

RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product: Smart phone

Trade Mark: Blackview

Model Name: BV9200

Family Model: N/A

Report No.: STR221018001002E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090
Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

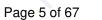

Applicant's name.....: DOKE COMMUNICATION (HK) LIMITED Address RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA Manufacturer's Name: Shenzhen DOKE Electronic Co.,Ltd Address 801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China **Product description** Product name: Smart phone Trademark Blackview Model Name BV9200 Family Model: N/A Standards: ETSI EN 300 328 V2.2.2 (2019-07) This device described above has been tested by Shenzhen NTEK, and the test results show that the equipment under test (EUT) is in compliance with the 2014/53/EU RED Directive Art.3.2 requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personnel only, and shall be noted in the revision of the document. T221018001R003 Test Sample Number: Date of Test..... Date (s) of performance of tests: Oct 18, 2022 ~ Nov 15, 2022 Date of Issue: Nov 15, 2022 Test Result:: Muhri Lee Testing Engineer (Mukzi Lee) Authorized Signatory: (Alex Li)

	Table of Contents	Page
1	. GENERAL INFORMATION	6
	1.1 GENERAL DESCRIPTION OF EUT	6
	1.2 INFORMATION ABOUT THE EUT	7
	1.3 TEST CONDITIONS AND CHANNEL	12
	1.4 DESCRIPTION OF TEST CONDITIONS	13
	1.5 DESCRIPTION OF SUPPORT UNITS	14
	1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	15
2	. SUMMARY OF TEST RESULTS	16
	2.1 TEST FACILITY	17
	2.2 MEASUREMENT UNCERTAINTY	17
3	. TEST PROCEDURES AND RESUTLS	18
	3.1 EQUIVALENT ISOTROPIC RADIATED POWER	18
	3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER	18
	3.1.2 TEST PROCEDURE 3.1.3 TEST SETUP	18 18
	3.1.4 TEST RESULTS	19
	3.2 . PEAK POWER DENSITY	20
	3.2.1 LIMITS OF POWER SPECTRAL DENSITY	20
	3.2.2 TEST PROCEDURE	20
	3.2.3 TEST SETUP 3.2.4 TEST RESULTS	20 21
	3.3 . OCCUPIED CHANNEL BANDWIDTH	22
	3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	22
	3.3.2 TEST PROCEDURE	22
	3.3.3 DEVIATION FROM TEST STANDARD	22
	3.3.4 TEST SETUP 3.3.5 TEST RESULTS	22 23
	3.4 . TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMA	
	3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-C	
	DOMAIN	24
	3.4.2 TEST PROCEDURE 3.4.3 DEVIATION FROM TEST STANDARD	24
	3.4.4 TEST SETUP	25 25
	3.4.5 TEST RESULTS	26
	3.5 . ADAPTIVE (CHANNEL ACCESS MECHANISM)	27
	3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR W	
	MODULATION TECHNIQUES 3.5.2 TEST PROCEDURE	27 28
	3.5.3 TEST SETUP CONFIGURATION	28
	3.5.4 LIST OF MEASUREMENTS	29

Table of Contents	Page
3.5.5 TEST RESULTS	30
3.6 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	31
3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURI	OUS
DOMAIN	31
3.6.2 TEST PROCEDURE	31
3.6.3 DEVIATION FROM TEST STANDARD	31
3.6.4 TEST SETUP	32
3.6.5 TEST RESULTS(Radiated measurement)	33
3.6.6 TEST RESULTS (Conducted measurement)	35
3.7 . RECEIVER SPURIOUS RADIATION	35
3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION	35
3.7.2 TEST PROCEDURE	35
3.7.3 DEVIATION FROM TEST STANDARD	35
3.7.4 TEST SETUP	36
3.7.5 TEST RESULTS(Radiated measurement)	37
3.7.6 TEST RESULTS (Conducted measurement)	38
3.8 . RECEIVER BLOCKING	39
3.8.1 PERFORMANCE CRITERIA	39
3.8.2 LIMITS OF RECEIVER BLOCKING	39
3.8.3 TEST PROCEDURE 3.8.4 DEVIATION FROM TEST STANDARD	41 41
3.8.5 TEST SETUP	41
3.8.6 TEST RESULTS	42
4 . TEST RESULTS	43
1M	43
4.1 RF Output Power	43
4.2 Power Spectral Density	45
4.3 Occupied Channel Bandwidth	47
4.4 Transmitter unwanted emissions in the out-of-band domain	49 50
4.5 Transmitter unwanted emissions in the spurious domain	50 53
4.6 Receiver spurious emissions	
2M	55
4.1 RF Output Power	55 57
4.2 Power Spectral Density 4.3 Occupied Channel Bandwidth	57 59
4.4 Transmitter unwanted emissions in the out-of-band domain	61
4.5 Transmitter unwanted emissions in the spurious domain	62
4.6 Receiver spurious emissions	65
5 . EUT TEST PHOTO	67
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	67

Revision History

Report No.	Version	Description	Issued Date
STR221018001002E	Rev.01	Initial issue of report	Nov 15, 2022
4			et si
		4 4	4
		* % 5	<u> </u>
		+	
T 1/2 4		A 3.00	4
<i>Y Y</i>	.4		ر حاد
	4,	*	
3,00 7	4		
		4,	*
	7		
3,00			*
<u>,</u>	40	7	
4 30			
		10 70 4.	<i>*</i>

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart phone		
Trade Mark	Blackview		
Model Name.	BV9200 N/A N/A		
Family Model			
Model Difference			
	The EUT is Smart phone		
	Operation Frequency: 2402~2480 MHz		
	Modulation Type: GFSK		
	Adaptive/non-adaptive Adaptive equipment		
Product Description	Receiver categories 3		
	Number Of Channel Please see Note 2.		
	Antenna Designation: PIFA Antenna		
	Antenna Gain(Peak) -0.6 dBi		
	* 3 5		
Channel List	Refer to below		
Adapter	Model: QZ-06502EC00 Input: 100-240V~50/60Hz 1.5A Output: 5.0V3.0A or 9.0V3.0A or 12.0V3.0A or 15.0V3.0A or 20.0V 3.25A (PPS)3.3V~21.0V3.15A(66.0W Max)		
Battery	DC 3.87V, 5000mAh, 19.35Wh		
Rating	DC 3.87V from battery or DC 5V from adapter		
I/O Ports	Refer to users manual		
Hardware Version	HCT-G680MB-A4		
Software Version	BV9200_EEA_G680_V1.0_20221109V11		

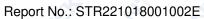
Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

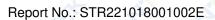
Channel	Frequency (MHz)
00	2402
01	2404
- C	<i>→ → → → → → → → → →</i>
<u> </u>	<u> </u>
38	2478
39	2480

1.2 INFORMATION ABOUT THE EUT
a) The type of modulation used by the equipment:
☐ FHSS
other forms of modulation
b) In case of FHSS modulation:
In case of non-Adaptive Frequency Hopping equipment:
The number of Hopping Frequencies:
In case of Adaptive Frequency Hopping Equipment:
The maximum number of Hopping Frequencies:
The minimum number of Hopping Frequencies:
The (average) Dwell Time:
c) Adaptive / non-adaptive equipment:
non-adaptive Equipment
adaptive Equipment without the possibility to switch to a non-adaptive mode
adaptive Equipment which can also operate in a non-adaptive mode
d) In case of adaptive equipment:
The maximum Channel Occupancy Time implemented by the equipment: ./. ms
☐ The equipment has implemented an LBT based DAA mechanism
In case of equipment using modulation different from FHSS:
The equipment is Frame Based equipment
☐ The equipment is Load Based equipment
The equipment can switch dynamically between Frame Based and Load Based equipment
The CCA time implemented by the equipment: / μs
The equipment has implemented a non-LBT based DAA mechanism
☐ The equipment can operate in more than one adaptive mode



))	In case of non-adaptive Equipment:
-	The maximum RF Output Power (e.i.r.p.):
-	The maximum (corresponding) Duty Cycle:
ı	Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations
(of duty cycle and corresponding power levels to be declared):
	The worst case operational mode for each of the following tests:
	• RF Output Power
	GFSK
•	Power Spectral Density
	GFSK
	Duty cycle, Tx-Sequence, Tx-gap
	N/A Accordated Transmitting Fragues of Competing & Hamilton Companies (anhyten FHCC anying sont)
•	Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
	N/A Hanning Fraguency Seneration (aphy for FHSS aguinment)
	 Hopping Frequency Separation (only for FHSS equipment) N/A
	Medium Utilization
	N/A
	• Adaptivity
	N/A
	• Receiver Blocking
	GFSK
	Nominal Channel Bandwidth
	GFSK
	Transmitter unwanted emissions in the OOB domain
	GFSK
	Transmitter unwanted emissions in the spurious domain
	GFSK
•	• Receiver spurious emissions
	GFSK
3)	The different transmit operating modes (tick all that apply):
	Operating mode 1: Single Antenna Equipment
	Equipment with only one antenna
	Equipment with two diversity antennas but only one antenna active at any moment in time
	☐ Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one
	antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
	Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming
	Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)

NTEK 北测[®]



☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
NOTE 1: Add more lines if more channel bandwidths are supported. ☐ Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
☐ Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
NOTE 2: Add more lines if more channel bandwidths are supported.
h) In case of Smart Antenna Systems:
The number of Receive chains:
The number of Transmit chains:
symmetrical power distribution
asymmetrical power distribution
In case of beam forming, the maximum (additional) beam forming gain: dB
NOTE: The additional beam forming gain does not include the basic gain of a single antenna.
i) Operating Frequency Range(s) of the equipment:
Operating Frequency Range 1: 2402 MHz to 2480 MHz
Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported.
j) Nominal Channel Bandwidth(s):
Nominal Channel Bandwidth 1: 1.033MHz (1M)
Nominal Channel Bandwidth 2: 2.074MHz (2M)
NOTE: Add more lines if more channel bandwidths are supported.
k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.):
Stand-alone ■ Sta
Combined Equipment (Equipment where the radio part is fully integrated within another type of
equipment)
Plug-in radio device (Equipment intended for a variety of host systems)
Other Control
I) The normal and the extreme operating conditions that apply to the equipment:
Normal operating conditions (if applicable):
Operating temperature: 15 ℃ ~35 ℃
Other (please specify if applicable):
Extreme operating conditions:
Operating temperature range: Minimum: -10℃ Maximum 40℃
Other (please specify if applicable): Minimum: Maximum
Details provided are for the:
stand-alone equipment
☐ combined (or host) equipment ☐ test jig
Li test jig

