RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product :	Smart phone
Trade Mark :	Blackview
Model Name :	BV9200
Family Model:	N/A
Report No. :	STR221018001001E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Ш	
	Applicant's name
	Address
	Manufacturer's Name: Shenzhen DOKE Electronic Co.,Ltd
	Address
	Product description
	Product name: Smart phone
	Trademark
	Model Name
	Family Model: N/A
	Standards : ETSI EN 300 328 V2.2.2 (2019-07)
	This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU
	requirements. And it is applicable only to the tested sample identified in the report.
$\ $	This report shall not be reproduced except in full, without the written approval of NTEK, this

document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.

Test Sample Number	T221018001R003
---------------------------	----------------

Date of Test	
Date (s) of performance of tests	Oct 18, 2022 ~ Nov 15, 2022
Date of Issue	. Nov 15, 2022
Test Result	. Pass

Testing Engineer

Mukri Lee

(Mukzi Lee)

Authorized Signatory :

(Alex Li)

Report No.: STR221018001001E

Table of Contents	Page
1. GENERAL INFORMATION	7
1.1 GENERAL DESCRIPTION OF EUT	<u>ک</u> ۲
1.2 INFORMATION ABOUT THE EUT	8
1.3 TEST CONDITIONS	13
1.4 TEST CONFIGURATION OF EUT	13
1.5 DESCRIPTION OF TEST CONDITIONS	14
1.6 DESCRIPTION OF SUPPORT UNITS	15
1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS	16
2 . SUMMARY OF TEST RESULTS	17
2.1 TEST FACILITY	18
3 . RF OUTPUT POWER	5 19
3.1 LIMITS OF RF OUTPUT POWER	19
3.2 TEST PROCEDURE	19
3.3 DEVIATION FROM TEST STANDARD	19
3.4 TEST SETUP	19
3.5 TEST RESULTS	20
4 . ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AN	D HOPPING
SEQUENCE	21
4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPA	TION AND
	21
4.2 TEST PROCEDURE	21
4.3 DEVIATION FROM TEST STANDARD	21
4.4 TEST SETUP	22
4.5 TEST RESULTS	22
5 . OCCUPIED CHANNEL BANDWIDTH	23
5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	23
5.2 TEST PROCEDURE	23
5.3 DEVIATION FROM TEST STANDARD	24
5.4 TEST SETUP	24
5.5 TEST RESULTS	24
6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DO	OMAIN 25
6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-	BAND
DOMAIN	25
7 <u> </u>	

Page 3 of 92

		Ta	able of Content	ts	P	age
		T PROCEDURE				25
		IATION FROM TEST	STANDARD			26
		T SETUP				26
		T RESULTS				26
		NG FREQUENCY S		<u> </u>		27
1		TS OF HOPPING FR	REQUENCY SE	PARATION		27
						27
		IATION FROM TEST	STANDARD			27
		T SETUP T RESULTS				28 28
						29
		TS OF TRANSMITTE	ER TRANSMIT	ER UNWANTED E	MISSIONS IN TH	
		OUS DOMAIN				29 29
		I FROCEDURE				29
		T SETUP	STANDAND			29 30
		T RESULTS (Radiate	ed measurement			31
		T RESULTS (Conduc		,		32
		VER SPURIOUS EI		,		33
		TS OF RECEIVER S				33
				2		33
	9.3 DEV	IATION FROM TEST	STANDARD			33
	9.4 TES	T SETUP				34
	9.5 TES	T RESULTS (Radiate	ed measuremen	t)		35 🗸
	9.6 TES	T RESULTS (Conduc	cted measureme	ent)		36
	10. RECEI	VER BLOCKING				37
~	10.1 PE	RFORMANCE CRITE	ERIA			37
	10.2 LIN	ITS OF RECEIVER	BLOCKING			37
	10.3 TE	ST PROCEDURE				38
	10.4 DE	VIATION FROM TES	T STANDARD			39
		ST SETUP				39
	10.6 TE	ST RESULTS				40
	11. TEST F	RESULTS 🍝				41
	11.1 Acc	cumulated Transmit T	ïme 📈			41

Page 4 of 92

	Table of Con	itents		Pag	je
11.2 Frequency	y Occupation				48
11.3 One Pulse	e Dwell Time				55
11.4 RF Outpu	t Power				65
11.5 Hopping F	Frequency Separation				67
11.6 Occupied	Channel Bandwidth				71
11.7 Transmitte	er unwanted emissions in t	the out-of-band	domain		74
11.8 Transmitte	er unwanted emissions in t	the spurious dor	nain		77
11.9 Receiver	spurious emissions				86
11.10 Hopping	Sequence				90
12. EUT TEST P	НОТО				92
SPURIOUS EMI	SSIONS MEASUREME	NT PHOTOS			92

Page 5 of 92

Page 6 of 92

Report No.: STR221018001001E

Revision History

	n	evision history	X
Report No.	Version	Description	Issued Date
STR221018001001E	Rev.01	Initial issue of report	Nov 15, 2022
			4 4
	4 7	* *	
× ~		A JA A	
			A S
- 10 4		at sta	4
~			st i
de la	× ~	×	L. L.
		at st	· ~
			A
	4	1 to	A S
Star 2			s
`		4.	
	4		
			at .
Lifet Lifet		ATTER ATT	A Stat
	<u></u>		

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

<u> </u>					
Equipment	Smart phone				
Trade Mark	Blackview				
Model Name.	BV9200				
Family Model	N/A				
Model Difference	N/A	N/A			
	The EUT is Smart phone	The EUT is Smart phone			
	Operation Frequency:	2402~2480 MHz			
	Modulatin Type:	GFSK,π/4-DQPSK,8-DPSK			
	Modulation Technology:	FHSS			
	Adaptive/non-adaptive	Adaptive equipment			
	Receiver categories	2			
Product Description	Number Of Channel	79CH			
	Antenna Designation:	PIFA Antenna			
	Antenna Gain(Peak)	-0.6 dBi			
	exhibited in User's Manu	n, features, or specification ual, the EUT is considered as an More details of EUT technical er to the User's Manual.			
Channel List	Refer to below Table				
Adapter	Output: 5.0V3.0A or or 15.0V3.0A or 20.0	Model: QZ-06502EC00 Input: 100-240V~50/60Hz 1.5A Output: 5.0V3.0A or 9.0V3.0A or 12.0V3.0A or 15.0V3.0A or 20.0V 3.25A (PPS)3.3V~21.0V3.15A(66.0W Max)			
Battery	DC 3.87V, 5000mAh, 19).35Wh 🔶			
Rating	DC 3.87V from battery o	DC 3.87V from battery or DC 5V from adapter			
I/O Ports	Refer to users manual				
Hardware Version	HCT-G680MB-A4				
Software Version	BV9200_EEA_G680_V1	.0_20221109V11			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Page 8 of 92

Report No.: STR221018001001E

79 channels are provided to (GFSK, $\pi/4$ -DQPSK, 8-DPSK)

Channel	Frequency (MHz
00	2402
01	2403
	× ×
77	2479
78	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

- FHSS
- other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment:
 - The maximum number of Hopping Frequencies: 79
 - The minimum number of Hopping Frequencies: 79
- The (average) Dwell Time: 356.128s Maximum

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The maximum Channel Occupancy Time implemented by the equipment:/..... ms

- The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - The equipment can switch dynamically between Frame Based and Load Based equipment

The CCA time implemented by the equipment:/.. µs

The equipment has implemented a non-LBT based DAA mechanism

The equipment can operate in more than one adaptive mode

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.):

The maximum (corresponding) Duty Cycle:

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations

of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

- RF Output Power GFSK
- Power Spectral Density
- N/A
- Duty cycle, Tx-Sequence, Tx-gap
- N/A
- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment) GFSK
- Hopping Frequency Separation (only for FHSS equipment) π /4-DQPSK
- Medium Utilization

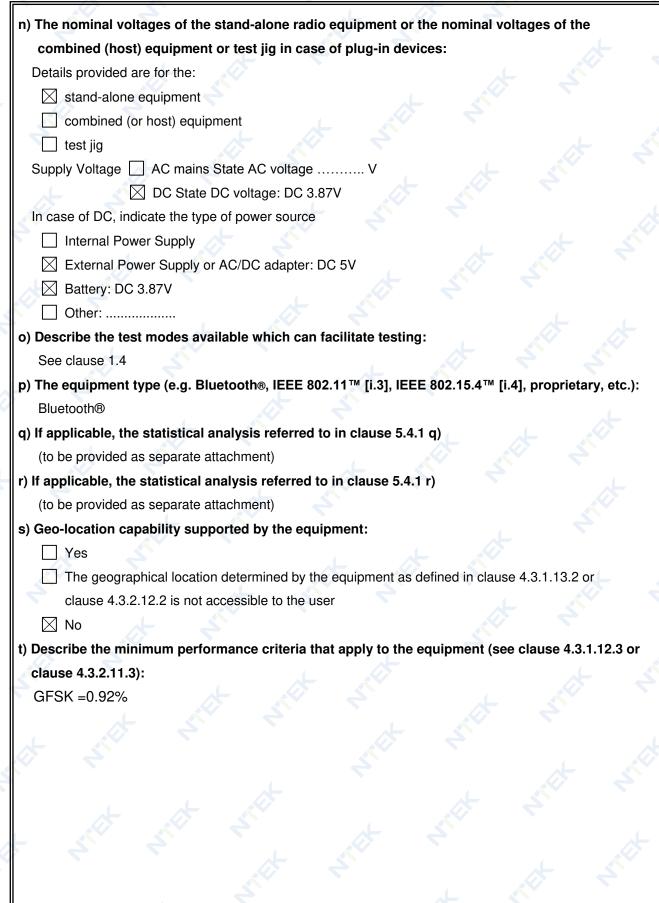
N/A

- Adaptivity
 N/A
- Receiver Blocking
 GFSK
- Nominal Channel Bandwidth
 8-DPSK
- Transmitter unwanted emissions in the OOB domain 8-DPSK
- Transmitter unwanted emissions in the spurious domain 8-DPSK
- Receiver spurious emissions
- π/4-DQPSK

g) The different transmit operating modes (tick all that apply):

- Operating mode 1: Single Antenna Equipment
- Equipment with only one antenna
- Equipment with two diversity antennas but only one antenna active at any moment in time

Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only


one antenna is used (e.g. IEEE 802.11[™] [i.3] legacy mode in smart antenna systems)

- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
- Single spatial stream / Standard throughput / (e.g. IEEE 802.11[™] [i.3] legacy mode)
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
- NOTE 1: Add more lines if more channel bandwidths are supported.

Page 10 of 92

	Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
	Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
	High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
	High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
	NOTE 2: Add more lines if more channel bandwidths are supported.
	n case of Smart Antenna Systems:
	The number of Receive chains:
	The number of Transmit chains:
	symmetrical power distribution
	asymmetrical power distribution
Ir	n case of beam forming, the maximum (additional) beam forming gain: dB
	NOTE: The additional beam forming gain does not include the basic gain of a single antenna.
i) O	perating Frequency Range(s) of the equipment:
	Operating Frequency Range 1: 2402 MHz to 2480 MHz
	Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported.
j) N	ominal Channel Bandwidth(s):
	Nominal Channel Bandwidth 1: 1.177MHz
	Nominal Channel Bandwidth 2:/ MHz
	NOTE: Add more lines if more channel bandwidths are supported.
k) 1	ype of Equipment (stand-alone, combined, plug-in radio device, etc.):
	Stand-alone
	Combined Equipment (Equipment where the radio part is fully integrated within another type of
	equipment)
	Plug-in radio device (Equipment intended for a variety of host systems)
	Other
I) T	he normal and the extreme operating conditions that apply to the equipment:
Ν	lormal operating conditions (if applicable):
	Operating temperature: 15°C~35°C
	Other (please specify if applicable):
E	xtreme operating conditions:
	Operating temperature range: Minimum: -10°C Maximum 40°C
	Other (please specify if applicable): Minimum: Maximum
	Details provided are for the:
	Stand-alone equipment
	combined (or host) equipment
	🗌 test jig

The intended com	bination(s) of the rac	lio equipment power	settings and	one or more antenna
assemblies and the	eir corresponding e.	i.r.p. levels:		
Antenna Type: PIF.	A Antenna			
Integral Antenn	a (information to be p	rovided in case of cond	lucted measu	rements)
Antenna Gain:	: -0.6 dBi			
If applicable, add	ditional beamforming	gain (excluding basic a	ntenna gain):	/ dB
Temporary	y RF connector provid	ed		
No tempor	rary RF connector pro	vided		
Dedicated	Antennas (equipmen	t with antenna connect	or)	
Single pov	ver level with correspo	onding antenna(s)		
Multiple po	ower settings and corr	esponding antenna(s)		
Number of di	fferent Power Levels:	<u>k</u>		
Power Level	1: dBm 🔊			
Power Level	2: dBm			
	3: dBm			
		e equipment has more	•	
		onducted power levels		
For each of the Pow	ver Levels, provide the	e intended antenna ass	emblies, their	corresponding gains
		ing into account the be	amforming ga	in (Y) if applicable
Power Level	l 1: dBm	ing into account the be ovided for this power le		in (Y) if applicable
Power Level	l 1: dBm		vel:	, t
Power Level Number of ar	I 1: dBm ntenna assemblies pro	ovided for this power le	vel:	, t
Power Level Number of ar	I 1: dBm ntenna assemblies pro Gain (dBi)	ovided for this power le e.i.r.p. (dBm	vel:	, t
Power Level Number of ar Assembly # 1 2	I 1: dBm ntenna assemblies pro Gain (dBi)	ovided for this power le e.i.r.p. (dBm	vel:	, t
Power Level Number of ar Assembly # 1 2 3	I 1: dBm ntenna assemblies pro Gain (dBi) -0.6	e.i.r.p. (dBm 9.16	vel: n) Part	, t
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add	d more rows in case m	e.i.r.p. (dBm 9.16	vel: n) Part	number or model name
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add Power Level	1:	e.i.r.p. (dBm 9.16	vel:) Part es are support	number or model name
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add Power Level	1:	e.i.r.p. (dBm 9.16	vel:) Part es are support vel:	t number or model name
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add Power Level Number of ar	d more rows in case m d more rows in case m d more seemblies pro- d more rows in case m	ovided for this power le e.i.r.p. (dBm 9.16 nore antenna assemblie ovided for this power le	vel:) Part es are support vel:	t number or model name
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add Power Level Number of ar Assembly # 1	d more rows in case m d more rows in case m d more seemblies pro- d more rows in case m	ovided for this power le e.i.r.p. (dBm 9.16 nore antenna assemblie ovided for this power le	vel:) Part es are support vel:	t number or model name
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add Power Level Number of ar Assembly # 1 2	d more rows in case m d more rows in case m d more seemblies pro- d more rows in case m	ovided for this power le e.i.r.p. (dBm 9.16 nore antenna assemblie ovided for this power le	vel:) Part es are support vel:	t number or model name
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Ado Power Level Number of ar Assembly # 1 2 3	d more rows in case m a more rows in case m Gain (dBi) -0.6 d more rows in case m 12: dBm ntenna assemblies pro Gain (dBi)	by ided for this power le e.i.r.p. (dBm 9.16 hore antenna assemblie by ided for this power le e.i.r.p. (dBm	vel:) Part es are support vel:) Part	t number or model name
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add	d more rows in case m a more rows in case m Gain (dBi) -0.6 d more rows in case m 12: dBm ntenna assemblies pro Gain (dBi)	by ided for this power le e.i.r.p. (dBm 9.16 hore antenna assemblie by ided for this power le e.i.r.p. (dBm	vel:) Part es are support vel:) Part	t number or model name
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level	1: dBm ntenna assemblies pro Gain (dBi) -0.6 d more rows in case m 12: Gain (dBi) Gain (dBi)	by ided for this power le e.i.r.p. (dBm 9.16 hore antenna assemblie by ided for this power le e.i.r.p. (dBm	vel: Part n) Part es are support vel: Part n) Part es are support vel: Part es are support	t number or model name
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level	1: dBm ntenna assemblies pro Gain (dBi) -0.6 d more rows in case m 12: Gain (dBi) Gain (dBi)	by ided for this power le e.i.r.p. (dBm 9.16 bore antenna assemblie by ided for this power le e.i.r.p. (dBm bore antenna assemblie	vel: Part n) Part es are support vel: Part n) Part es are support vel: Part	t number or model name
Power Level Number of an Assembly # 1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add Power Level NUMber of an	d more rows in case m Gain (dBi) -0.6 d more rows in case m 12:	by ided for this power le e.i.r.p. (dBm 9.16 bore antenna assemblie by ided for this power le e.i.r.p. (dBm bore antenna assemblie bore antenna assemblie	vel: Part n) Part es are support vel: Part n) Part es are support vel: Part	t number or model name
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level Number of ar Assembly #	d more rows in case m Gain (dBi) -0.6 d more rows in case m 12:	by ided for this power le e.i.r.p. (dBm 9.16 bore antenna assemblie by ided for this power le e.i.r.p. (dBm bore antenna assemblie bore antenna assemblie	vel: Part n) Part es are support vel: Part n) Part es are support vel: Part	t number or model name
Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level Number of ar Assembly # 1 2 3 1 2 3 NOTE 4: Add Power Level Number of ar Assembly # 1	d more rows in case m Gain (dBi) -0.6 d more rows in case m 12:	by ided for this power le e.i.r.p. (dBm 9.16 bore antenna assemblie by ided for this power le e.i.r.p. (dBm bore antenna assemblie bore antenna assemblie	vel: Part n) Part es are support vel: Part n) Part es are support vel: Part	t number or model name

1.3 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	-10℃ ~ 40℃ Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.87V	/

Note:

(1) The HT 40 $^\circ\!\!\!\mathrm{C}$ and LT -10 $^\circ\!\!\!\mathrm{C}$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

1.4 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing				
Bluetooth mode Data rate Modulation type				
1Mbps	GFSK			
2Mbps	π/4-DQPSK			
3Mbps	8-DPSK			
	Data rate 1Mbps 2Mbps			

Test Channel Frequencies Configuration				
Test Channel	st Channel EUT Channel Test Frequency (MHz)			
Lowest	CH00	2402		
Middle 💉	СН39	2441		
Highest	CH78	2480		

Page 14 of 92

Report No.: STR221018001001E

1.5 DESCRIPTION OF TEST CONDITIONS

E-1 EUT

1.6 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Smart phone	BV9200	N/A	EUT
X	5			
			2	
	1			× ·
				K
$\langle \rangle$	4	X		
		* *		

Item	Shielded Type	Ferrite Core	L	ength		Note	
	4		×		7		
							1. A
					4		Str.
				X	5	~	
5			X	1			

Note:

- (1)
- The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\[\]$ column. (2)

1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
Turn Table	EM 🧷	SC100_1	60531	N/A	N/A	– N/A <
Antnna Mast	EM 🔨	SC100	N/A	N/A	N/A	N/A
Horn Antenna 🥢	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.01	2023.03.31	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01	2023.03.31	1 year
Power Splitter	Mini-Circuits/	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	🔨 3 year
Power Meter		RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

N2017.06.06.0614.V.1.3

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
	TRANSMITTER PARAMETERS	
4.3.1.2	RF Output Power	Pass
4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2
4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
4.3.1.5	Hopping Frequency Separation	Pass
4.3.1.6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2
4.3.1.7	Adaptivity	Not Applicable (See Note 1)
4.3.1.8	Occupied Channel Bandwidth	Pass
4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	~
4.3.1.11	Receiver Spurious Emissions	Pass
4.3.1.12	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

Page 18 of 92

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Maximum measurement uncertainty					
No.	Item	Uncertainty			
1	Occupied Channel Bandwidth	± 5%			
2	RF output Power,conducted	÷ ±1.5dB			
3	Power Spectral Density, conducted	± 3dB			
4	Unwanted emissions, conducted	± 3dB			
5	All emissions, radiated	± 6dB			
6	Temperature	± 3°C			
7	Humidity	± 3%			
9	Time	± 5%			

Page 19 of 92

TRANSMITTER PARAMETERS

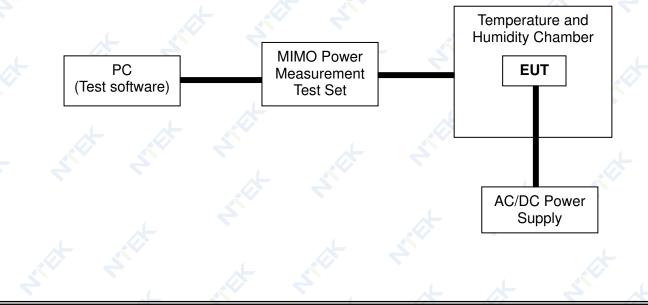
3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER

Refer to chapter 4.3.1.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER				
Condition	Limit			
Non-adaptive frequency hopping systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.			
Adaptive frequency hopping systems	equal to or less than 20 dBm.			

3.2 TEST PROCEDURE


Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement	
Conducted measurement	Radiated measurement	

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

N2017.06.06.0614.V.1.3

Page 20 of 92

3.5 TEST RESULTS

EUT :	Smart phone	Model Name :	BV9200
Temperature :	20°C	Relative Humidity :	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK	7	

Test data reference attachment

Page 21 of 92

4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Refer to chapter 4.3.1.4.3 of ETSI EN 300 328 V2.2.2 (2019-07)

A	ccumulated Transmit Time			
Condition	Limit			
Non-adaptive frequency hopping systems	≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]			
Adaptive frequency hopping systems	≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]			
MINIMUM	FREQUENCY OCCUPATION TIME			
Condition	Limit			
Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not			
Adaptive frequency hopping systems	exceeding four times the product of the dwell time and the number of hopping frequencies in use.			
Н	IOPPING SEQUENCE (S)			
Condition	Limit			
Non-adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum			
Adaptive frequency	Operating over a minimum of 70% of the Operating ir the band 2.4 GHz to 2.4835 GHz			
hopping systems	≥15 hopping frequencies or 15/minimum			

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of ETSI EN 300 328 V2.2.2 (2019-07)

M	easurement	
Conducted measurement	Radiated measure	ment
4.3 DEVIATION FROM TEST STANDARD	★ 4	
No deviation		
ATT AT	ATON A	AT
		N2017.06.06.

EUT

Page 22 of 92 Report No.: STR221018001001E

4.4 TEST SETUP

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Spectrum

Analyzer

4.5 TEST RESULTS

EUT :	Smart phone	Model Name :	BV9200	
Temperature :	26°C	Relative Humidity	60 %	
Pressure :	1012 hPa 🛛 🚫 🤿	Test Voltage :	DC 3.87V	
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-Hopping Mode			

Test data reference attachment

Page 23 of 92

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH

Refer to chapter 4.3.1.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	OCCUPIED CHANNEL BA	NDWIDTH	
	Condition	Limit	
A	Il types of equipment	Shall fall completely within the banc 2400 to 2483.5 MHz	
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz	
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz	

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Me	easurement
Conducted measurement	Radiated measurement

The setting of the Spectrum Analyzer

Center Frequency	The centre frequency of the channel under test	4	
Frequency Span	2 × Nominal Channel Bandwidth		
Detector	RMS		
RBW	~ 1 % of the span without going below 1 %		5
VBW	3 × RBW	4	
Trace	Max hold		
Sweep time	1s		

Page 24 of 92

5.3 DEVIATION FROM TEST STANDARD

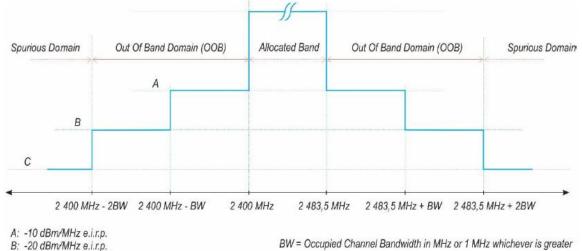
No deviation

5.4 TEST SETUP

EUT Spectrum Analyzer

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

5.5 TEST RESULTS


EUT:	Smart phone	Model Name :	BV9200
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa 🔨 🔨	Test Voltage :	DC 3.87V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-(CH00/CH78)		

Test data reference attachment

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN			
Condition Limit			
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.		

C: Spurious Domain limits

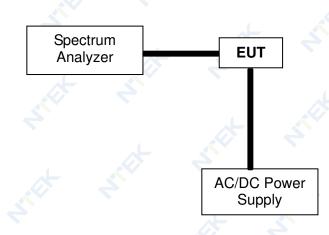
BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

Figure 1: Transmit mask

6.2 TEST PROCEDURE

Refer to chapter 5.4.8.2of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement						
Conducted measure	ment					
The setting of the Spectrum Ana	alyzer					
Span	0Hz 🔷 💎					
Filter Mode	Channel Filter					
Trace Mode	Clear/Write					
Trigger Mode	Video Trigger					
Detector	RMS					
Sweep Point / Sweep Mode	5000 / Continuous					
RBW / VBW	1MHz / 3MHz					


N2017.06.06.0614.V.1.3

Report No.: STR221018001001E

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

According to the ETSI EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

Page 26 of 92

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

6.5 TEST RESULTS

EUT :	Smart phone	Model Name :	BV9200
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-(0		

Test data reference attachment

Page 27 of 92

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of ETSI EN 300 328 V2.2.2 (2019-07)

HOPPING FREQUENCY SEPARATION		
Condition	Limit	
Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.	
Adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be 100 kHz.	

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	М	easurement			
Conducted	measurement		diated measur	rement	
The setting of the Spec	ctrum Analyzer			<u>i</u>	Ļ
Center Frequency	Centre of the two a	djacent hopping freq	uencies	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Frequency Span Sufficient to see the complete power envelope of both hopping frequencies frequencies					
Detector	Max Peak				5
RBW	~ 1 % of the span				
VBW	3 × RBW		~		
Trace	Max hold	A.			
Sweep Time	Auto				7

7.3 DEVIATION FROM TEST STANDARD

No deviation

EUT

Page 28 of 92 Report No.: STR221018001001E

7.4 TEST SETUP

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Spectrum

Analyzer

7.5 TEST RESULTS

EUT :	Smart phone	Model Name :	BV9200			
Temperature :	26°C 🤍	Relative Humidity :	60 %			
Pressure :	1012 hPa 📃 📃	Test Voltage :	DC 3.87V			
Test Mode :	: BT-GFSK/π/4-DQPSK /8-DPSK-(CH00/CH39/CH78)					

Test data reference attachment

Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz. 2.The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

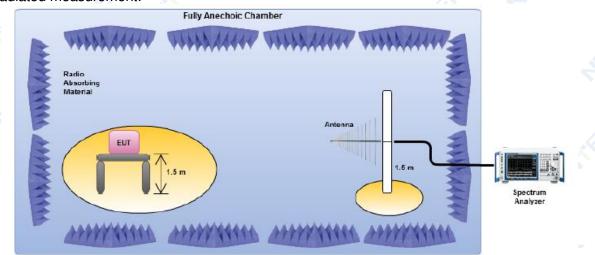
Refer to chapter 4.3.1.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EN	ISSIONS IN THE SPURIOUS DO	OMAIN
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

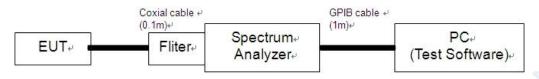
8.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement							
Conducted m	neasurement	Radiated measurement					
The setting of the Spectr	um Analyzer				4		
RBW	100K(<1GHz) / 1M	(>1GHz)		4			
VBW	300K(<1GHz) / 3M	(>1GHz)	F 7		4		


8.3 DEVIATION FROM TEST STANDARD

No deviation


Page 30 of 92 Report No.: STR221018001001E

8.4 TEST SETUP

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 31 of 92

Report No.: STR221018001001E

8.5 TEST RESULTS (Radiated measurement)

BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)							
EUT :	Smart phone	Model Name :	BV9200				
Temperature :	24 ℃	Relative Humidity	54%				
Pressure :	1010 hPa	Test Power :	DC 3.87V				
Test Mode :	BT-GFSK (CH00)	2	<u>k</u> <u>s</u>				

Polar	Frequency	Frequency Meter Reading	Factor Emission Level		Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	35.886	-72.29	10.79	-61.50	-36	-25.50	peak
V	103.368	-71.5	11.39	-60.11	-54	-6.11	peak
V	219.548	-67.05	11.32	-55.73	-54	-1.73	peak
V	403.32	-73.77	11.24	-62.53	-36	-26.53	peak
V	562.903	-68.25	9.54	-58.71	-54	-4.71	peak
Н	45.104	-71.59 🤝	10.54	-61.05	-36	-25.05	peak
Н	92.992	-75.81	10.33	-65.48	-54	-11.48	peak
H	215.603	-74.87	10.85	-64.02	-54	-10.02	peak
H	363.85	-68.16	11.16	-57.00	-36	-21.00	peak
Н	538.926	-73.23	11.05	-62.18	-54	-8.18	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

IT:	Smart pl	none		Model Name	: BVS	200 🧉	
mperati	ure : 24 ℃	2		Relative Humic	dity 54%		
essure :	1010 hP	a	.L	Test Power :		3.87V	
st Mode		CH00/CH39/CH	178)	2			
				•			
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
		ор	eration fre	quency:2402	1		~
V	2594.174	-69.09	10.31	-58.78	-30	-28.78	peak
V	5819.026	-75.68	9.68	-66.00	-30	-36.00	peak
V	2072.434	-70.64	11.06	-59.58	-30	-29.58	peak
V	4630.191	-77.22	9.89	-67.33	-30	-37.33	peak
Н	2580.358	-69.53	10.63	-58.90	-30	-28.90	peak
Н	4238.723	-73.9	11.32	-62.58	-30	-32.58	peak
H	2393.096	-75.37	10.23	-65.14 🔇	-30	-35.14	peak
H 1	5778.425	-74.88	10.47	-64.41	-30	-34.41	peak
		ор	eration fre	quency:2441			
V	2912.021 🔊	-67.01	10.21	-56.80	-30	-26.80	peak
V	3249.984	-73.02	10.28	-62.74	-30	-32.74	peak
V	2929.384	-71.71	10.46	-61.25	-30	-31.25	peak
V	3589.005	-74.85	10.84	-64.01	-30	-34.01	peak
Н	2638.596	-69.38	9.93	-59.45	-30	-29.45	peak
Н	5962.759	-77.09	9.65	-67.44	-30	-37.44	peak
Н	2266.084	-71.57	9.75	-61.82	-30	-31.82	peak
H	4204.691	-69	11.34	-57.66	-30	-27.66	peak
				quency:2480	<u> </u>		
V	2295.932	-70.94	10.17	-60.77	-30	-30.77	peak
V	3588.489	-67.81	9.78	-58.03	-30	-28.03	peak
V	2027.568	-71.21	10.86	-60.35	-30	-30.35	peak
V	4803.722	-67.27	10.92	-56.35	-30	-26.35	peak
Н	2914.509	-76.13	11.41	-64.72	-30	-34.72	peak
Н	4719.351	-71.52	10.43	-61.09	-30	-31.09	peak
Н	2631.625	-73.77	10.73	-63.04	-30	-33.04	peak
Н	4189.138	-67.15	10.61	-56.54	-30	-26.54	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

8.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

Page 33 of 92

9. RECEIVER SPURIOUS EMISSIONS

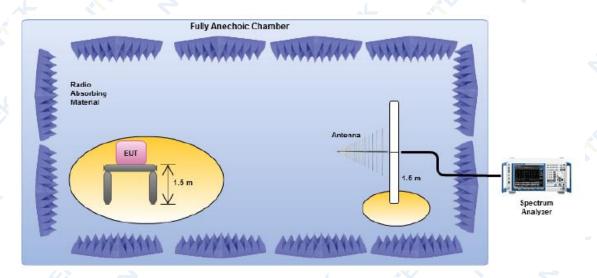
9.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.1.11.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS						
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth				
30 MHz ~ 1 GHz	-57dBm	100KHz				
1 GHz ~ 12.75 GHz	-47dBm	1MHz				

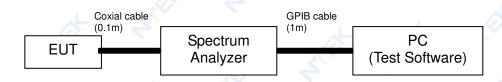
9.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement								
⊠Cor	ducted measurement		Radiated measurement						
The setting of the	ne Spectrum Analyzer	-S	*			7			
RBW	100K(<1GHz) / 1N	/I(>1GHz)							
VBW	300K(<1GHz) / 3N	/I(>1GHz)		5	~				


9.3 DEVIATION FROM TEST STANDARD

No deviation


Page 34 of 92 Report No.: STR221018001001E

9.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 35 of 92

9.5 TEST RESULTS (Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)							
EUT : Smart phone Model Name : BV9200							
Temperature :	24 ℃	Relative Humidity	54%				
Pressure :	1010 hPa 🛛 📈	Test Power :	DC 3.87V				
Test Mode :	GFSK(CH00)						

	Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
ľ	V	36.349	-78.28	12.26	-66.02	-57	-9.02	peak
	V	99.805	-81.33	16.21	-65.12	57 -57	-8.12	peak
	V	209.025	-82.63	14.10	-68.53	-57	-11.53	peak
	V	277.51	-84.57	17.05	-67.52	-57	-10.52	peak
	V	511.467	-79.4	15.59	-63.81	-57	-6.81	peak
	Н	36.051	-77.6	14.62	-62.98	-57	-5.98	peak
	H	116.767	-82.78	17.96	-64.82 🔨	-57	-7.82	peak
	H	182.494	-80	16.76	-63.24	-57	-6.24	peak
	Н	304.976	-84.39 📈	15.85	-68.54	-57	-11.54	peak
	Н	635.069	-81.12	17.58	-63.54	-57	-6.54	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 36 of 92

Report No.: STR221018001001E

RX ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

EUT :	Smart phone	Model Name :	BV9200
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	GFSK (CH00)		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
2899.182	-83.8	10.54	-73.26	-47	-26.26	peak
5996.475	-84.68	10.25	-74.43	-47	-27.43	peak
2685.017	-79.18	10.66	-68.52	-47	-21.52	peak
5066.259	-78.51	16.95	-61.56	-47	-14.56	peak
2818.373	-82.26	10.34	-71.92	-47	-24.92	peak
3476.645	-80.67	11.32	-69.35	-47	-22.35	peak
2473.569	-79.23	6.84	-72.39	-47	-25.39	peak
3295.93	-78.92	15.16	-63.76	-47	-16.76	peak
	(MHz) 2899.182 5996.475 2685.017 5066.259 2818.373 3476.645 2473.569	FrequencyReading(MHz)(dBm)2899.182-83.85996.475-84.682685.017-79.185066.259-78.512818.373-82.263476.645-80.672473.569-79.23	FrequencyReadingFactor(MHz)(dBm)(dB)2899.182-83.810.545996.475-84.6810.252685.017-79.1810.665066.259-78.5116.952818.373-82.2610.343476.645-80.6711.322473.569-79.236.84	FrequencyReadingFactorLevel(MHz)(dBm)(dB)(dBm)2899.182-83.810.54-73.265996.475-84.6810.25-74.432685.017-79.1810.66-68.525066.259-78.5116.95-61.562818.373-82.2610.34-71.923476.645-80.6711.32-69.352473.569-79.236.84-72.39	FrequencyReadingFactorLevelLimits(MHz)(dBm)(dB)(dBm)(dBm)2899.182-83.810.54-73.26-475996.475-84.6810.25-74.43-472685.017-79.1810.66-68.52-475066.259-78.5116.95-61.56-472818.373-82.2610.34-71.92-473476.645-80.6711.32-69.35-472473.569-79.236.84-72.39-47	FrequencyReadingFactorLevelLimitsMargin(MHz)(dBm)(dB)(dBm)(dBm)(dBm)(dB)2899.182-83.810.54-73.26-47-26.265996.475-84.6810.25-74.43-47-27.432685.017-79.1810.66-68.52-47-21.525066.259-78.5116.95-61.56-47-14.562818.373-82.2610.34-71.92-47-24.923476.645-80.6711.32-69.35-47-25.392473.569-79.236.84-72.39-47-25.39

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

9.6 TEST RESULTS (Conducted measurement) Test data reference attachment

N2017.06.06.0614.V.1.3

Page 37 of 92

10. RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504	-34	CW
(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524		with
	2584 2674	at at	

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 38 of 92

Report No.: STR221018001001E

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB)	2 380	-34	cw
or (-74 dBm + 10 dB) whichever is less	2 504		
(see note 2)	2 300		
	2 584		

Table 7: Receiver Blocking parameters receiver category 2 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters re	eceiver category 3 equipment	r I
--	------------------------------	-----

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504		
(see note 2)	2 300		
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

10.3 TEST PROCEDURE

Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Ν	Measurement
Conducted measurement	Radiated measurement

Report No.: STR221018001001E

Page 39 of 92 **10.4 DEVIATION FROM TEST STANDARD** No deviation **10.5 TEST SETUP** Variable attenuator Performance step size ≤ 1 dB Monitoring Device Signalling Unit or Companion Device ATT. Direct. Coupler Splitter/ ATT. UUT Combiner Blocking Signal Source Spectrum Analyzer Optional

N2017.06.06.0614.V.1.3

Page 40 of 92

10.6 TEST RESULTS

EUT :	Smart phone	Model Name :	BV9200
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	GFSK Hopping mode (RX)		x x

CH00

Wanted signal mean power	Blocking signal	Blocking signal		PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)	× ·			%
<u> </u>	2 380		0.65%	<10
70.10	2 504	04	0.28%	≤10
-70.16	2 300	34	0.18%	<10
	2 584		0.45%	≤10

CH78

receiver category 2							
Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)	Blocking signal power(dBm) (see note 3)	PER %	PER Limit %			
	2 380		0.50%	≤10			
70.16	2 504		0.70%	510			
-70.16	2 300	-34	0.26%	≤10			
	2 584		0.92%	≤ 10			


Note: (1) The above results were obtained from laboratory tests.

Page 41 of 92

11. TEST RESULTS

11.1 Accumulated Transmit Time

							1
Condition	Mode	Frequency (MHz)	Accumulated Transmit Time (ms)	Limit (ms)	Sweep Time (ms)	Burst Number	Verdict
NVNT	1-DH1	2402	118.08	400	31600	320	Pass
NVNT	1-DH1	2480	238.08	400	31600	640	Pass
NVNT	1-DH3	2402	252.495	400	31600	155	Pass
NVNT	1-DH3	2480	273.168	400	31600	168	Pass
NVNT	1-DH5	2402	325.44	400	31600	113	Pass
NVNT	1-DH5	2480	356.128	400	31600	124	Pass
NVNT	2-DH1	2402	240	400	31600	640	Pass
	2-DH1	2480	236.628 🔗	400	\$31600	626	Pass
NVNT 🤜	2-DH3	2402	266.664	400	31600	164	Pass
NVNT	2-DH3	2480	243.168	400	31600	149	Pass
NVNT	2-DH5	2402	305.28	400	31600	106	Pass
NVNT	2-DH5	2480	272.84	400	31600	95	Pass
NVNT	3-DH1	2402	241.92	400	31600	640 🚿	Pass
NVNT	3-DH1	2480	241.92	400	31600	640	Pass
NVNT	3-DH3	2402	255.753	400	31600	157	Pass
NVNT	3-DH3	2480	244.35	400	31600	150	Pass
NVNT	3-DH5	2402	324.536	400	31600	113 📈	Pass
NVNT	3-DH5	2480	299.52	400	31600	104	Pass

Frequency: 2402 MHz

Accumulated Transmit Time: 118.08 ms Accumulated Transmit Time

20 Amplitude (dBm) -40 -6 -80 15800 0 31600 Time (ms)

RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

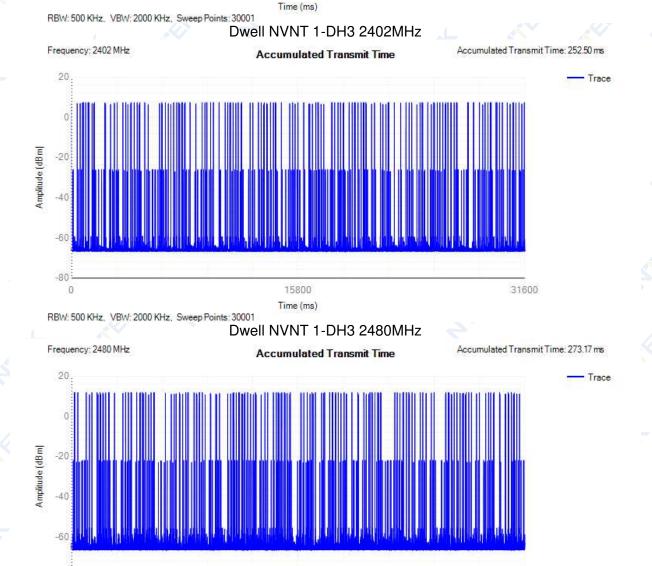
Trace

NTEK 北测 Report No.: STR221018001001E Page 42 of 92 Dwell NVNT 1-DH1 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 238.08 ms Accumulated Transmit Time 20 Amplitude (dBm) -20

15800

-40

-60


-80

-80

0

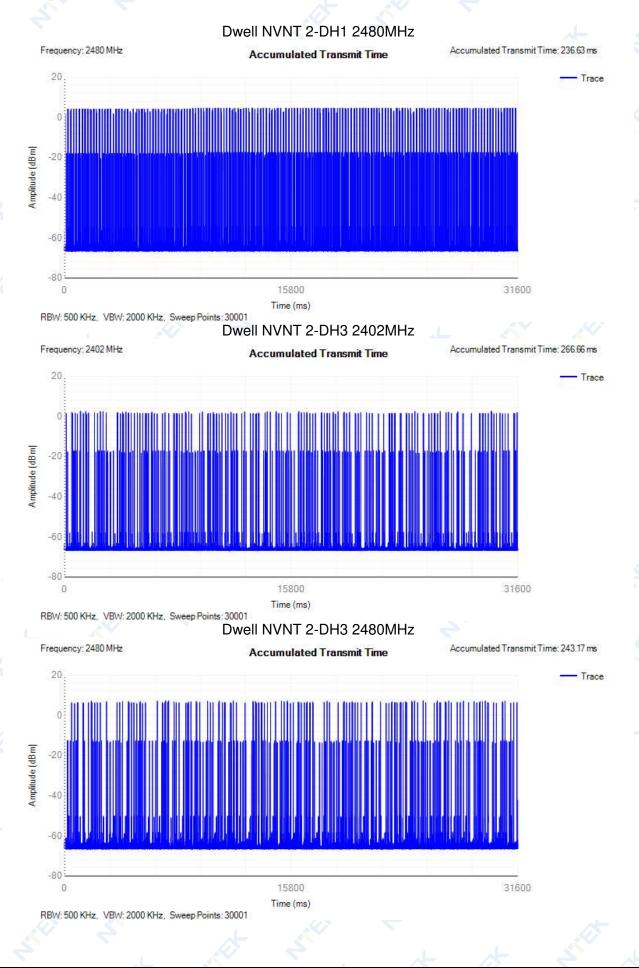
RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

0

15800

Time (ms)

31600

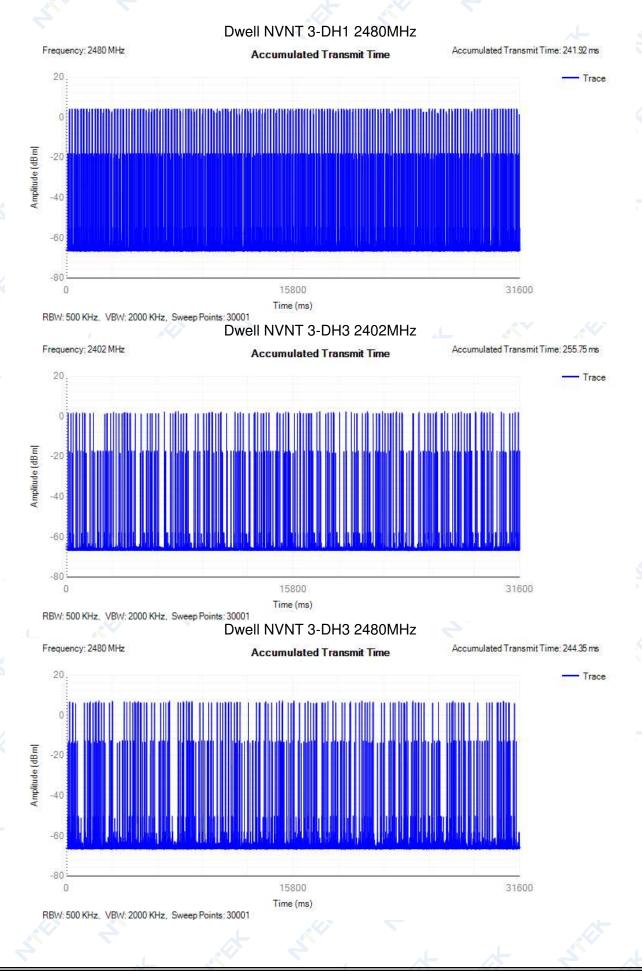

Trace

31600

Report No.: STR221018001001E Page 43 of 92 Dwell NVNT 1-DH5 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 325.44 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -6 -80 15800 31600 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 1-DH5 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 356.13 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -20 -6 -80 31600 15800 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 2-DH1 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 240.00 ms Accumulated Transmit Time 20 - Trace 0 Amplitude (dBm) -20 -40 -60 -80 15800 31600 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

Page 44 of 92

Report No.: STR221018001001E



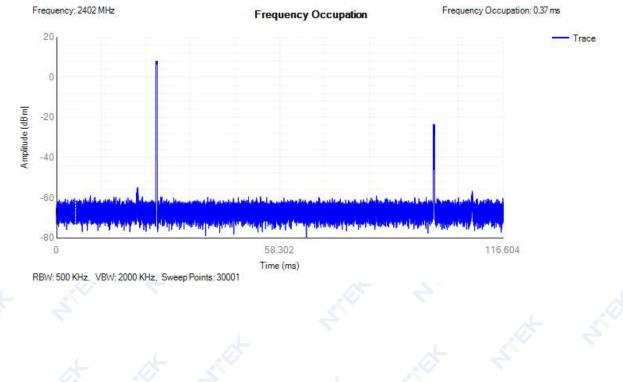
N2017.06.06.0614.V.1.3

Page 45 of 92 Report No.: STR221018001001E Dwell NVNT 2-DH5 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 305.28 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -20 40 -60 -80 15800 31600 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 2-DH5 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 272.84 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -20 -40 -60 -80 31600 15800 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH1 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 241.92 ms Accumulated Transmit Time 20 Trace 0 Amplitude (dBm) -20 -40 -60 -80 15800 31600 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

Page 46 of 92

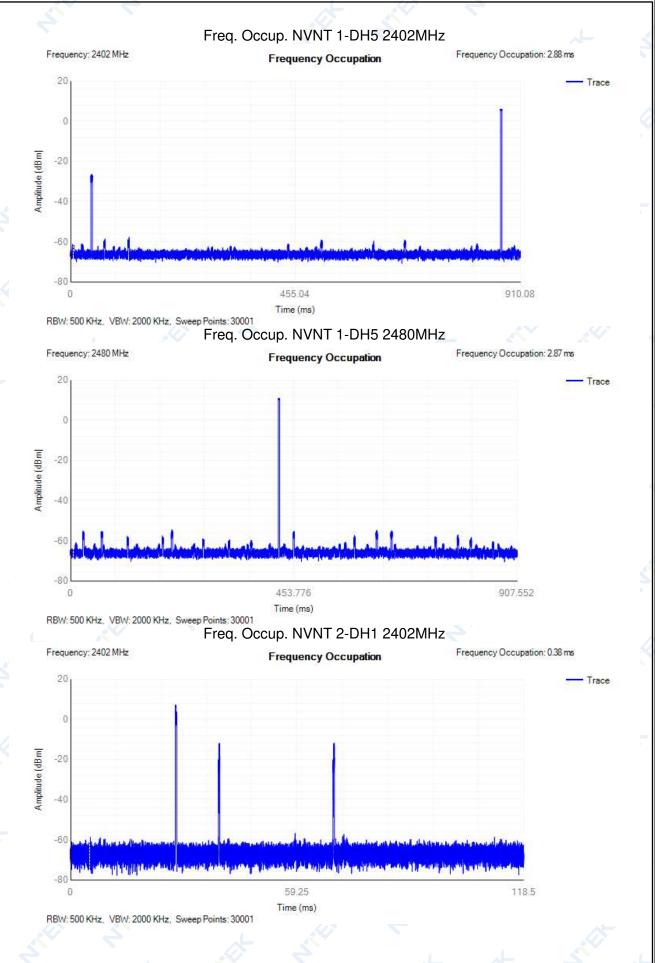
Report No.: STR221018001001E

Report No.: STR221018001001E Page 47 of 92 Dwell NVNT 3-DH5 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 324.54 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -20 40 -60 -80 15800 0 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH5 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 299.52 ms Accumulated Transmit Time 20 Trace 0 Amplitude (dBm) -20 41 -60 -80 15800 31600 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

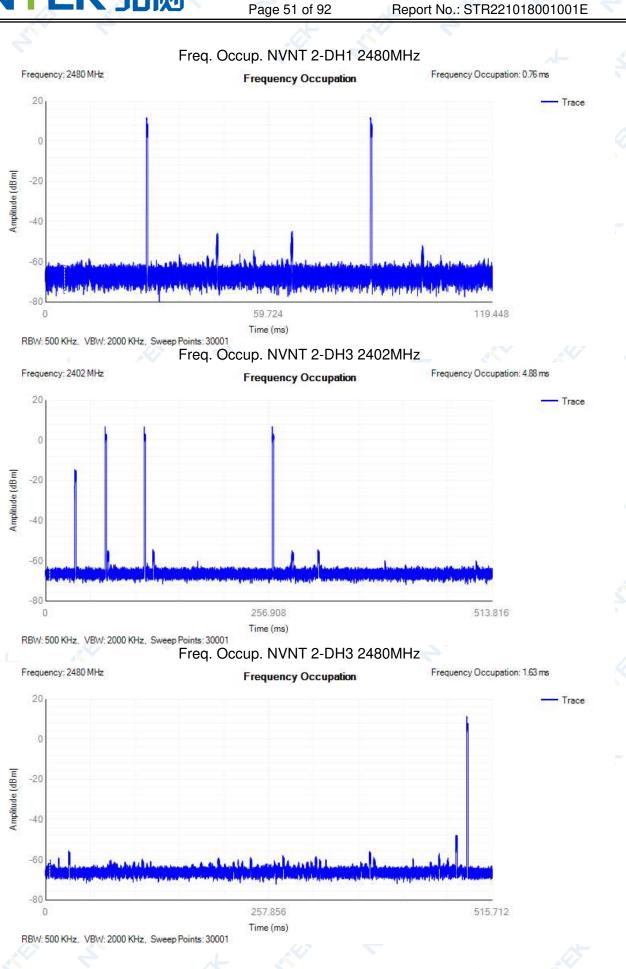

Page 48 of 92

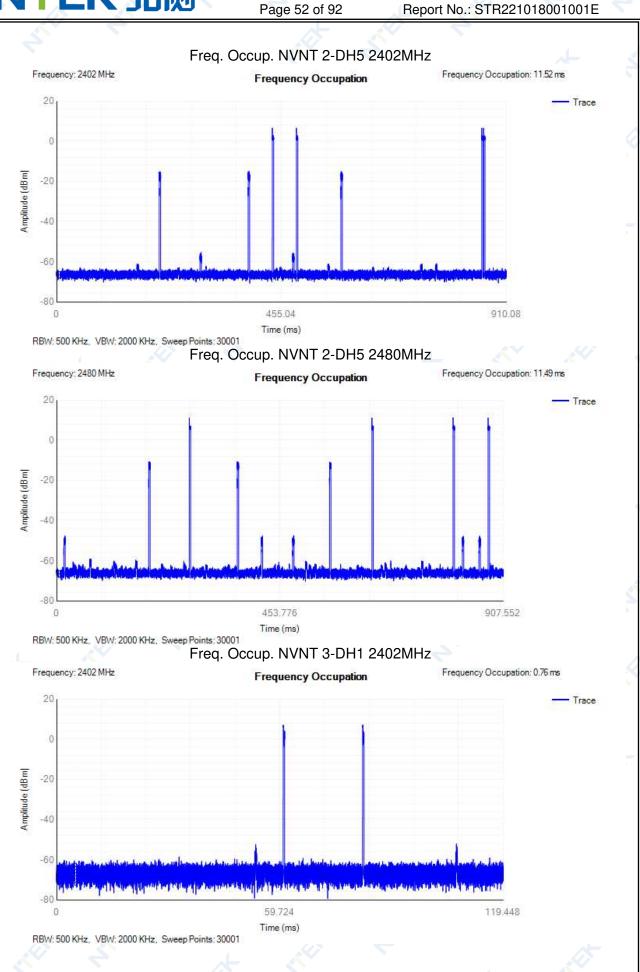
Report No.: STR221018001001E

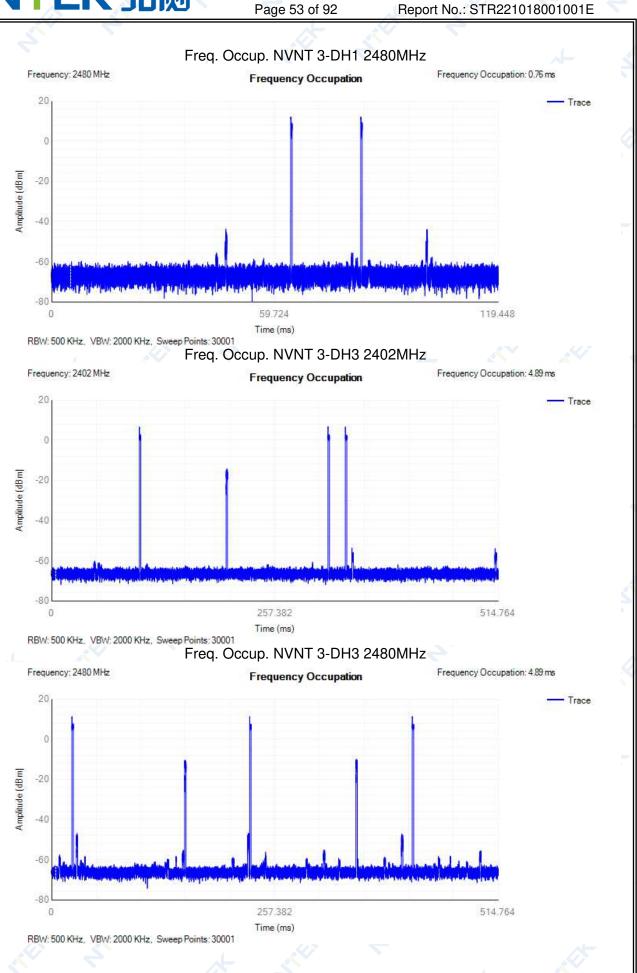
11.2 Frequency Occupation


.z i iequenc	y Occupe						
Condition	Mode	Frequency (MHz)	Frequency Occupation (ms)	Limit (ms)	Sweep Time (ms)	Burst Number	Verdict
NVNT	1-DH1	2402	0.369	0	116.604	1	Pass
NVNT	1-DH1	2480	0.744	0	117.552	2	Pass
NVNT	1-DH3	2402	3.258	0	514.764	2	Pass
NVNT	1-DH3	2480	4.878	0	513.816	3	Pass
NVNT	1-DH5	2402	2.88	0	910.08	1	Pass
NVNT	1-DH5	2480	2.872	0	907.552	1	Pass
NVNT	2-DH1	2402	0.375	0	118.5	1	Pass
NVNT	2-DH1	2480	0.756	0	119.448	2	Pass
NVNT	2-DH3	2402	4.878	0	513.816	3	Pass
NVNT	2-DH3	2480	1.632	0	515.712	1	Pass
🔄 NVNT 🏑	2-DH5	2402	11.52	0	910.08	4	Pass
NVNT	2-DH5	2480	11.488	0	907.552	4	Pass
NVNT	3-DH1	2402	0.756	0	119.448	2	Pass
NVNT	3-DH1	2480	0.756	0	119.448	2	Pass
NVNT	3-DH3	2402	4.887	0	514.764	3	Pass
NVNT	3-DH3	2480	4.887	0	514.764	3	Pass
NVNT	3-DH5	2402	5.744	0	907.552	2	Pass
NVNT	3-DH5	2480	8.64	0	910.08	3	Pass

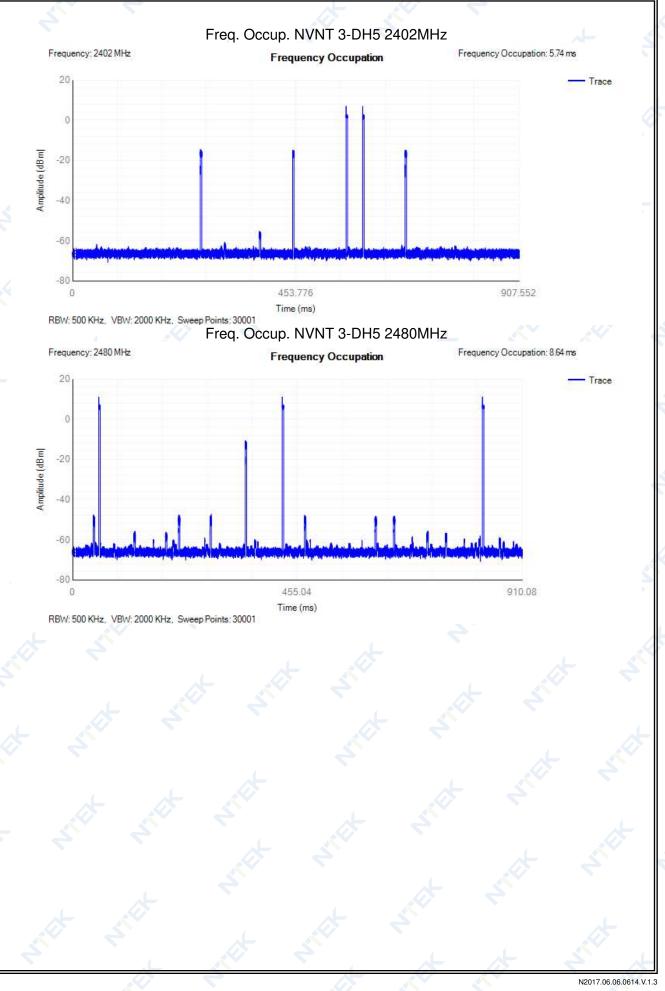
Freq. Occup. NVNT 1-DH1 2402MHz




Page 49 of 92 Report No.: STR221018001001E Freq. Occup. NVNT 1-DH1 2480MHz Frequency: 2480 MHz Frequency Occupation: 0.74 ms Frequency Occupation 20 Trace 0 Amplitude (dBm) -20 -40 -60 -80 58.776 117.552 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Freq. Occup. NVNT 1-DH3 2402MHz Frequency: 2402 MHz Frequency Occupation: 3.26 ms Frequency Occupation 20 Trace 0 Amplitude (dBm) -20 -40 -60 -80 257,382 514.764 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Freq. Occup. NVNT 1-DH3 2480MHz Frequency: 2480 MHz Frequency Occupation: 4.88 ms **Frequency Occupation** 20 Trace 0 Amplitude (dBm) -20 -40 -60 -80 256.908 513.816 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001


Report No.: STR221018001001E

Page 50 of 92



Page 54 of 92

Report No.: STR221018001001E

Page 55 of 92

11.3 One Pulse Dwell Time

- 11	TIME					
	Condition	Mode	Frequency (MHz)	Pulse Time (ms)		
	NVNT 🔨	1-DH1	2402	0.369		
	NVNT	1-DH1	2480	0.372		
	NVNT	1-DH3	2402	1.629		
	NVNT	1-DH3	2480	1.626		
	NVNT	1-DH5	2402	2.88		
		1-DH5	2480	2.872		
	NVNT	2-DH1	2402	0.375		
	NVNT	2-DH1	2480	0.378		
	NVNT	2-DH3	2402	1.626		
	NVNT	2-DH3	2480	1.632		
	NVNT	2-DH5	2402	2.88		
	NVNT	2-DH5	2480	2.872		
	NVNT	3-DH1	2402	0.378		
	NVNT	3-DH1	2480	0.378		
	NVNT	3-DH3	2402	1.629		
	NVNT	3-DH3	2480	1.629		
	NVNT	3-DH5	2402	2.872		
	NVNT	3-DH5	2480	2.88		

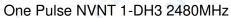
Ref Leve	1 27.62 de	3m Offset	7.62 dB 👳	RBW 1 MHz					
Att	40	dB 👄 SWT	3 ms 👄	VBW 3 MHz					
SGL TRG	VID								
●1Pk Clrw	8				1262				
	A.F.				MI	[1]			7.86 dBm
20 dBm—				-		000			4.00 µs
	M	1			D1	[1]			0.42 dB
10 dBm—		Enformenty	1		i		1	i i	369.00 µs
0 dBm									
-10 dBm—									-
-20 dBm	TRG -19	.980 dBm					A		
-30 dBm—					3		0		
ather of the	(July Links		In Asternation as with	LAN LANDA LANDAR	all de sale la	distant land	an attack of the to be	and Alaberta	No. Anti Ulia
ald where a	chald brade.		lle flat diesell de	a mada a fa da a a a a a a a a a a a a a a	addada wa	Ma da Ilian.	Mart . ha wald	եղիդի միտությո	. a mapping
-50 dBm—			-		1000	1			
-60 dBm—			+	+			+		
-70 dBm- CF 2.402	CHa			1001 p			1		300.0 µs/
larker	driz			1001 p					300.0 µ37
	ef Trc	X-valu	e l	Y-value	Funct	ion	Fund	tion Result	
M1	1	X Valu	4.0 µs	7.86 dBm	. unce		T une		
	M1 1	3	69.0 µs	0.42 dB					Ĩ

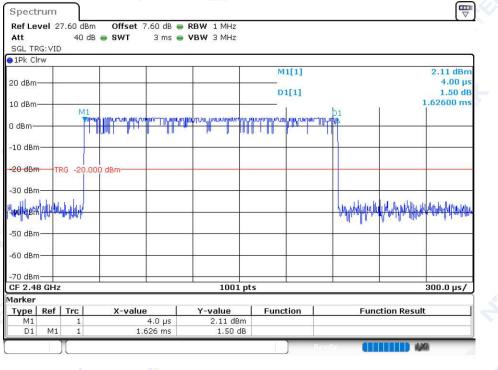
N2017.06.06.0614.V.1.3

Page 56 of 92

Report No.: STR221018001001E

One Pulse NVNT 1-DH1 2480MHz


Spectr	um							
Ref Lev Att	el 27	.60 dBm	Offset SWT		RBW 1 MHz VBW 3 MHz			
SGL TRO	G: VID	10 45	e oni	0 110	TBR STATE			
1Pk Clm	W							
20 dBm-		M1				M1[1]		12.41 dBm 4.00 μs
10 dBm—	_	M1 Tun		4	_	D1[1]		-4.44 dB 372.00 μs
0 dBm—				<u>.</u>				
-10 dBm-					_			
-20 dBm	TR	G -20.00	0 dBm					
-30 dBm-	_	_		200				
met a Billio	with light	poly		hall the state of the second s	http://www.plandade	COMPANY CONTRACTOR	Hodepplander Apple	ethe paper and the company of the second
-50 dBm-		197 - 1993 - 19						
-60 dBm-	_							
-70 dBm-	_							
CF 2.48	GHz		2		1001 p	ts		300.0 µs/
1arker						,	,	
Type M1	Ref		X-valu		Y-value	Function	Func	tion Result
D1	M1	1	3	4.0 μs 72.0 μs	12.41 dBm -4.44 dB			
	7	r		ES L				


One Pulse NVNT 1-DH3 2402MHz

SGL TRG:VID 1Pk Clrw					
1Pk Clrw					
20 dBm			M1[1]		7.79 dBm 4.00 μs -3.95 dB
10 dBm	1				1.62900 ms
	and the second sec				
D dBm					
-10 dBm					
-20 dBm TRG -19	.980 dBm				
-30 dBm					
discuster all the local				to a local dat	signation of the particular
制作品的分词的形式和小				- Man Waller	e fille the second and the second
-50 dBm					18820 0 1 1 1 2 3 (i 1)
So abin					
-60 dBm					
-70 dBm					
CF 2.402 GHz		1001 pts	;		300.0 µs/
1arker					
Type Ref Trc	X-value	Y-value	Function	Functio	on Result
M1 1	4.0 µs	7.79 dBm			
D1 M1 1	1.629 ms	-3.95 dB			

Page 57 of 92

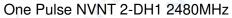
Report No.: STR221018001001E

One Pulse NVNT 1-DH5 2402MHz

1Pk Clrw					
:0 dBm			M1[1]		6.24 dBm 4.00 µs
0 dBm			D1[1]	1 1	-2.92 dB 2.88000 ms
l dBm					
10 dBm					
20 dBm - TR G -19.9	80 dBm				
30 dBm					
40 dBm		Handrey and Alfrey alf	alther and a share with a start of the start	ht for an and the second se	ph-hilly identicity with the
50 dBm					
60 dBm					
70 dBm					
CF 2.402 GHz arker	2 2	1001 pts			800.0 µs/

Page 58 of 92

Report No.: STR221018001001E

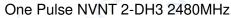

One Pulse NVNT 1-DH5 2480MHz

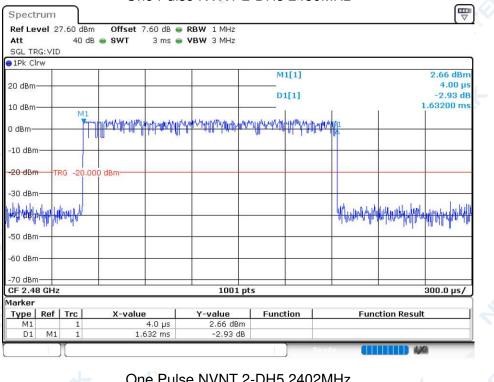
dBm		D1	M1[1]		11.10 dBm 4.00 µs 0.18 dB 2.87200 ms
IBm					
) dBm					
) dBm TRG -20.(000 dBm				
) dBm					
ili iligm		why make your	ahadrijkka v tadaga je	uniperter and the second	unputer and provide provide
) dBm		_			
) dBm		_			
) dBm					15
2.48 GHz	2 2	1001 p	ots	22	800.0 µs/
rker /pe Ref Trc	X-value	Y-value	Function	Function	Result 1
M1 1	4.0 μs	11.10 dBm		Tuncton	Result
D1 M1 1	2.872 ms	0.18 dB			
					104

	rw								
						M1[1]			-1.72 dBm
20 dBm	_					in the second			4.00 µs
						D1[1]			-2.02 dB
LO dBm						i	1	- î î	375.00 µs
. In		M1							
I dBm—		- Cat	MANAMA	3					
10 dBn			1 4						
10 000		1							
20 dBn	TF	RG -19.9	80 dBm						
30 dBn	1		-						
Car Like	Hol. II	dia		a La la la la Li	un alamber	Contractor Incom	of the strength	Killer an aller de	المراتبة أبالمرازات
411 141					THEFT AND THE PARTY OF THE		Laberty Charles In the second		
Ab Welling	All a loll	մ իստեղել՝		Manhol & dian a	ted the the she of the Range	P. apatod and A	Ana tell dall Add Marsh	a all the shi all a	n dhuddal dhua
10 dp-	An sou	d hould,		allahat la dian a	en lin de de la la conde	A downland a fa	Ana who delived the st	a altima Alta alda	n dhe dha da a
50 dBn	יווע יישעי 1	a hoald.		.dl.hol k.d.n. e	no llo di la di di and	P. doweland	anangh mardi mari	a altimatika adra	n Madalati Ada
		a hoad).		"Alba k an e	no llia de lle de aporte	P. dobal and a la	and the second second	a all markly able	n Mn Al Al Al Al
		a haall.		.d.ha k a.s. s	oo llo di letti oonde	P. dottel alter a la	aka wa ta a la masi	a de la contra de la	<u>la Ala Alaki de La</u>
50 dBn 60 dBn 70 dBn	i	մ կոսոյլ.		- մերիվ և մեջ օ	no florat. Jett to good	h doord and a feature	aka ada a a a da a a a a	a de la contra de la	le Madiditada
60 dBn	ı——	12 14 11041)1,		-dhind it dan e	1001 pt;] 0 101 pt;				300.0 µs/
60 dBn 70 dBn	ı——	IS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		afilihai k alan k			aba win dan da ma da		s (r. 001)
60 dBn 70 dBn 2F 2.4 Iarker Type	י ח 02 GH	z Trc	X-valu	0 14 1 4 4 4	1001 pt:				s (r. 001)
60 dBn 70 dBn F 2.4 arker	י ח 02 GH			0 14 1 4 4 4	1001 pt:	5			s (r. 001)

Page 59 of 92

Report No.: STR221018001001E


Spectr Pof Lou		.60 dBm	Offset	7 60 dB 📻 1	RBW 1 MHz					
Att	61 27		SWT		VBW 3 MHz					
SGL TRO	G: VID									
1Pk Clr	W									
	1		5			M	1[1]			11.67 dBm
20 dBm-		Distant and			++					4.00 µs
		M1	D			D	1[1]			-1.47 dB
10 dBm-	-		An marth with				i i	ï	1	378.00 µs
0 dBm—		4								
-10 dBm-										
20 0011										
-20 dBm	TR	G -20.000) dBm		-		64.110	or a taktu		
	1.0					N	AL WM P	MA AT A		
-30 dBm-					1.0.0			010		1
hallast	L. Inl	dann			I dharma the	Hour hard	uni	a also beats that of	and Astrophysics	Italian a du
	Lead Lead	Hha.		and and a	And have all the	haller week		Allange to Alan	and added	wa din hale
-50 dBm-										
-50 abiii										
-60 dBm-	_									7
-70 dBm-										
CF 2.48	GHz				1001	pts				300.0 µs/
1arker	1	- 1				1 -				
Type M1	Ret	Trc 1	X-value	9 4.0 μs	Y-value 11.67 dB	Func	tion	Fun	ction Result	1
D1	M1	1	37	4.0 μs 78.0 μs	-1.47 d					
		- I		p5			1			<i>71.</i>
							J	entry UL		


One Pulse NVNT 2-DH3 2402MHz

dBm 0 dBm		LIN WAR	Aphlalaban	hand an hand a start shall	and and he had a graded of	Trilling-		
0 dBm	TRG -19.9	980 dBm						
0 dBm—								
holanda	Well Hubsyl					WHAT AND A A A A A A A A A A A A A A A A A A	h a hale has a de	AN AND AND AND AND AND AND AND AND AND A
0 dBm	100 Ju					. ofte for . no o	and a me a	an un h
) dBm—								
0 dBm	GHz			1001 pt	s	_		300.0 µs/

Page 60 of 92

Report No.: STR221018001001E

One Pulse NVNT 2-DH5 2402MHz

Ref Le Att SGL TF				• VBW 1 MHZ • VBW 3 MHZ			
1Pk Cl	Ŵ						
20 dBm					M1[1]		6.99 dBm 4.00 µs
20 aBm					D1[1]		-2.27 dB
10 dB			-		0.4[4]		2.88000 ms
10 0.01	Trune	hillesten	an more marked and an and the marked and the second s	heren prog 1		1 1	a se to de la construction de la
0 dBm-							
-10 dBm							1-
00 10	_						
-20 dBn		₹G -19.	.980 dBm				
-30 dBm	_						
	1			a los distan	and could have the	i ali waxa a sa a	and a state of the state
				Intration Anternation	Jallinnan suiterna.	hadamaginadama	annulle a will be when had
10/201 200				11 A 11	12	21.	- Hear
-50 dBm							÷.
-60 dBm							
-00 001							
-70 dBm							21
CF 2.4	02 GH	z		1001 pt	s		800.0 µs/
Marker							
Type	Ref		X-value	Y-value	Function	Functior	Result
M1	M1	1	4.0 µs 2.88 ms	6.99 dBm -2.27 dB			

Page 61 of 92

Report No.: STR221018001001E

One Pulse NVNT 2-DH5 2480MHz

Ref Level 27.60 dB		RBW 1 MHz			
	dB 👄 SWT 🛛 8 ms 👄	VBW 3 MHz			
SGL TRG: VID 1Pk Clrw					,
DIPK CIFW					0.01.10
20 dBm			M1[1]		3.21 dBm 12.00 µs
20 0611			D1[1]		-0.41 dB
10 dBm					2.87200 ms
M1	www.www.www.www.www.	D1			
0 dBm	Asthered Manual allocation and the second of the second seco	rates y			
-10 dBm					
-20 dBm TRG -20.	000 dBm				
-30 dBm					
		decars 14 test	li su a companya da ser a com	a del de la caración de la	R. Comments of the
448/48m		and the state of the second se	althour although the	when and the second providence	wirrabladdiadalad
10 C					άδ.
-50 dBm					
100000000000					
-60 dBm					
-70 dBm					
CF 2.48 GHz		1001 pts	s		800.0 µs/
Marker		•			
Type Ref Trc	X-value	Y-value	Function	Function	Result
M1 1	12.0 µs	3.21 dBm			
D1 M1 1	2.872 ms	-0.41 dB			

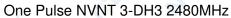
One Pulse NVNT 3-DH1 2402MHz

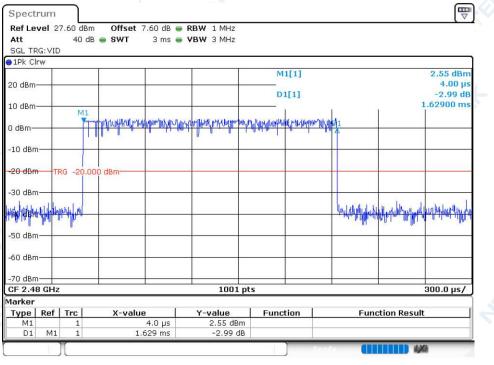
Att SGL TR	G: VIE		IB 👄 SWT	3 ms 👄	VBW 3 MHz					
1Pk Clr	W		1		-					-
20 dBm-						M	1[1]			7.01 dBm 4.00 μs
eo abin						D	1[1]			-2.33 dB
10 dBm-	-	M1			-				a (a	378.00 µs
		T T	- montestanter							
0 dBm—								-		
-10 dBm		-								74
-20 dBm	т	RG -19.9	980 dBm					-		
-30 dBm			_							
ulth beach	die berle	. de Old		and the film	Which categories at the	hald a north	Mary Hill	halahalahan ang	And the Adventure	الديوار الأرسية الأرس
Habalahu	Y. Mandle	Malanh		Mal And	<u>Lelvhan doll</u>	MAAMAR	Al an ind Ad	Lagon And And are	Holly da land	A Niphindh
50 dBm	-								- X-	(* 1)
-60 dBm	_									1
-70 dBm								_		
CF 2.40	02 GH	z		<u>.</u>	1001	l pts	÷			300.0 µs/
1arker										
Type M1	Ref	Trc	X-value	e 4.0 μs	Y-value 7.01 dE	Func	tion	Fun	ction Result	
D1	M1	1	37	4.0 μs 78.0 μs	-2.33					

Page 62 of 92

Report No.: STR221018001001E

One Pulse NVNT 3-DH1 2480MHz


Spectrum							
Ref Level 27.60 dBm Offset 7 Att 40 dB SWT SGL TRG:VID	7.60 dB 👄 R 3 ms 👄 V	BW 1 MHz BW 3 MHz					
1Pk Clrw			1.000				
20 dBm				.[1] .[1]			11.63 dBm 4.00 μs -2.09 dB
10 dBm	1			1.41	i l	1	378.00 µs
0 dBm							
-10 dBm							P
-20 dBm TRG -20.000 dBm							91.
-30 dBm							
We water the the the	ballind have a	hand the trade of the second sec	Malay Malay	hupphangur	all the second party of the	Mundinghank	hand a la hand a h
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.48 GHz		1001 p	ots				300.0 µs/
1arker							
Type Ref Trc X-value		Y-value	Funct	ion	Fund	ction Result	
M1 1 D1 M1 1 37	4.0 μs 78.0 μs	11.63 dBm -2.09 dB					
) (Read	a		3


One Pulse NVNT 3-DH3 2402MHz

Att SGL TRG:VI		🐵 SWT 3 ms 🖷	VBW 3 MHz				
1Pk Clrw							
20 dBm				M1[1]			-1.73 dBm 4.00 μs -3.15 dB
10 dBm					1	1	1.62900 ms
0 dBm	M1	Jahrillandrichter	MALATPHOLOGICAL	analarahanah	11/1截1		
-10 dBm					<u>••••</u>		-
-20 dBm 1	RG -19.98	30 dBm					21
-30 dBm							· ·
	Whyperglad				here a second second	hing the second s	with all found
-50 dBm			_				
-60 dBm							
-70 dBm					_		
CF 2.402 GI 1arker	Hz		1001 pt:	5		1	300.0 µs/
	Trc	X-value	Y-value	Function	Fund	tion Result	
M1 D1 M1	1	4.0 µs	-1.73 dBm -3.15 dB	- unectori		, ion no suit	

Page 63 of 92

Report No.: STR221018001001E

One Pulse NVNT 3-DH5 2402MHz

1Pk Cl)									
	rw					M1[1	1			-1.17 dBm	
20 dBm									4.00 µs		
						D1[1]	1			-0.67 dB	
10 dBm	-								1	2.87200 ms	
M	1			DI							
D anu-	Bage di	and the second s	decellindentheday Bada	Walleheller							
-10 dBn	1—										
-20 dBn	T	RG -19.9	80 dBm		-		6				
-30 dBn	2							1. A. A. A.	Ĩ.		
40 dBn	-			41	Vile Maple ball	ANTO A MARTINA	Mudhidhim	Mar Cultor Had	4nd my faithl	Mallkrouphtree	
					10				0.41	T.	
-50 dBn			+ +								
-	~										
-60 dBn											
-70 dBn									_		
		Iz			1001 pt	;				800.0 µs/	
CF 2.4											
					Y-value Function			Function Result			
CF 2.4 Narker Type M1	Ref	Trc	X-value		alue	Function	1	Fun	ction Resu	lt [

Page 64 of 92

Report No.: STR221018001001E

One Pulse NVNT 3-DH5 2480MHz

ei 2	7.60 dBm	Offset 7.60 dB	🖷 RBW 1 MHz						
		👄 SWT 8 ms	👄 VBW 3 MHz						
	6								
N									
				M	1[1]	11.54 dBm 4.00 µs			
				D1[1]			-2.35 dB		
مهمجينا	and the second	a water and a state of the second state of the	preproved the 1		-1-1			2.88000 ms	
			4				1		
TF	RG -20.00	00 dBm						41	
_								0	
			madellandida	udupperpress	Multimenting alfree of	willispipe and	Halthale John John	had a little for the second	
								1	
GHz			1001	pts				800.0 µs/	
Ref	Trc	X-value	Y-value		tion	Fund	ction Resul	t	
5.4.1									
	TF	S: VID W TRG -20.00 TRG -20.00 GHz Ref Trc 1	S: VID W TRG -20.000 dBm GHz Ref Trc X-value 1 4.0 μs	S: VID W TRG -20.000 dBm GHz IU GHz 1 V-value 1 V-value Y-value 1 4.0 μs 11.54 dB	S: VID W TRG -20.000 dBm TRG -20.000 dBm GHz 1 1 4.0 µs 11.54 dBm	S: VID W Image: State of the state o	S: VID MI[1] Image: Margin and the second se	S: VID MI[1] M D1[1] Image: Market of	

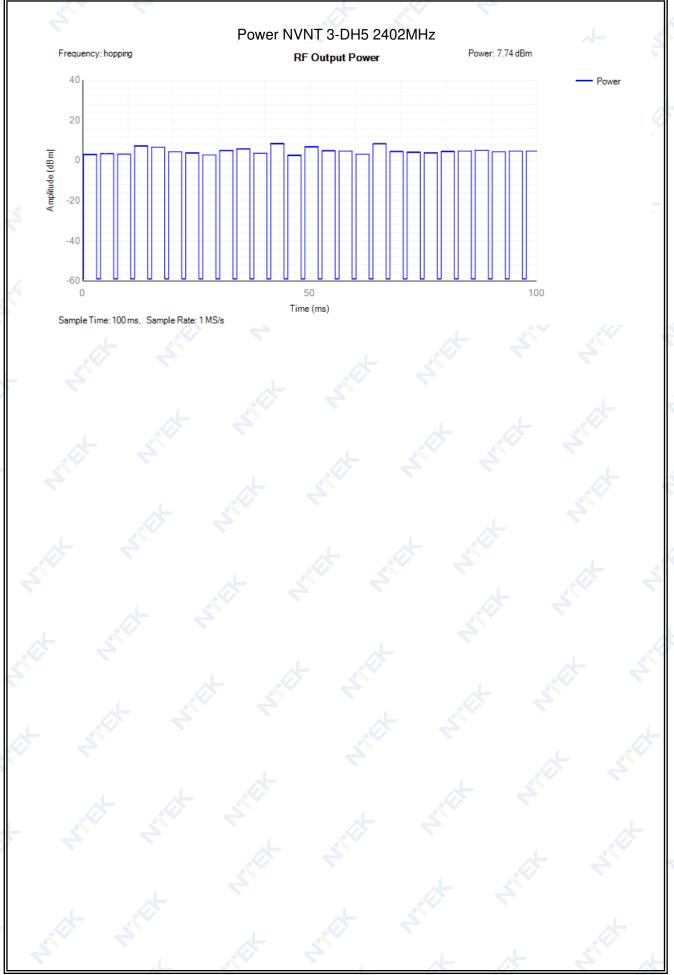
Page 65 of 92

Report No.: STR221018001001E

11.4 RF Output Power

пг Оцриі г	Ower						
Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	hopping	9.76	27	9.16	20	Pass
NVNT	2-DH5	hopping	8.51	27	7.91	20 🔨	Pass
NVNT	3-DH5	hopping	8.34	27	7.74	20	Pass
NVLT	1-DH5	hopping	9.46	27	8.86	20	Pass
NVLT	2-DH5	hopping	8.18	27	7.58	20	Pass
NVLT	3-DH5	hopping	8.23	27	7.63	20	Pass
NVHT	- 1-DH5 <	hopping	9.43	27	8.83	20	Pass
NVHT	2-DH5	hopping	8.13	27	7.53	20	Pass
NVHT	3-DH5	hopping	8.12	27	7.52	20	Pass

Power NVNT 1-DH5 2402MHz Frequency: hopping Power: 9.16 dBm **RF Output Power** 40 20 Amplitude (dBm| 0 -20 -40 -60 0 50 100 Time (ms) Sample Time: 100 ms, Sample Rate: 1 MS/s Power NVNT 2-DH5 2402MHz

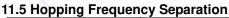

Frequency: hopping

Power: 7.91 dBm **RF Output Power** 40 Power 20 Amplitude (dBm| 0 -20 -40 -60 0 50 100 Time (ms) Sample Time: 100 ms, Sample Rate: 1 MS/s

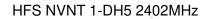
N2017.06.06.0614.V.1.3

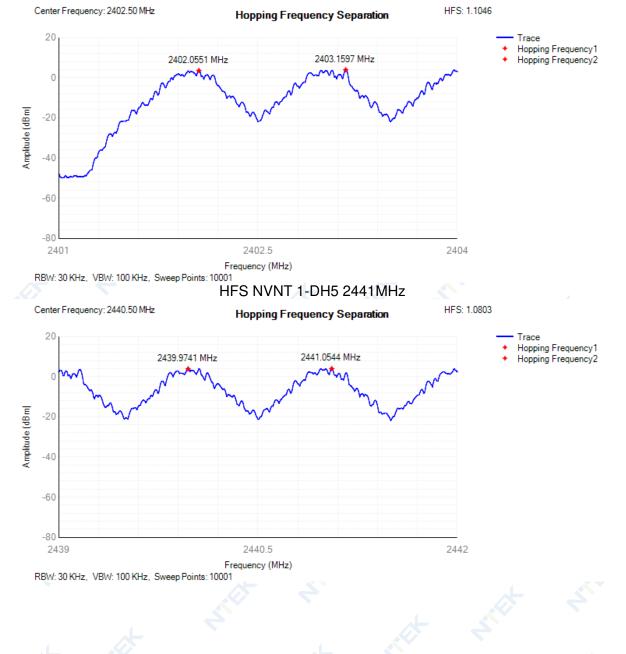
Power

Report No.: STR221018001001E

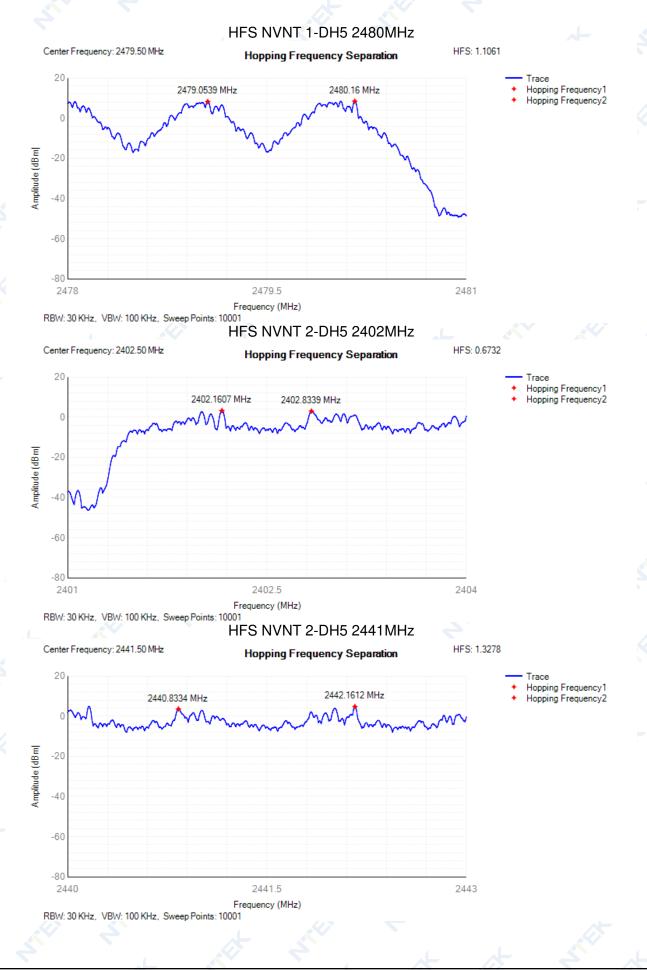


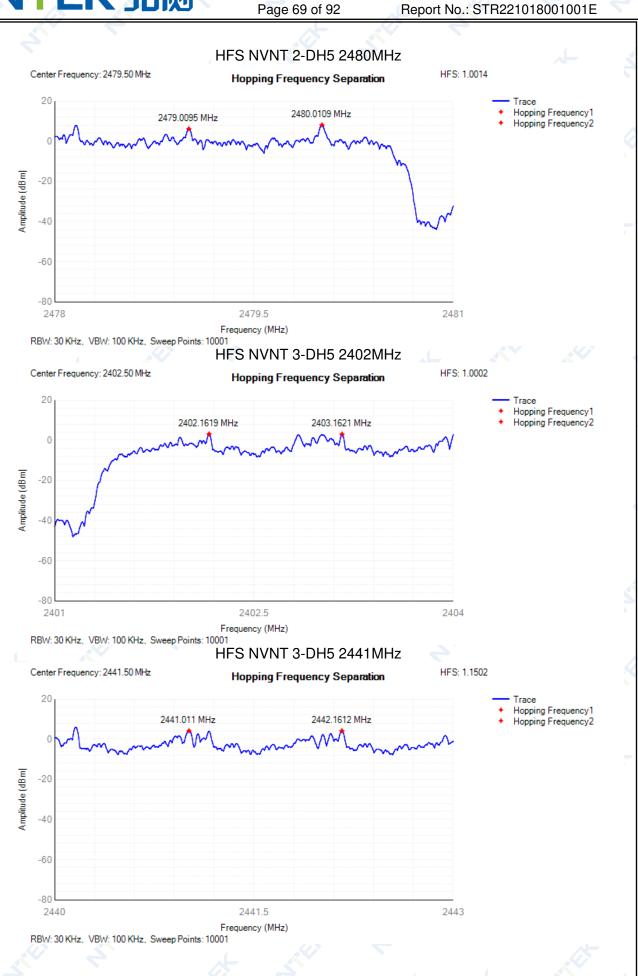
Page 66 of 92


N2017.06.06.0614.V.1.3

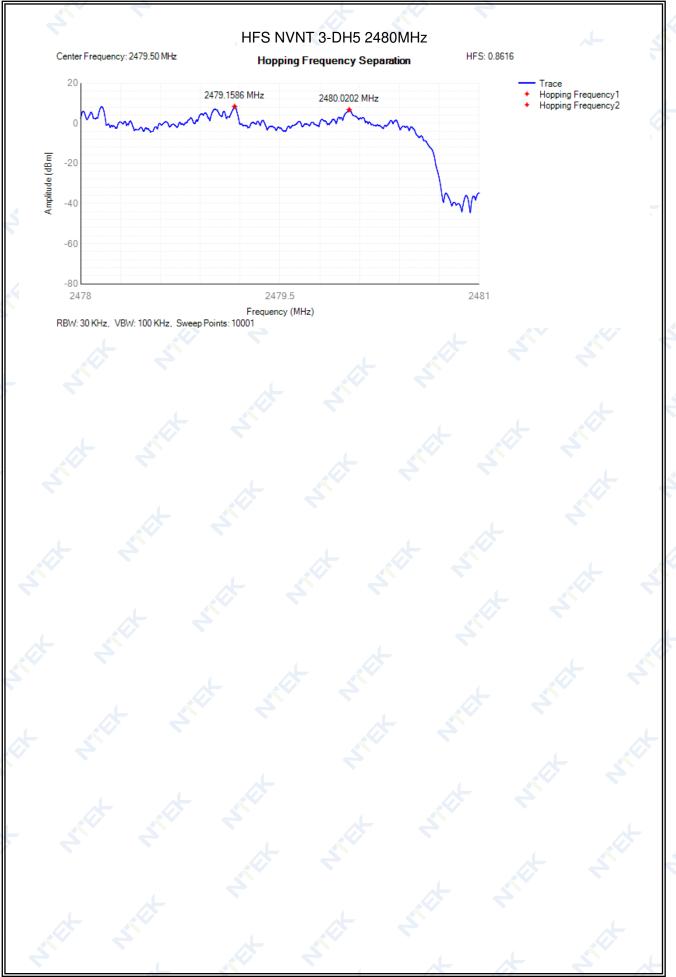

Page 67 of 92

Report No.: STR221018001001E


Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict	
	(MHz)	(MHz)	(MHz)	(MHz)	Vertici	
1-DH5	2402.0551	2403.1597	1.1046	0.1	Pass	
1-DH5	2439.9741	2441.0544	1.0803	0.1	Pass	
1-DH5	2479.0539	2480.16	1.1061	0.1	Pass	
2-DH5	2402.1607	2402.8339	0.6732	0.1	Pass	
2-DH5	2440.8334	2442.1612	1.3278	0.1	Pass	
2-DH5	2479.0095	2480.0109	1.0014	0.1	Pass	
3-DH5	2402.1619	2403.1621	1.0002	0.1	Pass	
3-DH5	2441.011	2442.1612	1.1502	0.1	Pass	
3-DH5	2479.1586	2480.0202	0.8616	0.1	Pass	
	1-DH5 1-DH5 2-DH5 2-DH5 2-DH5 3-DH5 3-DH5	Mode (MHz) 1-DH5 2402.0551 1-DH5 2439.9741 1-DH5 2479.0539 2-DH5 2402.1607 2-DH5 2440.8334 2-DH5 2479.0095 3-DH5 2402.1619 3-DH5 2441.011	Mode(MHz)(MHz)1-DH52402.05512403.15971-DH52439.97412441.05441-DH52479.05392480.162-DH52402.16072402.83392-DH52440.83342442.16122-DH52479.00952480.01093-DH52402.16192403.16213-DH52441.0112442.1612	Mode(MHz)(MHz)(MHz)1-DH52402.05512403.15971.10461-DH52439.97412441.05441.08031-DH52479.05392480.161.10612-DH52402.16072402.83390.67322-DH52440.83342442.16121.32782-DH52479.00952480.01091.00143-DH52402.16192403.16211.00023-DH52441.0112442.16121.1502	Mode(MHz)(MHz)(MHz)(MHz)1-DH52402.05512403.15971.10460.11-DH52439.97412441.05441.08030.11-DH52479.05392480.161.10610.12-DH52402.16072402.83390.67320.12-DH52440.83342442.16121.32780.12-DH52479.00952480.01091.00140.13-DH52402.16192403.16211.00020.1	



N2017.06.06.0614.V.1.3

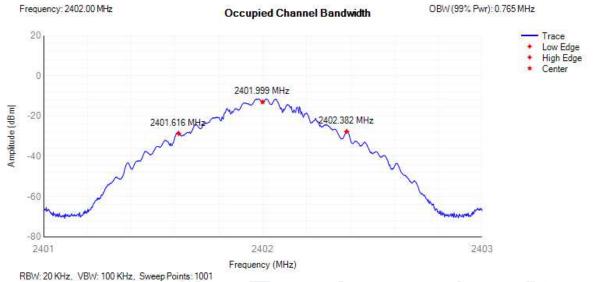

Page 68 of 92 Report No.: STR221018001001E

Page 70 of 92

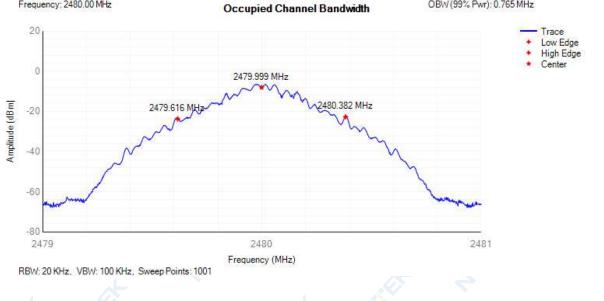
Report No.: STR221018001001E

Page 71 of 92

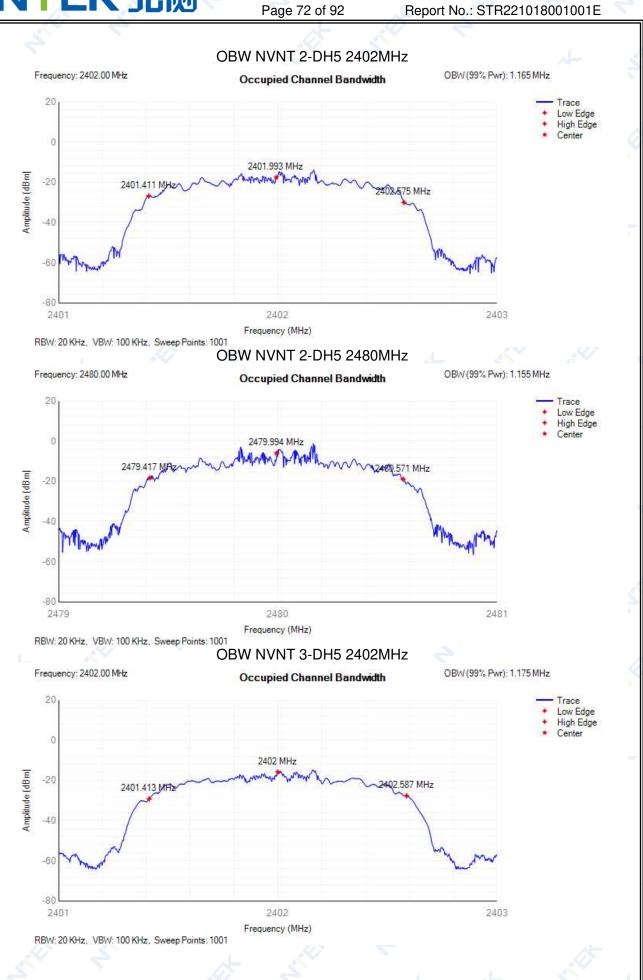
Report No.: STR221018001001E


OBW (99% Pwr): 0.765 MHz

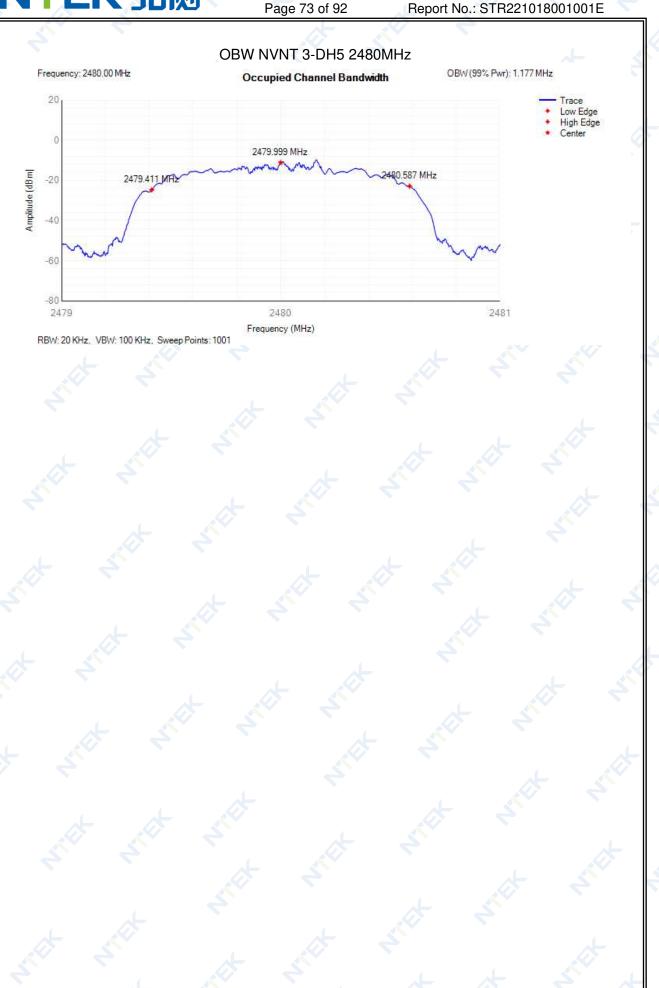
1.0	o Occupied	Channel	Bandwidth							h
	Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdic	
	NVNT	1-DH5	2402	2401.999	0.765	2401.616	2402.382	2400 - 2483.5MHz	Pass	
	NVNT	1-DH5	2480	2479.999	0.765	2479.616	2480.382	2400 - 2483.5MHz	Pass	
	NVNT	2-DH5	2402	2401.993	1.165	2401.411	2402.575	2400 - 2483.5MHz	Pass	
	NVNT	2-DH5	2480	2479.994	1.155	2479.417	2480.571	2400 - 2483.5MHz	Pass	
	NVNT	3-DH5	2402	2402	1.175	2401.413	2402.587	2400 - 2483.5MHz	Pass	
	NVNT	3-DH5	2480	2479.999	1.177	2479.411	2480.587	2400 - 2483.5MHz	Pass	
						2 2				ſ


OBW NVNT 1-DH5 2402MHz

Frequency: 2402.00 MHz

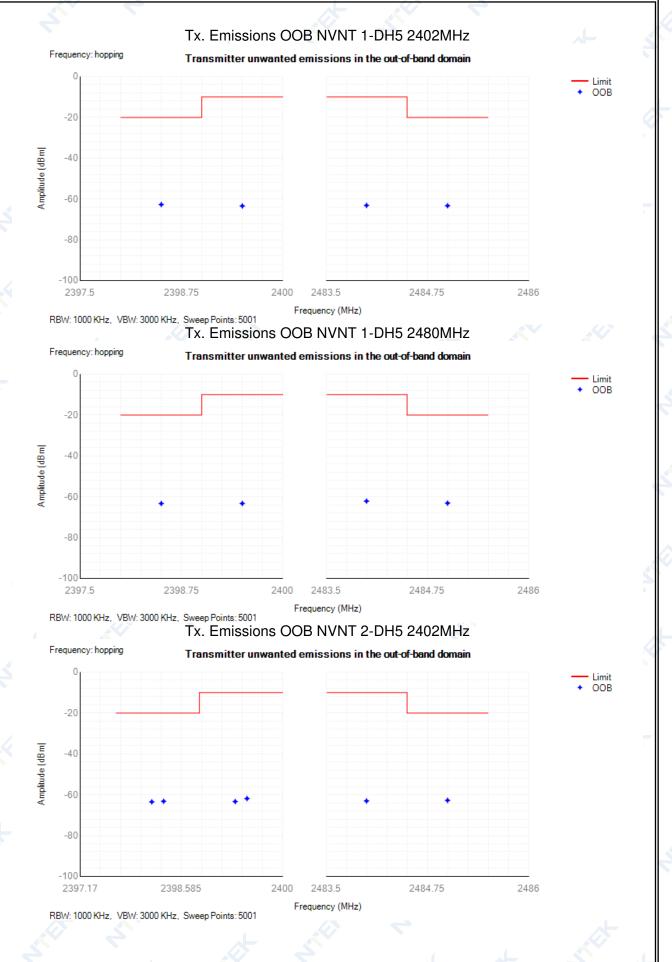


OBW NVNT 1-DH5 2480MHz


Frequency: 2480.00 MHz

N2017.06.06.0614.V.1.3

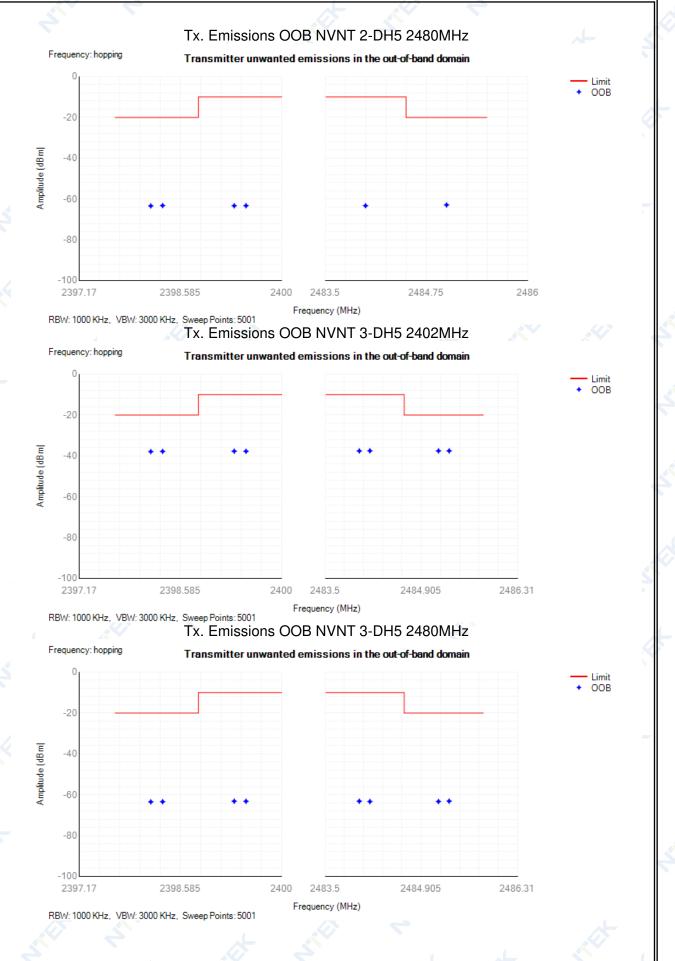
N2017.06.06.0614.V.1.3



Page 74 of 92

Condition	Mode	Frequency (MHz)	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	1-DH5	hopping	2399.5	-63.44	-10	Pass
NVNT	1-DH5	hopping	2398.5	-62.73	-20	Pass
NVNT	1-DH5	hopping	2484	-63.15	-10	Pass
NVNT	1-DH5	hopping	2485	-63.3	-20	Pass
NVNT	1-DH5	hopping	2399.5	-63.29	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.3	-20	Pass
NVNT	1-DH5	hopping	2484	-62.13	-10	Pass
NVNT	1-DH5	hopping	2485	-63.12	-20	Pass
NVNT	2-DH5	hopping	2399.5	-61.86	-10	Pass
NVNT	2-DH5	hopping	2399.335	-63.33	-10	Pass
NVNT	2-DH5	hopping	2398.335	-63.2	-20	Pass
NVNT	2-DH5	hopping	2398.17	-63.47	-20	Pass
	2-DH5	hopping	2484	-63.04	-10	Pass
NVNT	2-DH5	hopping	2485	-62.76	-20	Pass
NVNT	2-DH5	hopping	2399.5	-63.29	-10	Pass
NVNT	2-DH5	hopping	2398.335	-63.22	-20	Pass
NVNT 🧹	2-DH5	hopping	2398.17	-63.4	-20	Pass
NVNT	2-DH5	hopping	2484	-63.3	-10	Pass
NVNT	2-DH5	hopping	2485	-62.92	-20	Pass
NVNT	3-DH5	hopping	2399.5	-37.75	-10	Pass
NVNT	3-DH5	hopping	2399.335	-37.7	-10	Pass
NVNT	3-DH5	hopping	2398.335	-37.8	-20	Pass
NVNT	3-DH5	hopping	2398.17		-20	Pass
NVNT	3-DH5	hopping	2484	-37.59	-10	Pass
NVNT	3-DH5	hopping	2484.155	-37.52	-10	Pass
NVNT	3-DH5	hopping	2485.155	-37.56	-20	Pass
NVNT	3-DH5	hopping	2485.31	-37.55	-20	Pass
NVNT	3-DH5	hopping	2399.5	-63.2	-10	Pass
NVNT	3-DH5	hopping	2399.335	-63.16	-10	Pass
NVNT	3-DH5	hopping	2398.335	-63.41	-20	Pass
NVNT	3-DH5	hopping	2398.17	-63.47	-20	Pass
NVNT	3-DH5	hopping	2484	-63.17 🔨	-10	Pass
NVNT	3-DH5	hopping	2484.155	-63.33	-10	Pass
NVNT	3-DH5	hopping	2485.155	-63.3	-20	Pass
NVNT	3-DH5	hopping	2485.31	-63.13	-20	Pass

NTEK 北测


Report No.: STR221018001001E

Page 75 of 92

NTEK 北测

Report No.: STR221018001001E

Page 76 of 92

Page 77 of 92

Report No.: STR221018001001E

Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	30 MHz -47 MHz	37.1	-66.25	NA	-36	Pass
NVNT	1-DH5	2402	47 MHz -74 MHz	59.5	-66.75	NA	-54	Pass
NVNT	1-DH5	2402	74 MHz -87.5 MHz 87.5	75.6	-66.33	NA	-36	Pass
NVNT	1-DH5	2402	MHz -118 MHz	117.25	-66.16	NA	-54	Pass
NVNT	1-DH5	2402	118 MHz -174 MHz	168.65	-65.07		-36	Pass
NVNT	1-DH5	2402	174 MHz -230 MHz	201.25	-65.39	NA	-54	Pass
NVNT	1-DH5	2402	230 MHz -470 MHz	448.85	-64.53	NA	-36	Pass
NVNT	1-DH5	2402	470 MHz -694 MHz	588.85	-64.62	NA	-54	Pass
NVNT	1-DH5	2402	694 MHz -1000 MHz	956.25	-63.6	NA	-36	Pass
NVNT	1-DH5	2402	1000 MHz -2398 MHz	2396	-52.75	NA	-30	Pass
NVNT	1-DH5	2402	2485.5 MHz -12750 MHz	4803.5	-41.49	NA	-30	Pass
NVNT	1-DH5	2441	30 MHz -47 MHz	32	-66.7	NA	-36	Pass
NVNT	1-DH5	2441	47 MHz -74 MHz	64.45	-66.71	NA	-54	Pass
NVNT	1-DH5	2441	74 MHz -87.5 MHz	87.35	-66.14	NA	-36	Pass
NVNT	1-DH5	2441	87.5 MHz -118 MHz	114.4	-66.27	NA	-54	Pass
NVNT	1-DH5	2441	118 MHz -174 MHz	135.45	-65.75	NA	-36	Pass
NVNT	1-DH5	2441	174 MHz -230 MHz	219.35	-64.53	NA	-54	Pass
NVNT	1-DH5	2441	230 MHz -470 MHz	324.35	-64.81	NA	-36	Pass

N2017.06.06.0614.V.1.3

Page 78 of 92

Report No.: STR221018001001E

	1		170					
NVNT	1-DH5	2441	470 MHz -694 MHz	474.35	-64.65	NA	-54	Pass
NVNT	1-DH5	2441	694 MHz -1000 MHz	877.4	-64.11	NA	-36	Pass
NVNT	1-DH5	2441	1000 MHz -2398	2298	-52.23	NA C	-30	Pass
÷			MHz 2485.5	* *				
NVNT	1-DH5	2441	MHz -12750 MHz	4882.5	-42.71	NA	-30	Pass
NVNT	1-DH5	2480	30 MHz -47 MHz	31.8586826347305	-67.17	NA	-36	Pass
NVNT	1-DH5	2480	47 MHz -74 MHz 74 MHz	53.465868263473	-66.4	NA	-54	Pass
NVNT	1-DH5	2480	-87.5 MHz	81.9269461077844	-66.96	NA	-36	Pass
NVNT	1-DH5	2480	87.5 MHz -118 MHz	104.695808383234	-66.29	NA	-54	Pass
NVNT	1-DH5	2480	118 MHz -174 MHz	126.070658682635	-65.77	NA	-36	Pass
NVNT	1-DH5	2480	174 MHz -230 MHz	201.463473053892	-64.26	NA	-54	Pass
NVNT	1-DH5	2480	230 MHz -470 MHz	444.137724550898	-64.71	NA	-36	Pass
NVNT	1-DH5	2480	470 MHz -694 MHz	600.499401197605	-64.38	NA	-54	Pass
NVNT	1-DH5	2480	694 MHz -1000 MHz	982.110179640719	-64.32	NA	-36	Pass
NVNT	1-DH5	2480	1000 MHz -2398 MHz	2208.77245508982	-53.01		-30	Pass
NVNT	1-DH5	2480	2485.5 MHz -12750	6970.68862275449	-44.63	NA	-30	Pass
NVNT	2-DH5	2402	MHz 30 MHz -47 MHz	40.15	-66.67	NA	-36	Pass
NVNT	2-DH5	2402	47 MHz -74 MHz	56	-66.42	NA	-54	Pass
NVNT	2-DH5	2402	74 MHz -87.5 MHz	85.1	-66.46	NA	-36	Pass
NVNT	2-DH5	2402	87.5 MHz -118 MHz	104.55	-66.75	NA	-54	Pass

N2017.06.06.0614.V.1.3

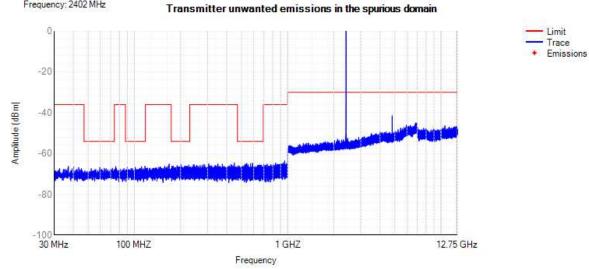
Page 79 of 92 Report N

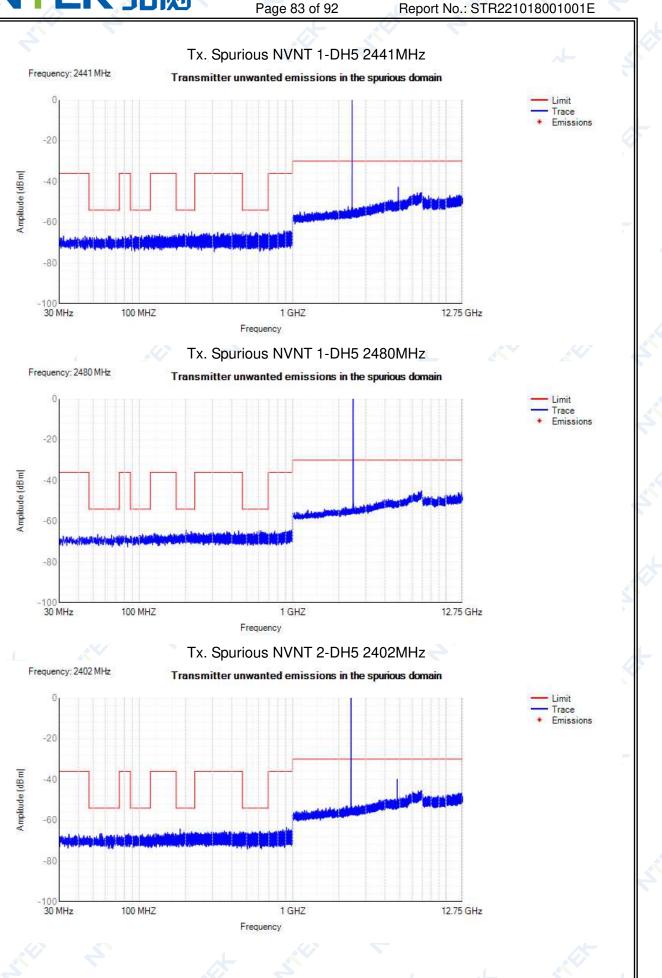
5			1				1	
NVNT	2-DH5	2402	118 MHz -174 MHz	152.85	-65.89	NA	-36	Pass
NVNT	2-DH5	2402	174 MHz -230 MHz	184.5	-64.19	NA	-54	Pass
NVNT	2-DH5	2402	230 MHz -470 MHz	358.45	-65.13	NA	-36	Pass
NVNT	2-DH5	2402	470 MHz -694 MHz	612.55	-65.29	NA	-54	Pass
NVNT	2-DH5	2402	694 MHz -1000 MHz	910.45	-63.41	NA	-36	Pass
NVNT	2-DH5	2402	1000 MHz -2398 MHz	2264.5	-52.88	NA	-30	Pass
NVNT	2-DH5	2402	2485.5 MHz -12750 MHz	4803.5	-39.77	NA	-30	Pass
NVNT	2-DH5	2441	30 MHz -47 MHz	36.1	-66.56	NA	-36	Pass
NVNT	2-DH5	2441	47 MHz -74 MHz	55.2	-66.18	NA	-54	Pass
NVNT	2-DH5	2441	74 MHz -87.5 MHz	84.45	-65.97	NA	-36	Pass
NVNT	2-DH5	2441	87.5 MHz -118 MHz	100	-65.9	NA	-54	Pass
NVNT	2-DH5	2441	118 MHz -174 MHz	172.6	-65.83	NA	-36	Pass
NVNT	2-DH5	2441	174 MHz -230 MHz	206.35	-64.98	NA	-54	Pass
NVNT	2-DH5	2441	230 MHz -470 MHz	280.7	-65.26	NA	-36	Pass
NVNT	2-DH5	2441	470 MHz -694 MHz	652.05	-65.03	NA	-54	Pass
NVNT	2-DH5	2441	694 MHz -1000 MHz	983.3	-63.32	NA	-36	Pass
NVNT	2-DH5	2441	1000 MHz -2398 MHz	2342	-53.45	NA	-30	Pass
NVNT	2-DH5	2441	2485.5 MHz -12750 MHz	4882	-40.53	NA	-30	Pass

Page 80 of 92

NVNT	2-DH5	2480	30 MHz -47 MHz	42.8946107784431	-66.65	NA	-36	Pass
NVNT	2-DH5	2480	47 MHz -74 MHz	73.3305389221557	-66.24	NA	-54	Pass
NVNT	2-DH5	2480	74 MHz -87.5 MHz	80.3005988023952	-66.07	NA	-36	Pass
NVNT	2-DH5	2480	87.5 MHz -118 MHz	105.508982035928	-66.01	NA	-54	Pass
NVNT	2-DH5	2480	118 MHz -174 MHz	168.936526946108	-66.23	NA	-36	Pass
NVNT	2-DH5	2480	174 MHz -230 MHz	204.832335329341	-64.79	NA	-54	Pass
NVNT	2-DH5	2480	230 MHz -470 MHz	442.511377245509	-64.96	NA	-36	Pass
NVNT	2-DH5	2480	470 MHz -694 MHz 694	654.749700598802	-64.7	NA	-54	Pass
NVNT	2-DH5	2480	MHz -1000 MHz	974.443113772455	-63.79	NA	-36	Pass
NVNT	2-DH5	2480	1000 MHz -2398 MHz 2485.5	2079.31137724551	-53.18	NA	-30	Pass
NVNT	2-DH5	2480	-12750 MHz	4959.82035928144	-34.85	-36.75	-30	Pass
NVNT	3-DH5	2402	30 MHz -47 MHz	33.8	-66.8	NA	-36	Pass
NVNT	3-DH5	2402	47 MHz -74 MHz	47.5	-66.76	NA	-54	Pass
NVNT	3-DH5	2402	74 MHz -87.5 MHz	76.8	-66.32	NA	-36	Pass
NVNT	3-DH5	2402	87.5 MHz -118 MHz	102.05	-66.11	NA	-54	Pass
NVNT	3-DH5	2402	118 MHz -174 MHz	127.85	-65.66	NA	-36	Pass
NVNT	3-DH5	2402	174 MHz -230 MHz	214.35	-65.68	NA	-54	Pass
NVNT	3-DH5	2402	230 MHz -470 MHz	239.9	-65.43	NA	-36	Pass
NVNT	3-DH5	2402	470 MHz -694 MHz	656.25	-64.67	NA	-54	Pass

Page 81 of 92


			694		2				
NVNT	3-DH5	2402	MHz -1000	979.15	-62.75	NA	-36	Pass	
			MHz 1000				2		
NVNT	3-DH5	2402	MHz	2397.5	-53.28	NA	-30	Pass	
	0 2110		-2398 MHz		00.20				
			2485.5					2	
NVNT	3-DH5	2402	MHz -12750 MHz	4804	-41.44	NA	-30	Pass	
	0.0115	0444	30 MHz		05.00		00	-	
NVNT	3-DH5	2441	-47 MHz	35.05	-65.96	NA	-36	Pass	
NVNT	3-DH5	2441	47 MHz -74 MHz	64.35	-67.3	NA	-54	Pass	
		0441	74 MHz	77.0	- CC F		00	Deee	
NVNT	3-DH5	2441	-87.5 MHz	77.3	-66.5	NA	-36	Pass	
			87.5						
NVNT	3-DH5	2441	MHz -118	115.6	-65.74	NA	-54	Pass	
			MHz						
		~	118 MHz	· · · ·				_	
NVNT	3-DH5	2441	-174 MHz	157.4	-65.85	NA	-36	Pass	
			174	- 2	¥				
NVNT	3-DH5	2441	MHz	211.65	-64.94	NA	-54	Pass	
			-230 MHz						
		5	230	1	N.				
NVNT	3-DH5	2441	MHz	288.75	-64.38	NA	-36	Pass	
			-470 MHz		•				
			470						
NVNT	3-DH5	2441	MHz	617.15	-64.74	NA	-54	Pass	
			-694 MHz						
<u>K</u>			694				.1		
NVNT	3-DH5	DH5 2441	MHz 1000		-63.96	NA	-36	Pass	
			-1000 MHz			X			
		- 2	1000						
NVNT	3-DH5	2441	MHz	2383.5	-52.92	NA	-30	Pass	
			-2398 MHz	×	-				
-			2485.5	X X					
NVNT	3-DH5	2441 🖉	MHz	4882	-41.65	NA 🗸	-30	Pass	
			-12750 MHz	4		V 5			
	2 DUE	2480	30 MHz	24.6	67.10	NIA	20	Page	
NVNT	3-DH5	2480	-47 MHz	34.6	-67.13	NA	-36	Pass	
NVNT	3-DH5	2480	47 MHz -74 MHz	58.75	-65.97	NA	-54	Pass	
			74 MHz						
NVNT	3-DH5	2480	-87.5 MHz	85.55	-67.16	NA	-36	Pass	
		<u>s</u>	87.5		Č				
NVNT	3-DH5	2480	MHz	106.4	-65.43	NA	-54	Pass	
			-118 MHz	~	-			5	
			118 MHz						
NVNT	3-DH5	2480	-174	142.4	-66.05	NA	-36	Pass	
			MHz						

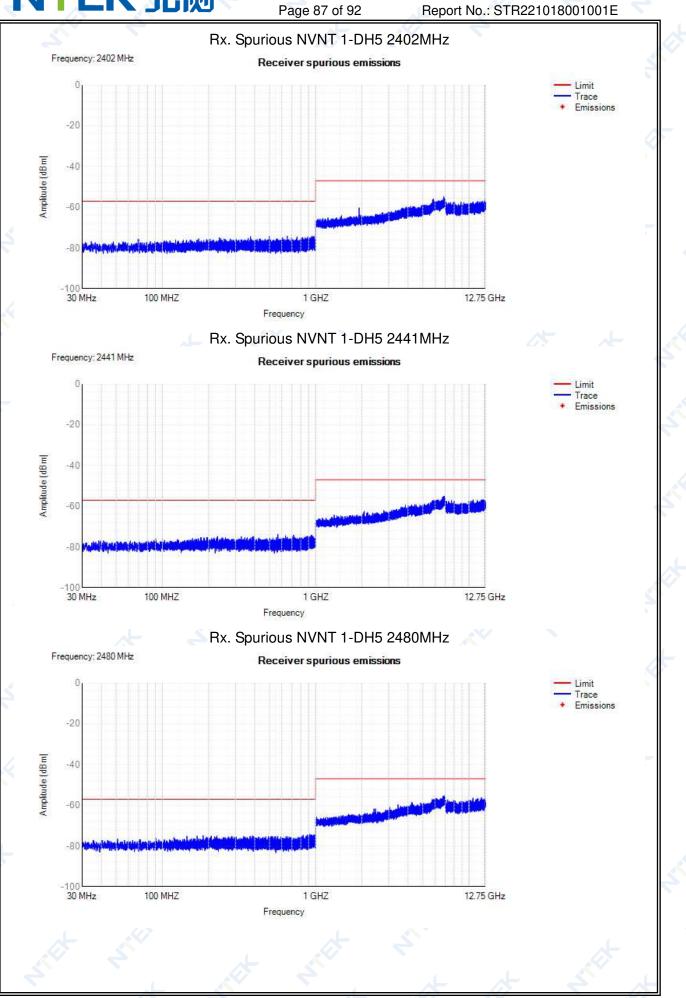

Page 82 of 92 Report No.: STR221018001001E

NVNT	3-DH5	2480	174 MHz -230 MHz	203.25	-64.98	NA	-54	Pass
NVNT	3-DH5	2480	230 MHz -470 MHz	281.9	-64.97	NA	-36	Pass
NVNT	3-DH5	2480	470 MHz -694 MHz	556.4	-64.73	NA	-54	Pass
NVNT	3-DH5	2480	694 MHz -1000 MHz	914.05	-64.09	NA	-36	Pass
NVNT	3-DH5	2480	1000 MHz -2398 MHz	2388	-52.54	NA	-30	Pass
NVNT	3-DH5	2480	2485.5 MHz -12750 MHz	4960	-34.22	-36.6	-30	Pass

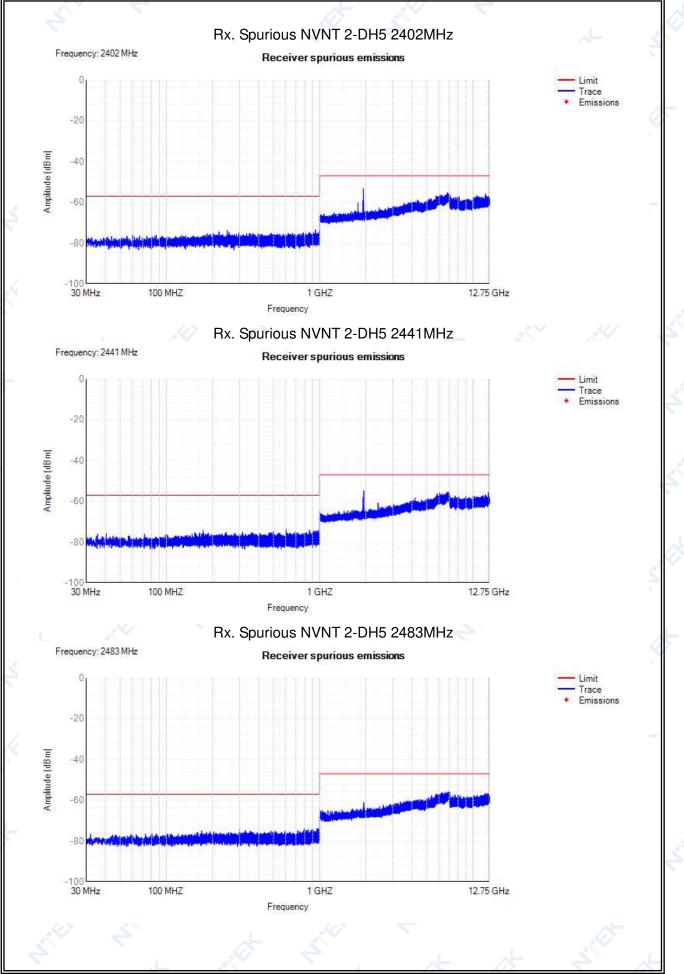
Tx. Spurious NVNT 1-DH5 2402MHz

Frequency: 2402 MHz

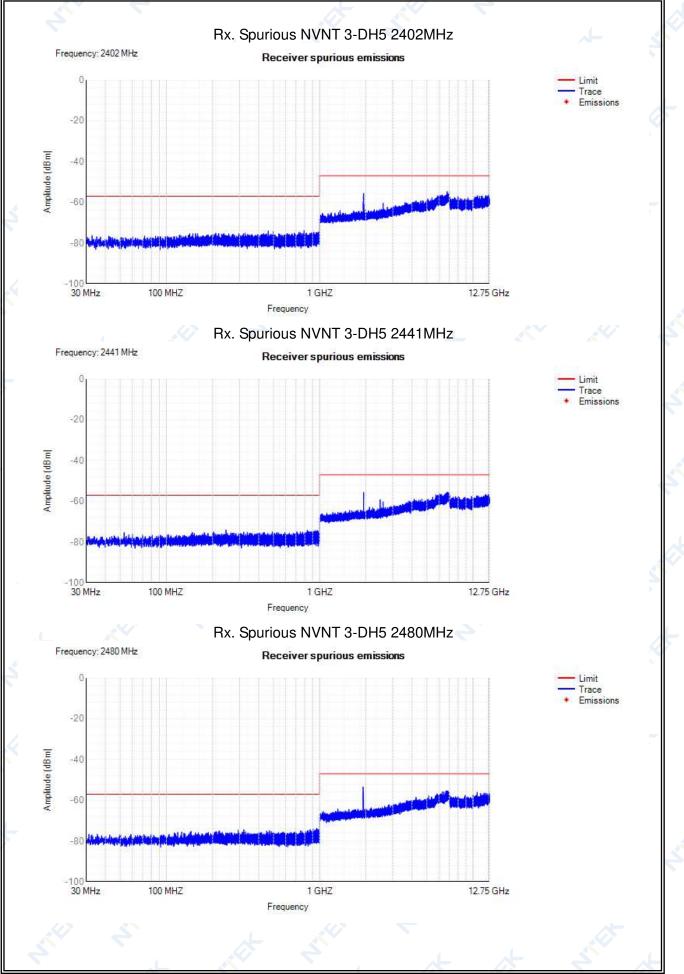
Report No.: STR221018001001E Page 84 of 92 Tx. Spurious NVNT 2-DH5 2441MHz Frequency: 2441 MHz Transmitter unwanted emissions in the spurious domain 0 Limit Trace Emissions -20 Amplitude (dBm) -40 -60 -80 -100 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency Tx. Spurious NVNT 2-DH5 2480MHz Frequency: 2480 MHz Transmitter unwanted emissions in the spurious domain Limit Trace Emissions -20 Amplitude (dBm) -40 -60 -80 -100 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency Tx. Spurious NVNT 3-DH5 2402MHz -Frequency: 2402 MHz Transmitter unwanted emissions in the spurious domain Limit Trace Emissions -20 Amplitude (dBm) -40 -60 -80 100 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency


Page 85 of 92 Report No.: STR221018001001E Tx. Spurious NVNT 3-DH5 2441MHz Frequency: 2441 MHz Transmitter unwanted emissions in the spurious domain Limit 0 Trace Emissions -20 Amplitude (dBm) -40 -60 -80 -100 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency Tx. Spurious NVNT 3-DH5 2480MHz Frequency: 2480 MHz Transmitter unwanted emissions in the spurious domain 0 Limit Trace Emissions -20 Amplitude (dBm) -40 -60 -80 -100 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency

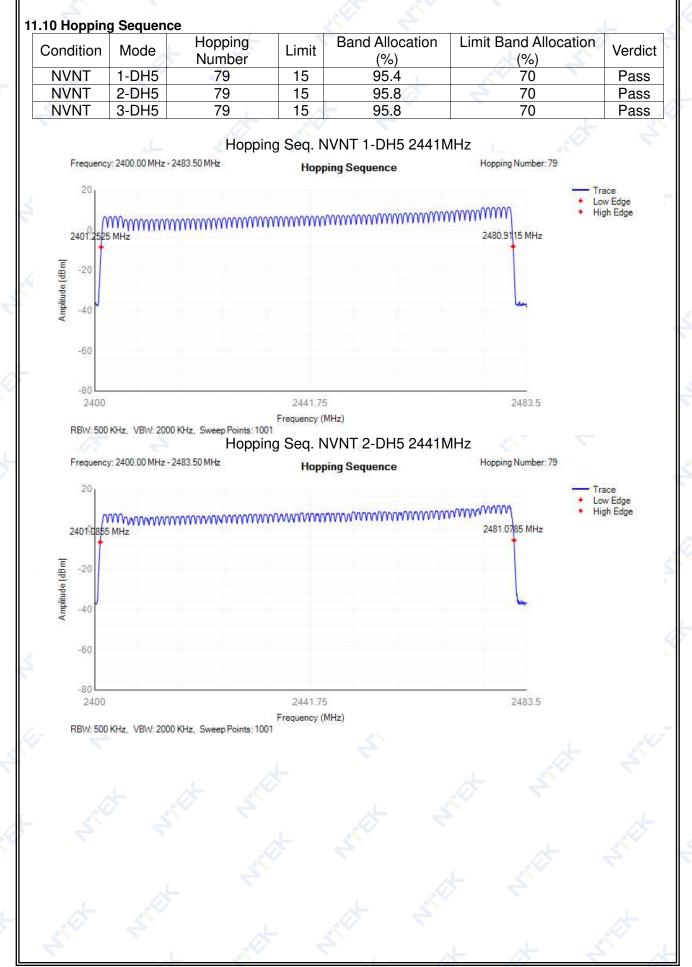
Page 86 of 92


Report No.: STR221018001001E

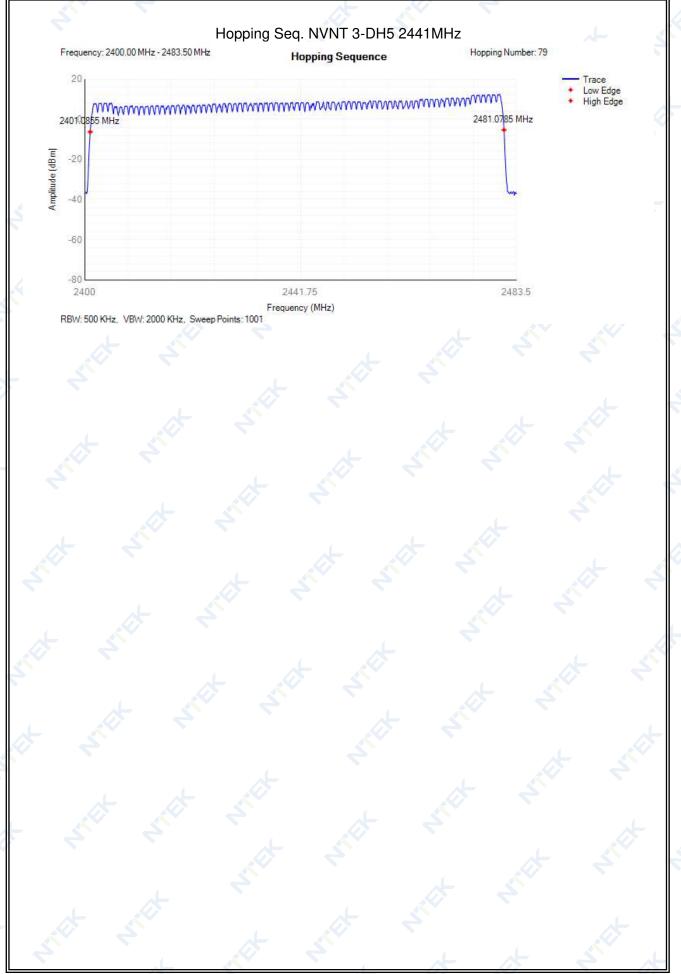
11.9 Receiver spurious emissions


Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
			30 MHz		<u> </u>		Ċ	_
NVNT	1-DH5	2402	-1000 MHz	652.6	-74.14	NA	-57	Pass
NVNT	1-DH5	2402	1000 MHz -12750 MHz	6850.75309534953	-54.78	NA	-47	Pass
NVNT	1-DH5	2441	30 MHz -1000 MHz	566.7	-73.75	NA	-57	Pass
NVNT	1-DH5	2441	1000 MHz -12750 MHz	6899	-55.02		-47	Pass
NVNT	1-DH5	2480	30 MHz -1000 MHz	918.55	-74.23	NA	-57	Pass
NVNT	1-DH5	2480	1000 MHz -12750 MHz	6993.5	-55.29	NA	-47	Pass
NVNT	2-DH5	2402	30 MHz -1000 MHz	937.2	-73.47	NA	-57	Pass
NVNT	2-DH5	2402	1000 MHz -12750 MHz	1929	-53.3	NA	-47	Pass
NVNT	2-DH5	2441	30 MHz -1000 MHz	602.9	-73.72	NA	-57	Pass
NVNT	2-DH5	2441	1000 MHz -12750 MHz	1938.5	-54.78	NA	-47	Pass
NVNT	2-DH5	2483	30 MHz -1000 MHz	984	-73.82	NA	-57	Pass
NVNT	2-DH5	2483	1000 MHz -12750 MHz	6981.5	-55.6	NA	-47	Pass
NVNT	3-DH5	2402	30 MHz -1000 MHz	791.8	-73.74	NA	-57	Pass
NVNT	3-DH5	2402	1000 MHz -12750 MHz	6786.5	-54.73	NA	-47	Pass
NVNT	3-DH5	2441	30 MHz -1000 MHz	244.8	-74.09	NA	-57	Pass
NVNT	3-DH5	2441	1000 MHz -12750 MHz	6799	-55.49	NA	-47	Pass
NVNT	3-DH5	2480	30 MHz -1000 MHz	956.05	-73.71	NA	-57 <	Pass
NVNT	3-DH5	2480	1000 MHz -12750 MHz	1921	-53.47	NA	-47	Pass

Page 88 of 92



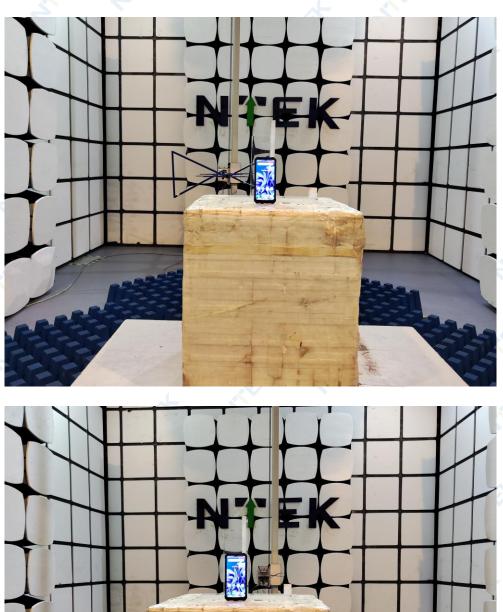
Page 89 of 92



NTEK 北测

Page 90 of 92

Report No.: STR221018001001E


Page 91 of 92

Page 92 of 92

Report No.: STR221018001001E

12. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT