 1M	2480	Ant1	30 -1000	84.65	-62.20	-63.08	-57	Pass
NVNT	BLE 1M	2480	Ant1	1000 -12750	6923	-55.54	NA	-47	Pass

Report No.: S23052404801002

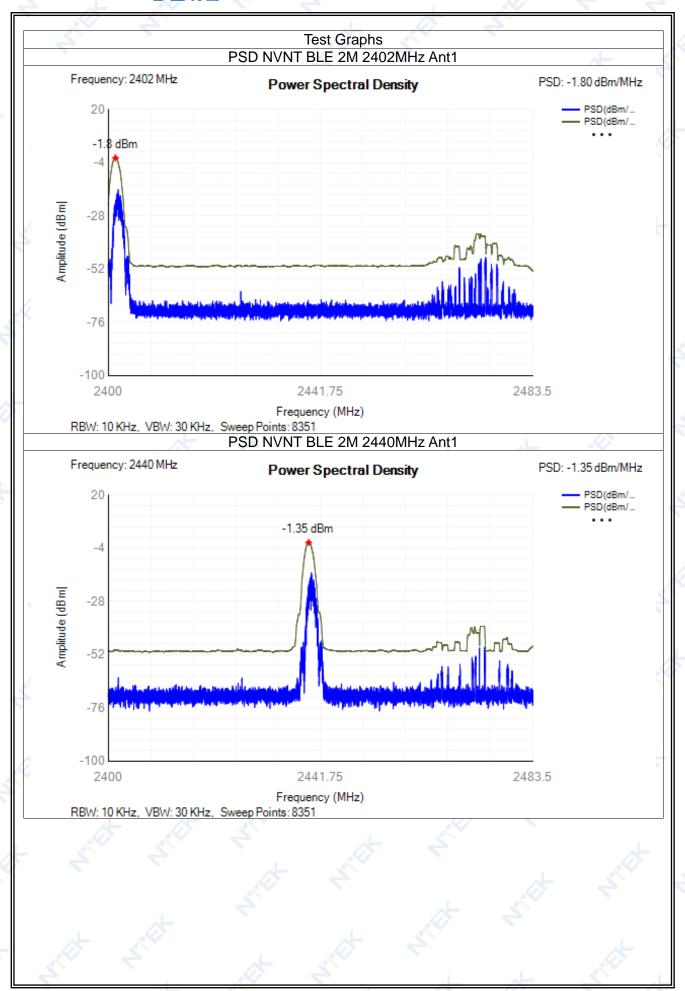

Report No.: S23052404801002

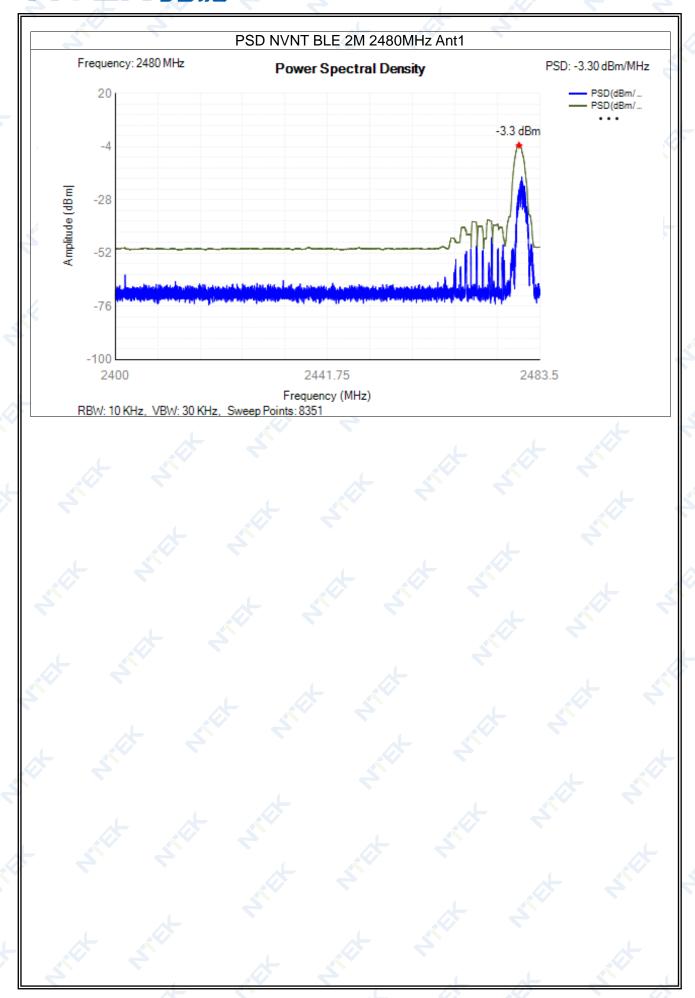


^{2M} 4.1 RF Output Power

Condition	Mode	Frequency (MHz)	Antenna	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-2.01	163	-0.6	20	Pass
NVNT	BLE 2M	2440	Ant1	-1.68	157	-0.27	20	Pass
NVNT	BLE 2M	2480	Ant1	-3.55	158	-2.14	20	Pass
NVLT	BLE 2M	2402	Ant1	-2.2 💉	163	-0.79	20	Pass
NVLT	BLE 2M	2440	Ant1	-1.84	157	-0.43	20	Pass
NVLT	BLE 2M	2480	Ant1	-3.8	158	-2.39	20	Pass
NVHT	BLE 2M	2402	Ant1	-2.52	163	-1.11	20	Pass
NVHT	BLE 2M	2440	Ant1	-1.89	157 🗹	-0.48	20	Pass
	BLE 2M	2480	Ant1	-3.9	158	-2.49	20	Pass

Report No.: S23052404801002





4.2 Power Spectral Density

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	-1.8	10	Pass
NVNT	BLE 2M	2440	Ant1	-1.35	10	Pass
NVNT	BLE 2M	2480	Ant1	-3.3	10	Pass

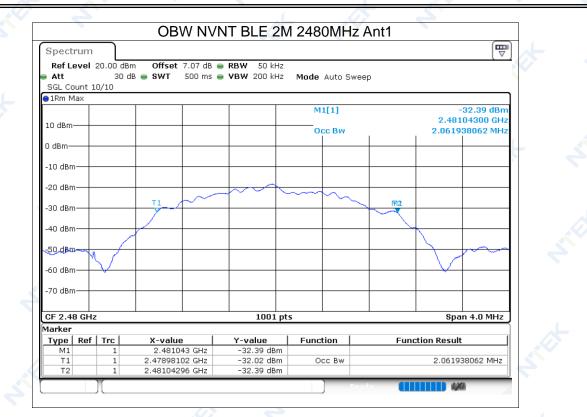
Report No.: S23052404801002

Page 67 of 79

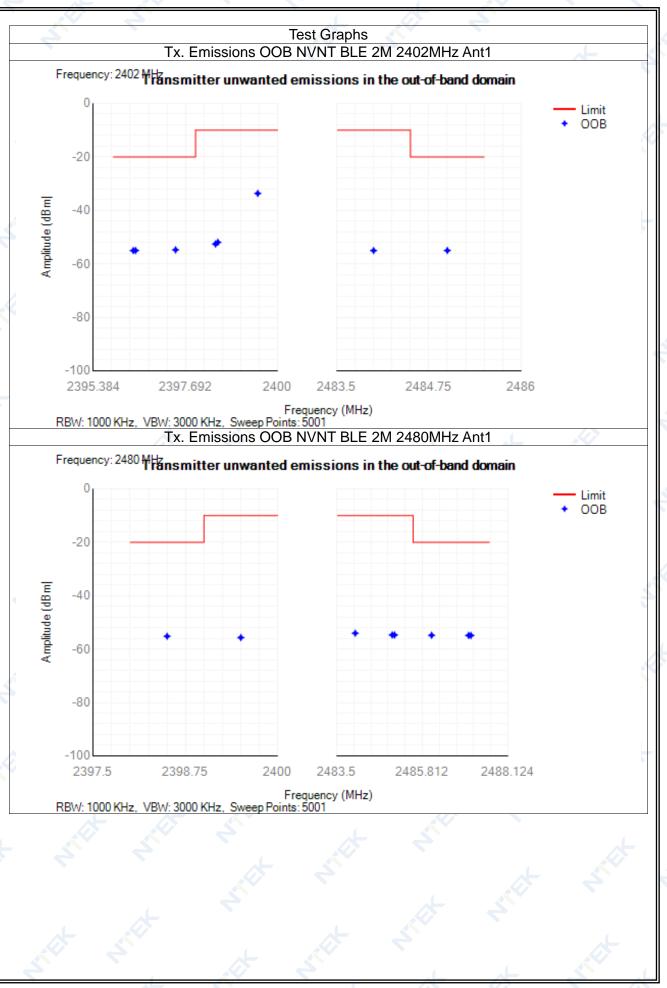
Report No.: S23052404801002

4.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	2402.014	2.058	2400.985	2403.043	2400 - 2483.5MHz	Pass
NVNT	BLE 2M	2440	Ant1	2440.012	2.062	2438.981	2441.043	2400 - 2483.5MHz	Pass
NVNT	BLE 2M	2480	Ant1	2480.012	2.062	2478.981	2481.043	2400 - 2483.5MHz	Pass


Page 68 of 79

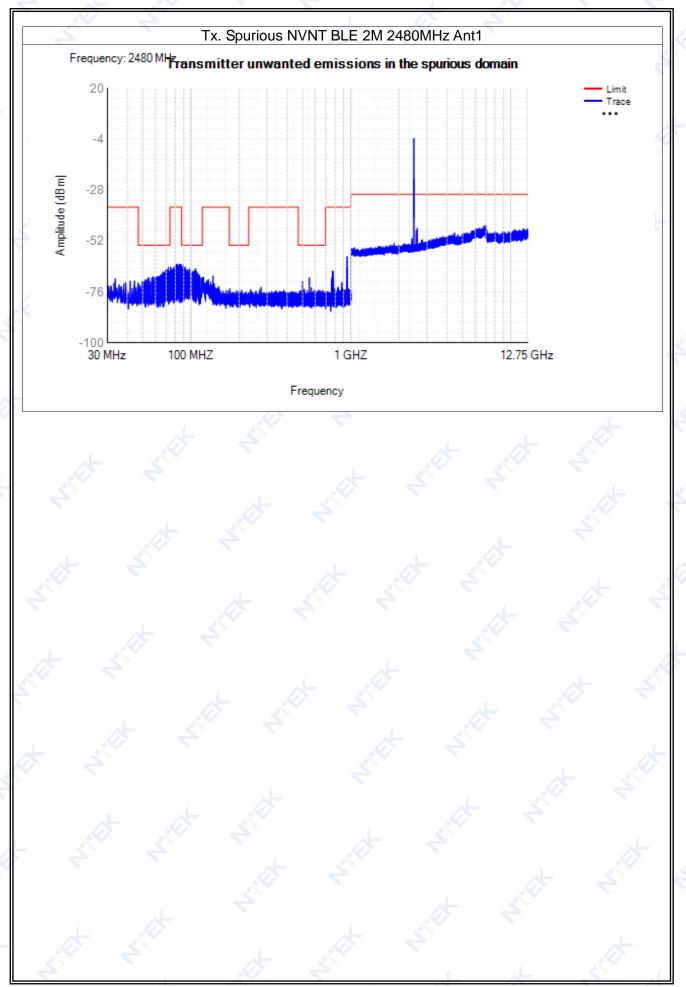
Report No.: S23052404801002



Page 69 of 79

Report No.: S23052404801002

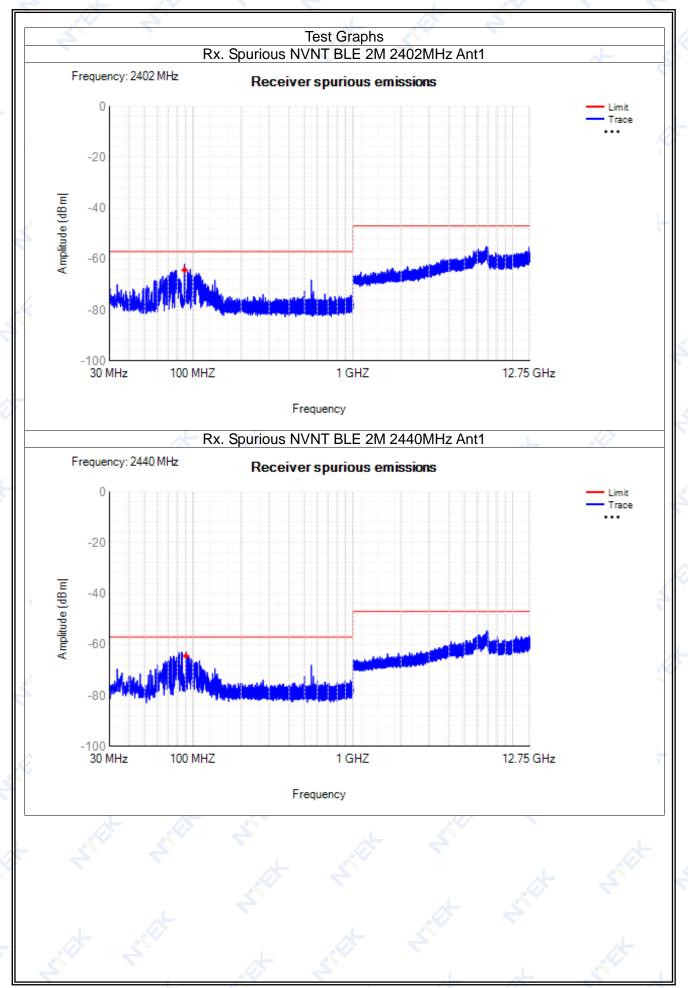
Condition	Mode	Frequency (MHz)	Antenna	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	2399.5	-33.65	-10	Pass
NVNT	BLE 2M	2402	Ant1	2398.5	-51.91	-10	Pass
NVNT	BLE 2M	2402	Ant1	2398.442	-52.57	-10	Pass
NVNT	BLE 2M	2402	Ant1	2397.442	-54.75	-20	Pass
NVNT	BLE 2M	2402	Ant1	2396.442	-54.99	-20	Pass
NVNT	BLE 2M	2402	Ant1	2396.384	-55.01	-20	Pass
	BLE 2M	2402	Ant1	2484	-55.01	-10	Pass
NVNT	BLE 2M	2402	Ant1	2485	-55	-20	Pass
NVNT	BLE 2M	2480	Ant1	2399.5	-55.68	-10	Pass
NVNT	BLE 2M	2480	Ant1	2398.5	-55.19	-20	Pass
NVNT	BLE 2M	2480	Ant1	2484	-54.05	-10	Pass
NVNT	BLE 2M	2480	Ant1	2485	-54.7	-10	Pass
NVNT	BLE 2M	2480	Ant1	2485.062	-54.71	-10	Pass
NVNT	BLE 2M	2480	Ant1	2486.062	-54.82	-20	Pass
NVNT	BLE 2M	2480	Ant1	2487.062	-54.87	-20	Pass
NVNT	BLE 2M	2480	Ant1	2487.124	-54.89	-20	Pass

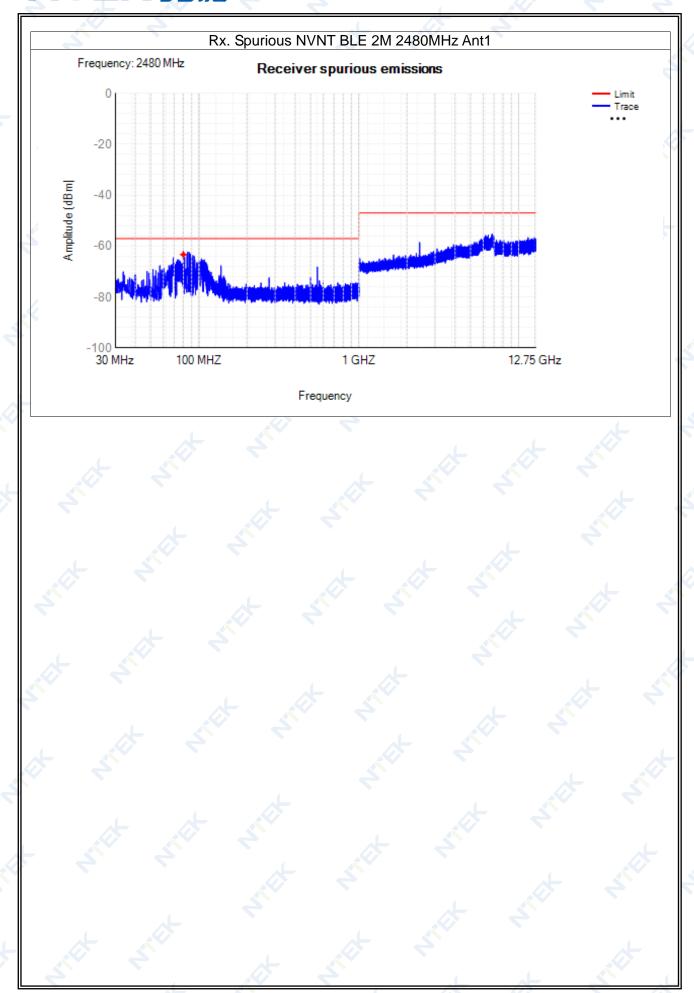

Report No.: S23052404801002

Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdic
NVNT	BLE 2M	2402	Ant1	30 -47	33.70	-69.59	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	47 -74	73.95	-64.87	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	74 -87.5	80.85	-62.51	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	87.5 -118	87.60	-61.86	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	> 118 -174	120.05	-69.32	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	174 -230	178.90	-74.95	NA	-54	Pass
	BLE 2M	2402	Ant1	230 -470	382.55	-73.69	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	470 -694	550.00	-68.85	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	694 -1000	948.20	-57.03	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	1000	2363.50	-53.01	NA	-30	Pass
NVNT	BLE 2M	2402	Ant1	2487.5 -12750	5172.50	-38.45	NA	-30	Pass
NVNT	BLE 2M	2440	Ant1	30 -47	33.65	-69.40	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	47 -74	72.95	-65.36	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	74 -87.5	84.35	-62.38	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	87.5 -118	87.75	-63.12	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	118	119.30	-67.70	NA	-36	Pass
NVNT	BLE 2M	2440 🖉	Ant1	174 174 -230	176.95	-74.72	NA	-54	Pass
NVNT	BLE	2440	Ant1	230	275.00	-73.43	NA	-36	Pass
NVNT	2M BLE	2440	Ant1	-470 470	550.00	-69.89	NA	-54	Pass
NVNT	2M BLE	2440	Ant1	-694 694	948.20	-59.83	NA	-36	Pass
NVNT	2M BLE	2440	Ant1	-1000 1000	2097.00	-52.97	NA	-30	Pass
NVNT	2M BLE	2440	Ant1	-2396 2487.5	5186.50	-35.96	-49.3	-30	Pass
NVNT	2M BLE	2480	Ant1	-12750 30 -47	33.65	-69.76	NA	-36	Pass
NVNT /	2M BLE	2480	Ant1	47 -74	72.15	-64.32	NA	-54	Pass
NVNT	2M BLE	2480	Ant1	74	84.75	-62.83	NA	-36	Pass
NVNT	2M BLE	2480	Ant1	-87.5 87.5	89.80	-62.78	NA	-54	Pass
NVNT	2M BLE	2480	Ant1	-118 118	137.55	-68.48	NA	-36	Pass
	2M BLE			-174 174					

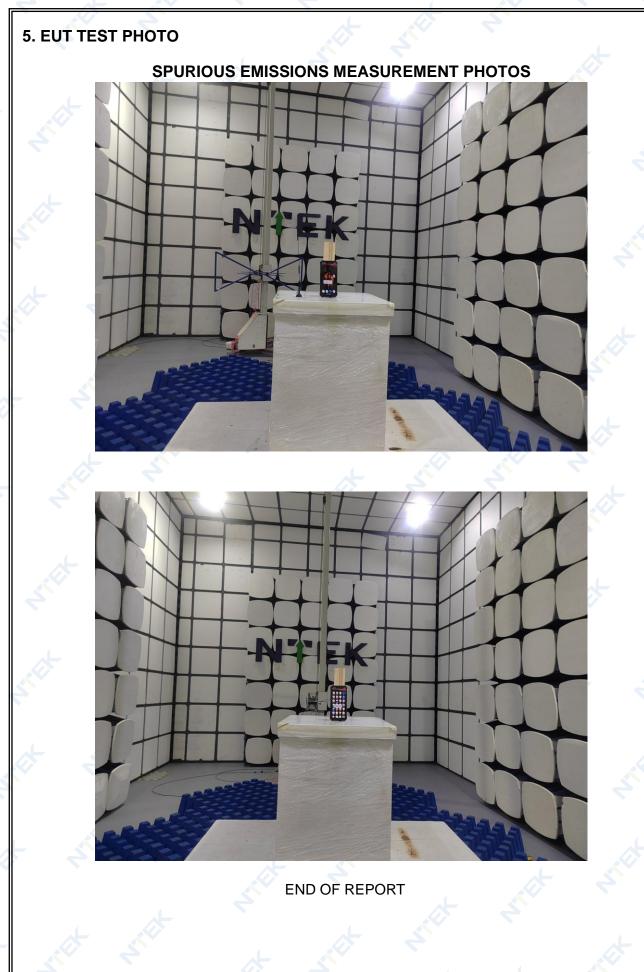
Page 73 of 79

	A									
NVNT	BLE 2M	2480	Ant1	230 -470	274.95	-73.82	NA	-36	Pass	
NVNT	BLE 2M	2480	Ant1	470 -694	550.00	-69.26	NA	-54	Pass	
NVNT	BLE 2M	2480	Ant1	694 -1000	948.20	-59.33	NA	-36	Pass	
NVNT	BLE 2M	2480	Ant1	1000 -2396	1865.00	-53.02	NA	-30	Pass	
NVNT	BLE 2M	2480	Ant1	2487.5 -12750	6961.50	-44.68	NA	-30	Pass	


Test Graphs Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Frequency: 2402 MH Fransmitter unwanted emissions in the spurious domain 20 .imit Trace -4 Amplitude (dBm) -28 -52 -76 -100 -30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency Tx. Spurious NVNT BLE 2M 2440MHz Ant1 Frequency: 2440 MH Fransmitter unwanted emissions in the spurious domain 20 .imit Trace -4 Amplitude (dBm) -28 -52 -76 -100 -100 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency



Report No.: S23052404801002


4.6 Receiver spurious emissions

Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	30 -1000	88.8	-61.94	-64.27	-57	Pass
NVNT	BLE 2M	2402	Ant1	1000 -12750	6821.5	-55.03	NA	-47	Pass
NVNT	BLE 2M	2440	Ant1	30 -1000	90.6	-62.87	-64.47	-57	Pass
NVNT	BLE 2M	2440	Ant1	1000 -12750	6968	-54.55	NA	-47	Pass
NVNT	BLE 2M	2480	Ant1	30 -1000	79.95	-62.16	-63.31	-57	Pass
NVNT	BLE 2M	2480	Ant1	1000 -12750	6818.5	-55.32	NA	-47	Pass

Page 79 of 79 Report No.: S23052404801002