The intended combine	hation(3) of the faulo		
assemblies and their	r corresponding e.i.r.p	o. levels:	
Antenna Type: PIFA	Antenna		
	(information to be provi	ded in case of conducted	measurements)
Antenna Gain: -	0.6 dBi		
If applicable, addit	ional beamforming gain	(excluding basic antenna	gain): dB
☐ Temporary F	RF connector provided		
☐ No temporar	ry RF connector provide	ed	
☐ Dedicated Antenr	nas (equipment with ant	tenna connector)	
☐ Single powe	er level with correspondi	ng antenna(s)	
☐ Multiple pow	ver settings and corresp	onding antenna(s)	
Number of diffe	erent Power Levels:		
Power Level 1:	: dBm		
Power Level 2:	: dBm		
Power Level 3:	: dBm		
		quipment has more power	levels.
		lucted power levels (at ant	
			es, their corresponding gains
3) and the reculting e	i r n levels also taking	into account the beamforn	ning gain (V) if applicable
		into account the beamforn	ning gain (Y) if applicable
Power Level 1	: dBm	into account the beamforned for this power level:	4
Power Level 1 Number of ante	: dBm		4
Power Level 1 Number of ante	: dBm enna assemblies provid	ed for this power level:	
Power Level 1 Number of ante Assembly #	enna assemblies provid	ed for this power level: e.i.r.p. (dBm)	4,10
Power Level 1	:dBm enna assemblies provid Gain (dBi) -0.6	e.i.r.p. (dBm) -2.54	
Power Level 1 Number of ante	Gain (dBi) -0.6	e.i.r.p. (dBm) -2.54 -2.58	
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n	Gain (dBi) -0.6 -0.6 more rows in case more	e.i.r.p. (dBm) -2.54 -2.58	Part number or model name
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n	Gain (dBi) -0.6 -0.6 more rows in case more	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are s	Part number or model name supported for this power level.
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n Power Level 2 Number of ante	Gain (dBi) -0.6 -0.6 more rows in case more dBm enna assemblies provide	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are seed for this power level:	Part number or model name supported for this power level.
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n Power Level 2 Number of ante	Gain (dBi) -0.6 -0.6 more rows in case more	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are s	Part number or model name supported for this power level.
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n Power Level 2 Number of ante Assembly #	Gain (dBi) -0.6 -0.6 more rows in case more dBm enna assemblies provide	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are seed for this power level:	Part number or model name supported for this power level.
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2	Gain (dBi) -0.6 -0.6 more rows in case more dBm enna assemblies provide	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are seed for this power level:	Part number or model name supported for this power level.
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3	Gain (dBi) -0.6 -0.6 more rows in case more dBm enna assemblies provide Gain (dBi)	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are sed for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3 NOTE 4: Add n	dBm enna assemblies provide Gain (dBi) -0.6 -0.6 -0.6 more rows in case more dBm enna assemblies provide Gain (dBi)	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are sed for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level.
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3 NOTE 4: Add n Power Level 3	Gain (dBi) -0.6 -0.6 more rows in case more denna assemblies provide Gain (dBi) Gain (dBi) Gain (dBi)	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are seed for this power level: e.i.r.p. (dBm) antenna assemblies are seed for this power level:	Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3 NOTE 4: Add n Power Level 3 Number of ante	Gain (dBi) -0.6 -0.6 -0.6 more rows in case more dBm enna assemblies provide Gain (dBi) Gain (dBi)	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are sembles are s	Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3 NOTE 4: Add n Power Level 3 Number of ante Assembly #	Gain (dBi) -0.6 -0.6 more rows in case more denna assemblies provide Gain (dBi) Gain (dBi) Gain (dBi)	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are seed for this power level: e.i.r.p. (dBm) antenna assemblies are seed for this power level:	Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3 NOTE 4: Add n Power Level 3 Number of ante Assembly # 1	Gain (dBi) -0.6 -0.6 -0.6 more rows in case more dBm enna assemblies provide Gain (dBi) Gain (dBi)	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are sembles are s	Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level 1 Number of ante Assembly # 1M 2M NOTE 3: Add n Power Level 2 Number of ante Assembly # 1 2 3 NOTE 4: Add n Power Level 3 Number of ante Assembly #	Gain (dBi) -0.6 -0.6 -0.6 more rows in case more dBm enna assemblies provide Gain (dBi) Gain (dBi)	e.i.r.p. (dBm) -2.54 -2.58 antenna assemblies are sembles are s	Part number or model name supported for this power level. Part number or model name supported for this power level.

n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the
combined (host) equipment or test jig in case of plug-in devices:
Details provided are for the:
combined (or host) equipment
☐ test jig
Supply Voltage
DC State DC voltage: DC 3.87V
In case of DC, indicate the type of power source
☐ Internal Power Supply
External Power Supply or AC/DC adapter: DC 5V
Battery: DC 3.87V
☐ Other:
o) Describe the test modes available which can facilitate testing:
See clause 1.3
p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802.15.4™ [i.4], proprietary, etc.):
Bluetooth®
q) If applicable, the statistical analysis referred to in clause 5.4.1 q)
(to be provided as separate attachment)
r) If applicable, the statistical analysis referred to in clause 5.4.1 r)
(to be provided as separate attachment)
s) Geo-location capability supported by the equipment:
☐ Yes
☐ The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or
clause 4.3.2.12.2 is not accessible to the user
⊠ No Section 1
t) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or
clause 4.3.2.11.3):
GFSK(CH39)=0.78%

1.3 TEST CONDITIONS AND CHANNEL

	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	40°C ~ -10°C Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.87V	/

Test Channel	EUT Channel	Test Frequency (MHz)
Lowest	CH00	2402
Middle	CH19	2440
Highest	CH39	2480

Note:

- (1) The HT 40 $^{\circ}$ C and LT -10 $^{\circ}$ C was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.
- (2) The measurements are performed at the highest, middle, lowest available channels.

1.4 DESCRIPTION OF TEST CONDITIONS
E-1 5
EUT EUT
the first field field the field fiel
- Ariet Ariet Ariet Ariet Ariet Ariet

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Smart phone	BV9200	N/A	EUT
			* 3	4
		水		,
	*			
+ .				4
	1			AL 35

Item	Type	Shielded Type	Ferrite Core	Length	Note
	.G	7		با.	- 🐼
\frac{1}{2}			.1	10 10	4
				4. 4	*
	1		4.		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year 🦽
Turn Table	EM	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	_ EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.01	2023.03.31	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01	2023.03.31	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
	TRANSMITTER PARAMETERS	1
4.3.2.2	RF Output Power	Pass
4.3.2.3	Power Spectral Density	Pass
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.2.5	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.2.6	Adaptivity	Not Applicable (See Note 1)
4.3.2.7	Occupied Channel Bandwidth	Pass
4.3.2.8	Transmitter unwanted emission in the OOB domain	Pass
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Pass
1	RECEIVER PARAMETERS	
4.3.2.10	Receiver Spurious Emissions	Pass
4.3.2.11	Receiver Blocking	Pass

Note

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add.: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District,

Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.:9270A-1

CNAS Registration No.:L5516

2.2 MEASUREMENT UNCERTAINTY

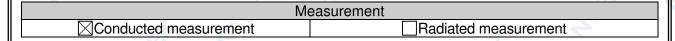
For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively 95 % and 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Measurement uncertainty

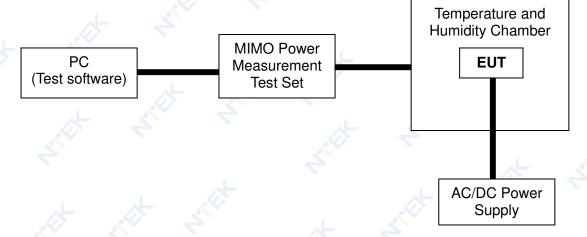
	weasarement uncertainty					
No.	Item	Uncertainty (P=95)				
<u>+</u> 1	Occupied Channel Bandwidth	± 4.7%				
2	RF output Power,conducted	± 0.9dB				
3	Power Spectral Density, conducted	± 2.6dB				
4	Unwanted emissions, conducted	± 2.2dB				
5	All emissions,radiated	± 5.3dB				
6	Temperature	± 0.5°C				
7	Humidity	± 2.0%				
8 💪	Time	± 1.0%				

3. TEST PROCEDURES AND RESUTLS

3.1 EQUIVALENT ISOTROPIC RADIATED POWER


3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER

Refer to chapter 4.3.2.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)


RF OUTPUT POWER			
Condition	Limit		
☐ Non-adaptive wide band modulations systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.		
Adaptive wide band modulations systems	≤20dBm		

3.1.2 TEST PROCEDURE

Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

3.1.3 TEST SETUP

3.1.4 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9200		
Temperature:	20℃	Relative Humidity:	55 %		
Pressure:	1012 hPa	Test Voltage :	DC 3.87V		
Test Mode :	t Mode : TX Low channel / Middle Channel / High Channel				

Test data reference attachment

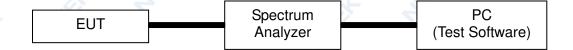
3.2. PEAK POWER DENSITY

3.2.1 LIMITS OF POWER SPECTRAL DENSITY

Refer to chapter 4.3.2.3.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER			
Condition Limit			
For equipment using wide band modulations other than FHSS	≤10 dBm/MHz		

3.2.2 TEST PROCEDURE


Refer to chapter 5.4.3.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Troid to diaptor of their or Error Err ded ded	V 2: 2: 2 (2 0 1 0 0 7)			
Measurement				
Wicasaromoni				
□ Conducted measurement	Radiated measurement			

The setting of the Spectrum Analyzer

The setting of the Spectrum An	
Start Frequency	2400MHz
Stop Frequency	2483.5MHz
Detector	RMS
Sweep Point	> 8 350; for spectrum analysers not supporting this number of sweep points, the
4.	
4	frequency band may be segmented
	For non-continuous transmissions: 2 × Channel Occupancy Time
4 4	× number of sweep points
Sweep time:	For continuous transmissions: 10 s; the sweep time may be
4	increased further until a value where the sweep time has no
4 3	further impact anymore on the RMS value of the signal.
RBW / VBW	10KHz / 30KHz

3.2.3 TEST SETUP

3.2.4 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9200
Temperature:	26℃	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	TX-GFSK(CH00/CH19/CH39)		* *

Test data reference attachment

3.3. OCCUPIED CHANNEL BANDWIDTH

3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH

Refer to chapter 4.3.2.7.3 of ETSI EN 300 328 V2.2.2 (2019-07)

OCCUPIED CHANNEL BANDWIDTH			
Condition		Limit	
All types of equipment using wide band modulations other than FHSS		Shall fall completely within the band 2400 to 2483.5 MHz	
Additional	For non-adaptive using wide band modulations other than FHSS system and E.I.R.P >10 dBm	Less than 20 MHz	
requirement	For non-adaptive frequency hopping system and E.I.R.P >10 dBm	Less than 5 MHz	

3.3.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement			
The setting of the Spe			
Center Frequency	The centre frequence	The centre frequency of the channel under test	
Frequency Span 2 × Nominal Channel Bandwidth			
Detector	DMC		

Center Frequency	The centre frequency of the charmer under test
Frequency Span	2 × Nominal Channel Bandwidth
Detector	RMS
RBW	~ 1 % of the span without going below 1 %
VBW	3 × RBW
Trace	Max hold
Sweep time	1s

3.3.3 DEVIATION FROM TEST STANDARD

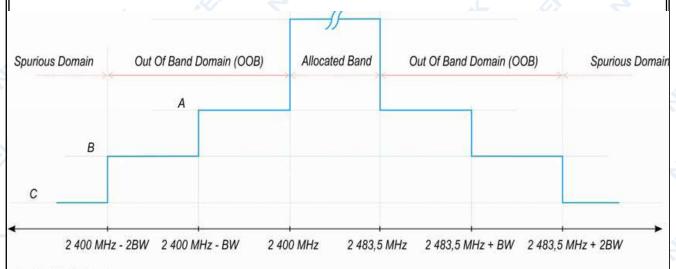
No deviation

3.3.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software has been activated to set the EUT on specific status.

3.3.5 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9200
Temperature:	26℃	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	TX-GFSK(CH00/CH19/CH39)		


Test data reference attachment

3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.2.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition Limit		
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	

A: -10 dBm/MHz e.i.r.p.

B: -20 dBm/MHz e.i.r.p.

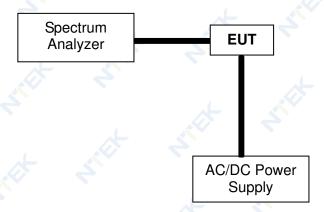
C: Spurious Domain limits

BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

3.4.2 TEST PROCEDURE

Refer to chapter 5.4.8.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	ementRadiated measure	ement
The setting of the Spectrum Ana	alyzer	3'0 =
Span	0Hz	
Filter Mode	Channel Filter	
Trace Mode	Max Hold	
Trigger Mode	Video trigger; in case video triggering is not po trigger source may be used	ssible, an external
Detector	RMS	
Sweep Point / Sweep Mode	Sweep Time [s] / (1 µs) or 5 000 whichever is g	greater/ Continuous
RBW / VBW	1MHz / 3MHz	


Measurement

3.4.3 DEVIATION FROM TEST STANDARD

No deviation

3.4.4 TEST SETUP

According to the ETSI EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

3.4.5 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9200
Temperature:	24 °C	Relative Humidity:	54%
Pressure:	1010 hPa	Test Power :	DC 3.87V
Test Mode :	TX-GFSK(CH00/CH39)	7	

Test data reference attachment

3.5. ADAPTIVE (CHANNEL ACCESS MECHANISM)

3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR WIDE BAND MODULATION TECHNIQUES

Refer to chapter ETSI EN 300 328 V2.2.2 (2019-07)

			Ope	rational Mode		
	Requirement	LBT based Detect an		nd Avoid		
		Non-LBT based Detect and Avoid	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as note 2)	
	Minimum Clear Channel Assessment (CCA) Time	NA	not less than 18 us (see note 1)	(see note 2)	not less than 18 us (see note 1)	
	Maximum Channel Occupancy (COT) Time	<40 ms	1ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)	
	Minimum Idle Period	5 % minimum of 100 µs	5% of COT	(see note 2)	NA	
	Extended CCA check	∟ NA ≤	NA	(see note 2)	R*CCA (see note 4)	
	Short Control Signalling Transmissions	Maximum duty cycle of 10% within an observation period of 5 (see note 5)			on period of 50 ms	

Note 1: The CCA time used by the equipment shall be declared by the supplier.

Note 2: Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect as described in IEEE 802.11™-2012 [i.3], clause 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in IEEE 802.15.4™-2011 [i.4], clause 4, clause 5 and clause 8 providing the equipment complies with the conformance requirements referred to in clause 4.3.2.6.3.4.

Note 3: g is selected by the manufacturer in the range [4...32]

Note 4: The value of R shall be randomly selected in the range [1...g]

Note 5: Adaptive equipment may or may not have Short Control Signaling Transmissions.

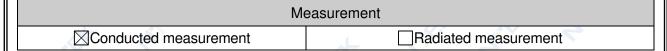
Interference threshold level

The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

 $TL = -70 \text{ dBm/MHz} + 10 \times \log_{10} (100 \text{ mW} / \text{Pout}) \text{ (Pout in mW e.i.r.p.)}$

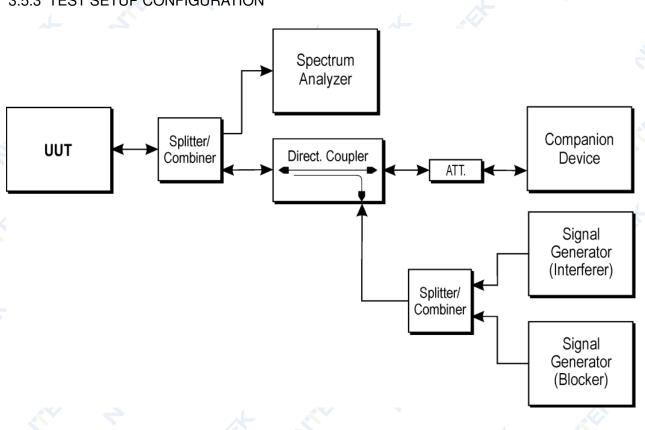
Table 9: Unwanted Signal parameters

Wanted signal mean power from companion device (dBm) Unwanted signal frequency (MHz)		Unwanted CW signal power (dBm)	
-30/ sufficient to maintain the link(see note 2)	2 395 or 2 488,5 (see note 1)	-35 (see note 2)	


NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1.

NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz.

NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.


3.5.2 TEST PROCEDURE

Refer to chapter 5.4.6.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Test method please refer to the 5.4.6.2.1.4 of ETSI EN 300 328 V2.2.2 (2019-07)

3.5.3 TEST SETUP CONFIGURATION

3.5.4 LIST OF MEASUREMENTS

UUT operational Mode			
Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced)	
* 3	V	* **	

Clause	Test Parameter	Remarks	PASS/FAIL
4.3.2.5.2.2.1	Adaptive (Frame Based Equipment)	Not Applicable	N/A
4.3.2.5.2.2.2	Adaptive (Load Based Equipment)	N/A	N/A
4.3.2.5.3	Short Control Signaling Transmissions	N/A	N/A

3.5.5 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9200
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Test Power :	N/A
Test Mode :	N/A	7	* <

Note: Not Applicable

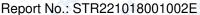
3.6. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Refer to chapter 4.3.2.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN				
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth		
30 MHz to 47 MHz	-36dBm	100 kHz		
47 MHz to 74 MHz	-54dBm	100 kHz		
74 MHz to 87.5 MHz	-36dBm	100 kHz		
87.5 MHz to 118 MHz	-54dBm	100 kHz		
118 MHz to 174 MHz	-36dBm	100 kHz		
174 MHz to 230 MHz	-54dBm	100 kHz		
230 MHz to 470 MHz	-36dBm	100 kHz		
470 MHz to 694 MHz	-54dBm	100 kHz		
694 MHz to 1 GHz	-36dBm	100 kHz		
1 GHz ~ 12.75 GHz	-30dBm	1 MHz		

3.6.2 TEST PROCEDURE

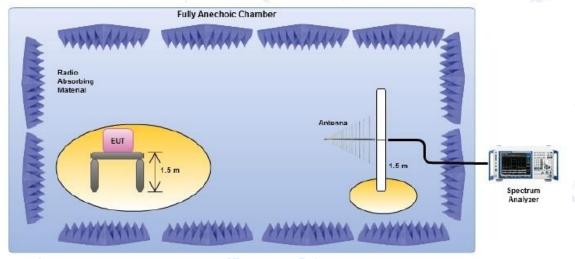
Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)


M	easurement
	□ Radiated measurement

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)	大	
VBW	300K(<1GHz) / 3M(>1GHz)		

3.6.3 DEVIATION FROM TEST STANDARD


No deviation

3.6.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

3.6.5 TEST RESULTS(Radiated measurement)

BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)

EUT:	Smart phone	Model Name :	BV9200
Temperature:	24℃	Relative Humidity:	57 %
Pressure:	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	TXGFSK(CH39)		.L .X

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	33.35	-72.34	11.20	-61.14	-36	-25.14	peak
V	101.80	-74.09	9.96	-64.13	-54	-10.13	peak
V	180.57	-75.72	11.06	-64.66	-54	-10.66	peak
V	291.62	-67.67	9.63	-58.04	-36	-22.04	peak
V	483.66	-77.61	10.95	-66.66	54	-12.66	peak
Н	44.68	-71.30	10.61	-60.69	-36	-24.69	peak
Н	94.92	-73.62	9.87	-63.75	-54	-9.75	peak
Н	181.73	-77.91	9.72	-68.19	-54	-14.19	peak
Н	371.57	-74.92	11.49	-63.43	-36	-27.43	peak
Н	626.26	-74.83	10.45	-64.38	-54	-10.38	peak

Remark:

^{1.}Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.2.All the modes had been tested, but only the worst data recorded in the report.

ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

EUT:	Smart phone	Model Name :	BV9200
Temperature:	26℃	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	TX-GESK (CH00/CH19/CH39)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
		or	peration fre	quency:2402		太	
V	2865.368	-77.43	10.15	-67.28	-30	-37.28	peak
V	4304.87	-70.59	9.61	-60.98	-30	-30.98	peak
V	2840.576	-68.45	10.55	-57.90	-30	-27.90	peak
V	5934.798	-73.07	10.66	-62.41	-30	-32.41	peak
Н	2796.082	-74.76	10.90	-63.86	-30	-33.86	peak
Н	5301.193	-75.09	11.17	-63.92	-30	-33.92	peak
Н	2907.12	-74.9	10.81	-64.09	-30	-34.09	peak
H	5640.705	-70.7	11.32	-59.38	-30	-29.38	peak
		or	peration free	quency:2440	•		4
V	2508.805	-75	11.04	-63.96	-30	-33.96	peak
V	3858.683	-72.57	9.79	-62.78	-30	-32.78	peak
V	2637.451	-75.21	11.49	-63.72	-30	-33.72	peak
V	4128.409	-67.65	10.89	-56.76	-30	-26.76	peak
H	2539.769	-71.54	10.02	-61.52	-30	-31.52	peak
Н	4024.264	-67.36	11.45	-55.91	-30	-25.91	peak
Н	2825.941	-73.23	9.73	-63.50	-30	-33.50	peak
Н	4809.775	-71.48	9.59	-61.89	-30	-31.89	peak
		or	peration fre	quency:2480			,
V	2280.627	-76.5 <mark>6</mark>	9.97	-66.59	-30	-36.59	peak
V	5117.108	-71.71	10.23	-61.48	-30	-31.48	peak
V	2728.984	-68.6	10.64	-57.96	-30	-27.96	peak
V	3516.521	-72.12	11.39	-60.73	-30	-30.73	peak
Н	2382.021	-68.32	10.07	-58.25	-30	-28.25	peak
Н	5490.906	-69.42	11.48	-57.94	-30	-27.94	_ peak
Н	2782.133	-76.98	11.05	-65.93	-30	-35.93	peak
Н	3753.184	-71.18	10.51	-60.67	-30	-30.67	peak

- Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

3.6.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

3.7. RECEIVER SPURIOUS RADIATION

3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION

Refer to chapter 4.3.2.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS		
Maximum Power Limit Frequency Range (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))		Measurement Bandwidth
30 MHz ~ 1 GHz	-57dBm	100KHz
1 GHz ~ 12.75 GHz	-47dBm	1MHz

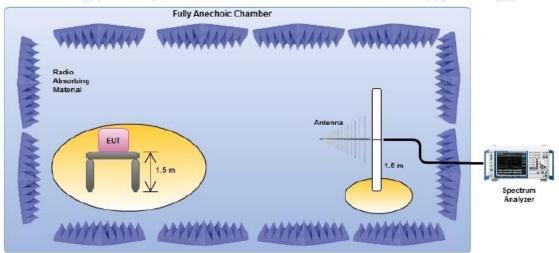
3.7.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

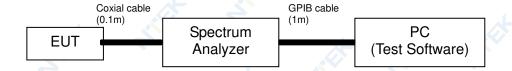
Measurement		
	□ Radiated measurement	

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)
VBW	300K(<1GHz) / 3M(>1GHz)


3.7.3 DEVIATION FROM TEST STANDARD

No deviation



3.7.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

3.7.5 TEST RESULTS(Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)

			/
EUT:	Smart phone	Model Name :	BV9200
Temperature:	26 ℃	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	RX Mode-GFSK(CH39)		.0 8

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	110
V	35.275	-82.36	13.02	-69.34	-57	-12.34	peak
V	90.012	-82.96	11.78	-71.18	-57	-14.18	peak
V	206.011	-81.71	18.99	-62.72	-57	-5.72	peak
V	466.519	-77.44	11.66	-65.78	-57	-8.78	peak
V	628.612	-82.02	11.52	-70.50	-57	-13.50	peak
Н	44.605	-81.55	18.62	-62.93	-57	-5.93	peak
Н	109.323	-83.26	18.12	-65.14	-57	-8.14	peak
H	228.814	-80.32	10.34	-69.98	-57	-12.98	peak
Н	464.289	-84.57	15.03	-69.54	-57	-12.54	peak
Н	585.991	-81.28	14.65	-66.63	-57	-9.63	peak

Remark:

- Emission Level = Meter Reading + Factor, Margin= Emission Level Limit
 All the modes had been tested, but only the worst data recorded in the report.

RX ABOVE 1 GHz WORST- CASE DATA(1GHz ~ 12.75GHz)

			= =:
EUT:	Smart phone	Model Name :	BV9200
Temperature:	24 ℃	Relative Humidity	54%
Pressure:	1010 hPa	Test Power :	DC 3.87V
Test Mode :	RX Mode-GFSK(CH39)	.0 2	

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	1101114111
V	2796.96	-81.3	10.07	-71.23	-47	-24.23	peak
V	5173.344	-82.85	9.84	-73.01	-47	-26.01	peak
V	2159.552	-80.32	10.08	-70.24	-47	-23.24	peak
V	4546.758	-82.38	16.19	-66.19	-47	-19.19	peak
Н	2805.05	-83.38	10.18	-73.20	-47	-26.20	peak
Н	5292.639	-84.3	10.78	-73.52	-47	-26.52	peak
Н	2665.878	-83.78	8.82	-74.96	-47	-27.96	peak
Н	3172.012	-81.53	14.65	-66.88	-47	-19.88	peak

3.7.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
 All the modes had been tested, but only the worst data recorded in the report.

3.8. RECEIVER BLOCKING

3.8.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

3.8.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

☐ Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less	2 380 2 504	-34	CW
(see note 2) (-139 dBm + 10 × log₁₀(OCBW)) or -74 dBm whichever is less	2 300 2 330 2 360	with with	4
(see note 3)	2524 2584 2674		410

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

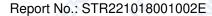
NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 15: Receiver Blocking parameters receiver category 2 equipment								
Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking					
companion device (dBm)	Frequency (MHz)	(dBm) (see note 3)	signal					
(see notes 1 and 3)								
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB)	2 380	-34	CW					
or (-74 dBm + 10 dB) whichever is less	2 504		4					
(see note 2)	2 300	طہ						
	2 584							

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.


NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

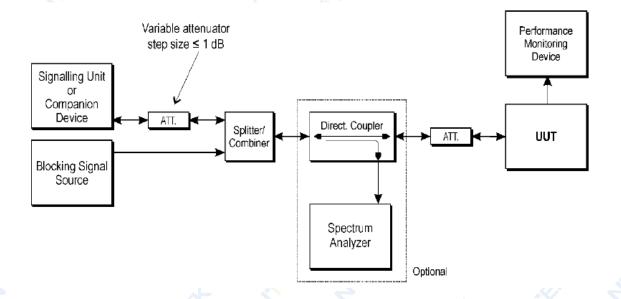
Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504		4
(see note 2)	2 300	4	
	2 584	W 2	4

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

3.8.3 TEST PROCEDURE


Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement ☐Radiated measurement

3.8.4 DEVIATION FROM TEST STANDARD

No deviation

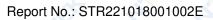
3.8.5 TEST SETUP

3.8.6 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9200	
Temperature:	24 °C	Relative Humidity	54%	
Pressure:	1010 hPa	Test Power :	DC 3.87V	
Test Mode :	GFSK-RX Mode (CH00/CH39)- 1M			

CH00:

receiver category 3

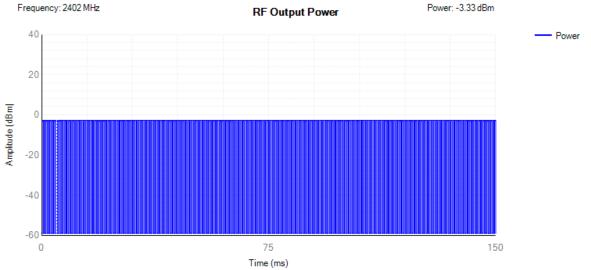

Wanted signal mean power from companion device (dBm) Note(1)	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit %
	2 380		0.61%	≤10%
	2 504		0.45%	1070
-58.86	2 300	-34	0.43%	≤10%
760 2	2 584	d 3	0.44%	≥10%

CH39:

receiver category 3

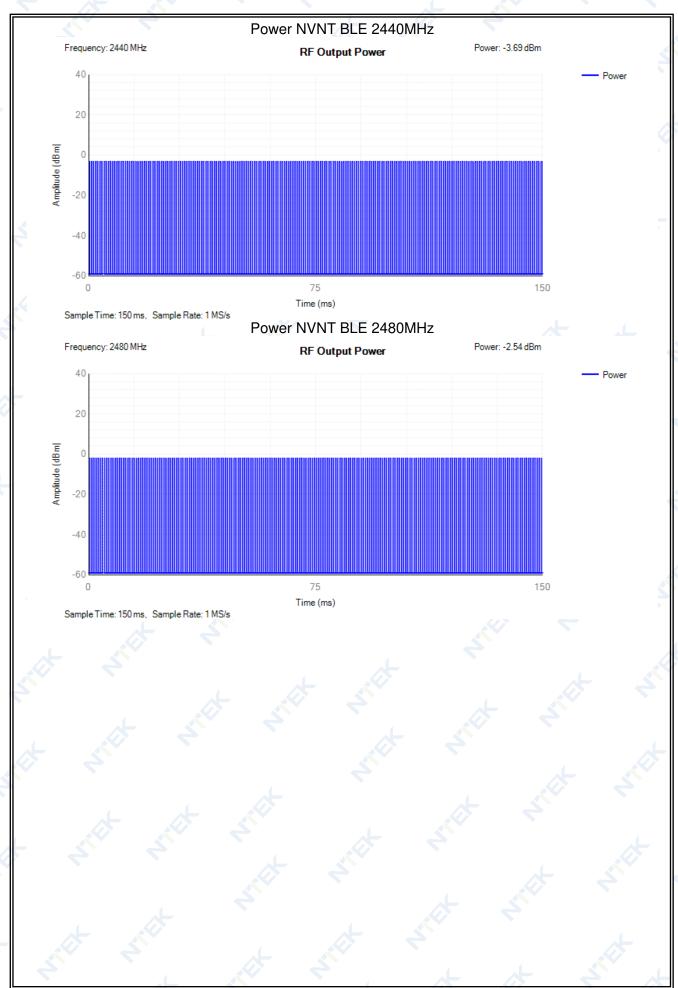
	10	ociver outegory o		
Wanted signal mean power from companion device (dBm) Note(1)	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit
	2 380 2 504		0.41% 0.19%	≤10%
-58.86	2 300	-34	0.78%	A-vee
	2 584	3, 4,	0.54%	≤10%

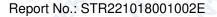
Note: (1) The above results were obtained from laboratory tests.


4. TEST RESULTS

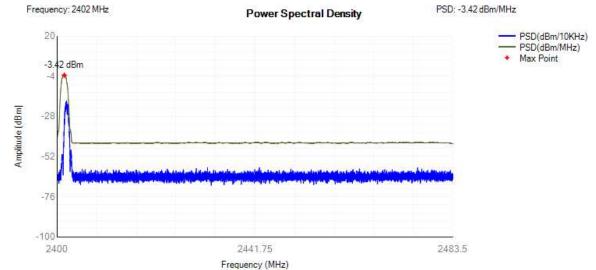
1M

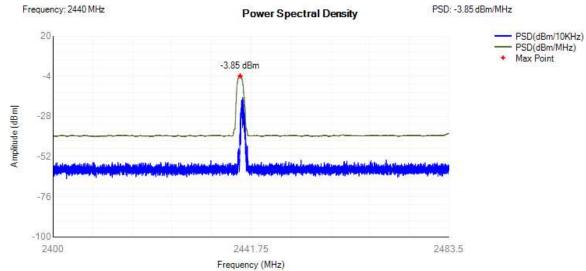
4.1 RF Output Power


- III Output! Olio!								
	Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
	NVNT	BLE	2402	-2.73	240	-3.33	20	Pass
	NVNT	BLE	2440	-3.09	240	-3.69	20	Pass
	NVNT	BLE	2480	-1.94	240	-2.54	20	Pass
	NVLT	BLE	2402	-2.76	240	-3.36	20	Pass
	NVLT	BLE	2440	-3.33	240	-3.93	20	Pass
	NVLT	BLE	2480	-2.22	240	-2.82	20	Pass
	THVN	BLE	2402	-3.06	240	-3.66	20	Pass
	THVN	BLE	2440	-3.57	240	-4.17	20	Pass
	NVHT	BLE	2480	-2.32	240	-2.92	20	Pass

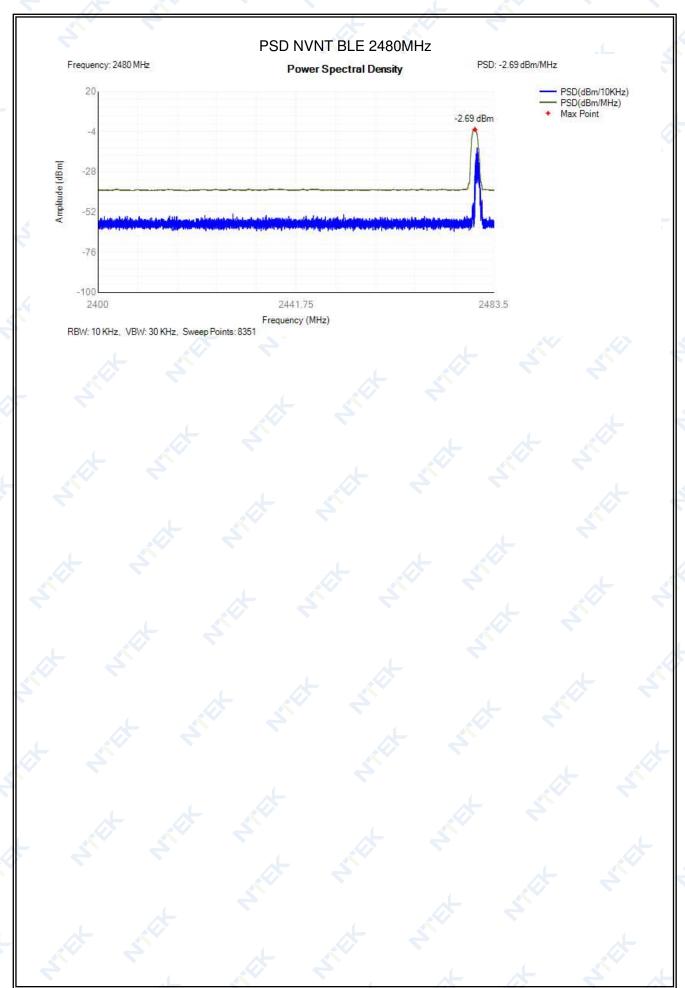

Power NVNT BLE 2402MHz

Sample Time: 150 ms, Sample Rate: 1 MS/s




4.2 Power Spectral Density Max PSD (dBm/MHz) Condition Mode Frequency (MHz) Limit (dBm/MHz) Verdict **NVNT** BLE 2402 -3.4210 Pass **NVNT** BLE 2440 -3.85 10 Pass **NVNT** BLE 2480 -2.69 10 **Pass**

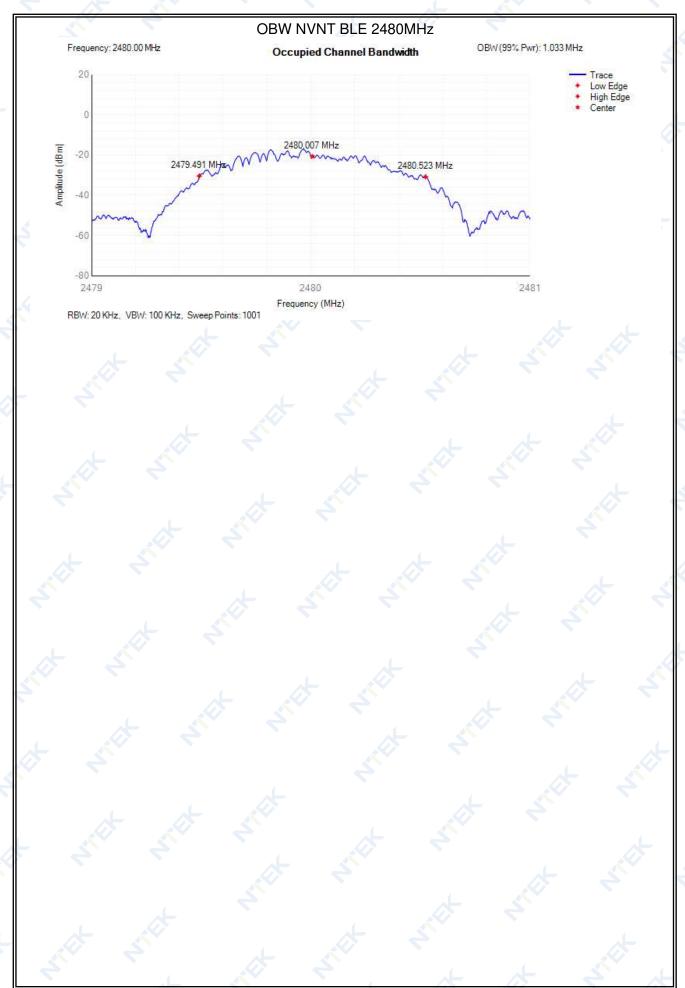
PSD NVNT BLE 2402MHz


RBW: 10 KHz, VBW: 30 KHz, Sweep Points: 8351

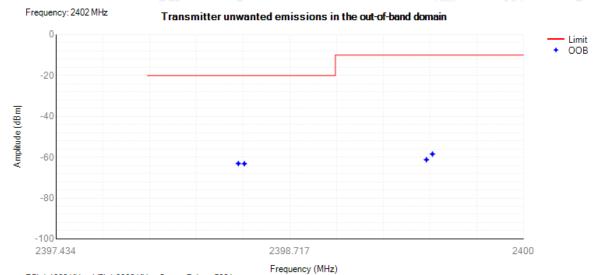
PSD NVNT BLE 2440MHz

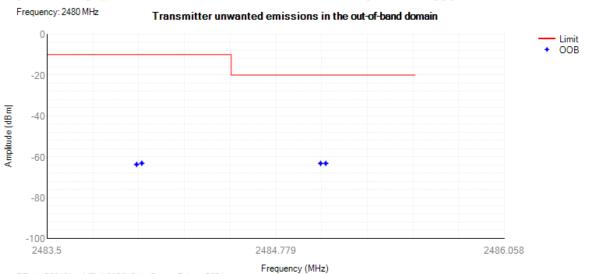
RBW: 10 KHz, VBW: 30 KHz, Sweep Points: 8351

4.3 Occupied Channel Bandwidth Center Upper Lower OBW Limit OBW Frequency Condition Mode Frequency Edge Edge Verdict (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) 2400 -**NVNT BLE** 2402 2402.005 1.033 2401.489 2402.521 **Pass** 2483.5MHz 2400 -NVNT **BLE** 2440 2440.007 1.033 2439.491 2440.523 Pass 2483.5MHz 2400 -**NVNT BLE** 2480 2480.007 1.033 2479.491 2480.523 Pass 2483.5MHz


OBW NVNT BLE 2402MHz Frequency: 2402.00 MHz OBW (99% Pwr): 1.033 MHz Occupied Channel Bandwidth 20 Low Edge High Edge Amplitude (dBm -20 2402.521 MHz -40 -60 -80 2401 2402 2403 Frequency (MHz)

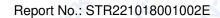
RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001



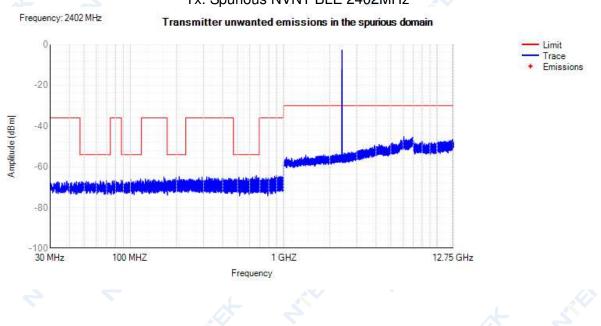

4.4 Transmitter unwanted emissions in the out-of-band domain										
	Fr		OOB Frequency	Level	Limit					
Condition	Mode	Frequency (MHz)	(MHz)	(dBm/MHz)	(dBm/MHz)	Verdict				
NVNT	BLE	2402	2399.5	-58.43	-10	Pass				
NVNT	BLE	2402	2399.467	-61.2	-10	Pass				
NVNT	BLE	2402	2398.467	-63.16	-20	Pass				
NVNT	BLE	2402	2398.434	-63.07	-20	Pass				
NVNT	BLE	2480	2484	-63.76	-10	Pass				
NVNT	BLE	2480	2484.029	-63.18	-10	Pass				
NVNT	BLE	2480	2485.029	-63.25	-20	Pass				
NVNT	BLE	2480	2485.058	-63.25	-20	Pass				

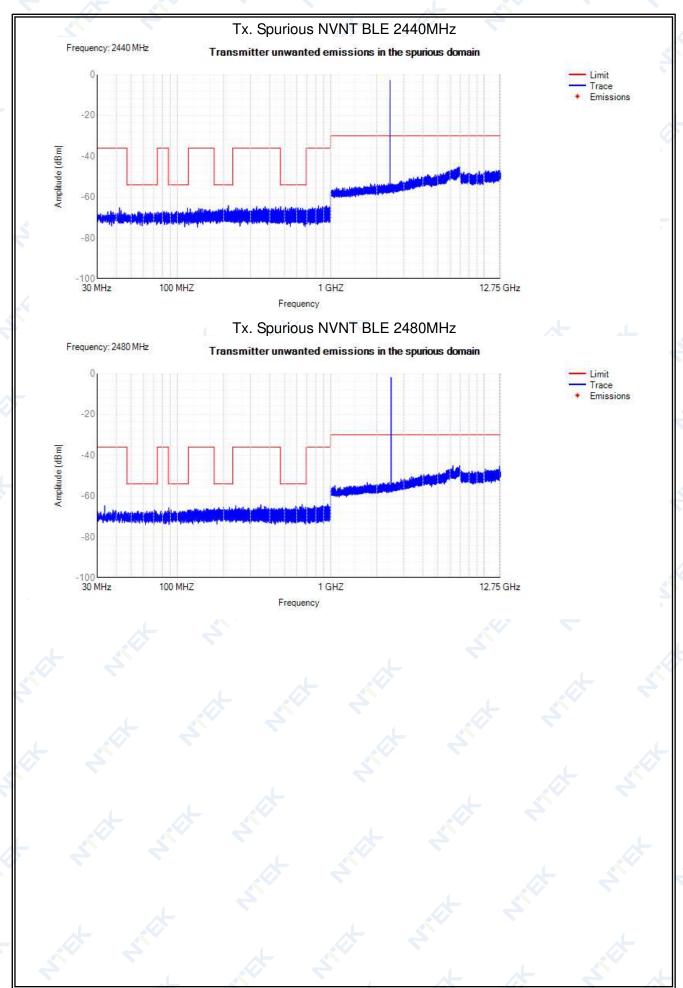
Tx. Emissions OOB NVNT BLE 2402MHz

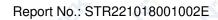
RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001


Tx. Emissions OOB NVNT BLE 2480MHz

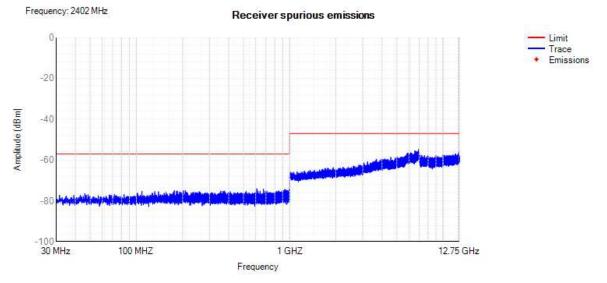
RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001

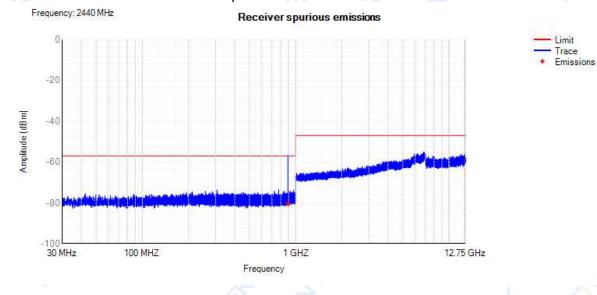

Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
NVNT	BLE	2402	30 MHz -47 MHz	38.5	-67.05	NA	-36	Pass
NVNT	BLE	2402	47 MHz -74 MHz	69.65	-66.69	NA	-54	Pass
NVNT	BLE	2402	74 MHz -87.5 MHz	87.2	-66.57	NA	-36	Pass
NVNT	BLE	2402	87.5 MHz -118 MHz	116.65	-65.9	NA	-54	Pass
NVNT	BLE	2402	118 MHz -174 MHz	165.4	-64.99	NA	-36	Pass
NVNT	BLE	2402	174 MHz -230 MHz	208.4	-64.77	NA	-54	Pass
NVNT	BLE	2402	230 MHz -470 MHz	315.1	-64.85	NA	-36	Pass
NVNT	BLE	2402	470 MHz -694 MHz	663.9	-64.22	_ NA	-54	Pass
NVNT	BLE	2402	694 MHz -1000 MHz 1000	899.1	-64.15	NA	-36	Pass
NVNT	BLE	2402	MHz -2398 MHz	2207.5	-53.64	NA	-30	Pass
NVNT	BLE	2402	2485.5 MHz -12750 MHz	6087	-45.15	NA	-30	Pass
NVNT	BLE	2440	30 MHz -47 MHz	41.95	-65.17	NA	-36	Pass
NVNT	BLE	2440	47 MHz -74 MHz	56.55	-67.11	NA	-54	Pass
NVNT	BLE	2440	74 MHz -87.5 MHz	81.65	-67.04	NA	-36	Pass
NVNT	BLE	2440	87.5 MHz -118 MHz	116.35	-65.31	NA	-54	Pass
NVNT	BLE	2440	118 MHz -174 MHz	138	-65.52	NA	-36	Pass
NVNT	BLE	2440	174 MHz -230 MHz	215.2	-64.1	NA	-54	Pass
NVNT	BLE	2440	230 MHz -470 MHz	329.65	-64.53	NA	-36	Pass
NVNT	BLE	2440	470 MHz -694 MHz	472.5	-64.61	NA	-54	Pass
NVNT	BLE	2440	694 MHz -1000 MHz	833.2	-64.15	NA NA	-36	Pass
NVNT	BLE	2440	1000 MHz -2398 MHz	2378.5	-53.27	NA	-30	Pass



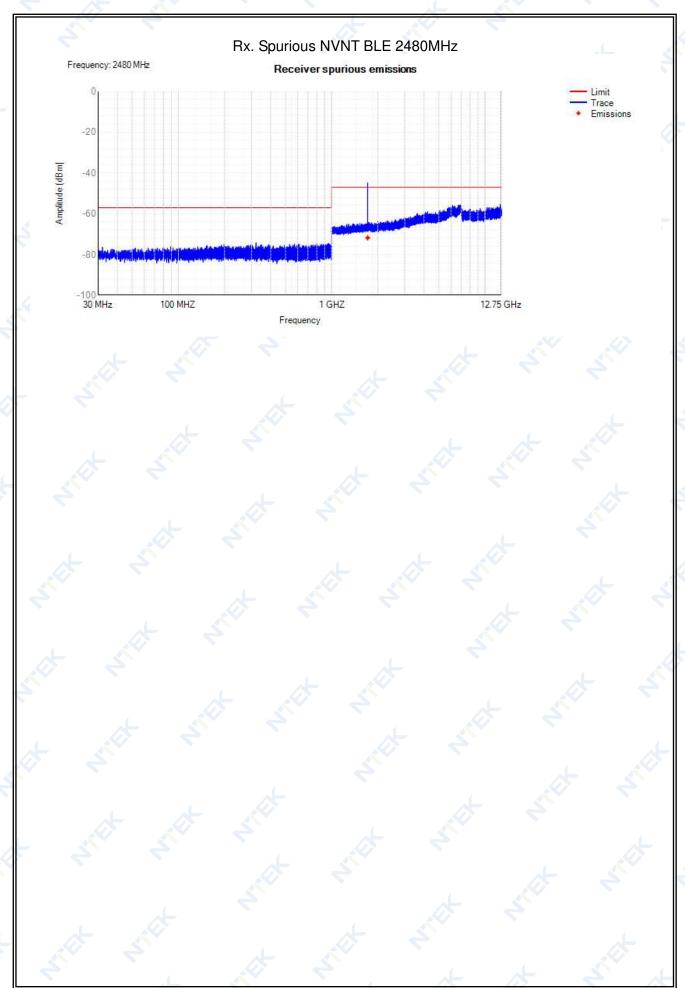

NVNT	BLE	2440	2485.5 MHz -12750 MHz	6856.5	-45.13	NA	-30	Pass
NVNT	BLE	2480	30 MHz -47 MHz	33.6	-64.68	NA	-36	Pass
NVNT	BLE	2480	47 MHz -74 MHz	70.9	-66.76	NA	-54	Pass
NVNT	BLE	2480	74 MHz -87.5 MHz	78.25	-67.19	NA	-36	Pass
NVNT	BLE	2480	87.5 MHz -118 MHz	88	-65.62	NA	-54	Pass
NVNT	BLE	2480	118 MHz -174 MHz	155	-66.13	_NA	-36	Pass
NVNT	BLE	2480	174 MHz -230 MHz	199.85	-65.45	NA	-54	Pass
NVNT	BLE	2480	230 MHz -470 MHz	351	-64.26	NA	-36	Pass
NVNT	BLE	2480	470 MHz -694 MHz	651.8	-64.04	_ NA	-54	Pass
NVNT	BLE	2480	694 MHz -1000 MHz	955.25	-63.87	NA	-36	Pass
NVNT	BLE	2480	1000 MHz -2398 MHz	1733.5	-53.3	NA	-30	Pass
NVNT	BLE	2480	2485.5 MHz -12750 MHz	6992.5	-44.72	NA	-30	Pass

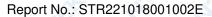
Tx. Spurious NVNT BLE 2402MHz



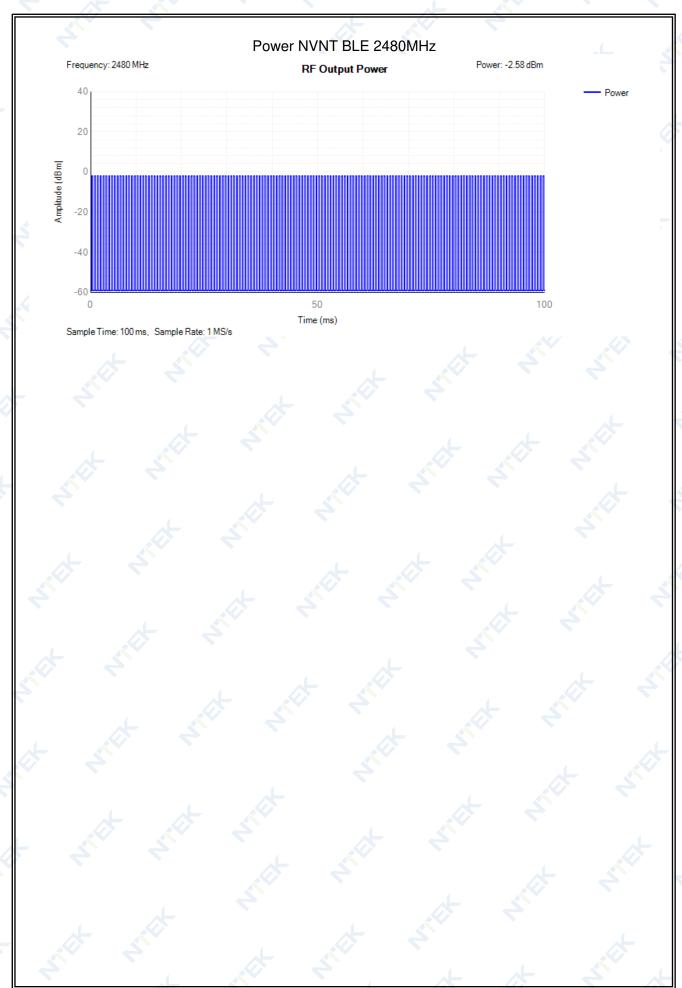


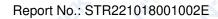
er spuri	ous emissior	าร					
Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
BLE	2402	30 MHz -1000 MHz	610.157	-74	NA	-57	Pass
BLE	2402	1000 MHz -12750 MHz	6938	-54.81	NA	-47	Pass
BLE	2440	30 MHz -1000 MHz	890.55	-56.63	-80.32	-57	Pass
BLE	2440	1000 MHz -12750 MHz	6857	-54.98	NA	-47	Pass
BLE	2480	30 MHz -1000 MHz	321.1	-74.26	NA	-57	Pass
BLE	2480	1000 MHz -12750 MHz	1717	-44.69	-71.81	-47	Pass
	Mode BLE BLE BLE BLE BLE	Mode Frequency (MHz) BLE 2402 BLE 2402 BLE 2440 BLE 2440 BLE 2480	BLE 2402 30 MHz -1000 MHz BLE 2402 1000 MHz BLE 2402 30 MHz -12750 MHz BLE 2440 30 MHz -1000 MHz BLE 2440 1000 MHz BLE 2440 30 MHz -12750 MHz BLE 2480 30 MHz -1000 MHz BLE 2480 1000 MHz	Mode Frequency (MHz) Range (MHz) Spur Freq (MHz) BLE 2402 30 MHz -1000 MHz -1000 MHz -12750 MHz 610.157 BLE 2402 1000 MHz -12750 MHz -1000 MHz -1000 MHz -12750 MHz 890.55 BLE 2440 1000 MHz -12750 MHz -12750 MHz -1000 M	Mode Frequency (MHz) Range Spur Freq (MHz) Spur Level Peak(dBm) BLE 2402 30 MHz - 1000 MHz 610.157 -74 BLE 2402 1000 MHz - 12750 MHz 6938 -54.81 BLE 2440 30 MHz - 1000 MHz 890.55 -56.63 BLE 2440 1000 MHz - 12750 MHz 6857 -54.98 BLE 2480 30 MHz - 1000 MHz - 1000 MHz 321.1 -74.26 BLE 2480 1000 MHz - 1717 - 144.69 -44.69	Mode Frequency (MHz) Range (MHz) Spur Freq (MHz) Spur Level Peak(dBm) Spur Level RMS(dBm) BLE 2402 30 MHz -1000 MHz -1000 MHz -12750 MHz 610.157 -74 NA BLE 2402 1000 MHz -12750 MHz -1000 MHz -1000 MHz -1000 MHz -12750 MHz 890.55 -56.63 -80.32 BLE 2440 1000 MHz -12750 MHz -12750 MHz -12750 MHz -12750 MHz -1000 MHz -	Mode Frequency (MHz) Range (MHz) Spur Freq (MHz) Spur Level Peak(dBm) Spur Level RMS(dBm) Limit (dBm) BLE 2402 30 MHz -1000 MHz -1000 MHz -12750 MHz 610.157 -74 NA -57 BLE 2402 1000 MHz -12750 MHz 6938 -54.81 NA -47 BLE 2440 30 MHz -1000 MHz -1000 MHz -12750 MHz 890.55 -56.63 -80.32 -57 BLE 2440 1000 MHz -12750 MHz 6857 -54.98 NA -47 BLE 2480 30 MHz -1000 MHz -1000 MHz 321.1 -74.26 NA -57 BLE 2480 1000 MHz -1000 MHz -1717 -44.69 -71.81 -47


Rx. Spurious NVNT BLE 2402MHz

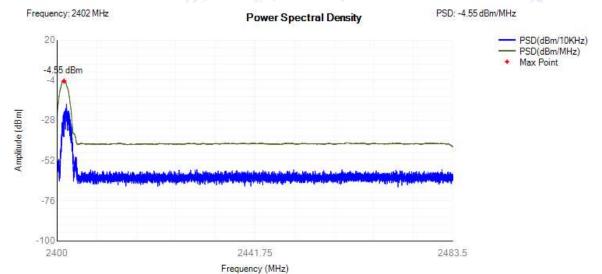


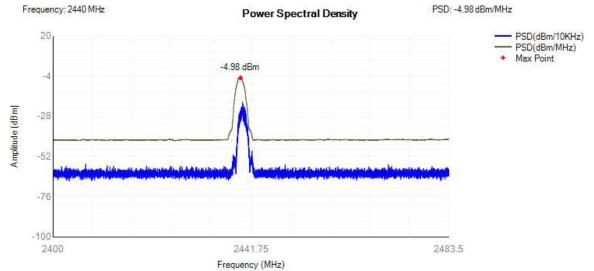
Rx. Spurious NVNT BLE 2440MHz



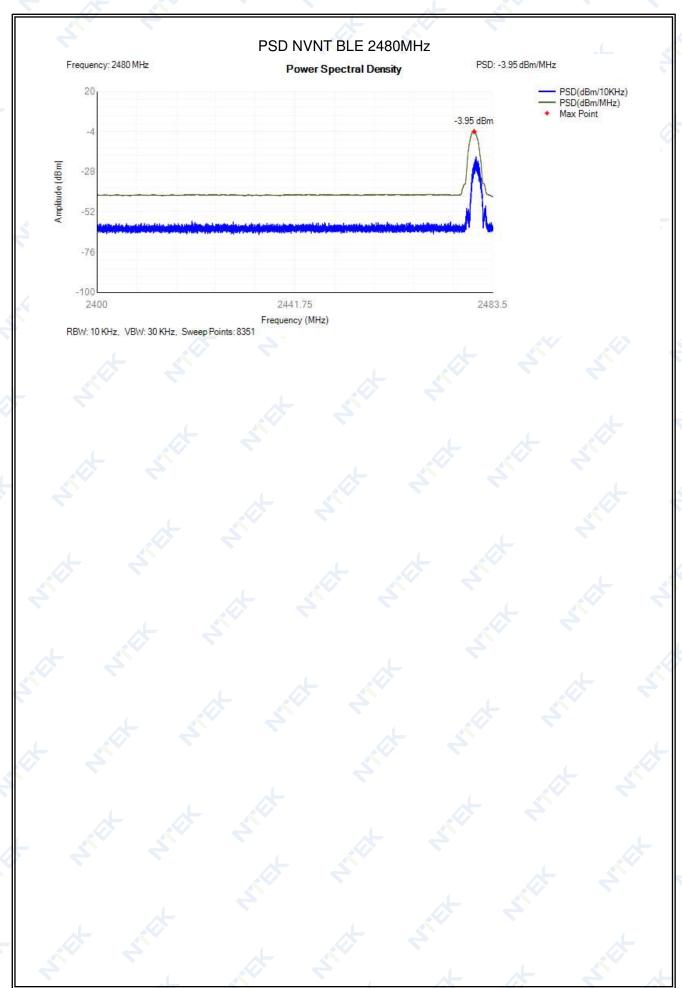


2M 4.1 RF Output Power Max Burst Max Frequency Burst Limit Condition Mode **RMS EIRP** Verdict (MHz) Number (dBm) Power (dBm) (dBm) **NVNT BLE** 20 2402 -2.67160 -3.27**Pass NVNT** 2440 **Pass BLE** -3.11 160 -3.7120 **NVNT** -1.98-2.5820 **BLE** 2480 160 **Pass NVLT BLE** 2402 -2.81 160 -3.41 20 **Pass NVLT BLE** 2440 -3.43 160 -4.0320 **Pass NVLT BLE** 2480 -2.33160 -2.9320 **Pass NVHT BLE** 2402 -2.88 160 -3.4820 **Pass NVHT BLE** 2440 -3.76160 -4.36 20 **Pass NVHT BLE** 2480 -2.47160 -3.0720 **Pass** Power NVNT BLE 2402MHz Frequency: 2402 MHz Power: -3.27 dBm **RF Output Power** 40 Power 20 Amplitude (dBm) Time (ms) Sample Time: 100 ms, Sample Rate: 1 MS/s Power NVNT BLE 2440MHz Frequency: 2440 MHz Power: -3.71 dBm **RF Output Power** 40 20 Amplitude (dBm) -40 -60 50 Time (ms) Sample Time: 100 ms, Sample Rate: 1 MS/s

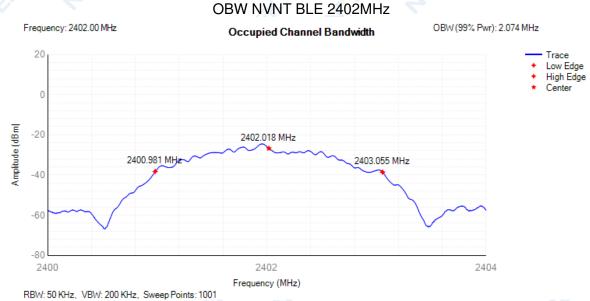


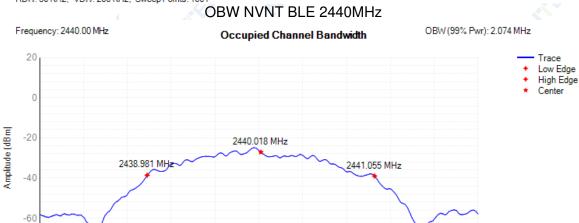

4.2 Power Spectral Density Max PSD (dBm/MHz) Condition Mode Frequency (MHz) Limit (dBm/MHz) Verdict **NVNT** BLE 2402 -4.55 10 Pass **NVNT** BLE 2440 -4.98 10 Pass **NVNT** BLE 2480 -3.95 10 **Pass**

PSD NVNT BLE 2402MHz


RBW: 10 KHz, VBW: 30 KHz, Sweep Points: 8351

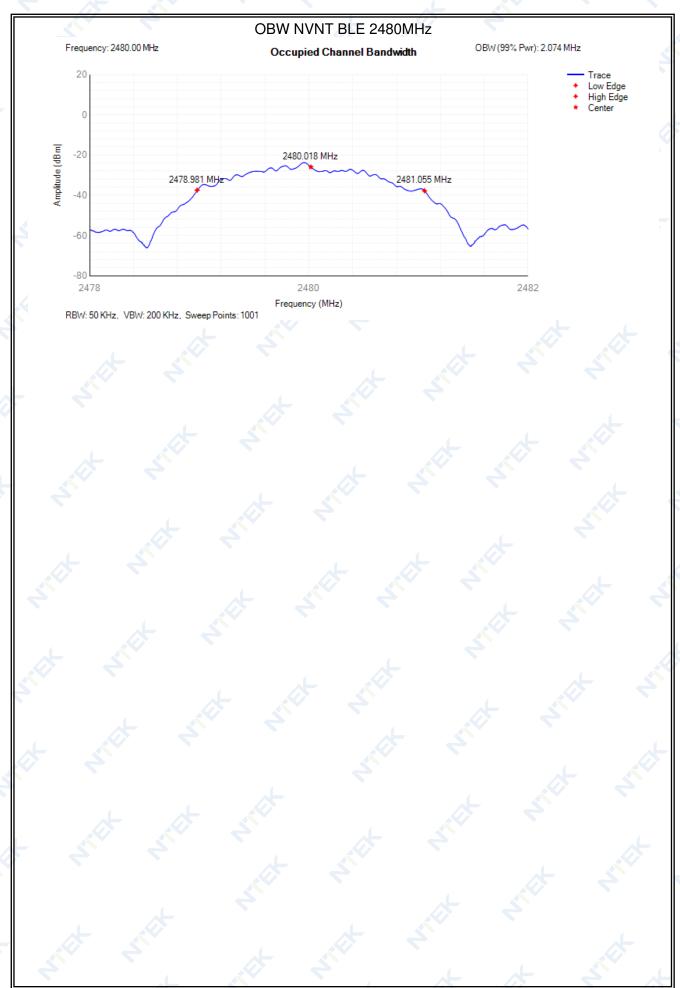
PSD NVNT BLE 2440MHz


RBW: 10 KHz, VBW: 30 KHz, Sweep Points: 8351



4.3 Occupied Channel Bandwidth Center Upper Lower OBW Limit OBW Frequency Condition Mode Edge Edge Verdict Frequency (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) 2400 -**NVNT BLE** 2402 2402.018 2.074 2400.981 2403.055 **Pass** 2483.5MHz 2400 -NVNT **BLE** 2440 2440.018 2.074 2438.981 2441.055 Pass 2483.5MHz 2400 -**NVNT BLE** 2480 2480.018 2.074 2478.981 2481.055 Pass 2483.5MHz

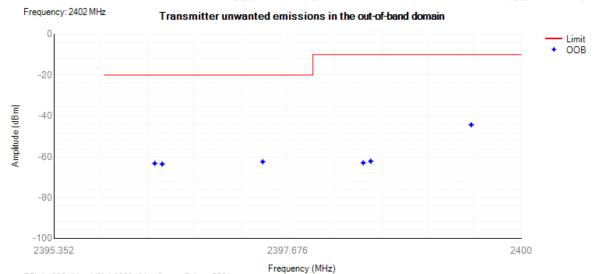
2440


Frequency (MHz)

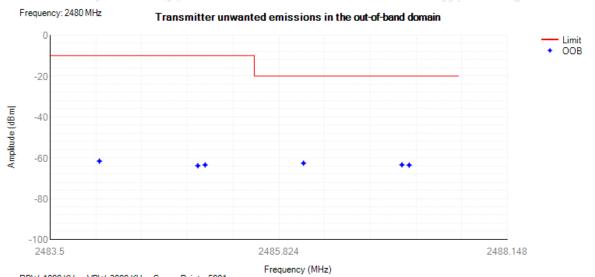
RBW: 50 KHz, VBW: 200 KHz, Sweep Points: 1001

2438

2442



II	4.4	Trai	nsmitte	er unv	wante	d emission	s in	the out-o	f-band do	omain
I		_				Frequenc	V	OOB Fre	eauency	

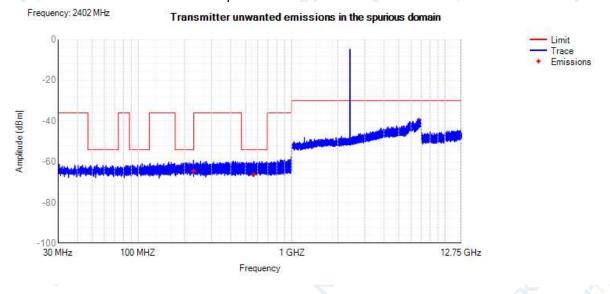

Condition	Mode	Frequency	OOB Frequency	Level	Limit	Verdict
Condition Mode		(MHz)	(MHz)	(dBm/MHz)	(dBm/MHz)	verdict
NVNT	BLE	2402	2399.5	-44.37	-10	Pass
NVNT	BLE	2402	2398.5	-62.19	-10	Pass
NVNT	BLE	2402	2398.426	-62.96	-10	Pass
NVNT	BLE	2402	2397.426	-62.44	-20	Pass
NVNT	BLE	2402	2396.426	-63.57	-20	Pass
NVNT	BLE	2402	2396.352	-63.26	-20	Pass
NVNT	BLE	2480	2484	-61.64	-10	Pass
NVNT	BLE	2480	2485	-63.89	-10	Pass
NVNT	BLE	2480	2485.074	-63.5	-10	Pass
NVNT	BLE	2480	2486.074	-62.65	-20	Pass
NVNT	BLE	2480	2487.074	-63.46	-20	Pass
NVNT	BLE	2480	2487.148	-63.6	-20	Pass

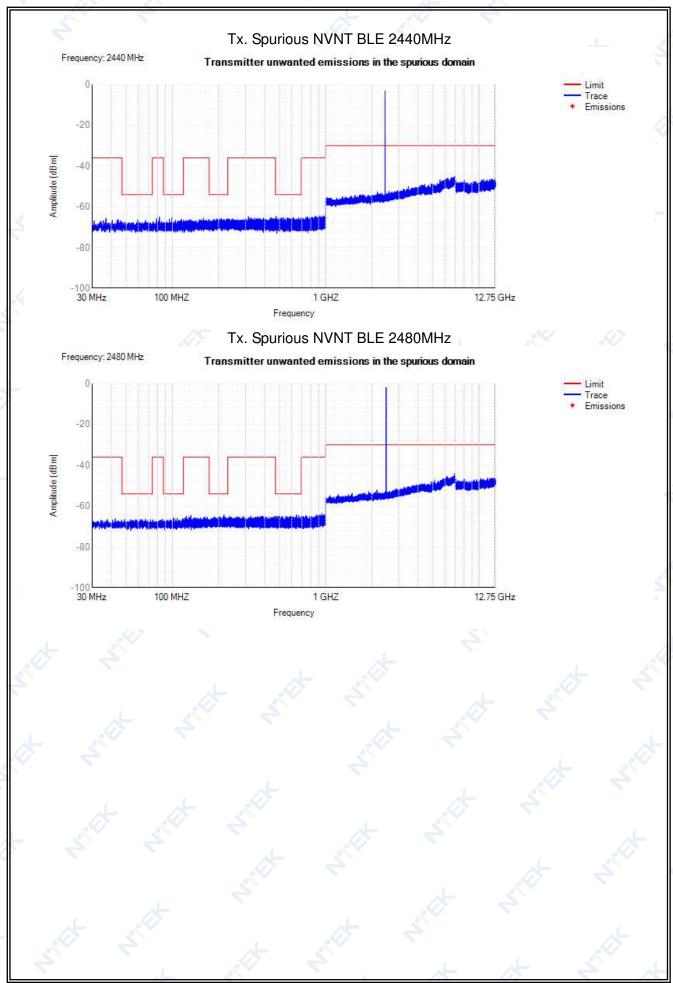
Tx. Emissions OOB NVNT BLE 2402MHz

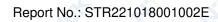
RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 5001

Tx. Emissions OOB NVNT BLE 2480MHz

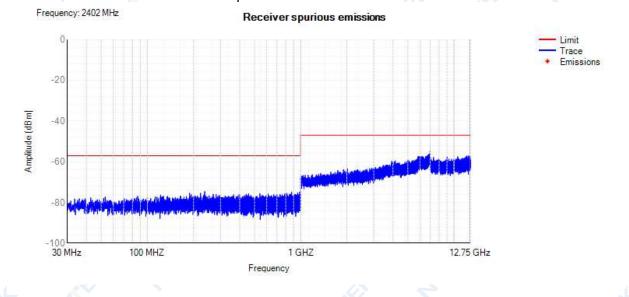
RBW: 1000 KHz, VBW: 3000 KHz, Sweep Points: 500

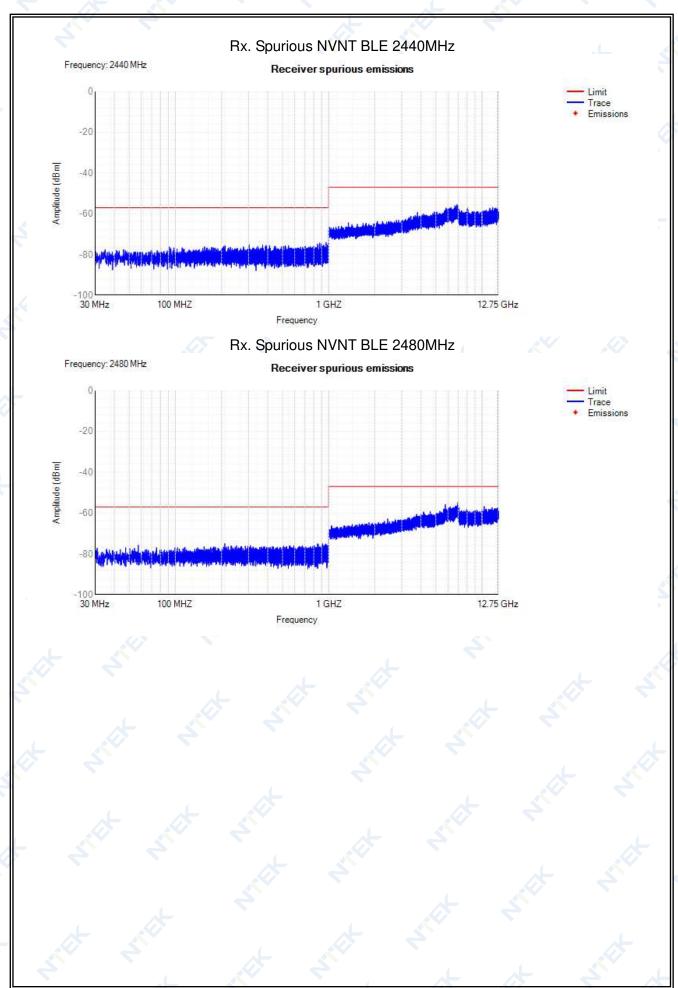

Condition	Mode	Frequency (MHz)	Range	Spur Freq	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
	- 2	` '	30 MHz	(MHz)	` ,		,	
NVNT	BLE	2402	-47 MHz	30.5	-61.17	NA	-36	Pass
NVNT	BLE	2402	47 MHz -74 MHz	53.7	-61.34	NA	-54	Pass
NVNT	BLE	2402	74 MHz -87.5 MHz	84.2	-61.85	NA	-36	Pass
NVNT	BLE	2402	87.5 MHz -118 MHz	105.8	-60.82	NA	-54	Pass
NVNT	BLE	2402	118 MHz -174 MHz	158.05	-59.99	_ NA	-36	Pass
NVNT	BLE	2402	174 MHz -230 MHz	228.75	-59.28	-64.54	-54	Pass
NVNT	BLE	2402	230 MHz -470 MHz	415.95	-59.59	NA	-36	Pass
NVNT	BLE	2402	470 MHz -694 MHz	564.85	-59.76	-66.17	-54	Pas
NVNT	BLE	2402	694 MHz -1000 MHz	992.45	-57.66	NA	-36	Pass
NVNT	BLE	2402	1000 MHz -2396 MHz	2117.5	-47.43	NA	-30	Pass
NVNT	BLE	2402	2487.5 MHz -12750 MHz	6766.5	-38.53	NA	-30	Pas
NVNT	BLE	2440	30 MHz -47 MHz	36.85	-65.58	NA	-36	Pas
NVNT	BLE	2440	47 MHz -74 MHz	59.5	-66.1	NA	-54	Pas
NVNT	BLE	2440	74 MHz -87.5 MHz	82.3	-65.02	NA	-36	Pas
NVNT	BLE	2440	87.5 MHz -118 MHz	99.45	-65.33	NA	-54	Pas
NVNT	BLE	2440	118 MHz -174 MHz	159.45	-65.5	NA	-36	Pas
NVNT	BLE	2440	174 MHz -230 MHz	229.6	-65.65	_NA	-54	Pas
NVNT	BLE	2440	230 MHz -470 MHz	313.5	-64.82	NA	-36	Pas
NVNT	BLE	2440	470 MHz -694 MHz	475.45	-64.65	NA	-54	Pas
NVNT	BLE	2440	694 MHz -1000 MHz	903.7	-64.3	► NA	-36	Pas
NVNT	BLE	2440	1000 MHz -2396 MHz	2171	-52.63	NA	-30	Pass
NVNT	BLE	2440	2487.5 MHz -12750 MHz	6998.5	-45.13	NA	-30	Pass

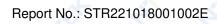



				*				
NVNT	BLE	2480	30 MHz -47 MHz	42.45	-66.24	NA	-36	Pass
NVNT	BLE	2480	47 MHz -74 MHz	66.8	-66.46	NA	-54	Pass
NVNT	BLE	2480	74 MHz -87.5 MHz	86.2	-66.57	NA	-36	Pass
NVNT	BLE	2480	87.5 MHz -118 MHz	101.95	-65.73	NA	-54	Pass
NVNT	BLE	2480	118 MHz -174 MHz	132.05	-64.51	NA	-36	Pass
NVNT	BLE	2480	174 MHz -230 MHz	217.3	-64.32	NA	-54	Pass
NVNT	BLE	2480	230 MHz -470 MHz	385.85	-64.81	NA NA	-36	Pass
NVNT	BLE	2480	470 MHz -694 MHz	645.7	-64.27	NA	-54	Pass
NVNT	BLE	2480	694 MHz -1000 MHz	944.45	-63.57	NA	-36	Pass
NVNT	BLE	2480	1000 MHz -2396 MHz	2159	-52.15	NA	-30	Pass
NVNT	BLE	2480	2487.5 MHz -12750 MHz	6925.5	-44.16	NA	-30	Pass

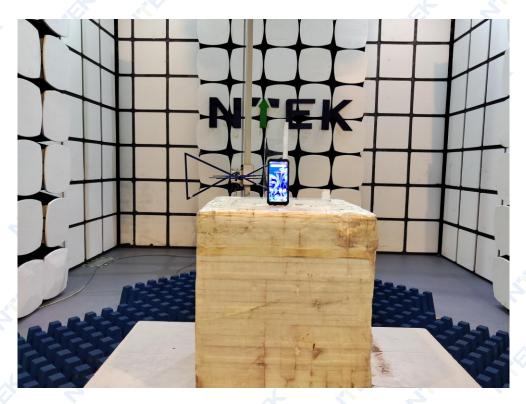
Tx. Spurious NVNT BLE 2402MHz

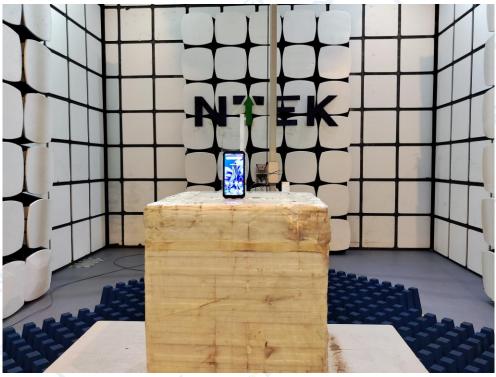





4.6 Receive	r enurio	us emissions						
Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	30 MHz -1000 MHz	236.65	-74.54	NA	-57	Pass
NVNT	BLE	2402	1000 MHz -12750 MHz	6986.5	-54.83	NA	-47	Pass
NVNT	BLE	2440	30 MHz -1000 MHz	962.8	-74.09	NA	-57	Pass
NVNT	BLE	2440	1000 MHz -12750 MHz	6864.5	-55.46	NA	-47	Pass
NVNT	BLE	2480	30 MHz -1000 MHz	210.05	-74.95	NA	-57	Pass
NVNT	BLE	2480	1000 MHz -12750 MHz	6959	-54.86	NA	-47	Pass

Rx. Spurious NVNT BLE 2402MHz





5. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT