RADIO TEST REPORT ETSI EN 300 440 V2.2.1 (2018-07)

Product :	Smart phone
Trade Mark :	Blackview
Model Name :	BV9200
Family Model:	N/A
Report No. :	STR221018001005E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Page 2 of 70

Applicant's name: DOKE COMMUNICATION (HK) LIMITED
Address
Manufacturer's Name: : Shenzhen DOKE Electronic Co.,Ltd
Address
Product description
Product name: Smart phone
Trademark: Blackview
Model and/or type reference : BV9200
Family Model: N/A
Standards : ETSI EN 300 440 V2.2.1 (2018-07)
This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of

the document.

NTEK 北测[®]

Test Sample Number	T221010002R003
Date of Test	
Date (s) of performance of tests:	Oct 18, 2022 ~ Nov 15, 2022
Date of Issue:	Nov 15, 2022
Test Result:	Pass

Testing Engineer

Muhri Lee

(Mukzi Lee)

Authorized Signatory :

(Alex Li)

Table of Contents	Page
1 . SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.2 MEASUREMENT UNCERTAINTY	8
2 . GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 TEST CONDITIONS	10
2.3 DESCRIPTION OF TEST CONDITIONS	11
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 12
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	13
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	14
3 . EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)	15
3.1 APPLICABILITY	15
3.2 LIMITS	15
3.3 GENERAL REQUIREMENTS	15
3.4 TEST PROCEDURES	15
3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS 3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS	15 16
3.5 TEST SETUP LAYOUT	16
3.6 EUT OPERATION DURING TEST	16
3.7 TEST RESULT FOR -6 DB BANDWIDTH	17
3.8 TEST RESULT FOR E.I.R.P	18
4 . PERMITTED RANGE OF OPERATING FREQUENCIES	19
4.1 APPLIED PROCEDURES / LIMIT	19
4.2 TEST PROCEDURES	19
4.3 TEST SETUP LAYOUT	19
4.4 EUT OPERATION DURING TEST	19
4.5 TEST RESULTS	20
5 . UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	23
5.1 APPLIED PROCEDURES / LIMIT	23
5.2 MEASURING INSTRUMENTS AND SETTING	23
5.3 TEST PROCEDURES	23
5.4 TEST SETUP LAYOUT	24

Page 3 of 70

NTEK 北测[®]

Table of Contents	Page
5.5 EUT OPERATION DURING TEST	24
5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS	24
5.7 TEST RESULTS	25
6.DUTY CYCLE	27
6.1 APPLICABILITY AND DESCRIPTION	27
6.2 LIMITS	27
6.4 METHOD OF MEASUREMENT	27
6.5 TEST SETUP	28
6.6 TEST RESULTS	28
7 . SPURIOUS EMISSIONS – RX	29
7.1 APPLIED PROCEDURES / LIMIT	29
7.2 MEASURING INSTRUMENTS AND SETTING	29
7.3 TEST PROCEDURES	29
7.5 TEST SETUP LAYOUT	29
7.6 EUT OPERATION DURING TEST	29
7.7 TEST RESULTS	30
8 . ADJACENT CHANNEL SELECTIVITY	31
8.1 APPLICABILITY	31
8.2 LIMITS	31
8.3 METHODS OF MEASUREMENT	31
8.4 TEST SETUP LAYOUT	32
8.5 TEST RESULTS	32
9. BLOCKING OR DESENSITIZATION	33
9.1 APPLICABILITY	33
9.2 LIMITS	33
9.3 TEST PROCEDURES	33
8.4 TEST SETUP LAYOUT	34
9.4 TEST RESULTS	35
10. TEST RESULTS	42
10.1 DUTY CYCLE	42
10.2 -6DB EMISSION BANDWIDTH	50
10.3 OCCUPIED CHANNEL BANDWIDTH	58
10.4 RF OUTPUT POWER	63

Page 4 of 70

NTEK 北测[®]

Table of Contents	Page
11 . EUT TEST PHOTO	70
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	
APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

Revision History						
Report No.	Version	Description	Issued Date			
STR221018001005E	Rev.01	Initial issue of report	Nov 15, 2022			
		<u> </u>				

Revision History

1. SUMMARY OF TEST RESULTS

NTEK 北测[®]

Test procedures according to the technical standards: ETSI EN 300 440 V2.2.1 (2018-07)

Clause	Description of Test Item	Remarks	Results			
	Transmitter Parameters					
4.2.2	-6 dB channel bandwidth	Conducted	Pass			
4.2.2	Effective isotropic radiated power	Conducted	Pass			
4.2.3	Permitted range of operation frequencies	Conducted	Pass			
4.2.4	Unwanted emissions in the spurious domain	Radiated	Pass			
4.2.5	Duty cycle	Conducted	Pass			
4.2.6	Additional requirements for FHSS equipment	Conducted	N/A			
	Receiver Parameters					
4.3.3	Adjacent channel selectivity(For Receiver	Conducted	N/A			
4.3.4	category 1) Blocking or desensitization(For Receiver category 1,2,3)	Conducted	Pass			
4.3.5	Spurious emissions(For Receiver category 1,2,3)	Radiated	Pass			

Page 7 of 70

Note: The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter

1.1 TEST FACILITY

NTEK 北测

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

Page 8 of 70

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of ~k=2, providing a level of confidence of approximately 95 % $^\circ$

No.	Item	Uncertainty	
1	Radio frequency	±1 x 10-7	
2	RF power (conducted)	±2,5 dB	
3	Radiated emission of transmitter, valid to 26,5 GHz	±6 dB	
4	Radiated emission of transmitter, valid between	±8 dB	
	26,5 GHz and 66 GHz		
5	Radiated emission of receiver, valid to 26,5 GHz	±6 dB	
6	Radiated emission of receiver, valid between 26,5	±8 dB	
	GHz and 66 GHz		
7	Temperature	±1 ℃	
8	Humidity	±5 %	
9	Voltage (DC)	±1 %	
10	Voltage (AC, < 10 kHz)	±2 %	
NOTE: For radiated emissions above 26,5 GHz it may not be possible to			

achieve measurement uncertainties complying with the levels specified in this table. In these cases alone it is acceptable to employ the alternative interpretation procedure specified in EN 300440 V2.2.1 clause 5.9.1.

Report No.: STR221018001005E

2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart phone		
Trade Mark	Blackview		
Model Name	BV9200		
Family Model	N/A		
Model Difference	N/A		
	Operation 5745-5825 MHz for 802.11a/n20/ac20; Frequency: 5755-5795 MHz for 802.11n40/ac40; 5775MHz for 802.11 ac80; 5775MHz for 802.11 ac80;		
	Data Rate: 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS7; 802.11ac(VHT20/ VHT40/VHT80): NSS1, MCS0-MCS9, NSS2		
Product Description	Modulation OFDM with BPSK/QPSK/16QAM/64QAM/256QAM		
Product Description	Channel No.: 5 channels for 802.11a/n20/ac20 in the 5745-5825MHz band ; 2 channels for 802.11 n40/ac40 in the 5755-5795MHz band ; 1 channels for 802.11 ac80 in the 5775MHz band ;		
	Antenna Designation: PIFA Antenna		
	Antenna Gain(Peak) -0.6 dBi		
Receiver category	 Category 1: Highly reliable SRD communication media; e.g. serving human life inherent systems (may result in a physical risk to a person). Category 2: Medium reliable SRD communication media e.g. causing inconvenience to persons, which cannot simply be overcome by other means. Category 3: Standard reliable SRD communication media e.g. Inconvenience to persons, which can simply be overcome by other means (e.g. manual). 		
Channel List	Refer to below		
Adapter	Model: QZ-06502EC00 Input: 100-240V~50/60Hz 1.5A Output: 5.0V3.0A or 9.0V3.0A or 12.0V3.0A or 15.0V3.0A or 20.0V 3.25A (PPS)3.3V~21.0V3.15A(66.0W Max)		
Battery	DC 3.87V, 5000mAh, 19.35Wh		
Rating	DC 3.87V from battery or DC 5V from adapter		
Hardware Version	HCT-G680MB-A4		
Software Version	BV9200_EEA_G680_V1.0_20221109V11		

Page 9 of 70

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Channel list:

NTEK北测[®]

Frequency and Channel list for 802.11a/n/ac(20 MHz) band IV (5745-5825MHz):

Page 10 of 70

802.11a/n/ac(20 MHz) Carrier Frequency Channel							
FrequenFrequenFrequenFrequenFrequenChannelcyChannelcyChannelcy(MHz)(MHz)(MHz)(MHz)(MHz)					cy		
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-

Frequency and Channel list for 802.11n/ac(40MHz) band IV (5755-5795MHz):

802.11n/ac 40MHz Carrier Frequency Channel						
Channel	Channel Frequency (MHz) Channel Frequency (MHz) Frequency (MHz)					
151	5755	159	5795	-	-	

Frequency and Channel list for 802.11ac(80MHz) band IV (5775MHz):

802.11ac 80MHz Carrier Frequency Channel		
Channel Frequency (MHz)		
155 5775		

2.2 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15°C - 35°C	-10°C ~ 40°C _{Note1}
Relative Humidity	20% - 75%	N/A
Power Rating	DC 3.87V	N/A
Test voltage	DC 3.87V	DC 4.2V-DC 3.4V Note2

Note:

(1) The temperature range as declared by the manufacturer; or one of the following specified temperature ranges:

- Temperature category I (General): -20 °C to +40 °C;

- Temperature category II (Portable): -10 °C to +40 °C;

- Temperature category III (Equipment for normal indoor use): 5 °C to +35 °C.

(2) The High Voltage 4.2V and Low Voltage 3.4V was declarated by manufacturer.

2.3 DESCRIPTION OF TEST CONDITIONS

NTEK 北测[®]

For Conducted Test			
Pretest Mode Description			
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165		
Mode 2	802.11n/ ac40 CH 151 / CH 159		
Mode 3	802.11 ac80 CH 155		

Page 11 of 70

For Radiated Test			
Final Test Mode Description			
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165		
Mode 2	802.11n/ ac40 CH 151 / CH 159		
Mode 3	802.11 ac80 CH 155		

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Page 13 of 70

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Smart phone	BV9200	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength _l column.
- (3) "YES" means "shielded" or "with ferrite core";"NO" means "unshielded" or "without ferrite core"

Page 14 of 70

Report No.: STR221018001005E

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

NTEK 北测[®]

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	period 1 year
						,
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
Turn Table	EM	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.01	2023.03.31	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01	2023.03.31	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Page 15 of 70

3. EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)

3.1 APPLICABILITY

The equivalent isotropically radiated power requirement shall apply to all transmitters.

3.2 LIMITS

Table 2: Maximum radiated peak power (e.i.r.p.)

Frequency Bands	Power	Application	Notes
2 400 MHz to 2 483,5 MHz	10 mW e.i.r.p.	Non-specific short range devices	
2 400 MHz to 2 483,5 MHz	25 mW e.i.r.p.	Radio determination devices	
(a) 2 446 MHz to 2 454 MHz	500 mW e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
(b) 2 446 MHz to 2 454 MHz	4 W e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
5 725 MHz to 5 875 MHz	25 mW e.i.r.p.	Non-specific short range devices	
9 200 MHz to 9 500 MHz	25 mW e.i.r.p.	Radio determination devices	
9 500 MHz to 9 975 MHz	25 mW e.i.r.p.	Radio determination devices	
10,5 GHz to 10,6 GHz	500 mW e.i.r.p.	Radio determination devices	
13,4 GHz to 14,0 GHz	25 mW e.i.r.p.	Radio determination devices	
17,1 GHz to 17,3 GHz	400 mW e.i.r.p.	Radio determination devices	See annex F
24,00 GHz to 24,25 GHz	100 mW e.i.r.p.	Non-specific short range devices and Radio determination devices	

3.3 GENERAL REQUIREMENTS

1. To measure e.i.r.p. it is first necessary to determine the appropriate method of measurement: see EN 300440 V2.2.1 clauses 4.2.2.3.1 and 4.2.2.3.2. The -6 dB transmitter bandwidth shall be determined using a 100 kHz measuring bandwidth in order to establish which measurement method is applicable:

Со	Condition	
Non spread spectrum transmitters with a -6 dB bandwidth of up to 20 MHz and spread	Non spread spectrum equipment with a -6 dB bandwidth of 20 MHz or less and a duty cycle above 50 %;	Refer to section 3.4.1
spectrum transmitters with channel bandwidth of up to 1 MHz;	Spread spectrum equipment with a -6 dB channel bandwidth of 1 MHz or less.	
for all other transmitter bandwidths.	☐equipment with a -6 dB bandwidth greater than 20 MHz, and equipment with a duty cycle below 50 %;; ⊠spread spectrum equipment with a channel bandwidth above 1 MHz	Refer to section 3.4.2

2. Measurements shall be performed at normal test conditions.

3.4 TEST PROCEDURES

3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS

The measurement shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded. **Equipment measured as constant envelope modulation equipment**

NTEK 北视[®] Page 16 of 70

Report No.: STR221018001005E

For practical reasons, measurements shall be performed only at the highest power level at which the transmitter is intended to operate. The measurement arrangement in figure 2 shall be used. The measurement shall be performed preferably in the absence of modulation.

When it is not possible to measure it in the absence of modulation, this fact shall be stated in test reports.

The transmitter shall be set in continuous transmission mode. If this is not possible, the measurements shall be carried

out in a period shorter than the duration of the transmitted burst. It may be necessary to extend the duration of the burst.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

Equipment measured as non-constant envelope modulation equipment

The measurement shall be performed with test signals D-M2 or D-M3 as appropriate. The transmitter shall be preferably set in continuous transmission mode. If this is not possible, the measurement can be performed in discontinuous mode.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured. The measuring instrument shall have a measurement bandwidth not less than sixteen times the channel bandwidth.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS

Step 1:

• using a suitable means, the output of the transmitter shall be coupled to a matched diode detector;

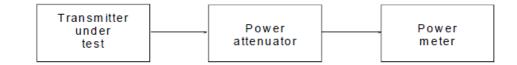
• the output of the diode detector shall be connected to the vertical channel of an oscilloscope;

• the combination of the diode detector and the oscilloscope shall be capable of faithfully

reproducing the envelope peaks and the duty cycle of the transmitter output signal;

• the observed duty cycle of the transmitter (Tx on/(Tx on + Tx off)) shall be noted as x, (0 < x < 1)And recorded.

Step 2:


• the average output power of the transmitter shall be determined using a wideband, calibrated RF power meter with a matched thermocouple detector or an equivalent thereof and, where applicable, with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);

• the e.i.r.p. shall be calculated from the above measured power output A, the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

 $-P = A + G + 10 \log (1/x);$

- P should be EIRP POWER.

3.5 TEST SETUP LAYOUT

3.6 EUT OPERATION DURING TEST

Where possible, the equipment shall be able to operate in a continuous transmit mode for testing purposes.

3.7 TEST RESULT FOR -6 DB BANDWIDTH

EUT :	Smart phone	Model Name :	BV9200
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

3.8 TEST RESULT FOR E.I.R.P

EUT :	Smart phone	Model Name :	BV9200
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

4. PERMITTED RANGE OF OPERATING FREQUENCIES

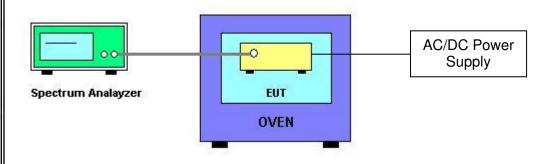
4.1 APPLIED PROCEDURES / LIMIT

The Permitted range of operating frequencies shall apply to all transmitters.

Limits: The width of the power spectrum envelope is fH -fL for a given operating frequency. In equipment that allows adjustment or selection of different operating frequencies, the power envelope takes up different positions in the allowed band. The frequency range is determined by the lowest value of fL and the highest value of fH resulting from the adjustment of the equipment to the lowest and highest operating frequencies.

The occupied bandwidth (i.e. the bandwidth in which 99 % of the wanted emission is contained) of the transmitter shall fall within the assigned frequency band.

For all equipment the frequency range shall lie within the frequency band given by section 3.2, table 2. For non-harmonized frequency bands the available frequency range may differ between national administrations.


4.2 TEST PROCEDURES

These measurements shall be performed under both normal and extreme operating conditions except for the occupied bandwidth assessment for which measurement at normal operating conditions is sufficient.

The measurement procedure shall be as follows:

- a) put the spectrum analyser in video averaging mode with a minimum of 50 sweeps selected;
- b) select the lowest operating frequency of the equipment under test and activate the transmitter with modulation applied. The RF emission of the equipment shall be displayed on the spectrum analyser;
- c) using the marker of the spectrum analyser, find the lowest frequency below the operating frequency at which the spectral power density drops below the level given in clause 4.2.3. This frequency shall be recorded in the test report;
- d) select the highest operating frequency of the equipment under test and find the highest frequency at which the spectral power density drops below the value given in clause 4.2.3. This frequency shall be recorded in the test report;
- e) the difference between the frequencies measured in steps c) and d) is the operating frequency range. It shall be recorded in the test report.

4.3 TEST SETUP LAYOUT

4.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

NTEK 比测[®] Page 20 of 70

Report No.: STR221018001005E

4.5 TEST RESULTS

EUT :	Smart phone	Model Name :	BV9200
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	ТХ		

802.11a

Extreme condition			Frequency	range (MHz)		
	ztrem	econdition		F _L CH149	F _н CH165	
		V max (V)	4.2	5736.041	5835.097	
T min (°C)	-10	V nom (V)	3.87	5735.932	5835.251	
		V min (V)	3.4	5735.606	5835.196	
		V max (V)	4.2	5736.083	5834.723	
T max (°C)	40	V nom (V)	3.87	5735.843	5834.962	
		V min (V)	3.4	5736.171	5834.718	
T normal (°C)	24	V nom (V)	3.87	5735.601	5834.749	
Min. f	/ Max	. f _H Band Edges	;	5735.601	5835.251	
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$		
	R	esult		Complies		

802.11n20

Extreme condition			Frequency	range (MHz)	
	ztrem	e condition		F _L CH149	F _н CH165
		V max (V)	4.2	5735.764	5834.999
T min (°C)	-10	V nom (V)	3.87	5735.965	5834.783
		V min (V)	3.4	5736.235	5834.868
		V max (V)	4.2	5735.821	5834.739
T max (°C)	40	V nom (V)	3.87	5735.500	5834.865
		V min (V)	3.4	5735.965 5736.235 5735.821 5735.500 5736.235 5735.511 5735.500 F L> 5725.0 MHz	5834.613
T normal (°C)	24	V nom (V)	3.87	5735.511	5835.036
Min. f	/ Max	. f _H Band Edges		5735.500	5835.036
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
	R	lesult		Con	nplies

Report No.: STR221018001005E

			Frequency range (MHz)		
ľ	_xtrem	e condition		F _L CH151	F _н CH159
		V max (V)	4.2	5737.112	5813.536
T min (°C)	-10	V nom (V)	3.87	5737.470	5814.234
		V min (V)	3.4	5736.732	5814.243
		V max (V)	4.2	5737.115	5813.626
T max (°C)	40	V nom (V)	3.87	5737.221	5813.712
		V min (V)	3.4	5736.911	5814.458
T normal (°C)	24	V nom (V)	3.87	5737.405	5813.975
Min. f	/ Max	. f _H Band Edges	;	5736.732	5814.458
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
	R	esult		Con	nplies

Page 21 of 70

802.11ac20

Extreme condition				Frequency	range (MHz)	
	ztrem	econumon		F _L CH149	F _н CH165	
		V max (V)	4.2	5735.809	5835.193	
T min (°C)	-10	V nom (V)	3.87	5736.222	5835.266	
		V min (V)	3.4	5735.863	5835.409	
	40	V max (V)	4.2	5736.478	5834.815	
T max (°C)		V nom (V)	3.87	5735.536	5834.776	
		V min (V)	3.4	5735.536 5736.258	5835.020	
T normal (°C)	24	V nom (V)	3.87	5735.865	5835.235	
Min. f	∟ / Max	. f _H Band Edges		5735.536 5835.409		
Indoor Use Limits			F _L > 5725.0 MHz	$\mathbf{F}_{L}~<~5875.0~MHz$		
	R	lesult		Con	nplies	

Report No.: STR221018001005E

-	Extreme condition			Frequency	range(MHz)
E	xtrem	e condition		F _L CH151	F _н CH159
		V max (V)	4.2	5736.639	5814.290
T min (°C)	-10	V nom (V)	3.87	5737.231	5814.484
		V min (V)	3.4	5736.620	5813.599
	40	V max (V)	4.2	5737.054	5813.983
T max (°C)		V nom (V)	3.87	5736.813	5814.115
		V min (V)	3.4	5737.128	5813.797
T normal (°C)	24	V nom (V)	3.87	5736.589	5814.426
Min. f	/ Max	. f _H Band Edges	3	5736.589	5814.484
	Indoor	Use Limits		F _L > 5725.0 MHz	$\mathbf{F_L}~<~5875.0~\text{MHz}$
	R	lesult		Con	nplies

Page 22 of 70

802.11ac80

	Extreme condition				range(MHz)	
-	xtrem	econdition		F _L CH155	F _н CH155	
		V max (V)	4.2	5737.013	5814.215	
T min (°C)	-10	V nom (V)	3.87	5737.483	5814.414	
		V min (V)	3.4	5736.831	5814.143	
		V max (V)	4.2	5737.264	5814.158	
T max (°C)	40	V nom (V)	3.87	5736.780	5813.630	
		V min (V)	3.4	5736.984	5813.516	
T normal (°C)	24	V nom (V)	3.87	5736.962	5813.883	
Min. f _L	/ Max	. f _H Band Edges	6	5736.780 5814.414		
Indoor Use Limits			F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$		
	R	esult		Con	nplies	

NTEK 北视® Page 23 of 70

5. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

5.1 APPLIED PROCEDURES / LIMIT

The unwanted emissions in the spurious domain requirement shall apply to all transmitters.

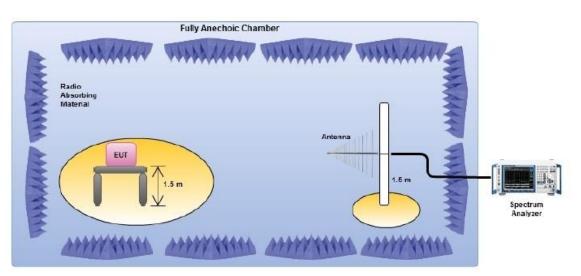
	47 MHz to 74 MHz		
State	87.5 MHz to 118 MHz	Other frequencies	Frequencies
Sidle	174 MHz to 230 MHz	≤□ 1 000 MHz	> 1 000 MHz
	470 MHz to 862 MHz		
Operating	4 nW /-54dBm	250 nW/-36dBm	1 µW /-30dBm
Standby	2 nW /-57dBm	2 nW /-57dBm	20 nW /-47dBm

5.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

5.3 TEST PROCEDURES


- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable. For above 1G, using Horn antenna .
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

NTEK 北测

Report No.: STR221018001005E

5.4 TEST SETUP LAYOUT

Radiated Emission Test Set-Up

Page 24 of 70

5.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS

For the initial investigation on standby mode and receiving mode, no significant differences in spurious emissions were observed between these 2 modes. So test data for standby mode was omitted in this section.

NTEK LM[®] Page 25 of 70

Report No.: STR221018001005E

5.7 TEST RESULTS

EUT :	Smart phone	Model Name :	BV9200
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V (NORMAL)
Test Mode :	TX-802.11a mode		

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	40.14	-70.40	14.74	-55.66	-36	-19.66	peak
V	69.77	-71.40	9.39	-62.01	-54	-8.01	peak
V	104.01	-80.58	10.98	-69.60	-54	-15.60	peak
V	181.09	-80.69	12.25	-68.44	-54	-14.44	peak
V	272.04	-60.99	12.13	-48.86	-36	-12.86	peak
V	483.00	-90.45	17.12	-73.33	-54	-19.33	peak
Н	44.89	-63.73	13.34	-50.39	-36	-14.39	peak
Н	65.18	-72.93	6.10	-66.83	-54	-12.83	peak
Н	112.62	-79.63	10.97	-68.66	-54	-14.66	peak
Н	181.06	-78.66	12.26	-66.40	-54	-12.40	peak
Н	342.40	-60.77	14.72	-46.05	-36	-10.05	peak
Н	621.15	-89.29	20.12	-69.17	-54	-15.17	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Page 26 of 70

Report No.: STR221018001005E

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
		ор	eration frequency	y:5755 MHz			
V	1197.70	-45.21	1.70	-43.51	-30	-13.51	peak
V	1697.19	-44.12	3.51	-40.61	-30	-10.61	peak
V	2197.16	-51.76	9.07	-42.69	-30	-12.69	peak
V	5760.21	-59.77	9.29	-50.48	-30	-20.48	peak
Н	1697.94	-47.16	3.37	-43.79	-30	-13.79	peak
Н	3822.59	-64.03	8.92	-55.11	-30	-25.11	peak
Н	5760.11	-59.10	8.72	-50.38	-30	-20.38	peak
Н	9381.67	-59.05	14.26	-44.79	-30	-14.79	peak
		ор	eration frequency	y:5785 MHz		<u>.</u>	
V	1198.36	-46.30	2.43	-43.87	-30	-13.87	peak
V	1698.13	-44.80	3.65	-41.15	-30	-11.15	peak
V	2197.57	-51.74	9.12	-42.62	-30	-12.62	peak
V	3886.10	-60.79	7.99	-52.80	-30	-22.80	peak
V	5822.09	-59.11	8.44	-50.67	-30	-20.67	peak
Н	1698.61	-47.37	3.60	-43.77	-30	-13.77	peak
Н	2197.26	-51.51	8.56	-42.95	-30	-12.95	peak
Н	5822.34	-56.80	8.52	-48.28	-30	-18.28	peak
Н	9387.95	-53.82	14.95	-38.87	-30	-8.87	peak
		ор	eration frequency	y:5825 MHz		•	-
V	1696.25	-45.78	3.98	-41.80	-30	-11.80	peak
V	2196.52	-50.05	9.12	-40.93	-30	-10.93	peak
V	2633.31	-58.16	9.31	-48.85	-30	-18.85	peak
V	5821.56	-60.73	9.19	-51.54	-30	-21.54	peak
V	6168.87	-51.01	11.37	-39.64	-30	-9.64	peak
Н	1695.81	-47.58	2.98	-44.60	-30	-14.60	peak
Н	2196.08	-52.83	8.96	-43.87	-30	-13.87	peak
Н	2634.03	-58.63	10.30	-48.33	-30	-18.33	peak
Н	5822.71	-55.98	9.13	-46.85	-30	-16.85	peak

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Note: Only the worst case 802.11a mode recorded in the report.

NTEK 北视 Page 27 of 70

Report No.: STR221018001005E

6. DUTY CYCLE

6.1 APPLICABILITY AND DESCRIPTION

Duty Cycle (DC) shall apply to all transmitting equipment except those which utilize Listen Before Talk (LBT) clause 4.4.2, or Detect And Avoid (DAA), clause 4.4.3. RFID transmitters operating in the 2 446 MHz to 2 454 MHz frequency band that transmit at a maximum radiated peak power level of less than 500 mW e.i.r.p. are also excluded.

Duty cycle is the ratio expressed as a percentage, of the cumulative duration of transmissions $T_{on_{cum}}$ within an observation interval T_{obs} .

$$DC = \left(\frac{T_{on_cum}}{T_{obs}}\right)F_{obs}$$

on an observation bandwidth Fobs.

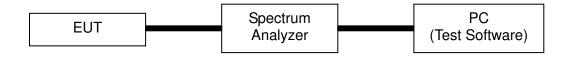
Unless otherwise specified, $T_{\mbox{\tiny obs}}$ is 1 hour and the observation bandwidth $F_{\mbox{\tiny obs}}$ is the operational frequency band

Each transmission consists of an RF emission, or sequence of RF emissions separated by intervals $< T_{Dis}$.

6.2 LIMITS

Table 4 defines the maximum duty cycle within a 1 hour period. Table 4: Duty cycle limits

Frequency Band	Duty cycle	Application	Notes
2 400 MHz to 2 483,5 MHz	No Restriction	Generic use	
2 400 MHz to 2 483,5 MHz	No Restriction	Detection, movement and alert	
		applications	
(a) 2 446 MHz to 2 454 MHz	No Restriction	RFID	Limits shown in
			annex D shall apply
(b) 2 446 MHz to 2 454 MHz	≤ 15 %	RFID	Limits shown in
			annex D shall apply
5 725 MHz to 5 875 MHz	No Restriction	Generic use	
9 200 MHz to 9 500 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
9 500 MHz to 9 975 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
10,5 GHz to 10,6 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
13,4 GHz to 14,0 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
17,1 GHz to 17,3 GHz	DAA or	Radiodetermination:	Limits shown in
	equivalent	GBSAR detecting and movement	annex F shall apply
	techniques	and alert applications	
24,00 GHz to 24,25 GHz	No Restriction	Generic use and for	
		Radiodetermination:	
		radar, detection, movement and	
	1	alert applications	


For devices with a 100 % duty cycle transmitting an unmodulated carrier most of the time, a time-out shut-off facility shall be implemented in order to improve the efficient use of spectrum. The method of implementation shall be declared by the manufacturer.

6.4 METHOD OF MEASUREMENT

Please refer to EN 300440 V2.2.1 Clause 4.2.5.3.

Report No.: STR221018001005E

6.5 TEST SETUP

Page 28 of 70

6.6 TEST RESULTS

EUT:	Smart phone	Model Name:	BV9200
Temperature:	26°C	Relative Humidity:	53 %
Pressure:	1012 hPa	Test Voltage:	DC 3.87V (NORMAL)
Test Mode:	Mode 1/2/3		

Test data reference attachment

7. SPURIOUS EMISSIONS - RX

7.1 APPLIED PROCEDURES / LIMIT

Clause	Test Item	Frequency(MHz)	Limit
4.3.5.4	Spurious emissions	30-1000	-57dBm
	(radiated)	Above 1000	-47dBm

7.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

7.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.For above 1G, using Horn antenna .
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

7.5 TEST SETUP LAYOUT

This test setup layout is the same as that shown in section 5.4.

7.6 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously receiving mode.

NTEK 北测[®] Page 30 of 70

Report No.: STR221018001005E

7.7 TEST RESULTS

EUT :	Smart phone	Model Name :	BV9200
Temperature :	26°C	Relative Humidity :	53 %
Pressure :	1012 hPa	Test Power :	DC 3.87V (NORMAL)
Test Mode :	RX-802.11a mode		

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	35.37	-90.93	18.26	-72.67	-57	-15.67	peak
V	51.46	-81.79	9.79	-72.00	-57	-15.00	peak
V	115.71	-80.77	11.01	-69.76	-57	-12.76	peak
V	164.03	-79.85	12.19	-67.66	-57	-10.66	peak
V	234.89	-79.14	11.47	-67.67	-57	-10.67	peak
V	370.57	-80.56	15.24	-65.32	-57	-8.32	peak
Н	50.55	-77.00	10.61	-66.39	-57	-9.39	peak
Н	91.99	-80.80	10.28	-70.52	-57	-13.52	peak
Н	173.08	-81.48	13.17	-68.31	-57	-11.31	peak
Н	199.69	-79.70	11.92	-67.78	-57	-10.78	peak
Н	391.37	-90.76	15.47	-75.29	-57	-18.29	peak
Н	558.10	-90.56	18.34	-72.22	-57	-15.22	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Above 1G :

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	1197.46	-61.11	1.72	-59.39	-47	-12.39	peak
V	1698.24	-61.58	3.29	-58.29	-47	-11.29	peak
V	2197.32	-65.77	8.54	-57.23	-47	-10.23	peak
V	2635.24	-68.63	9.27	-59.36	-47	-12.36	peak
V	8448.60	-76.61	16.12	-60.49	-47	-13.49	peak
Н	1197.51	-58.59	2.29	-56.30	-47	-9.30	peak
Н	1697.13	-58.26	3.73	-54.53	-47	-7.53	peak
Н	2197.51	-63.22	8.16	-55.06	-47	-8.06	peak
Н	3822.69	-70.00	8.20	-61.80	-47	-14.80	peak
Н	10699.03	-79.49	23.49	-56.00	-47	-9.00	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

8. ADJACENT CHANNEL SELECTIVITY

NTEK 北测

8.1 APPLICABILITY

This requirement applies to channelized Category 1 receivers..

8.2 LIMITS

The adjacent channel selectivity of the equipment under specified conditions shall not be less than -30 dBm + k.

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

8.3 METHODS OF MEASUREMENT

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.

Signal generator B shall be unmodulated and shall be adjusted to the adjacent channel centre frequency immediately

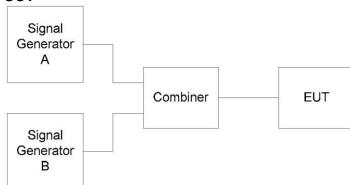
above that of the wanted signal.

Initially signal generator B shall be switched off and using signal generator A the level that still gives sufficient

response shall be established. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurements shall be repeated with signal generator B unmodulated and adjusted to the adjacent channel centre immediately below the wanted signal.

The adjacent channel selectivity shall be recorded for the upper and lower adjacent channels as the level in dBm of the unwanted signal.


For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres.

In this case, the adjacent selectivity shall be recorded as the level in dBm of lowest level of the unwanted signal

(generator B) resulting in a non-read of the tag.

Report No.: STR221018001005E

8.4 TEST SETUP LAYOUT

Page 32 of 70

8.5 TEST RESULTS

EUT :	Smart phone	Model Name :	BV9200
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	N/A
Test Mode :	N/A		

Not applicable.

9. BLOCKING OR DESENSITIZATION

9.1 APPLICABILITY

This requirement applies to all Category 1, 2, and 3 SRD communication media receivers.

Page 33 of 70

9.2 LIMITS

The blocking level, for any frequency within the specified ranges, shall not be less than the values given in table 6, except at frequencies on which spurious responses are found.

Receiver category	Limit
1	-30 dBm + k
2	-45 dBm + k
3	-60 dBm + k

The correction factor, k, is as follows:

 $k = \Box$ -20log f -10log BW

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

9.3 TEST PROCEDURES

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

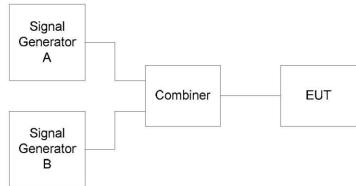
a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or

b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.Signal generator B shall be unmodulated and shall be adjusted to a test frequency at approximately 10 times, 20 times and 50 times of the occupied bandwidth above upper band edge of occupied bandwidth.Initially signal generator B shall be switched off and using signal generator A the level which still gives sufficient response shall be established. The output level of generator A shall then be increased by 3 dB.Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurement shall be repeated with the test frequency for signal generator B at 10 times, 20 times and 50 times of the occupied bandwidth below the lower band edge of the occupied bandwidth The blocking or desensitization shall be recorded as the level in dBm of lowest level of the unwanted signal(generator B).


For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres. In this case, the blocking or desensitization shall be recorded as the ratio in dB of lowest level of the unwanted signal (generator B) resulting in a non-read of the tag. to the declared sensitivity of the receiver +3 dB.

Page 34 of 70

Report No.: STR221018001005E

8.4 TEST SETUP LAYOUT

NTEK LM[®] Page 35 of 70

9.4 TEST RESULTS

L				
	EUT :	Smart phone	Model Name :	BV9200
	Temperature :	24 ℃	Relative Humidity :	54%
	Pressure :	1010 hPa	Test Voltage :	DC 3.87V (NORMAL)
	Test Mode :	RX		

802.11a

5745 MHz

Flow= 5736.769MHz; Fhigh= 5753.279MHz, occupied bandwidth=16.51MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-64.69	-	-
3	10 times lower band edge of the occupied bandwidth	5571.669	-	-29.81	-87.36(Note ¹)
	20 times lower band edge of the occupied bandwidth	5406.569	-	-36.41	-87.36
	50 times lower band edge of the occupied bandwidth	4911.269	-	-36.12	-87.36
	10 times upper band edge of the occupied bandwidth	5918.379	-	-30.22	-87.36
	20 times upper band edge of the occupied bandwidth	6083.479	-	-35.34	-87.36
	50 times upper band edge of the occupied bandwidth	6578.779	-	-31.19	-87.36

Note1:

The limit : -60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.36

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

Report No.: STR221018001005E

802.11a

5825 MHz

Flow= 5816.713MHz; Fhigh= 5833.274MHz, occupied bandwidth=16.53MHz

Page 36 of 70

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	\geq Limit(dB)
3	5825 MHz	5825	-65.36	-	-
	10 times lower band edge of the occupied bandwidth	5651.413	-	-30.68	-87.49(Note ¹)
	20 times lower band edge of the occupied bandwidth	5486.113	-	-35.09	-87.49
	50 times lower band edge of the occupied bandwidth	4990.213	-	-36.18	-87.49
	10 times upper band edge of the occupied bandwidth	5998.543	-	-30.67	-87.49
	20 times upper band edge of the occupied bandwidth	6163.843	-	-35.39	-87.49
	50 times upper band edge of the occupied bandwidth	6659.743	-	-31.97	-87.49

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.49

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

NTEK 北视[®] Page 37 of 70

Report No.: STR221018001005E

802.11n20

5745 MHz

Flow= 5736.157MHz; Fhigh= 5753.883MHz, occupied bandwidth=17.726MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-64.75	-	-
	10 times lower band edge of the occupied bandwidth	5558.897	-	-29.17	-87.67(Note ¹)
	20 times lower band edge of the occupied bandwidth	5381.637	-	-34.34	-87.67
3	50 times lower band edge of the occupied bandwidth	4849.857	-	-35.43	-87.67
	10 times upper band edge of the occupied bandwidth	5931.143	-	-29.78	-87.67
	20 times upper band edge of the occupied bandwidth	6108.403	-	-37.38	-87.67
	50 times upper band edge of the occupied bandwidth	6640.183	-	-31.98	-87.67

Note1 :

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.67

Where:

- f is the frequency in GHz;

Report No.: STR221018001005E

802.11n20

5825 MHz

Flow= 5816.109MHz; Fhigh= 5833.851MHz, occupied bandwidth=17.742MHz

Page 38 of 70

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5825 MHz	5825	-65.77	-	-
	10 times lower band edge of the occupied bandwidth	5638.689	-	-30.55	-87.80(Note ¹)
	20 times lower band edge of the occupied bandwidth	5461.269	-	-34.55	-87.80
3	50 times lower band edge of the occupied bandwidth	4929.009	-	-34.53	-87.80
	10 times upper band edge of the occupied bandwidth	6011.271	-	-29.29	-87.80
	20 times upper band edge of the occupied bandwidth	6188.691	-	-36.50	-87.80
	50 times upper band edge of the occupied bandwidth	6720.951	-	-30.83	-87.80

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.80

Where:

- f is the frequency in GHz;

Report No.: STR221018001005E

802.11n40

5755 MHz

Flow= 5737.01MHz; Fhigh= 5773.094MHz, occupied bandwidth=36.084MHz

Page 39 of 70

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5755 MHz	5755	-65.33	-	-
	10 times lower band edge of the occupied bandwidth	5376.17	-	-30.19	-90.77(Note ¹)
	20 times lower band edge of the occupied bandwidth	5015.33	-	-36.26	-90.77
3	50 times lower band edge of the occupied bandwidth	3932.81	-	-35.22	-90.77
	10 times upper band edge of the occupied bandwidth	6133.934	-	-30.55	-90.77
	20 times upper band edge of the occupied bandwidth	6494.774	-	-35.50	-90.77
	50 times upper band edge of the occupied bandwidth	7577.294	-	-31.68	-90.77

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.77

Where:

- f is the frequency in GHz;

Report No.: STR221018001005E

802.11n40

5795 MHz

Flow= 5776.802MHz; Fhigh= 5813.03MHz, occupied bandwidth=36.228MHz

Page 40 of 70

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5795	-64.91	-	-
	10 times lower band edge of the occupied bandwidth	5414.522	-	-29.16	-90.85(Note ¹)
	20 times lower band edge of the occupied bandwidth	5052.242	-	-34.21	-90.85
3	50 times lower band edge of the occupied bandwidth	3965.402	-	-35.11	-90.85
	10 times upper band edge of the occupied bandwidth	6175.31	-	-29.37	-90.85
	20 times upper band edge of the occupied bandwidth	6537.59	-	-35.96	-90.85
	50 times upper band edge of the occupied bandwidth	7624.43	-	-30.89	-90.85

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.85

Where:

- f is the frequency in GHz;

NTEK 北视[®] Page 41 of 70

Report No.: STR221018001005E

802.11ac80

5775 MHz

Flow= 5737.324MHz; Fhigh= 5812.548MHz, occupied bandwidth=75.224MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5775	-65.30	-	-
	10 times lower band edge of the occupied bandwidth	4985.084	-	-29.43	-93.99(Note ¹)
	20 times lower band edge of the occupied bandwidth	4232.844	-	-34.14	-93.99
3	50 times lower band edge of the occupied bandwidth	1976.124	-	-35.13	-93.99
	10 times upper band edge of the occupied bandwidth	6564.788	-	-30.34	-93.99
	20 times upper band edge of the occupied bandwidth	7317.028	-	-35.28	-93.99
	50 times upper band edge of the occupied bandwidth	9573.748	_	-30.89	-93.99

Note1:

The limit :

-60 dBm + k

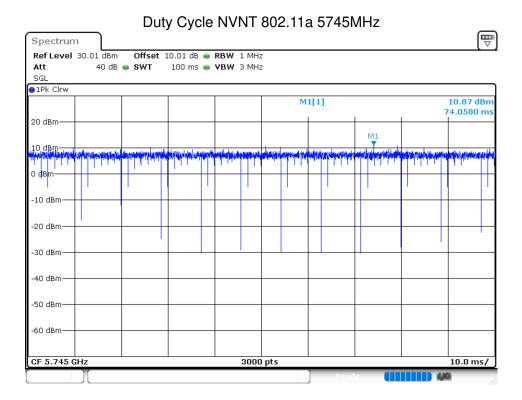
The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

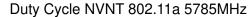
k = -33.99

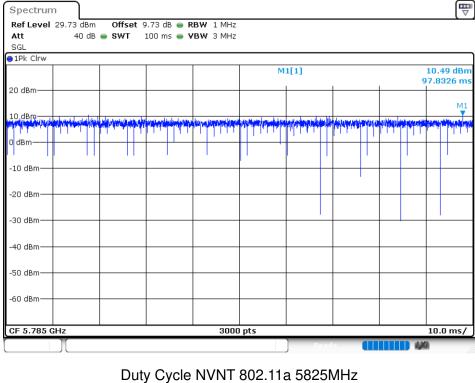
Where:

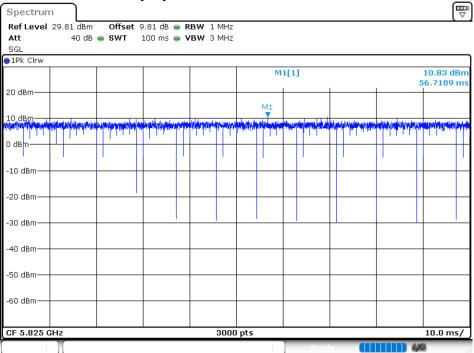
- f is the frequency in GHz;

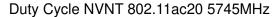

Report No.: STR221018001005E

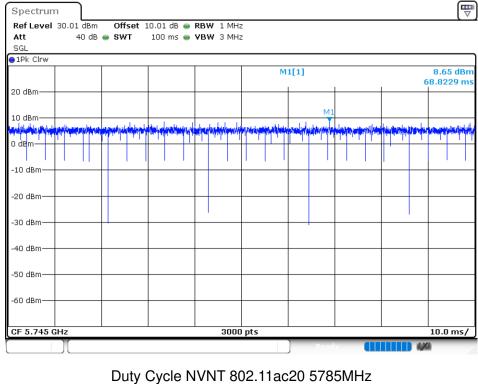
10. TEST RESULTS


10.1 DUTY CYCLE

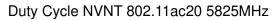

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	802.11a	5745	99.63	0.02
NVNT	802.11a	5785	99.87	0.01
NVNT	802.11a	5825	99.67	0.01
NVNT	802.11ac20	5745	99.87	0.01
NVNT	802.11ac20	5785	99.83	0.01
NVNT	802.11ac20	5825	99.83	0.01
NVNT	802.11ac40	5755	96.87	0.14
NVNT	802.11ac40	5795	96.87	0.14
NVNT	802.11ac80	5775	90	0.46
NVNT	802.11n(HT20)	5745	98.93	0.05
NVNT	802.11n(HT20)	5785	99.87	0.01
NVNT	802.11n(HT20)	5825	99.83	0.01
NVNT	802.11n(HT40)	5755	96.27	0.17
NVNT	802.11n(HT40)	5795	96.37	0.16
NVNT	802.11n(HT40)	5795	96.37	0.16


Page 42 of 70

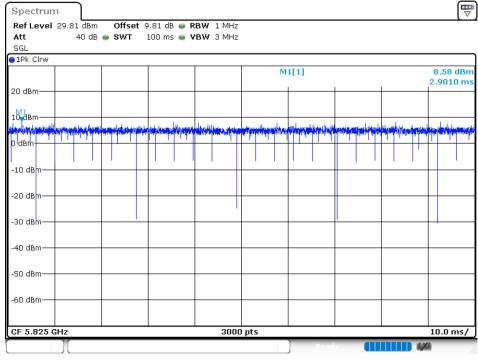

NTEK 比测[®] Page 43 of 70



Report No.: STR221018001005E

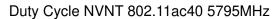


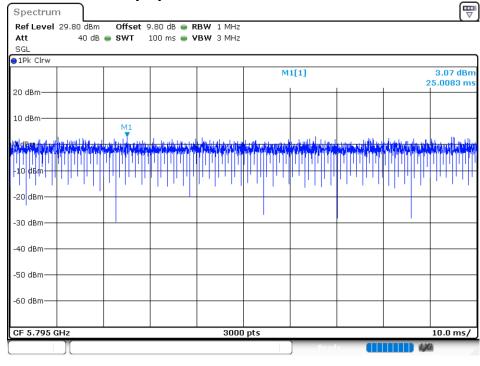
Page 44 of 70



Spectrum		,	e yele i						
Ref Level 29			9.73 dB 😑 R						
Att SGL	40 dB	SWT	100 ms 👄 V	BW 3 MHz					
●1Pk Clrw									,
					М	1[1]		3	7.72 dBm 35.6786 ms
20 dBm									
10 dBm			M1						
and the subscription of			antipustation provident	-	the second second	The share water and the	-		or dinamo
0 dBm									
-10 dBm						· ·			
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
CF 5.785 GH	z			3000	pts				10.0 ms/
						Read	· •		

Report No.: STR221018001005E

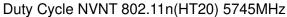

Page 45 of 70


Duty Cycle NVNT 802.11ac40 5755MHz

Spectrum				
Ref Level 29.83 dBm	Offset 9.83 dB 👄 F	RBW 1 MHz		
	😑 SWT 100 ms 👄 🗸	BW 3 MHz		
SGL				
●1Pk Clrw				1.06.40
		IVI	1[1]	4.06 dBm 78.6262 ms
20 dBm				
10 dBm				
			M:	Ļ
an the determined the later is the other	فتحاط والمعادة والمعادة اللباداء	والمترجع المتعارية والمتلقة والمتلقة والمتلج والمتلج والمتلج والمتعاد والمتعارية والمتعارية والمتعارية والمتعا	والمراجع	a a deall bi leasand an theidd i ddie eisiad d
-1D dBm				
The lease of the table				The fair is a local data for the filler
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
CF 5.755 GHz		3000 pts		10.0 ms/
		3000 pts		10.0 11157
			Ready	

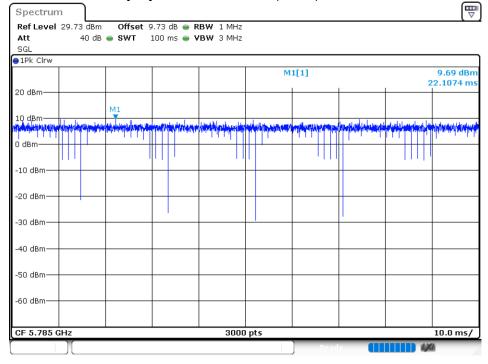
Report No.: STR221018001005E

Page 46 of 70

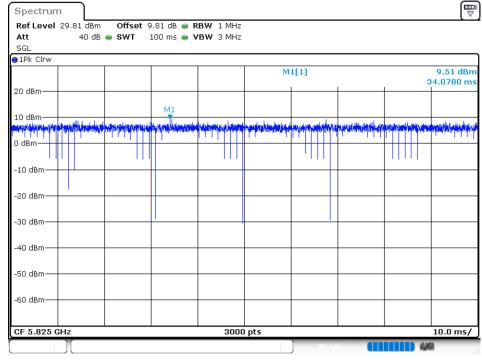



Duty Cycle NVNT 802.11ac80 5775MHz

	29.73 dBm		9.73 dB 😑 R						
Att SGL	40 dB	SWT	100 ms 👄 V	BW 3 MHz					
1Pk Clrw									
					м	1[1]			1.36 dB 2.5842 m
20 dBm									2.5842 m
10 dBm									
Q dBm					M1	.			
						lala and diala			nd Japa Milanaka Akademini Milanaka
-10 d6m	, , , , , , , , , , , , , , , , , , ,								
-20 dBm									
I. I.I.I	וויווי	1.1.1.1	11111			ידריי	111111	11111	111
-30 dBm									
-40 dBm									
-40 0611									
-50 dBm									
co. Io.									
-60 dBm									
CF 5.775 G				3000					10.0 ms/


NTEK 北测[®] Page 47 of 70

Report No.: STR221018001005E


Duty Cycle NVNT 802.11n(HT20) 5785MHz

Report No.: STR221018001005E

Page 48 of 70

Duty Cycle NVNT 802.11n(HT40) 5755MHz

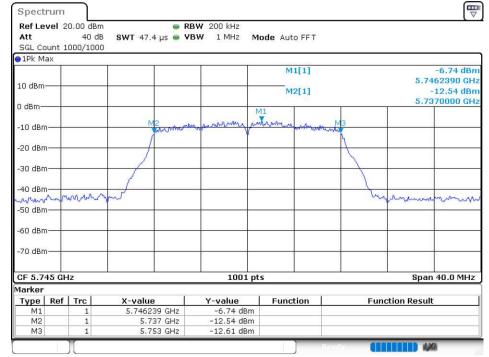
Spectrun	n								
Ref Level	29.83 dBm	Offset 9	9.83 dB 😑 R	BW 1 MHz					
Att	40 dB	SWT	100 ms 😑 V	BW 3 MHz					
SGL									
⊖1Pk Clrw									
					M	1[1]			4.57 dBm
20 dBm									.9.2731 ms
20 00111									
10 dBm									
10 000	MI								
بالربال المحمد ال	ومستقاربها الأ	والمليات والمانية	المتنصيب المراج الألبان	line and the second	ատերիներության	dh e sait de blaac di ta	الالفدوميد ا	dial de la serve de la des	الالالم ومعرفة المارات
		A distanti ti da da di	PART CONTRACT	diverse and dear	Freither Werte			n Manada Malaki	
		111111111		'I''II'I''I					
I+1C dBm++-		111111	սուլ դորդո	1 44 4 4	վուլ վու	111.11	սերես	111.111	ի դրիրդ
					· · ·		1 1		
-20 dBm									
-30 dBm									
-40 dBm—									
-50 dBm									
-60 dBm									
CF 5.755 (GHz			3000	pts				10.0 ms/
	Υ				·	Read			
)			- //.

Report No.: STR221018001005E

Duty Cycle NVNT 802.11n(HT40) 5795MHz

Page 49 of 70

SGL 1Pk Clrw			-					
-					м	1[1]		3.27 dB 1.2671 n
20 dBm								
10 dBm	ar Lao, Jata	llande en	لىر يىرىدان	and the sales of		u malutar -	 . In al de la casa	
+1p dBm+++								
-20 dBm—								
-30 dBm								1
-40 dBm								
-50 dBm								
-60 dBm								

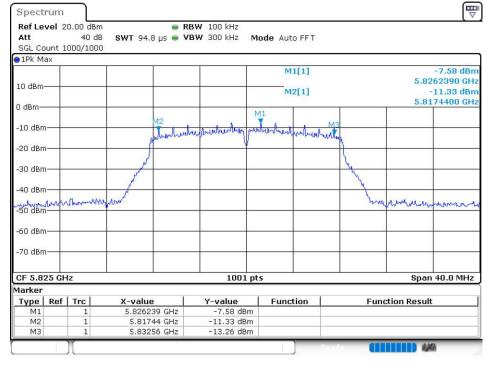

NTEK 北测

Page 50 of 70

Report No.: STR221018001005E

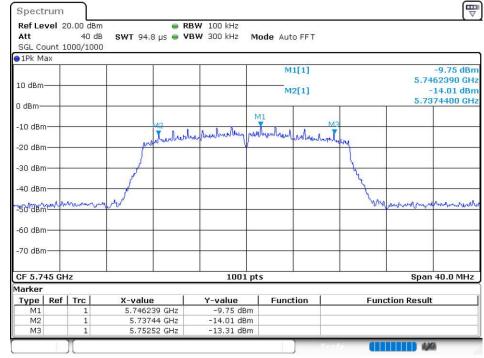
10.2 -6DB EMISSION BANDWIDTH -6 dB Limit -6 dB Frequency Condition Mode Antenna Bandwidth Bandwidth Verdict (MHz) (MHz) (MHz) NVNT 5745 802.11a Ant 1 16 0.5 Pass NVNT 802.11a 5785 Ant 1 15.16 0.5 Pass **NVNT** 802.11a 5825 Ant 1 15.12 0.5 Pass 802.11ac20 Pass NVNT 5745 Ant 1 15.08 0.5 802.11ac20 Pass NVNT 5785 Ant 1 15.12 0.5 **NVNT** 802.11ac20 5825 15.16 Pass Ant 1 0.5 **NVNT** 802.11ac40 5755 Ant 1 35.04 0.5 Pass NVNT 802.11ac40 35.12 0.5 Pass 5795 Ant 1 NVNT 802.11ac80 5775 68.96 Pass Ant 1 0.5 NVNT 802.11n(HT20) Pass 5745 Ant 1 15.08 0.5 15.12 **NVNT** 802.11n(HT20) Pass 5785 Ant 1 0.5 **NVNT** 802.11n(HT20) 5825 Ant 1 15.16 0.5 Pass NVNT 802.11n(HT40) 5755 Pass Ant 1 35.04 0.5 **NVNT** 802.11n(HT40) 5795 Ant 1 35.12 0.5 Pass

EBW NVNT 802.11a 5745MHz Ant1


NTEK 北测[®] Page 51 of 70

Report No.: STR221018001005E

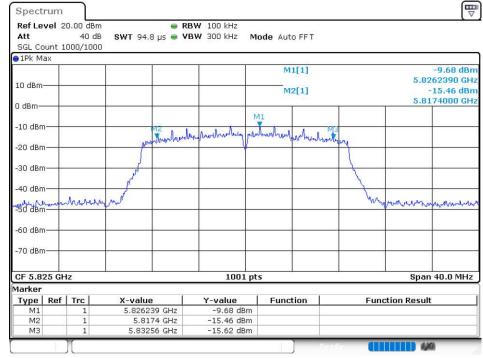
EBW NVNT 802.11a 5785MHz Ant1


EBW NVNT 802.11a 5825MHz Ant1

NTEK 北测[®] Page 52 of 70

Report No.: STR221018001005E

EBW NVNT 802.11ac20 5745MHz Ant1

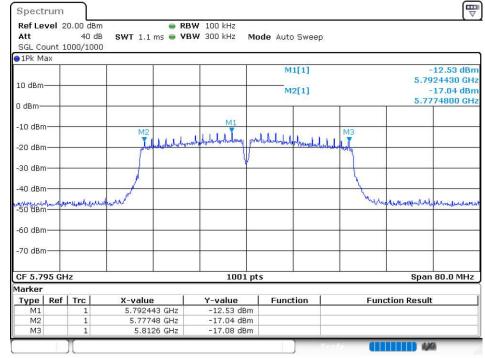

EBW NVNT 802.11ac20 5785MHz Ant1

SGL Cour 1Pk Max	at 1000/1000		BW 300 kHz M	ode Auto FFT		
трк мах)				
	<u> </u>	Î Î	- T - T			0.05
				M1[1]		-9.85 c 5.7862390
10 dBm—			-	M2[1]		-15.67 (
				mz[1]		5.7774000
) dBm——		-			1	0.7771000
			N	41		
-10 dBm—		M2 6 1	A. D. August	July 1 1	X X	
00 Jp		a miniheastimetal	on produced way por	and on the find from	and leave	
-20 dBm—						
-30 dBm—					1	
SU UBIII-		7			<u></u>	
-40 dBm—		1 Alexandre	_		2	
					7	100
50 dBm-	wanturburbur	- ma	_		You	mannhanten
-60 dBm—						
-70 dBm—		a. 6				
CF 5.785	GHz		1001 pt	s		Span 40.0 M
1arker						
Type R	ef Trc	X-value	Y-value	Function	Fund	ction Result
M1	1	5.786239 GHz	-9.85 dBm			
M2	1	5.7774 GHz	-15.67 dBm			
MЗ	1	5.79252 GHz	-13.74 dBm			

NTEK 北视® Page 53 of 70

Report No.: STR221018001005E

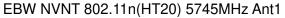
EBW NVNT 802.11ac20 5825MHz Ant1

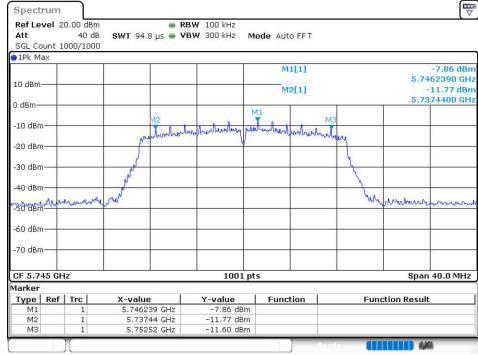

EBW NVNT 802.11ac40 5755MHz Ant1

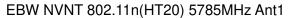
Ref Level	20.00 dBm	🥌 RI	3W 100 kHz			
Att	40 dB		BW 300 kHz 🛛 Mi	ode Auto Swee	р	
	1000/1000	Ē.				
1Pk Max		2 X		12.0102.000		
				M1[1]		-12.07 dB
10 dBm				-		5.7525220 G
				M2[1]		-17.36 dB
0 dBm						5.7374800 GI
			M1			
-10 dBm—	-	M2		10000	M3	
		VII ALL	which which when have per	ale low bolight for all	111.7	
-20 dBm—		platater			and and a first of the	
-30 dBm			¥.			
-30 asm—						
-40 dBm						
		J. J.				
-50 dBm	moundation	Manne.			2004	bhardenter brochier the second conten
-60 dBm—						
-70 dBm—	ic .					÷
CF 5.755	GHz		1001 pt	ts		Span 80.0 MH
1arker	9997 (B			21		
Type Re	f Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	5.752522 GHz	-12.07 dBm			
M2	1	5.73748 GHz	-17.36 dBm			
MЗ	1	5.77252 GHz	-17.25 dBm			

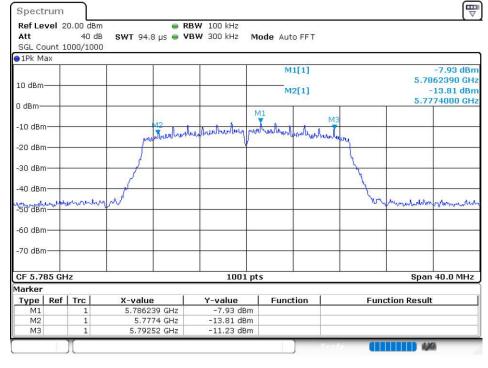
NTEK 北视® Page 54 of 70

Report No.: STR221018001005E

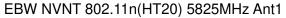

EBW NVNT 802.11ac40 5795MHz Ant1

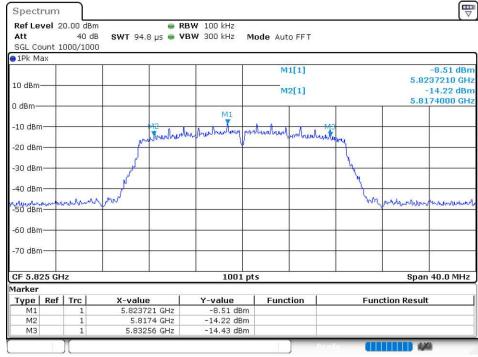



EBW NVNT 802.11ac80 5775MHz Ant1


Spectrur	n						
Ref Level Att SGL Count	40 d	Station and a station of the state of the st	RBW 100 kHz VBW 300 kHz M	Node Auto FF1	r		
⊖1Pk Max							
10 dBm	201		_	M1[1] M2[1]		-15.37 (5.769890 -19.76 (GH2 dBm
0 dBm						5.743640	GH:
-10 dBm			TM				
-20 dBm—		N2 Marthall Martha	- www. Walled Way all	telthedolorear us with			
-30 dBm—	-						
-40 dBm	22 						
Mandampa	b seems of the same	undread mark			Warn	would have the work with wath with	HUNH
-60 dBm—							
-70 dBm						8	
CF 5.775	GHz		1001 pt	s		Span 160.0 M	1Hz
Marker	1111 - 12						
	ef Trc	X-value	Y-value	Function	Fur	nction Result	
M1	1	5.76989 GHz	-15.37 dBm				
M2 M3	1	5.74364 GHz 5.8126 GHz	-19.76 dBm -19.66 dBm				
					Bendy 🚺		

NTEK 北测[®] Page 55 of 70



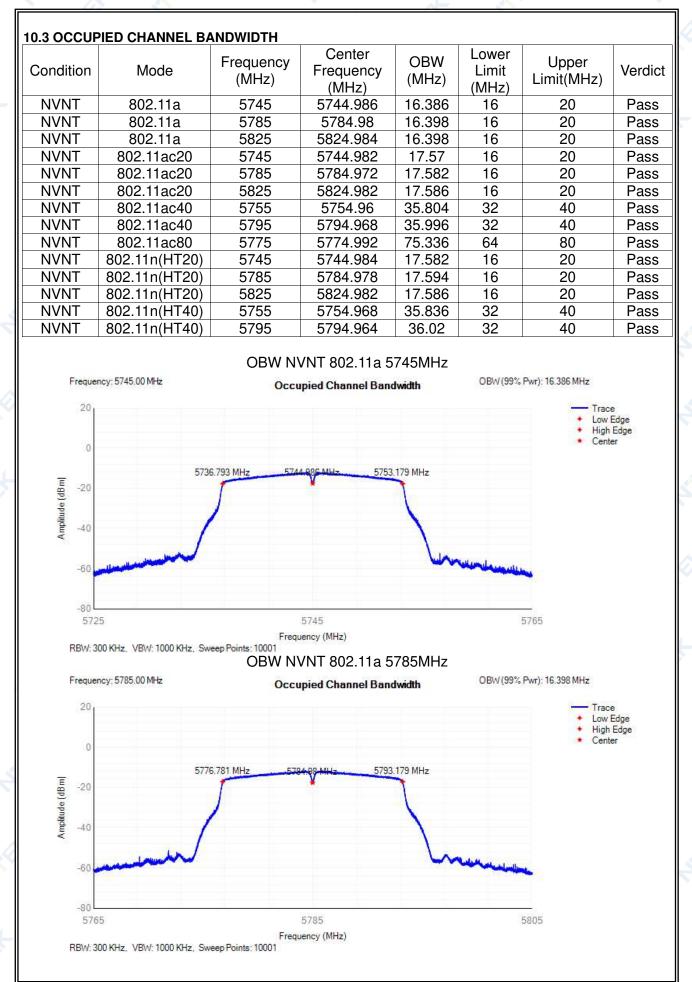


Report No.: STR221018001005E

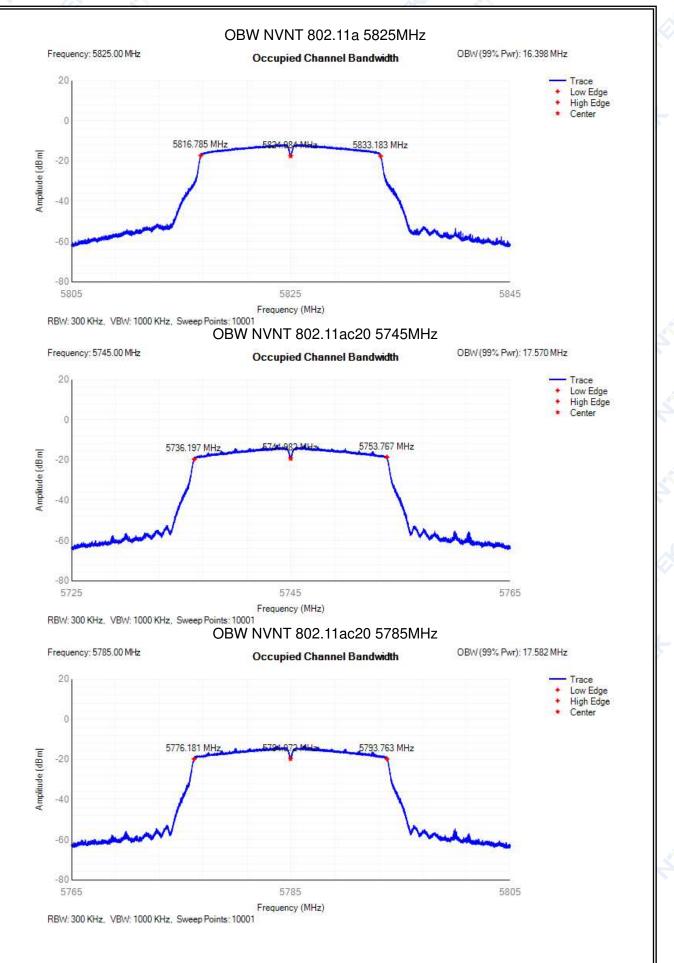
Page 56 of 70

EBW NVNT 802.11n(HT40) 5755MHz Ant1

Ref Level 2	0.00 dBm	🥌 R	BW 100 kHz			
Att	40 dB	SWT 1.1 ms 👄 V	'BW 300 kHz M	ode Auto Swee	р	
SGL Count 1	.000/1000					
∋1Pk Max		с. х.		12.0.712.0.09		100 A
				M1[1]		-11.86 dB
10 dBm				10000000000		5.7525220 G
				M2[1]		-17.07 dB
0 dBm						5.7374800 G
Designation -			1000			
-10 dBm		140	M1		M3	
		M2	markadadadadaahahasay per	whetherhadently the worker	1 Y	
-20 dBm		Justin Land March		a superior de la factoria	The freed on the second	
			Y I			
-30 dBm						
		1				
-40 dBm					×.	
-50 dBm	mound	manyou			Your	topollar unsupering hill a material
-50 ubiii						
-60 dBm						
-oo abiii						
-70 dBm		-				
CF 5.755 GH	17		1001 pt	15		Span 80.0 MH
larker			1001 P			opullouid hill
Type Ref	Trc	X-value	Y-value	Function	Eur	nction Result
M1	1	5.752522 GHz	-11.86 dBm	ranocioli	1.01	
M2	1	5.73748 GHz	-17.07 dBm			
MЗ	1	5.77252 GHz	-16.50 dBm			
	11			1		


NTEK 比测[®] Page 57 of 70

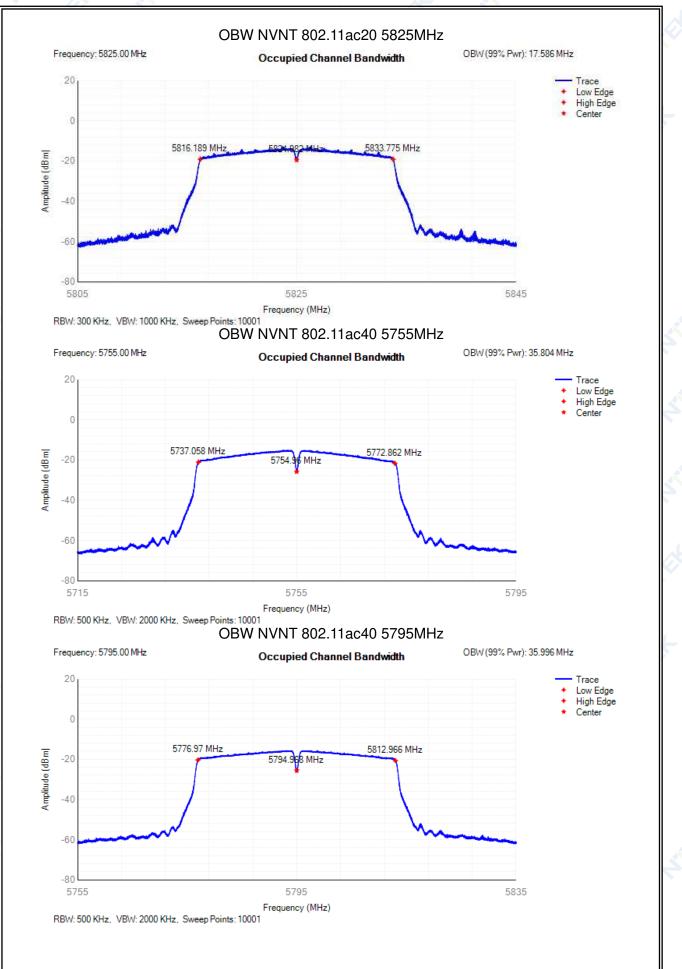
Report No.: STR221018001005E


EBW NVNT 802.11n(HT40) 5795MHz Ant1

Roflo		0.00 dBm		🚔 DI	BW 100 kHz					
Att		40 dB			BW 300 kHz	Mode A	uto Sweep	ı		
SGL Co	unt 10	000/1000				100000000000000000000000000000000000000		50		
1Pk Ma	эх			~						
							M1[1]			-12.65 dB
10 dBm-										924430 Gł
10 00111						M2[1]				-16.30 dB
0 dBm—									5.7	774800 GI
-10 dBm			N	12	M1	1100100-1001		M3		
				1 Lat dealed	which and a full way	perulaphysike	dollar hoursdard	ath T		
-20 dBm			1	200 Million Contraction of		1		and a for a	3	
-30 dBm					1	(*)				
-50 abii	8									
-40 dBm	-		1	-	_		-	X	3	1
hubbaret	martile	underweiten	Marker Hard					Mure My	when the management	And and a start a low the
-50 dBm										
60 ID										
-60 dBm	2									
-70 dBm										
CF 5.79	95 GH	z			1001	pts			Spar	n 80.0 MH
1arker									•	
Type	Ref	Trc	X-va	lue	Y-value	Fu	nction	Fun	ction Resul	ť
M1	-	1		2443 GHz	-12.65 dB					
M2		1		7748 GHz	-16.30 dB					
М3		1	5.	8126 GHz	-17.07 dB	m				

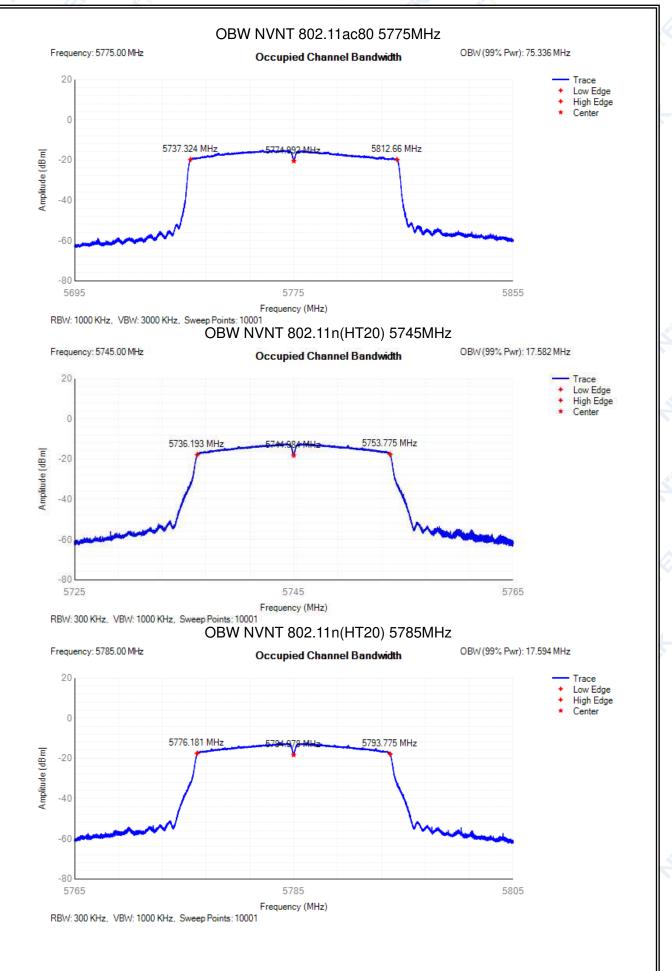
Page 58 of 70

Report No.: STR221018001005E

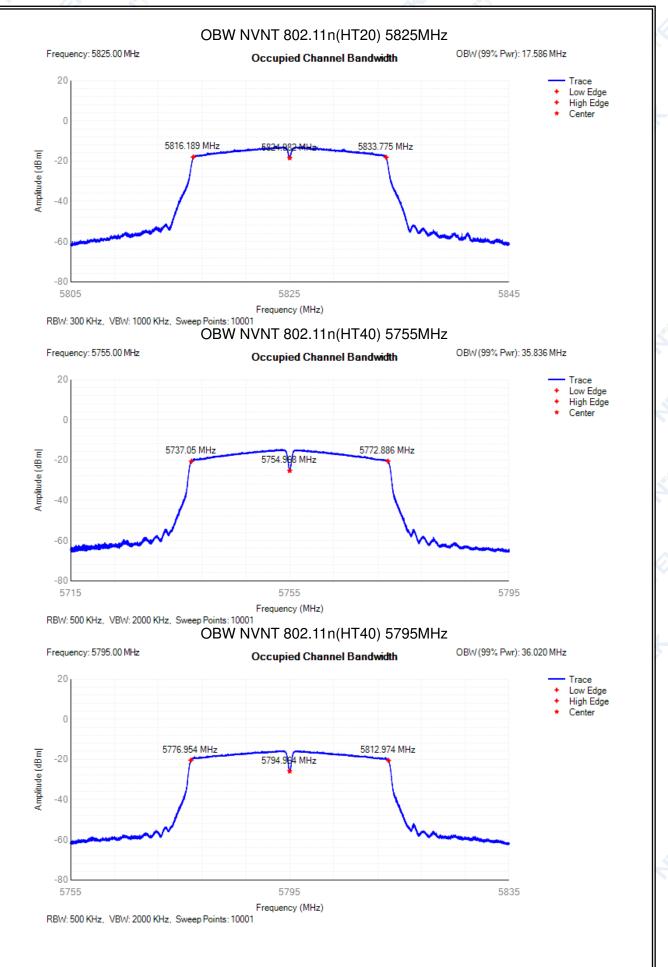


Page 59 of 70

7



NTEK 北河® Page 60 of 70



NTEK 北视® Page 61 of 70

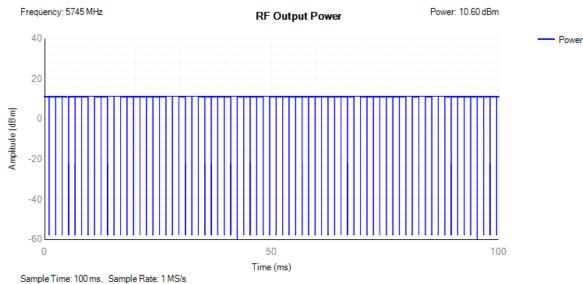
Report No.: STR221018001005E

NTEK LM[®] Page 62 of 70

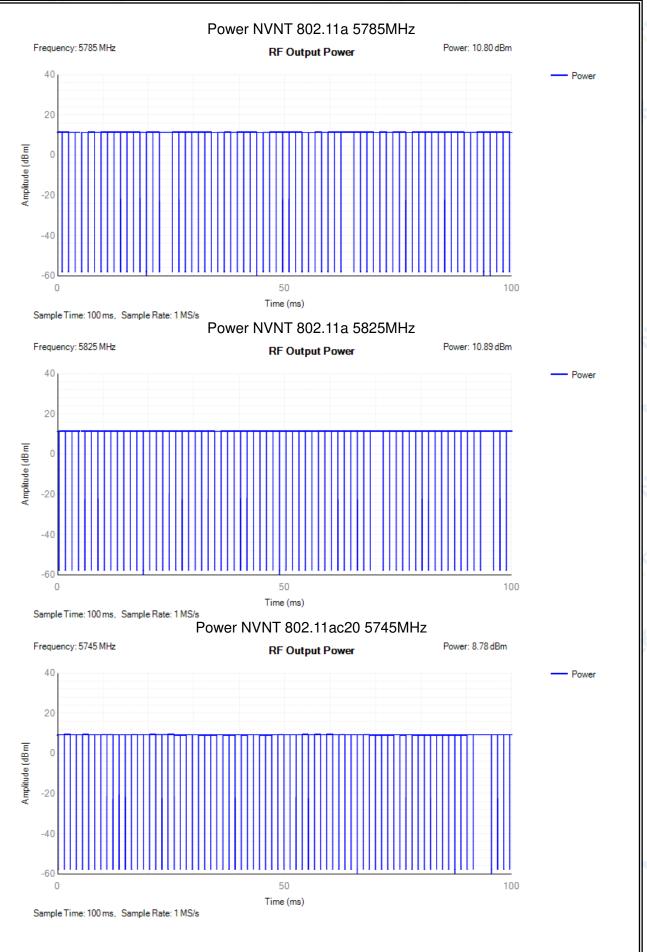
Page 63 of 70

Report No.: STR221018001005E

10.4 RF OUTPUT POWER

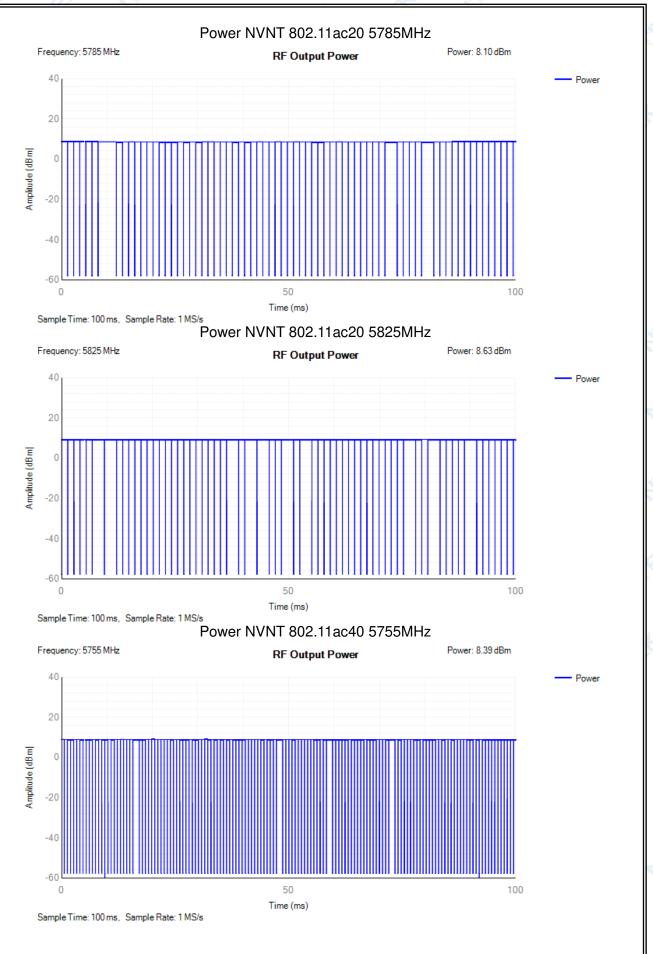

RF OUTPUT	POWER		Max				
Condition	Mode	Frequency (MHz)	Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	802.11a	5745	11.2	71	10.6	13.98	Pass
NVNT	802.11a	5785	11.4	69	10.8	13.98	Pass
NVNT	802.11a	5825	11.49	69	10.89	13.98	Pass
NVNT	802.11ac20	5745	9.38	74	8.78	13.98	Pass
NVNT	802.11ac20	5785	8.7	71	8.1	13.98	Pass
NVNT	802.11ac20	5825	9.23	65	8.63	13.98	Pass
NVNT	802.11ac40	5755	8.99	142	8.39	13.98	Pass
NVNT	802.11ac40	5795	8.72	133	8.12	13.98	Pass
NVNT	802.11ac80	5775	8.88	259	8.28	13.98	Pass
NVNT	802.11n(HT20)	5745	11.11	76	10.51	13.98	Pass
NVNT	802.11n(HT20)	5785	10.75	71	10.15	13.98	Pass
NVNT	802.11n(HT20)	5825	10.3	69	9.7	13.98	Pass
NVNT	802.11n(HT40)	5755	9.46	141	8.86	16.98	Pass
NVNT	802.11n(HT40)	5795	8.73	144	8.13	13.98	Pass
LVLT	802.11a	5745	11.10	71	10.50	13.98	Pass
LVLT	802.11a	5785	11.39	69	10.79	13.98	Pass
LVLT	802.11a	5825	11.46	69	10.86	13.98	Pass
LVLT	802.11ac20	5745	9.30	74	8.70	13.98	Pass
LVLT	802.11ac20	5785	8.64	71	8.04	13.98	Pass
LVLT	802.11ac20	5825	9.09	65	8.49	13.98	Pass
LVLT	802.11ac40	5755	8.90	142	8.30	13.98	Pass
LVLT	802.11ac40	5795	8.60	133	8.00	13.98	Pass
LVLT	802.11ac80	5775	8.76	259	8.16	13.98	Pass
LVLT	802.11n(HT20)	5745	10.97	76	10.37	13.98	Pass
LVLT	802.11n(HT20)	5785	10.63	71	10.03	13.98	Pass
LVLT	802.11n(HT20)	5825	10.27	69	9.67	13.98	Pass
LVLT	802.11n(HT40)	5755	9.34	141	8.74	16.98	Pass
LVLT	802.11n(HT40)	5795	8.64	144	8.04	13.98	Pass
LVHT	802.11a	5745	11.03	71	10.43	13.98	Pass
LVHT	802.11a	5785	11.23	69	10.63	13.98	Pass
LVHT	802.11a	5825	11.49	69	10.89	13.98	Pass
LVHT	802.11ac20	5745	9.17	74	8.57	13.98	Pass
LVHT	802.11ac20	5785	8.56	71	7.96	13.98	Pass
LVHT	802.11ac20	5825	9.12	65	8.52	13.98	Pass
LVHT	802.11ac40	5755	8.83	142	8.23	13.98	Pass
LVHT	802.11ac40	5795	8.55	133	7.95	13.98	Pass
LVHT	802.11ac80	5775	8.82	259	8.22	13.98	Pass
LVHT	802.11n(HT20)	5745	11.02	76	10.42	13.98	Pass
LVHT	802.11n(HT20)	5785	10.54	71	9.94	13.98	Pass
LVHT	802.11n(HT20)	5825	10.17	69	9.57	13.98	Pass
LVHT	802.11n(HT40)	5755	9.25	141	8.65	16.98	Pass
LVHT	802.11n(HT40)	5795	8.65	144	8.05	13.98	Pass

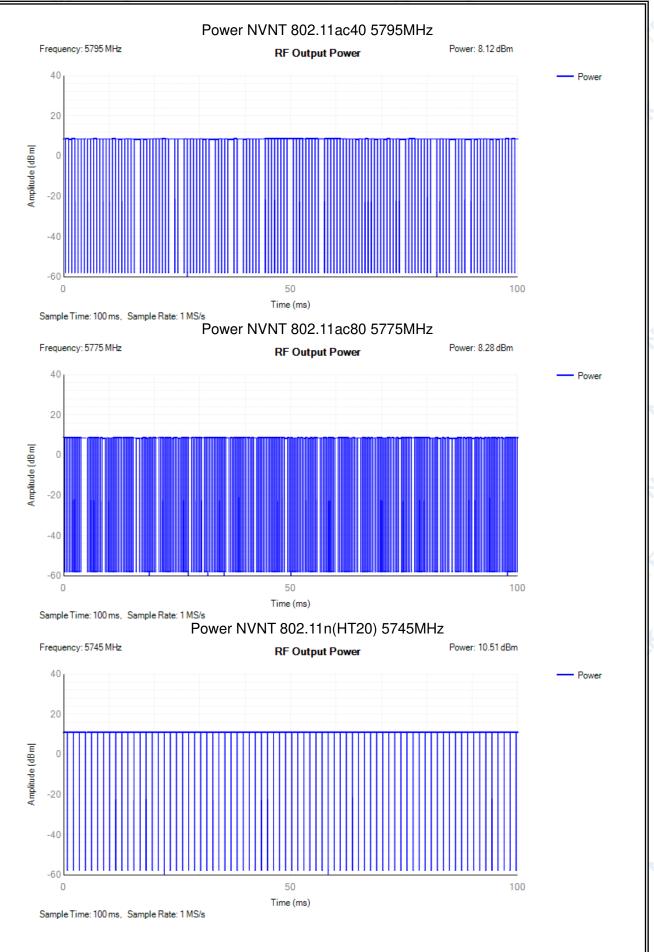
NTEK 北测[®] Page 64 of 70

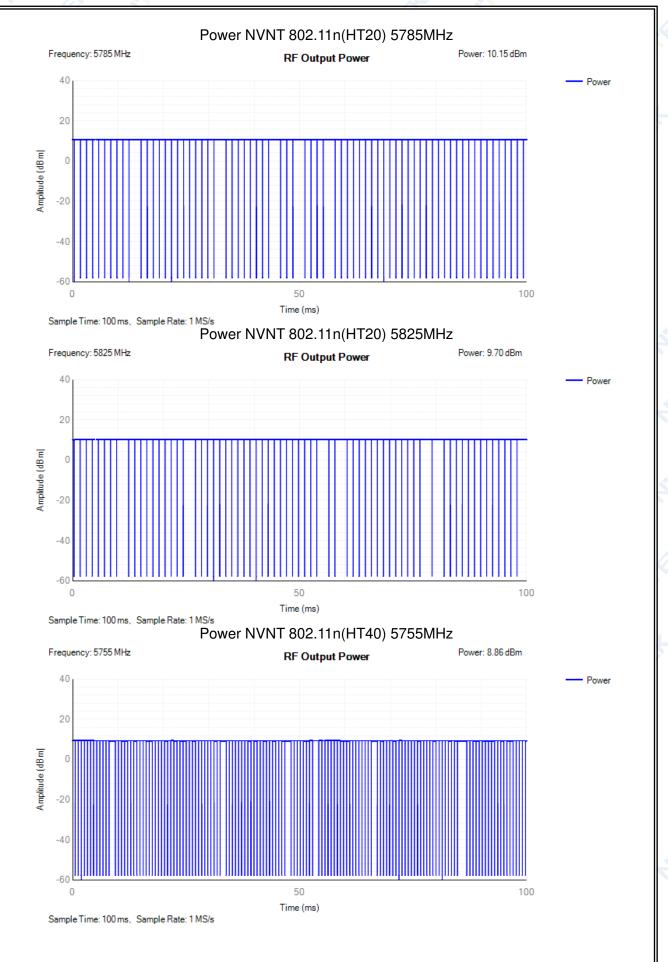

Report No.: STR221018001005E

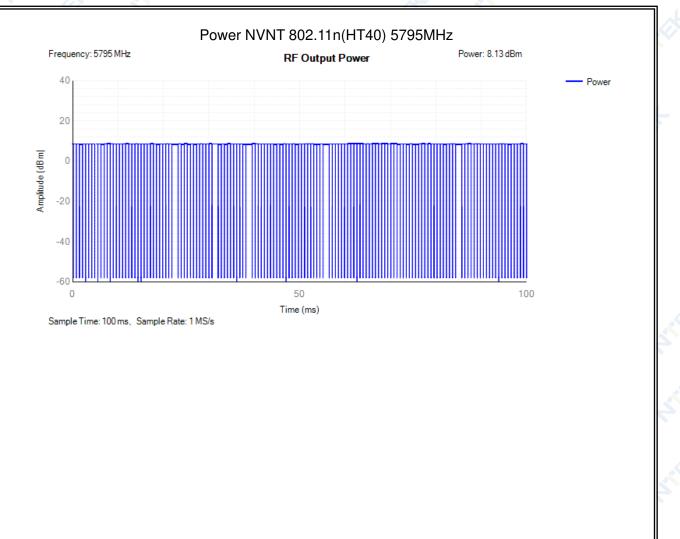
	HVHT	802.11a	5745	11.18	71	10.58	13.98	Pass
ĺ	HVHT	802.11a	5785	11.32	69	10.72	13.98	Pass
	HVHT	802.11a	5825	11.28	69	10.68	13.98	Pass
	HVHT	802.11ac20	5745	9.19	74	8.59	13.98	Pass
	HVHT	802.11ac20	5785	8.51	71	7.91	13.98	Pass
	HVHT	802.11ac20	5825	9.16	65	8.56	13.98	Pass
ĺ	HVHT	802.11ac40	5755	8.88	142	8.28	13.98	Pass
	HVHT	802.11ac40	5795	8.58	133	7.98	13.98	Pass
ĺ	HVHT	802.11ac80	5775	8.70	259	8.10	13.98	Pass
	HVHT	802.11n(HT20)	5745	11.04	76	10.44	13.98	Pass
	HVHT	802.11n(HT20)	5785	10.69	71	10.09	13.98	Pass
	HVHT	802.11n(HT20)	5825	10.20	69	9.60	13.98	Pass
	HVHT	802.11n(HT40)	5755	9.39	141	8.79	16.98	Pass
	HVHT	802.11n(HT40)	5795	8.65	144	8.05	13.98	Pass
ĺ	HVLT	802.11a	5745	11.04	71	10.44	13.98	Pass
	HVLT	802.11a	5785	11.25	69	10.65	13.98	Pass
	HVLT	802.11a	5825	11.46	69	10.86	13.98	Pass
	HVLT	802.11ac20	5745	9.25	74	8.65	13.98	Pass
	HVLT	802.11ac20	5785	8.65	71	8.05	13.98	Pass
	HVLT	802.11ac20	5825	9.18	65	8.58	13.98	Pass
	HVLT	802.11ac40	5755	8.97	142	8.37	13.98	Pass
	HVLT	802.11ac40	5795	8.63	133	8.03	13.98	Pass
	HVLT	802.11ac80	5775	8.77	259	8.17	13.98	Pass
	HVLT	802.11n(HT20)	5745	10.94	76	10.34	13.98	Pass
	HVLT	802.11n(HT20)	5785	10.66	71	10.06	13.98	Pass
	HVLT	802.11n(HT20)	5825	10.16	69	9.56	13.98	Pass
	HVLT	802.11n(HT40)	5755	9.36	141	8.76	16.98	Pass
	HVLT	802.11n(HT40)	5795	8.63	144	8.03	13.98	Pass

Power NVNT 802.11a 5745MHz


Report No.: STR221018001005E


Page 65 of 70


NTEK LM Page 66 of 70


NTEK 北测[®] Page 67 of 70

NTEK 比测[®] Page 68 of 70

NTEK LM[®] Page 69 of 70

Page 70 of 70

Report No.: STR221018001005E

11. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT