

RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product: Smart phone

Trade Mark: Blackview

Model Name: BV9300

Family Model: N/A

Report No.: STR230306002002E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090
Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Address RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA Manufacturer's Name: Shenzhen DOKE Electronic Co.,Ltd Guangming District, Shenzhen, China **Product description** Product name: Smart phone Trademark Blackview Model Name BV9300 Family Model..... N/A Standards..... ETSI EN 300 328 V2.2.2 (2019-07) This device described above has been tested by Shenzhen NTEK, and the test results show that the equipment under test (EUT) is in compliance with the 2014/53/EU RED Directive Art.3.2 requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personnel only, and shall be noted in the revision of the document. Test Sample Number: T230306001R003 Date of Test..... Date (s) of performance of tests: Mar 06, 2023 ~ Apr 04, 2023 Date of Issue: Apr 04, 2023 Test Result:: **Testing Engineer** (Mary Hu) Authorized Signatory: (Alex Li)

	Table of Contents	Page
1.	. GENERAL INFORMATION	6
	1.1 GENERAL DESCRIPTION OF EUT	6
	1.2 INFORMATION ABOUT THE EUT	7
	1.3 TEST CONDITIONS AND CHANNEL	12
	1.4 DESCRIPTION OF TEST CONDITIONS	13
	1.5 DESCRIPTION OF SUPPORT UNITS	14
	1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	15
2	. SUMMARY OF TEST RESULTS	16
	2.1 TEST FACILITY	17
	2.2 MEASUREMENT UNCERTAINTY	17
3	. TEST PROCEDURES AND RESUTLS	18
	3.1 EQUIVALENT ISOTROPIC RADIATED POWER	18
	3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER	18
	3.1.2 TEST PROCEDURE 3.1.3 TEST SETUP	18 18
	3.1.4 TEST RESULTS	19
	3.2 . PEAK POWER DENSITY	20
	3.2.1 LIMITS OF POWER SPECTRAL DENSITY	20
	3.2.2 TEST PROCEDURE 3.2.3 TEST SETUP	20 20
	3.2.4 TEST RESULTS	21
	3.3 . OCCUPIED CHANNEL BANDWIDTH	22
	3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	_22
	3.3.2 TEST PROCEDURE	22
	3.3.3 DEVIATION FROM TEST STANDARD 3.3.4 TEST SETUP	22 22
	3.3.5 TEST RESULTS	23
	3.4 . TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMA	
	3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-C	F-BAND 24
	3.4.2 TEST PROCEDURE	24
	3.4.3 DEVIATION FROM TEST STANDARD	25
	3.4.4 TEST SETUP	25
	3.4.5 TEST RESULTS	26
	3.5 . ADAPTIVE (CHANNEL ACCESS MECHANISM) 3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR W	27 IDF BAND
	MODULATION TECHNIQUES	27
	3.5.2 TEST PROCEDURE	28
	3.5.3 TEST SETUP CONFIGURATION	28
	3.5.4 LIST OF MEASUREMENTS	29

	Table of Contents		Pag	je
3.5.5 TEST RESULTS				30
3.6 . TRANSMITTER UNW 3.6.1 LIMITS OF TRAN				31 S
DOMAIN	ه جا			31
3.6.2 TEST PROCEDU	RE C			31
3.6.3 DEVIATION FRO	M TEST STANDARD			31
3.6.4 TEST SETUP				32
3.6.5 TEST RESULTS(Radiated measurement)) ()		33
3.6.6 TEST RESULTS (Conducted measureme	ent)		35
3.7 . RECEIVER SPURIOU	JS RADIATION			35
3.7.1 LIMITS OF RECE	IVER SPURIOUS RAD	DIATION		35
3.7.2 TEST PROCEDU	RE			35
3.7.3 DEVIATION FRO	M TEST STANDARD			35
3.7.4 TEST SETUP				36
3.7.5 TEST RESULTS(37
3.7.6 TEST RESULTS	Conducted measureme	ent)		38
3.8 . RECEIVER BLOCKIN	IG 🗡			39
3.8.1 PERFORMANCE	CRITERIA			39
3.8.2 LIMITS OF RECE				39
3.8.3 TEST PROCEDU				41
3.8.4 DEVIATION FRO	M TEST STANDARD			41
3.8.5 TEST SETUP				41
3.8.6 TEST RESULTS				42
4 . TEST RESULTS				44
1M				44
4.1 RF Output Power				44
4.2 Power Spectral Der				46
4.3 Occupied Channel			. At	48
4.4 Transmitter unwant			ain	50
4.5 Transmitter unwant	-	irious domain		52
4.6 Receiver spurious e	emissions			55
2M				57
4.1 RF Output Power				57
4.2 Power Spectral Der				59
4.3 Occupied Channel		-		61
4.4 Transmitter unwant			ain	64
4.5 Transmitter unwant 4.6 Receiver spurious 6	·	inous domain		66 70
	11110010110			
5 . EUT TEST PHOTO				73
SPURIOUS EMISSIONS M	EASUREMENT PHO	TOS		73

Revision History

Report No.	Version	Description	Issued Date
STR230306002002E	Rev.01	Initial issue of report	Apr 04, 2023
4			* 3
		4 4	47
		* 3, 5,	A
		<u>.</u>	. A - 21 - 21 - 21 - 21 - 21 - 21 - 21 -
		<u> </u>	4
·	, a	- 41	
	4	<u></u>	500
740			
	10	7	
		(A) 4 7	<u></u>
	30	7	4,1
A 31		A A A	
		10 74 4	د خر

1. GENERAL INFORMATION

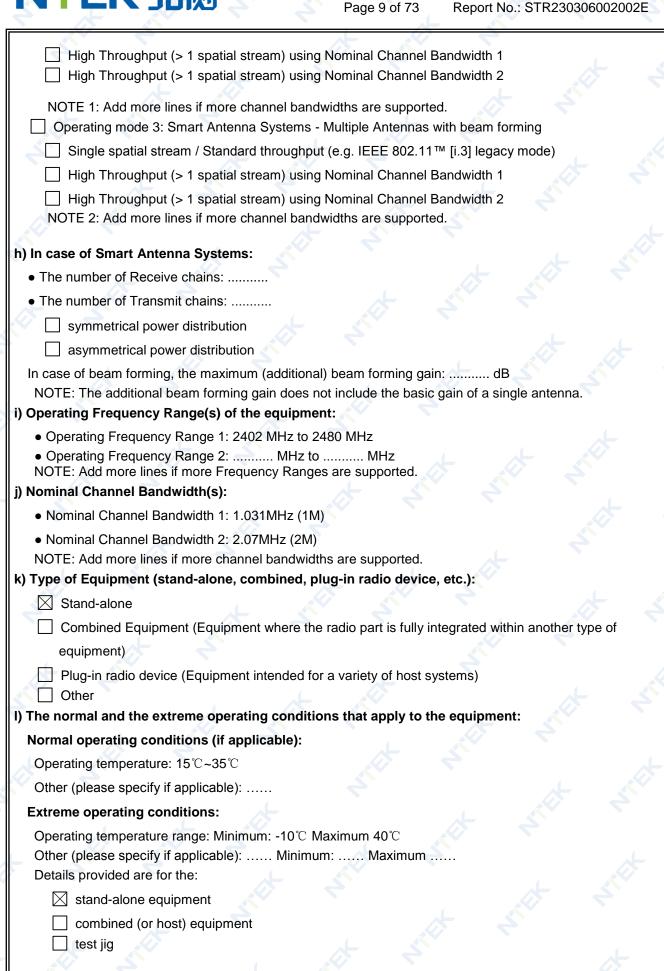
1.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart phone				
Trade Mark	Blackview				
Model Name.	BV9300	L 0 3			
Family Model	N/A				
Model Difference	N/A				
	The EUT is Smart phone				
	Operation Frequency:	2402~2480 MHz			
	Modulation Type:	GFSK			
	Adaptive/non-adaptive	Adaptive equipment			
Product Description	Receiver categories	3 2 2			
	Number Of Channel	Please see Note 2.			
	Antenna Designation:	PIFA Antenna			
	Antenna Gain(Peak)	-0.6 dBi			
	*	Z1 Z1			
Channel List	Refer to below				
Adapter	Model: QA-0300CE03 Input: 100-240V~50/60H Output: (pd)5.0V==3.0A or 12.0V==2.5 or 20.0V==1.6 (PPS)3.3V-11.0V==3.0A	A or 9.0V 3.0A A or 15.0V 2.0A 5A			
Battery	DC 3.85V, 15080mAh, 58.058Wh				
Rating	DC 3.85V from battery or DC 5V from adapter				
I/O Ports	Refer to users manual	<u>ب</u> ب			
Hardware Version	TE177_MB_V1.2	L 30			
Software Version	TE177_DK_DK042_678	TE177_DK_DK042_6789_S0_RU			
		7 2			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.


Channel	Frequency (MHz)
00	2402
01	2404
	7 VIII 6
	XV X
38	2478
39	2480

1.2 INFORMATION ABOUT THE EUT	
a) The type of modulation used by the equipment:	
☐ FHSS	
b) In case of FHSS modulation:	
In case of non-Adaptive Frequency Hopping equipment:	
The number of Hopping Frequencies:	
In case of Adaptive Frequency Hopping Equipment:	
The maximum number of Hopping Frequencies:	
The minimum number of Hopping Frequencies:	
The (average) Dwell Time:	
c) Adaptive / non-adaptive equipment:	
non-adaptive Equipment	
adaptive Equipment without the possibility to switch to a non-adaptive mode	
adaptive Equipment which can also operate in a non-adaptive mode	
d) In case of adaptive equipment:	
The maximum Channel Occupancy Time implemented by the equipment: ./. ms	
☐ The equipment has implemented an LBT based DAA mechanism	
In case of equipment using modulation different from FHSS:	
The equipment is Frame Based equipment	
The equipment is Load Based equipment	
☐ The equipment can switch dynamically between Frame Based and Load Based equipment	
The CCA time implemented by the equipment: / µs	
The equipment has implemented a non-LBT based DAA mechanism	
The equipment can operate in more than one adaptive mode	

e) In case of non-adaptive Equipment:	
The maximum RF Output Power (e.i.r.p.):	
The maximum (corresponding) Duty Cycle:	
Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combina	tions
of duty cycle and corresponding power levels to be declared):	
The worst case operational mode for each of the following tests:	
RF Output Power	
GFSK	
Power Spectral Density	
GFSK	
Duty cycle, Tx-Sequence, Tx-gap	
N/A	
Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equi	oment)
N/A	
Hopping Frequency Separation (only for FHSS equipment)	
N/A	
Medium Utilization	
N/A	
Adaptivity	
N/A	
Receiver Blocking	
GFSK	
Nominal Channel Bandwidth	
GFSK	
Transmitter unwanted emissions in the OOB domain GFSK	
Transmitter unwanted emissions in the spurious domain GFSK	
Receiver spurious emissions	
GFSK	
The different transmit energing modes (tick all that apply).	
g) The different transmit operating modes (tick all that apply):	
Operating mode 1: Single Antenna Equipment	
Equipment with only one antenna	*
Equipment with two diversity antennas but only one antenna active at any moment in time	
Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode who antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)	sie offig offe
Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming	
☐ Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)	

	nination(s) of the radio e	equipment power setting	gs and one or more antenna
The intended comb	sination(o) or the radio o		
assemblies and the	eir corresponding e.i.r.p	. levels:	
Antenna Type: PIF	A Antenna		
Integral Antenna	a (information to be provid	ded in case of conducted	measurements)
Antenna Gain:	:-0.6 dBi		
If applicable, add	ditional beamforming gain	(excluding basic antenna	a gain): dB
Temporary	RF connector provided		
☐ No tempor	ary RF connector provide	d	
Dedicated Ante	nnas (equipment with ant	enna connector)	
☐ Single pow	ver level with correspondir	ng antenna(s)	
☐ Multiple po	ower settings and correspo	onding antenna(s)	
Number of di	fferent Power Levels:		
Power Level	1: dBm		
Power Level	2: dBm		
	3: dBm		
	more lines in case the ed		
NOTE 2: The	ese power levels are cond	ucted power levels (at an	itenna connector).
For each of the Pow	ver Levels, provide the into	ended antenna assembli	es, their corresponding gains
6) and the resulting Power Level	e.i.r.p. levels also taking i	nto account the beamfor	es, their corresponding gains ming gain (Y) if applicable
6) and the resulting Power Level Number of ar	e.i.r.p. levels also taking i 1: dBm ntenna assemblies provide	nto account the beamfor	es, their corresponding gains ming gain (Y) if applicable
6) and the resulting Power Level Number of ar Assembly #	e.i.r.p. levels also taking i 1: dBm ntenna assemblies provide Gain (dBi)	ed for this power level: e.i.r.p. (dBm)	es, their corresponding gains ming gain (Y) if applicable
Power Level Number of ar Assembly #	e.i.r.p. levels also taking i 1: dBm ntenna assemblies provide Gain (dBi) -0.6	ed for this power level: e.i.r.p. (dBm) -3.98	es, their corresponding gains ming gain (Y) if applicable
Power Level Number of ar Assembly #	e.i.r.p. levels also taking i 1: dBm ntenna assemblies provide Gain (dBi)	ed for this power level: e.i.r.p. (dBm)	es, their corresponding gains ming gain (Y) if applicable
e) and the resulting Power Level Number of ar Assembly # 1M 2M	e.i.r.p. levels also taking i 1: dBm Intenna assemblies provide Gain (dBi) -0.6 -0.6	nto account the beamformed for this power level: e.i.r.p. (dBm) -3.98 -4.21	es, their corresponding gains ming gain (Y) if applicable Part number or model name
e) and the resulting Power Level Number of ar Assembly # 1M 2M	e.i.r.p. levels also taking i 1: dBm Intenna assemblies provide Gain (dBi) -0.6 -0.6	nto account the beamformed for this power level: e.i.r.p. (dBm) -3.98 -4.21	es, their corresponding gains ming gain (Y) if applicable
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level	e.i.r.p. levels also taking in the second of	ed for this power level: e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level	e.i.r.p. levels also taking in the second of	ed for this power level: e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar	e.i.r.p. levels also taking in the second of	ed for this power level: e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly #	e.i.r.p. levels also taking in the state of the state of taking in the state of the state of taking in the state o	e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly #	e.i.r.p. levels also taking in the state of the state of taking in the state of the state of taking in the state o	e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3	e.i.r.p. levels also taking in the state of	ed for this power level: e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are ed for this power level: e.i.r.p. (dBm)	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add	e.i.r.p. levels also taking in the state of	ed for this power level: e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are ed for this power level: e.i.r.p. (dBm)	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level	e.i.r.p. levels also taking in the content of the c	ed for this power level: e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are ed for this power level: e.i.r.p. (dBm) antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level Number of ar	e.i.r.p. levels also taking in the second of	e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are ed for this power level: e.i.r.p. (dBm) antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level Number of ar	e.i.r.p. levels also taking in the content of the c	ed for this power level: e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are ed for this power level: e.i.r.p. (dBm) antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level Number of ar Assembly #	e.i.r.p. levels also taking in the second of	e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are ed for this power level: e.i.r.p. (dBm) antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level	e.i.r.p. levels also taking in the second of	e.i.r.p. (dBm) -3.98 -4.21 antenna assemblies are ed for this power level: e.i.r.p. (dBm) antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.

NTEK 北测[®] Page 11 of 73 Report No.: STR230306002002E n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined (host) equipment or test jig in case of plug-in devices: Details provided are for the: combined (or host) equipment

			N2017.06.06.0614.V
Airt Airt			
- 310 - 3100 - 3			
GFSK(CH39)=0.86% (1M)			
clause 4.3.2.11.3):	ر براه استان دارد استان استان استان دارد		*
t) Describe the minimum performan	ce criteria that apply	to the equipment (see	clause 4.3.1.12.3 or
clause 4.3.2.12.2 is not acces	sible to the user		
The geographical location dete		ent as defined in clause	4.3.1.13.2 or
Yes			
s) Geo-location capability supporte	d by the equipment:		
(to be provided as separate attach	ment)		
r) If applicable, the statistical analys	sis referred to in claus	se 5.4.1 r)	
(to be provided as separate attach	ment)		
q) If applicable, the statistical analy	sis referred to in clau	se 5.4.1 q)	
Bluetooth®			
p) The equipment type (e.g. Bluetoc	oth®, IEEE 802.11™ [i.	3], IEEE 802.15.4™ [i.4]], proprietary, etc.):
See clause 1.3			
o) Describe the test modes available	e which can facilitate	testina:	
Other:			
	DC adapter: DC 5V		
☐ Internal Power Supply	DC adapter: DC 5V		
In case of DC, indicate the type of p	oower source		
	oltage: DC 3.85V		
Supply Voltage	te AC voltage	v ,_	

1.3 TEST CONDITIONS AND CHANNEL

	Normal Test Conditions	Extreme Test Conditions	
Temperature	15℃ - 35℃	40°C ~ -10°C Note: (1)	
Relative Humidity	20% - 75%	N/A	
Supply Voltage	DC 3.85V	/	

Test Channel	EUT Channel	Test Frequency (MHz)
Lowest	CH00	2402
Middle	CH19	2440
Highest	CH39	2480

Note:

- (1) The HT 40° C and LT -10° C was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.
- (2) The measurements are performed at the highest, middle, lowest available channels.

1.4 DESCRIPTION OF TEST CONDITIONS E-1 EUT

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Smart phone	BV9300	N/A	EUT
*	3			2
		L . (C)	7	
	L K	0 4		* *
L	70 B		大	71, 4
7		Z.	3	
	∠t.	- 3		

Item	Type	Shielded Type	Ferrite Core	Length	Note
		×			
		L K			
4					
	1			4	
		*	2		

Note:

- (1)
- The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column. (2)

1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30 2023.03.16	2023.03.29 2024.03.15	1 year
Turn Table	EM	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2022.03.31	2025.03.30	3 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.11.07	2023.11.06	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01 2023.03.31	2023.03.31 2024.03.30	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01 2023.03.21	2023.03.31 2024.03.20	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
	TRANSMITTER PARAMETERS	1
4.3.2.2	RF Output Power	Pass
4.3.2.3	Power Spectral Density	Pass
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.2.5	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.2.6	Adaptivity	Not Applicable (See Note 1)
4.3.2.7	Occupied Channel Bandwidth	Pass
4.3.2.8	Transmitter unwanted emission in the OOB domain	Pass
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	
4.3.2.10	Receiver Spurious Emissions	Pass
4.3.2.11	Receiver Blocking	Pass

Note

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add.: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District,

Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.:9270A-1

CNAS Registration No.:L5516

2.2 MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively 95 % and 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Measurement uncertainty

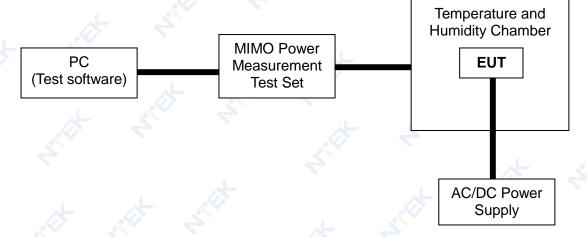
	Wieded of the direct direct and					
No.	Item	Uncertainty (P=95)				
1	Occupied Channel Bandwidth	± 4.7%				
2	RF output Power,conducted	± 0.9dB				
3	Power Spectral Density, conducted	± 2.6dB				
4	Unwanted emissions, conducted	± 2.2dB				
5	All emissions,radiated	± 5.3dB				
6	Temperature	± 0.5°C				
7	Humidity	± 2.0%				
8 💪	Time	± 1.0%				

3. TEST PROCEDURES AND RESUTLS

3.1 EQUIVALENT ISOTROPIC RADIATED POWER


3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER

Refer to chapter 4.3.2.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)


RF OUTPUT POWER		
Condition	Limit	
☐ Non-adaptive wide band modulations systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.	
Adaptive wide band modulations systems	≤20dBm	

3.1.2 TEST PROCEDURE

Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

3.1.3 TEST SETUP

3.1.4 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9300
Temperature:	20℃	Relative Humidity:	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX Low channel / Middle Chan	nel / High Channel	* *

Test data reference attachment

3.2. PEAK POWER DENSITY

3.2.1 LIMITS OF POWER SPECTRAL DENSITY

Refer to chapter 4.3.2.3.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT	POWER	
Condition	Limit	
For equipment using wide band modulations other than FHSS	≤10 dBm/MHz	

3.2.2 TEST PROCEDURE


Refer to chapter 5.4.3.2 of ETSI EN 300 328 V2.2.2 (2019-07)

toler to dilaptor of field of ETG ETG odd of VEILE (Earlo or)				
Measurement				
	Radiated measurement			

The setting of the Spectrum Analyzer

The setting of the Spectrum And			
Start Frequency	2400MHz		
Stop Frequency	2483.5MHz		
Detector	RMS		
Sweep Point	> 8 350; for spectrum analysers not supporting this number of sweep points, the		
7	frequency band may be segmented		
*	For non-continuous transmissions: 2 x Channel Occupancy Time		
	× number of sweep points		
Sweep time:	For continuous transmissions: 10 s; the sweep time may be		
4.	increased further until a value where the sweep time has no		
4 3	further impact anymore on the RMS value of the signal.		
RBW / VBW 10KHz / 30KHz			

3.2.3 TEST SETUP

N2017.06.06.0614.V.1.2

3.2.4 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9300
Temperature:	26℃	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX-GFSK(CH00/CH19/CH39)		* <

Test data reference attachment

3.3. OCCUPIED CHANNEL BANDWIDTH

3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH

Refer to chapter 4.3.2.7.3 of ETSI EN 300 328 V2.2.2 (2019-07)

OCCUPIED CHANNEL BANDWIDTH				
	Condition	Limit		
All types of equip	oment using wide band modulations other than FHSS	Shall fall completely within the band 2400 to 2483.5 MHz		
Additional	For non-adaptive using wide band modulations other than FHSS system and E.I.R.P >10 dBm	Less than 20 MHz		
requirement	For non-adaptive frequency hopping system and E.I.R.P >10 dBm	Less than 5 MHz		

3.3.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement					
☑Conducted measurement ☐Radiated measurement					
The setting of the Spe	ctrum Analyzer				
Center Frequency The centre frequency of the channel under test					
Frequency Span 2 x Nominal Channel Bandwidth					

Frequency Span	2 × Nominal Channel Bandwidth	4	
Detector	RMS		
RBW	~ 1 % of the span without going below 1 %		
VBW	3 × RBW		5
Trace	Max hold	4	
Sweep time	1s		

3.3.3 DEVIATION FROM TEST STANDARD

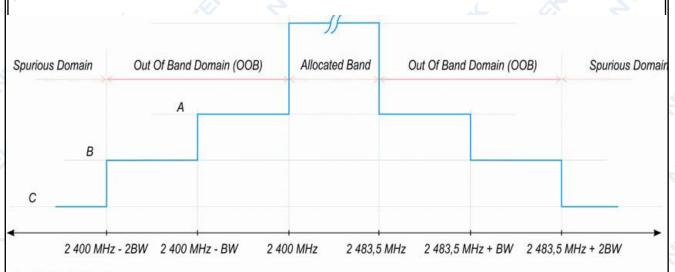
No deviation

3.3.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software has been activated to set the EUT on specific status.

3.3.5 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9300
Temperature:	26℃	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX-GFSK(CH00/CH19/CH39)		


Test data reference attachment

3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.2.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition Limit		
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	

A: -10 dBm/MHz e.i.r.p.

B: -20 dBm/MHz e.i.r.p.

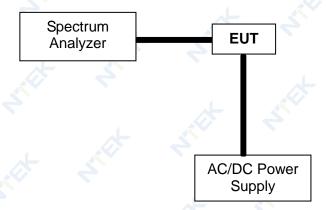
C: Spurious Domain limits

BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

Report No.: STR230306002002E

3.4.2 TEST PROCEDURE

Refer to chapter 5.4.8.2 of ETSI EN 300 328 V2.2.2 (2019-07)


⊠Conducted measure	mentF	Radiated measu	rement	
The setting of the Spectrum Ana	llyzer	*	3.40	
Span	0Hz			
Filter Mode	Channel Filter		4	
Trace Mode	Max Hold			4
Trigger Mode	Video trigger; in case video trig trigger source may be used	ggering is not p	oossible, an e	external
Detector	RMS		1	
Sweep Point / Sweep Mode	Sweep Time [s] / (1 µs) or 5 00	00 whichever is	greater/ Co	ntinuous
RBW / VBW	1MHz / 3MHz	·		

Measurement

3.4.3 DEVIATION FROM TEST STANDARD

No deviation

3.4.4 TEST SETUP

According to the ETSI EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

3.4.5 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9300
Temperature :	24 °C	Relative Humidity:	54%
Pressure:	1010 hPa	Test Power :	DC 3.85V
Test Mode :	TX-GFSK(CH00/CH39)	7	* (

Test data reference attachment

3.5. ADAPTIVE (CHANNEL ACCESS MECHANISM)

3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR WIDE BAND MODULATION TECHNIQUES

Refer to chapter ETSI EN 300 328 V2.2.2 (2019-07)

		Operational Mode			
		LI	BT based Detect ar	nd Avoid	
Requirement Sased Detect and Avoid		Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as note 2)	
Minimum Clear Channel Assessment (CCA) Time	NA	not less than 18 us (see note 1)	(see note 2)	not less than 18 us (see note 1)	
Maximum Channel Occupancy (COT) Time	<40 ms	1ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)	
Minimum Idle Period	5 % minimum of 100 µs	5% of COT	(see note 2)	NA	
Extended CCA check	↓ NA	NA	(see note 2)	R*CCA (see note 4)	
Short Control Signalling Transmissions	Maximum duty cycle of 10% within an observation period of 50 ms (see note 5)				

Note 1: The CCA time used by the equipment shall be declared by the supplier.

Note 2: Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect as described in IEEE 802.11™-2012 [i.3], clause 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in IEEE 802.15.4™-2011 [i.4], clause 4, clause 5 and clause 8 providing the equipment complies with the conformance requirements referred to in clause 4.3.2.6.3.4.

Note 3: g is selected by the manufacturer in the range [4...32]

Note 4: The value of R shall be randomly selected in the range [1...g]

Note 5: Adaptive equipment may or may not have Short Control Signaling Transmissions.

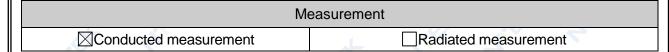
Interference threshold level

The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

 $TL = -70 \text{ dBm/MHz} + 10 \times \log_{10} (100 \text{ mW} / \text{Pout}) (\text{Pout in mW e.i.r.p.})$

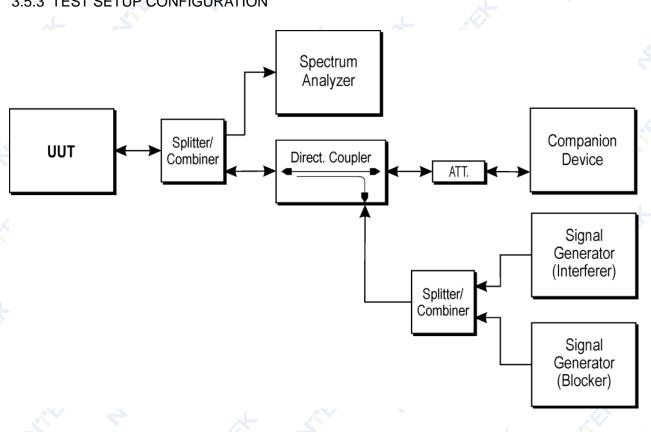
Table 9: Unwanted Signal parameters

Wanted signal mean power from companion device (dBm)	Unwanted signal frequency (MHz)	Unwanted CW signal power (dBm)
-30/ sufficient to maintain the link(see note 2)	2 395 or 2 488,5 (see note 1)	-35 (see note 2)


NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1.

NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz.

NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.


3.5.2 TEST PROCEDURE

Refer to chapter 5.4.6.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Test method please refer to the 5.4.6.2.1.4 of ETSI EN 300 328 V2.2.2 (2019-07)

3.5.3 TEST SETUP CONFIGURATION

3.5.4 LIST OF MEASUREMENTS

Frame Based Equipment

	UUT operational Mode		
		Load Base	ed Fauinment

Load Based Equipment (CCA using 'energy detect')

Load Based Equipment (CCA not using any of the mechanisms referenced)

Report No.: STR230306002002E

V

Clause	Test Parameter	Remarks	PASS/FAIL
4.3.2.5.2.2.1	Adaptive (Frame Based Equipment)	Not Applicable	N/A
4.3.2.5.2.2.2	Adaptive (Load Based Equipment)	N/A	N/A
4.3.2.5.3	Short Control Signaling Transmissions	N/A	N/A

3.5.5 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9300
Temperature:	24 ℃	Relative Humidity:	54%
Pressure :	1010 hPa	Test Power :	N/A
Test Mode :	N/A	7	* 3

Note: Not Applicable

3.6. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Refer to chapter 4.3.2.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN			
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) Bandw E.I.R.P.(> 1 GHz))		
30 MHz to 47 MHz	-36dBm	100 kHz	
47 MHz to 74 MHz	-54dBm	100 kHz	
74 MHz to 87.5 MHz	-36dBm	100 kHz	
87.5 MHz to 118 MHz	-54dBm	100 kHz	
118 MHz to 174 MHz	-36dBm	100 kHz	
174 MHz to 230 MHz	-54dBm	100 kHz	
230 MHz to 470 MHz	-36dBm	100 kHz	
470 MHz to 694 MHz	-54dBm	100 kHz	
694 MHz to 1 GHz	-36dBm	100 kHz	
1 GHz ~ 12.75 GHz	-30dBm	1 MHz	

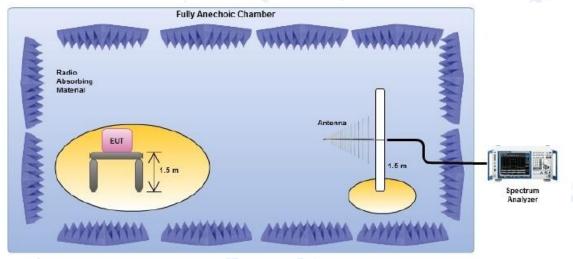
3.6.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

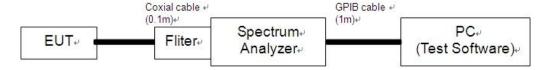
Me	easurement
	⊠Radiated measurement

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)	太	
VBW	300K(<1GHz) / 3M(>1GHz)	*	


3.6.3 DEVIATION FROM TEST STANDARD

No deviation



3.6.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

3.6.5 TEST RESULTS(Radiated measurement)

BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)

EUT:	Smart phone	Model Name :	BV9300
Temperature:	24℃	Relative Humidity:	57 %
Pressure:	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TXGESK(CH19)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	38.745	-79.6	16.21	-63.39	-36	-27.39	peak
V	117.673	-76.68	15.08	-61.60	-54	-7.60	peak
V	179.239	-77.15	16.17	-60.98	-36	-24.98	peak
V	302.296	-78.86	14.70	-64.16	-36	-28.16	peak
V	499.491	-78.05	15.99	-62.06	-36	-26.06	peak
V	706.499	-78.16	15.99	-62.17	-36	-26.17	peak
H	43.239	-79.04	15.64	-63.40	-36	-27.40	peak
Н	100.003	-76.37	14.99	-61.38	-54	-7.38	peak
Н	191.597	-74.68	14.80	-59.88	-36	-23.88	peak
Н	393.349	-76.36	16.49	-59.87	-36	-23.87	peak
Н	561.005	-75.93	15.62	-60.31	-36	-24.31	peak
H	731.104	-75.39	15.45	-59.94	-36	-23.94	peak

^{1.}Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.2.All the modes had been tested, but only the worst data recorded in the report.

ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

EUT:	Smart phone	Model Name :	BV9300
Temperature:	26 ℃	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.85V

Test Mode : TX-GFSK (CH00/CH19/CH39)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
	or	eration fre	quency:2402		*	
4804.45	-65.80	25.63	-40.17	-30	-10.17	peak
7206.29	-78.10	29.83	-48.27	-30	-18.27	peak
4804.45	-69.00	25.63	-43.37	-30	-13.37	peak
7206.29	-76.20	29.83	-46.37	-30	-16.37	peak
operation frequency:2440						
4880.87	-73.80	26.62	-47.18	-30	-17.18	peak
7320.01	-74.50	29.64	-44.86	-30	-14.86	peak
4880.87	-68.90	26.62	-42.28	-30	-12.28	peak
7320.01	-71.20	29.64	-41.56	-30	-11.56	peak
	or	eration fre	quency:2480			*
4960.21	-65.90	27.49	-38.41	-30	-8.41	peak
7440.26	-77.90	29.82	-48.08	-30	-18.08	peak
4960.21	-69.20	27.49	-41.71	-30	-11.71	peak
7440.26	-77.90	29.82	-48.08	-30	-18.08	peak
	(MHz) 4804.45 7206.29 4804.45 7206.29 4880.87 7320.01 4880.87 7320.01 4960.21 7440.26 4960.21	Reading Reading (MHz) (dBm) (dBm)	(MHz) (dBm) (dB) 4804.45 -65.80 25.63 7206.29 -78.10 29.83 4804.45 -69.00 25.63 7206.29 -76.20 29.83 operation free 4880.87 -73.80 26.62 7320.01 -74.50 29.64 4880.87 -68.90 26.62 7320.01 -71.20 29.64 operation free 4960.21 -65.90 27.49 7440.26 -77.90 29.82 4960.21 -69.20 27.49	requency Reading Factor Level (MHz) (dBm) (dB) (dBm) operation frequency:2402 4804.45 -65.80 25.63 -40.17 7206.29 -78.10 29.83 -48.27 4804.45 -69.00 25.63 -43.37 7206.29 -76.20 29.83 -46.37 operation frequency:2440 4880.87 -73.80 26.62 -47.18 7320.01 -74.50 29.64 -44.86 4880.87 -68.90 26.62 -42.28 7320.01 -71.20 29.64 -41.56 operation frequency:2480 4960.21 -65.90 27.49 -38.41 7440.26 -77.90 29.82 -48.08 4960.21 -69.20 27.49 -41.71	Comparison Com	(MHz) (dBm) (dB) (dBm) (dBm)

Remark:

- Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

3.6.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

3.7. RECEIVER SPURIOUS RADIATION

3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION

Refer to chapter 4.3.2.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	10 6 1 4 pt 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	RECEIVER SPURIOUS EMISSIONS				
Frequency Range		Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth		
	30 MHz ~ 1 GHz	-57dBm	100KHz		
	1 GHz ~ 12.75 GHz	-47dBm	1MHz		

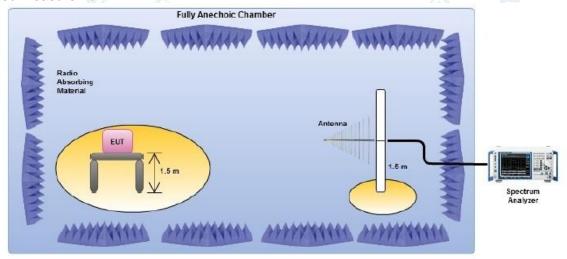
3.7.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

M	easurement	
□ Conducted measurement		

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)
VBW	300K(<1GHz) / 3M(>1GHz)


3.7.3 DEVIATION FROM TEST STANDARD

No deviation



3.7.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

3.7.5 TEST RESULTS(Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)

EUT:	Smart phone	Model Name :	BV9300
Temperature:	26 ℃	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	RX Mode-GFSK(CH19)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	42.22	-82.73	10.25	-72.48	-57	-15.48	peak
_ V	115.96	-83.69	11.69	-72.00	-57	-15.00	peak
V	204.09	-82.47	14.23	-68.24	-57	-11.24	peak
V	449.78	-79.02	15.32	-63.70	-57	-6.70	peak
V	494.48	-84.48	15.23	-69.25	-57	-12.25	peak
V	707.56	-82.71	15.57	-67.14	-57	-10.14	peak
Н	38.35	-81.88	11.36	-70.52	-57	-13.52	peak
H	117.11	-78.37	11.23	-67.14	-57	-10.14	peak
Н	225.96	-84.04	12.42	-71.62	-57	-14.62	peak
Н	249.43	-80.87	13.69	-67.18	-57	-10.18	peak
Н	578.33	-82.26	14.56	-67.70	-57	-10.70	peak
H	742.46	-80.99	15.57	-65.42	-57	-8.42	peak
							-

Remark:

- Emission Level = Meter Reading + Factor, Margin= Emission Level Limit
 All the modes had been tested, but only the worst data recorded in the report.

RX ABOVE 1 GHz WORST- CASE DATA(1GHz ~ 12.75GHz)

EUT:	Smart phone	Model Nar	ne :	BV9300	3
Temperature:	24 ℃	Relative H	umidity	54%	
Pressure:	1010 hPa	Test Powe	r :	DC 3.85V	
Test Mode :	RX Mode-GESK(CH19)	.(1) -2			

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Tromain.
V	1209.05	-83.71	17.94	-65.77	-47	-18.77	peak
V	2964.88	-80.74	17.82	-62.92	-47	-15.92	peak
V	3715.88	-82.73	18.02	-64.71	-47	-17.71	peak
V	3520.15	-82.94	19.21	-63.73	-47	-16.73	peak
V	4204.45	-77.53	22.13	-55.40	-47	-8.40	peak
V	4967.61	-84.47	24.13	-60.34	-47	-13.34	peak
Н	2923.62	-84.00	18.11	-65.89	-47	-18.89	peak
Н	2810.66	-80.72	18.68	-62.04	-47	-15.04	peak
H	3499.16	-77.49	18.21	-59.28	-47	-12.28	peak
Н	3741.61	-81.43	19.23	-62.20	-47	-15.20	peak
Н	4158.16	-77.10	16.60	-60.50	-47	-13.50	peak
Н	5203.39	-77.39	22.56	-54.83	-47	-7.83	peak

3.7.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
 All the modes had been tested, but only the worst data recorded in the report.

3.8. RECEIVER BLOCKING

3.8.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

3.8.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 x log₁₀(OCBW)) or -68 dBm whichever is less	2 380 2 504	-34	CW
(see note 2)			
(-139 dBm + 10 × log₁₀(OCBW)) or -74 dBm whichever is less	2 300 2 330 2 360	71.00 A.00	4
(see note 3)	2524 2584 2674		A.C.

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 3)	signal
(see notes 1 and 3)	4		
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB)	2 380	-34	CW
or (-74 dBm + 10 dB) whichever is less	2 504		
(see note 2)	2 300	*	
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

☐ Table 16: Receiver Blocking parameters receiver category 3 equipment

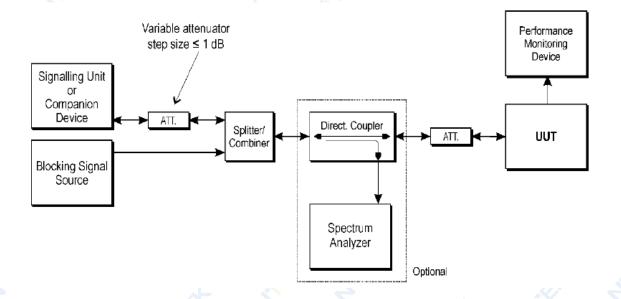
Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	cw
or (-74 dBm + 20 dB) whichever is less	2 504		
(see note 2)	2 300		
(666 11616 2)	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

3.8.3 TEST PROCEDURE


Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Me	asurement
⊠c	conducted measurement	Radiated measurement

3.8.4 DEVIATION FROM TEST STANDARD

No deviation

3.8.5 TEST SETUP

3.8.6 TEST RESULTS

EUT:	Smart phone	Model Name :	BV9300		
Temperature:	24 °C	Relative Humidity	54%		
Pressure:	1010 hPa	Test Power :	DC 3.85V		
Test Mode :	st Mode : GFSK-RX Mode (CH00/CH39)- 1M				

CH00:

receiver category 3

Wanted signal mean power from companion	Blocking signal Frequency (MHz)	Blocking signal power	PER	PER Limit
device (dBm) Note(1)	Troquonoy (iiii 12)	(abiii)	%	%
	2 380		0.83%	≤10%
-59.47	2 504	-34	0.35%	21070
-39.47	2 300	-34	0.52%	≤10%
	2 584	.L &	0.10%	21070

CH39:

receiver category 3

Wanted signal mean power from companion device (dBm) Note(1)	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER	PER Limit %		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 380	4	0.72%	≤10%		
-59.47	2 504	-34	0.86%	≥10%		
-59.47	2 300	-34	0.61%			
	2 584		0.24%	≤10%		

Note: (1) The above results were obtained from laboratory tests.

EUT: Smart phone Model Name: BV9300

Temperature: 24 °C Relative Humidity 54%

Pressure: 1010 hPa Test Power: DC 3.85V

Test Mode: GFSK-RX Mode (CH00/CH39)- 2M

CH00:

receiver category 3

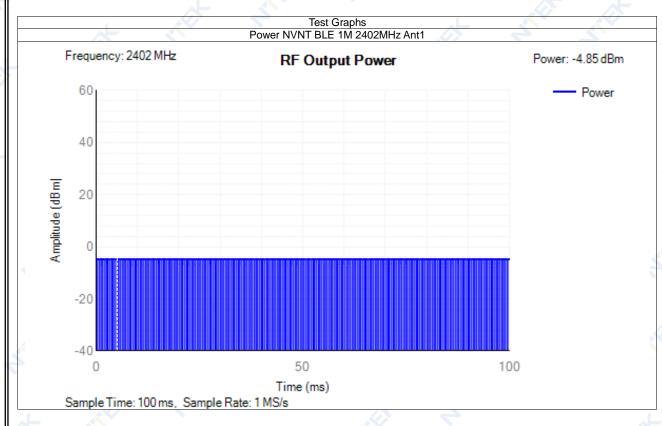
10001101 Gallegelly 0						
Wanted signal mean power from companion device (dBm) Note(1)	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER	PER Limit %		
-59.44	2 380 2 504	-34	0.04% 0.11%	≤10%		
-59.44	2 300 2 584	-34	0.53% 0.66%	≤10%		

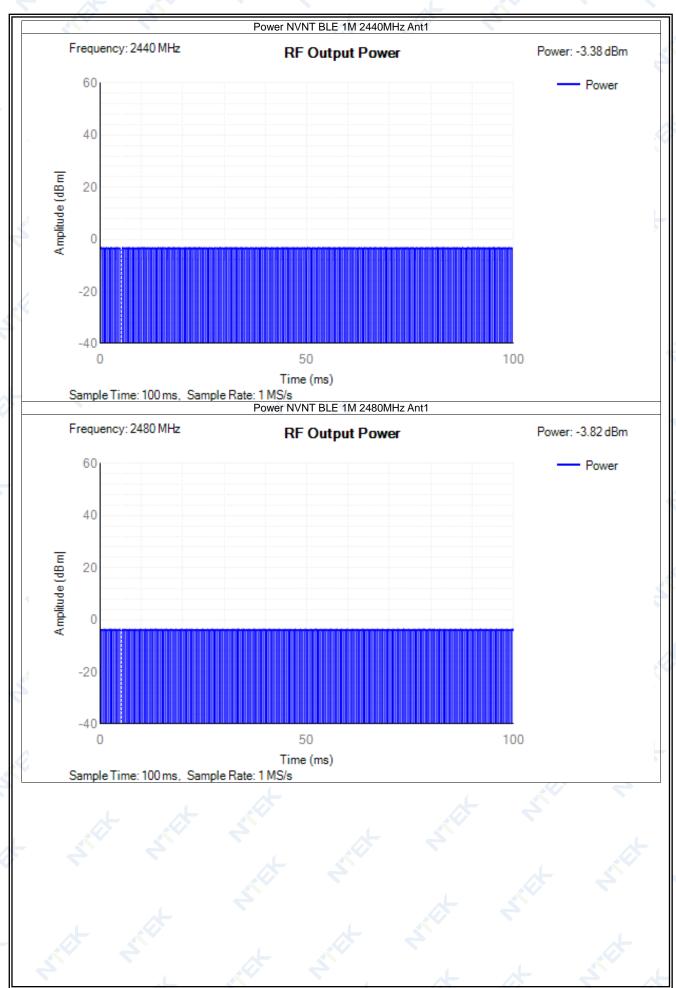
CH39:

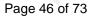
receiver category 3

Wanted signal mean power from companion device (dBm) Note(1)	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit %
3,	2 380		0.19%	≤10%
-59.44	2 504	-34	0.20%	
	2 300 2 584		0.80% 0.78%	≤10%

Note: (1) The above results were obtained from laboratory tests.

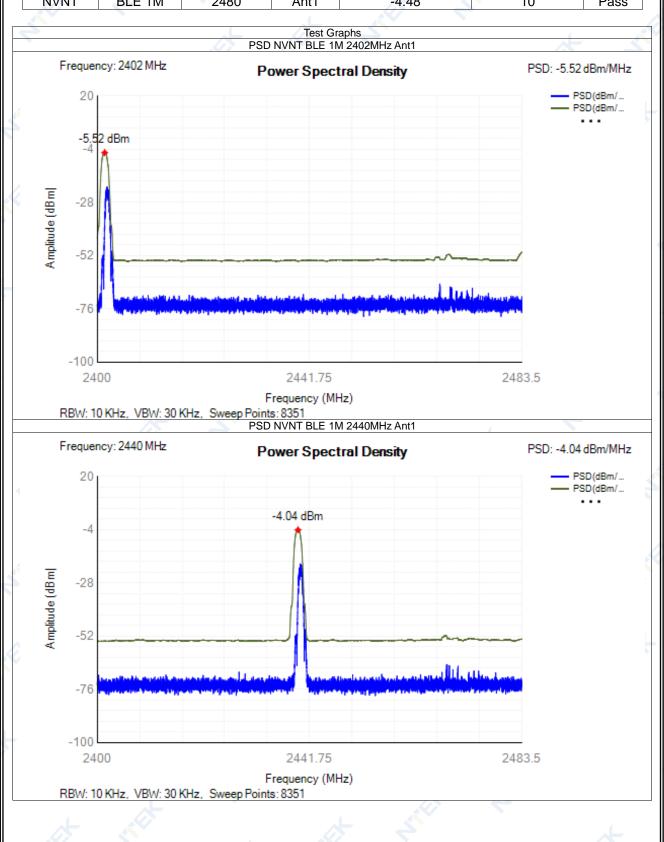


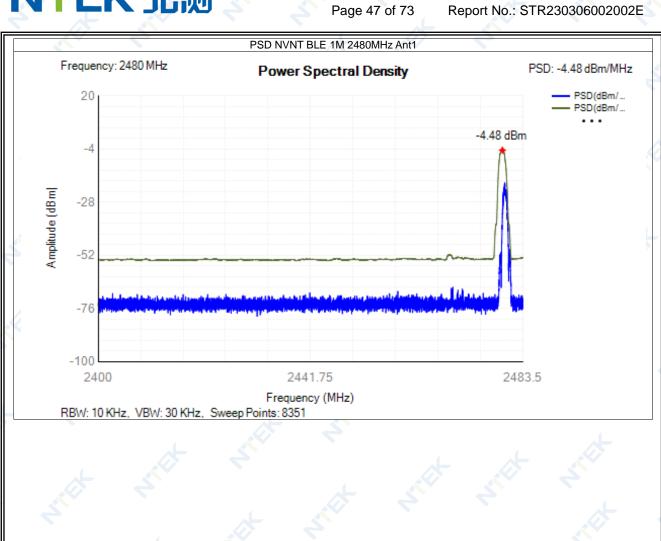

4. TEST RESULTS


1M

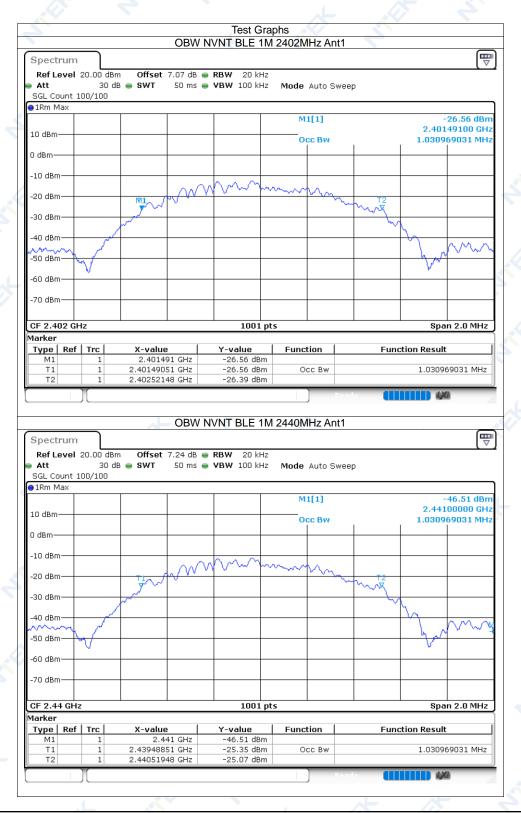
4.1 RF Output Power

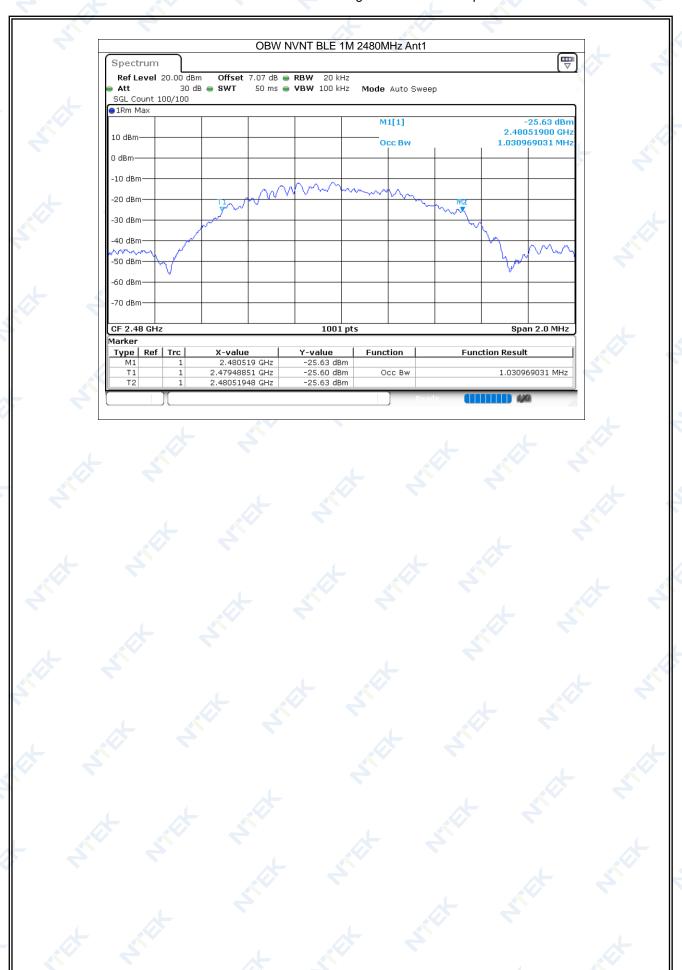
Out	Ni Output i Owei										
Condition	Mode	Frequency (MHz)	Antenna	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict			
NVNT	BLE 1M	2402	Ant1	-4.85	161	-5.45	20	Pass			
NVNT	BLE 1M	2440	Ant1	-3.38	160	-3.98	20	Pass			
NVNT	BLE 1M	2480	Ant1	-3.82	161	-4.42	20	Pass			
NVLT	BLE 1M	2402	Ant1	- 5	161	-5.6	20	Pass			
NVLT	BLE 1M	2440	Ant1	-3.5	160	-4.1	20	Pass			
NVLT	BLE 1M	2480	Ant1	-4.05	161	-4.65	20	Pass			
NVHT	BLE 1M	2402	Ant1	-5.21	161	-5.81	20	Pass			
NVHT	BLE 1M	2440	Ant1	-3.63	160	-4.23	20	Pass			
NVHT	BLE 1M	2480	Ant1	-4.16	161	-4.76	20	Pass			



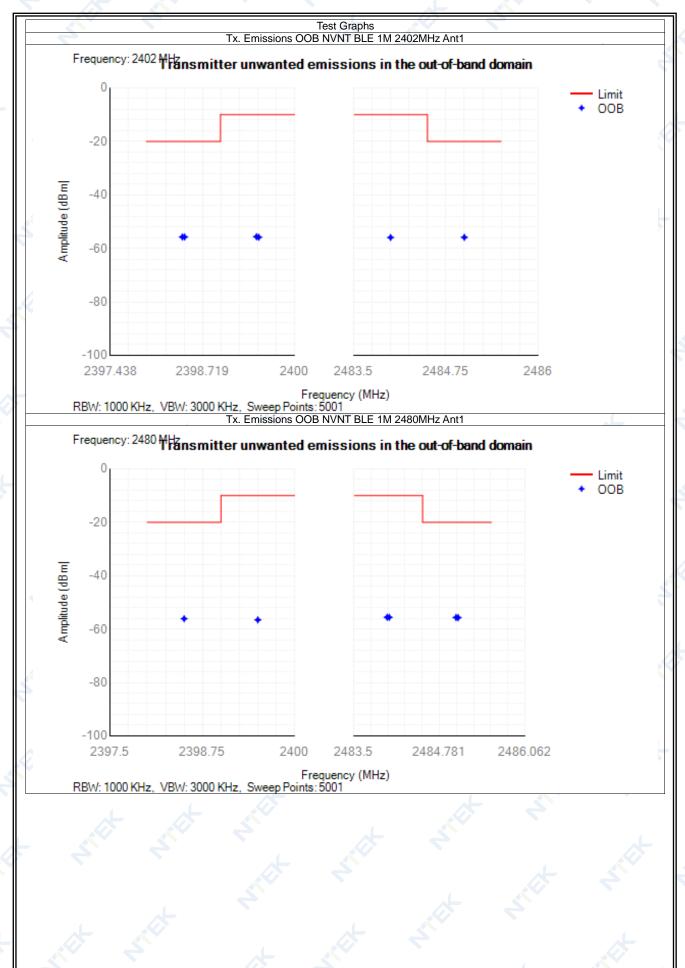


Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	-5.52	10	Pass
NVNT	BLE 1M	2440	Ant1	-4.04	10	Pass
NVNT	BLE 1M	2480	Ant1	-4.48	10	Pass



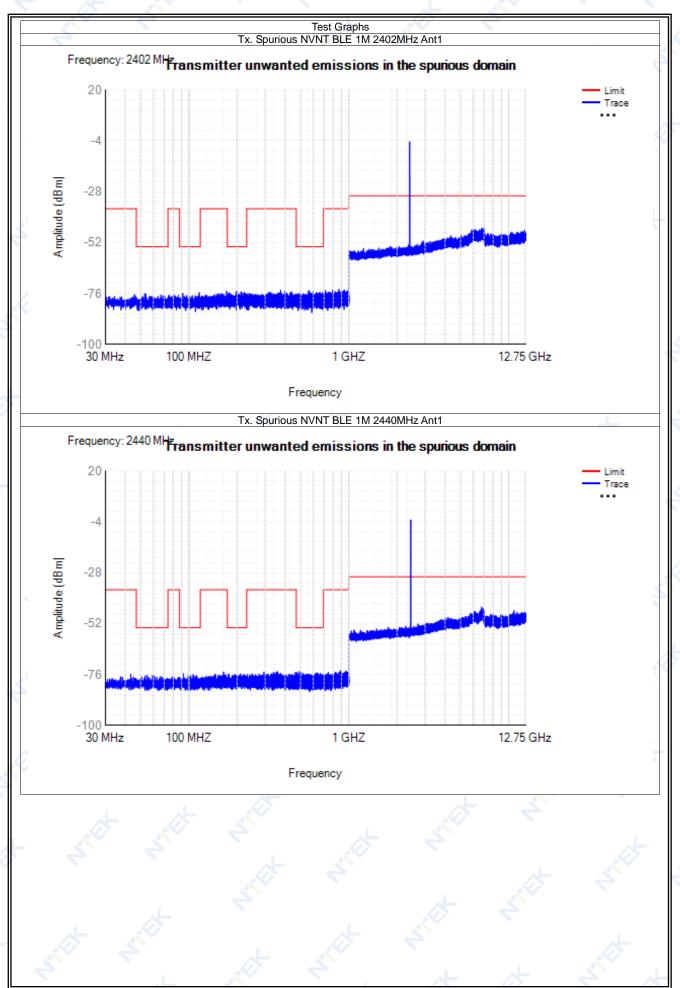


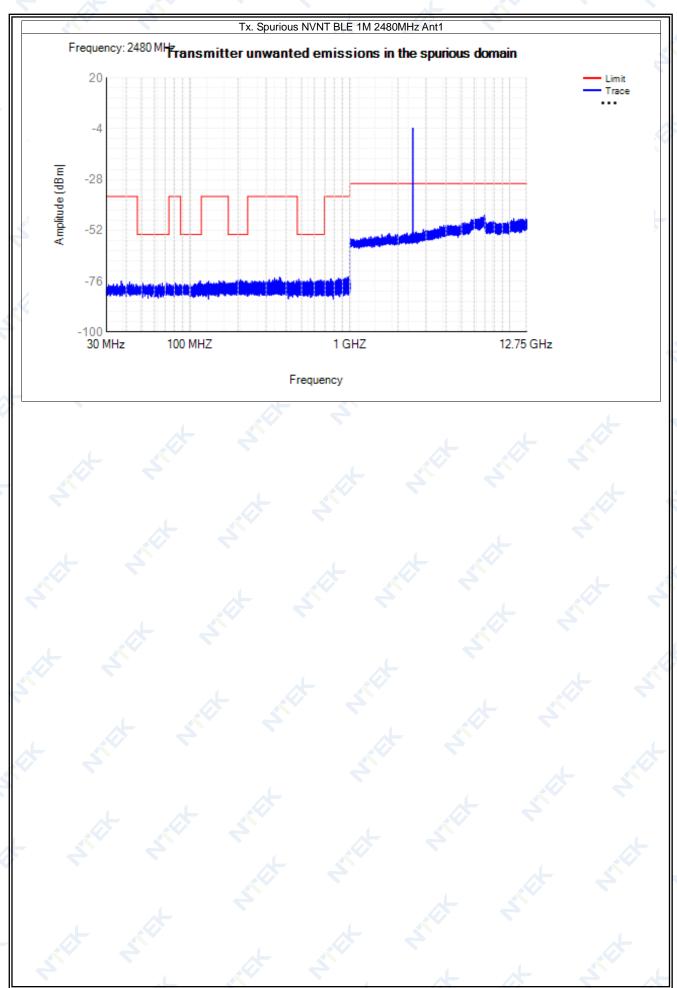
4.3 Occupied Channel Bandwidth Center Lower Upper **Limit OBW** Frequency **OBW** Condition Mode Antenna Edge Edge Verdict Frequency (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) **BLE** 2400 -**NVNT** 2402 Ant1 2402.006 1.031 2401.491 2402.521 **Pass** 2483.5MHz 1M BLE 2400 -**NVNT** 2440 Ant1 2440.004 1.031 2439.489 2440.519 **Pass** 1M 2483.5MHz BLE 2400 -**NVNT Pass** 2480 2480.004 1.031 2479.489 Ant1 2480.519 1M 2483.5MHz

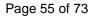


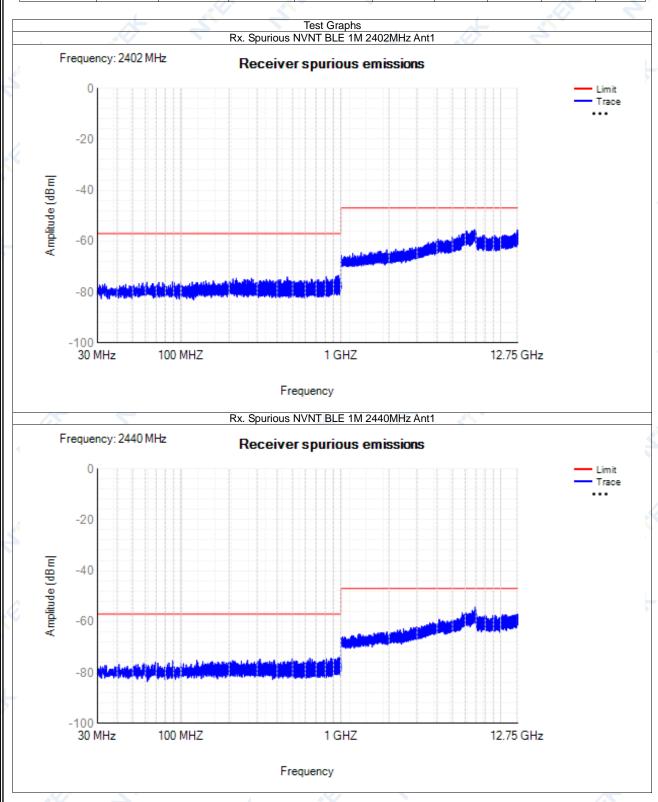
4 4 Tuese essittes	universal emission	an in the put of	والمصواء المعواد
4.4 Transmitter	unwanted emission	ns in the out-of	-band domain

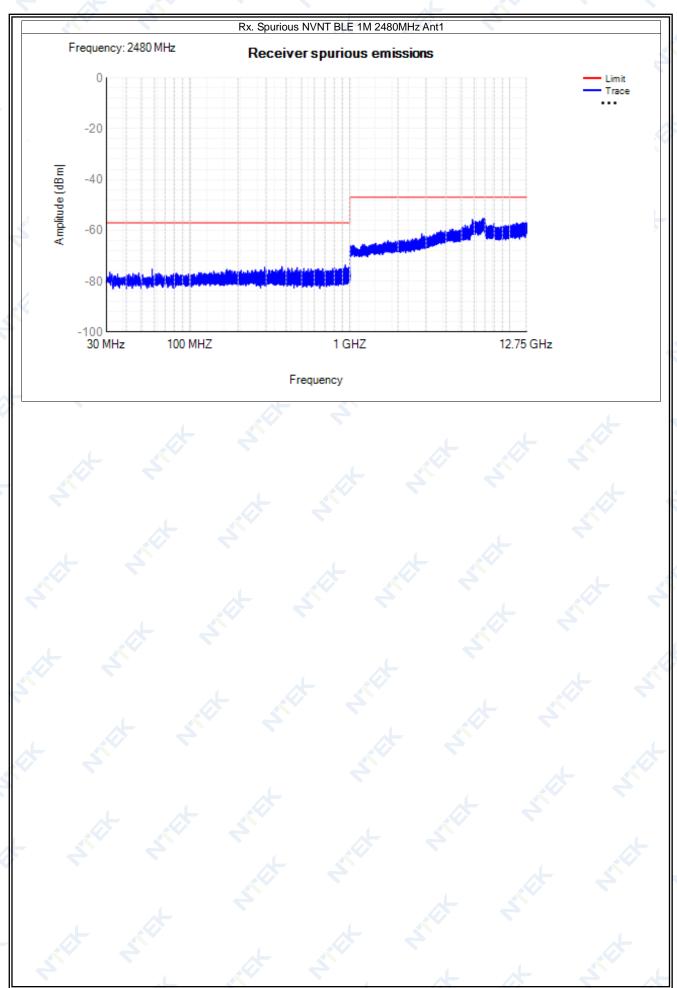
Condition	Mode	Frequency (MHz)	Antenna	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	2399.5	-55.83	-10	Pass
NVNT	BLE 1M	2402	Ant1	2399.469	-55.63	-10	Pass
NVNT	BLE 1M	2402	Ant1	2398.469	-55.74	-20	Pass
NVNT	BLE 1M	2402	Ant1	2398.438	-55.74	-20	Pass 🦯
NVNT	BLE 1M	2402	Ant1	2484	-55.93	-10	Pass
NVNT	BLE 1M	2402	Ant1	2485	-55.86	-20	Pass
NVNT	BLE 1M	2480	Ant1	2399.5	-56.54	-10	Pass
NVNT	BLE 1M	2480	Ant1	2398.5	-56.1	-20	Pass
NVNT	BLE 1M	2480	Ant1	2484	-55.56	-10	Pass
NVNT	BLE 1M	2480	Ant1	2484.031	-55.58	-10	Pass
NVNT	BLE 1M	2480	Ant1	2485.031	-55.65	-20	Pass
NVNT	BLE 1M	2480	Ant1	2485.062	-55.7	-20	Pass





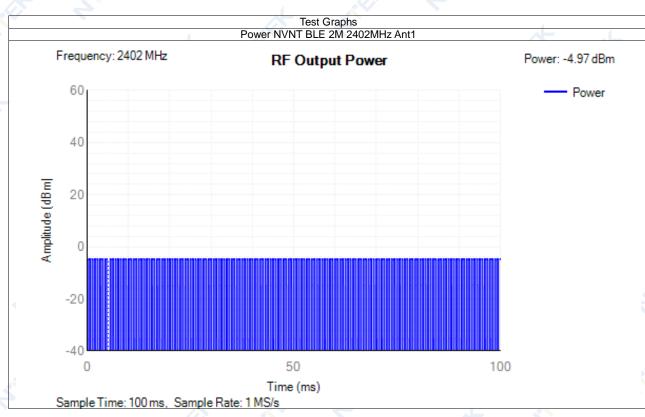

Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	30 -47	45.65	-76.53	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	47 -74	53.00	-76.12	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	74 -87.5	80.20	-76.36	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	87.5 -118	116.00	-75.60	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	118 -174	171.85	-74.95	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	174 -230	199.45	-74.88	NA	-54	Pass _
NVNT	BLE 1M	2402	Ant1	230 -470	375.15	-74.38	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	470 -694	599.00	-74.53	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	694 -1000	866.80	-74.05	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	1000 -2398	2378.50	-52.75	NA	-30	Pass
NVNT	BLE 1M	2402	Ant1	2485.5 -12750	6997.50	-45.06	NA	-30	Pass
NVNT	BLE 1M	2440	Ant1	30 -47	43.30	-75.86	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	47 -74	54.60	-76.29	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	74 -87.5	78.60	-77.14	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	87.5 -118	92.55	-75.56	NA .	-54	Pass
NVNT	BLE 1M	2440	Ant1	118 -174	164.85	-74.77	NA 🎺	-36	Pass
NVNT	BLE 1M	2440	Ant1	174 -230	177.70	-75.66	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	230 -470	357.25	-74.66	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	470 -694	489.70	-74.55	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	694 -1000	890.40	-74.11	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	1000 -2398	2267.50	-53.24	NA	-30	Pass
NVNT	BLE 1M	2440	Ant1	2485.5 -12750	6759.00	-44.22	NA 🦱	-30	Pass
NVNT	BLE 1M	2480	Ant1	30 -47	37.25	-75.94	NA	-36	Pass
NVNT	BLE 1M	2480	Ant1	47 -74	67.10	-76.81	NA	-54	Pass
NVNT	BLE 1M	2480	Ant1	74 -87.5	81.35	-76.89	NA	-36	Pass
NVNT	BLE 1M	2480	Ant1	87.5 -118	116.10	-75.82	NA	-54	Pass
NVNT	BLE 1M	2480	Ant1	118 -174	152.50	-75.80	NA	-36	Pass
NVNT	BLE 1M	2480	Ant1	174 -230	207.35	-75.23	NA	-54	Pass
NVNT	BLE 1M	2480	Ant1	230 -470	363.65	-74.09	NA	-36	Pass
NVNT	BLE 1M	2480	Ant1	470 -694	566.65	-74.74	NA	-54	Pass
NVNT	BLE 1M	2480	Ant1	694 -1000	982.35	-74.03	NA	-36	Pass
NVNT	BLE 1M	2480	Ant1	1000 -2398	2279.00	-53.24	NA	-30	Pass
NVNT	BLE 1M	2480	Ant1	2485.5 -12750	6931.00	-44.85	NA	-30	Pass

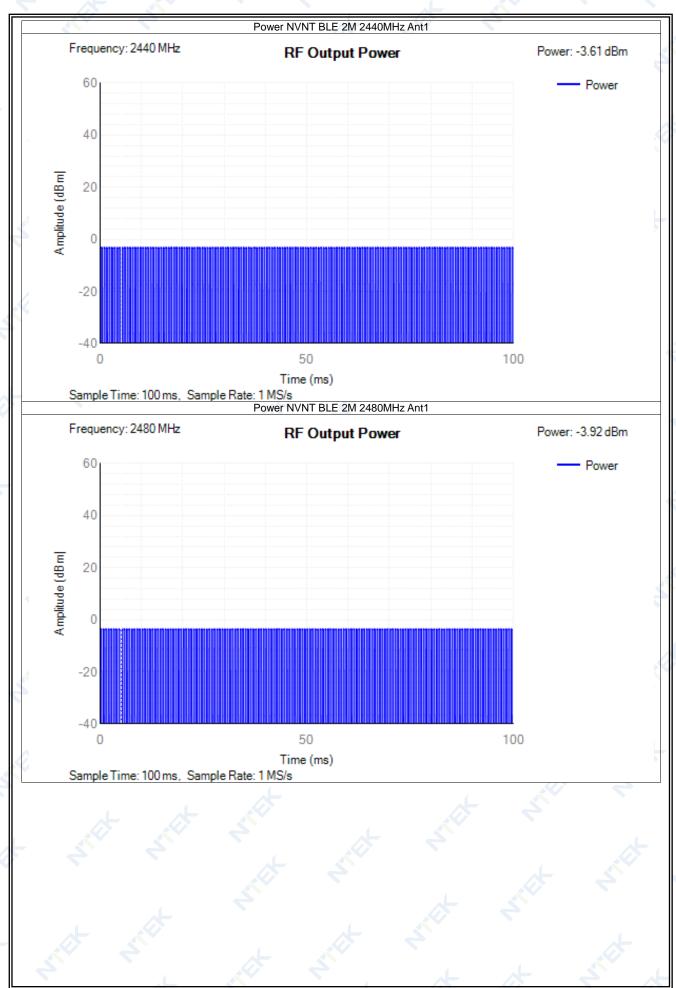


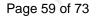


4.6 Receiver spurious emissions

Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	30 -1000	971.1	-73.44	NA	-57	Pass
NVNT	BLE 1M	2402	Ant1	1000 -12750	6880	-55.46	NA	-47	Pass
NVNT	BLE 1M	2440	Ant1	30 -1000	989.75	-73.85	NA	-57	Pass
NVNT	BLE 1M	2440	Ant1	1000 -12750	6913	-54.24	NA	-47	Pass
NVNT	BLE 1M	2480	Ant1	30 -1000	937.95	-73.57	NA	-57	Pass
NVNT	BLE 1M	2480	Ant1	1000 -12750	6926	-55.21	NA	-47	Pass

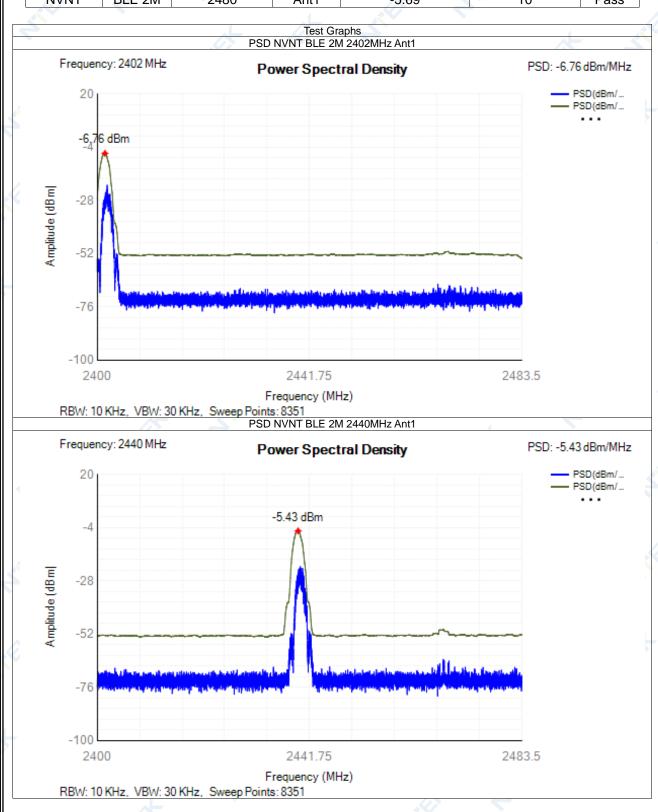


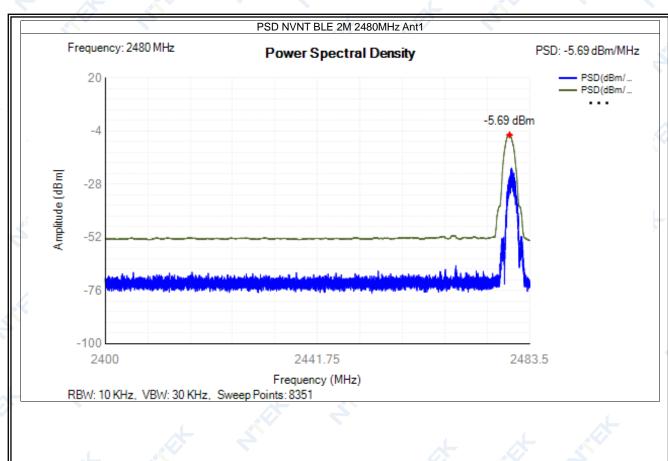



2M

4.1 RF Output Power

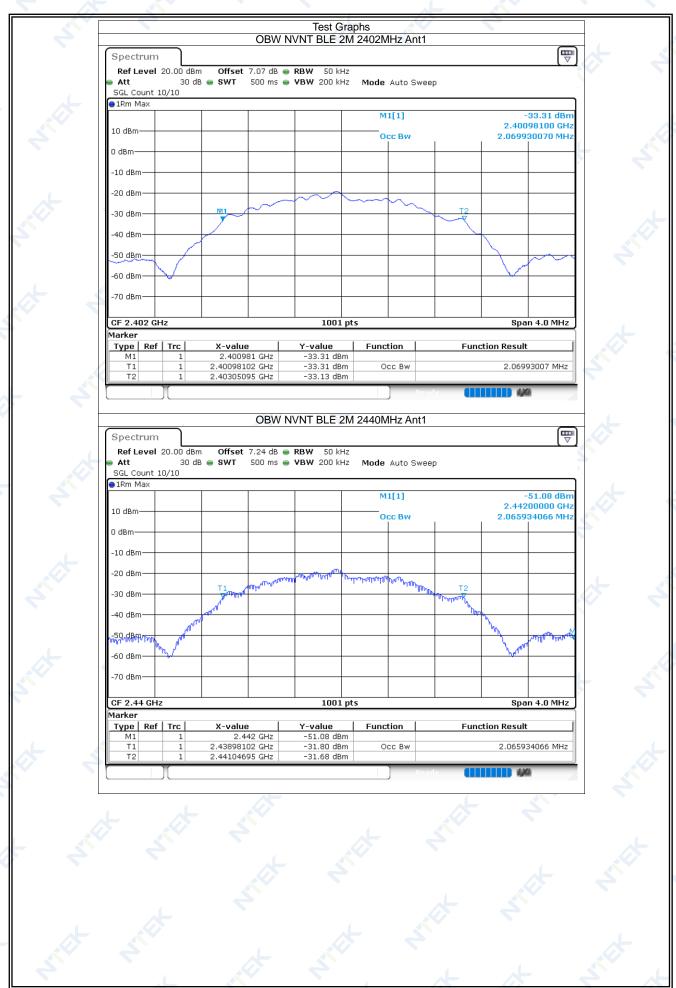
Condition	Mode	Frequency (MHz)	Antenna	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-4.97	161	-5.57	20	Pass
NVNT	BLE 2M	2440	Ant1	-3.61	160	-4.21	20	Pass
NVNT	BLE 2M	2480	Ant1	-3.92	160	-4.52	20	Pass
NVLT	BLE 2M	2402	Ant1	-5.12	161	-5.72	20	Pass
NVLT	BLE 2M	2440	Ant1	-3.73	160	-4.33	20	Pass
NVLT	BLE 2M	2480	Ant1	-4.15	160	-4.75	20	Pass
NVHT	BLE 2M	2402	Ant1	-5.33	161	-5.93	20	Pass
NVHT	BLE 2M	2440	Ant1	-3.86	160	-4.46	20	Pass
NVHT	BLE 2M	2480	Ant1	-4.26	160	-4.86	20	Pass



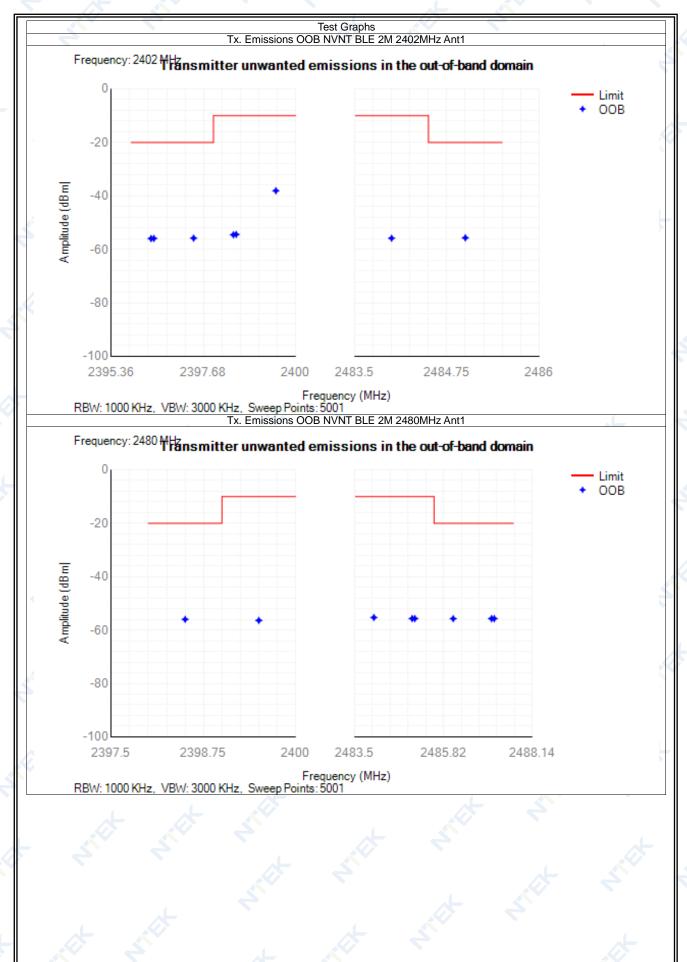


4.2	Power	Sp	pectral	De	ensity

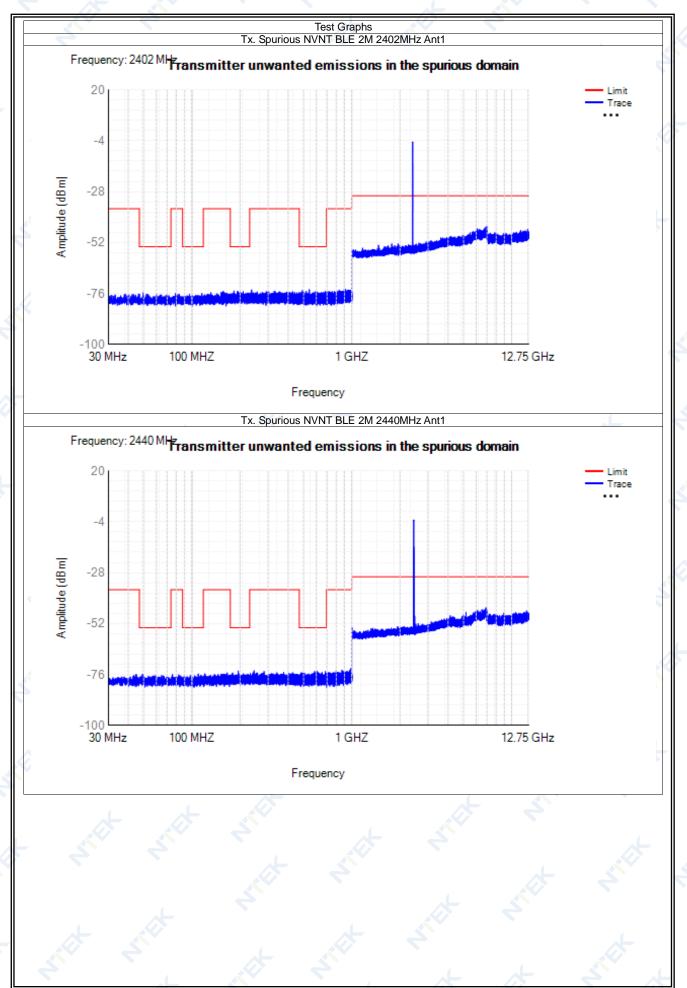
Condition	Mode	Frequency (MHz)	Antenna Max PSD Limit (dBm/MHz) (dBm/MHz)		Verdict	
NVNT	BLE 2M	2402	Ant1	-6.76	10	Pass
NVNT	BLE 2M	2440	Ant1	-5.43	10	Pass
NVNT	BLE 2M	2480	Ant1	-5.69	10	Pass

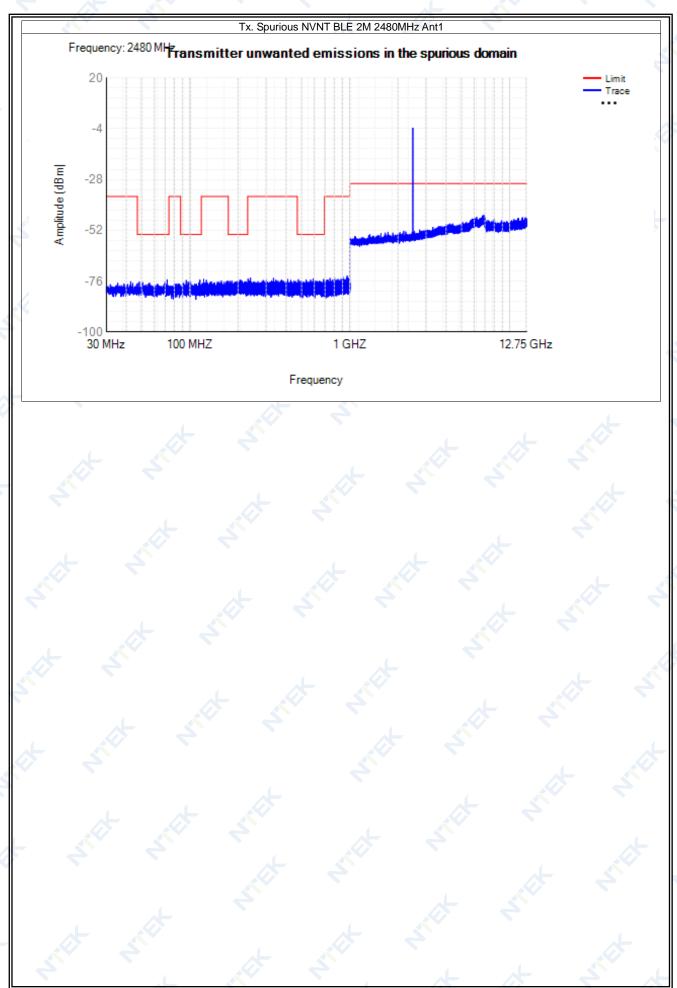


4.3 Occupied Channel Bandwidth												
Condition	Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict			
NVNT	BLE 2M	2402	Ant1	2402.016	2.07	2400.981	2403.051	2400 - 2483.5MHz	Pass			
NVNT	BLE 2M	2440	Ant1	2440.014	2.066	2438.981	2441.047	2400 - 2483.5MHz	Pass			
NVNT	BLE 2M	2480	Ant1	2480.016	2.07	2478.981	2481.051	2400 - 2483.5MHz	Pass			
	./	* -				1	大					

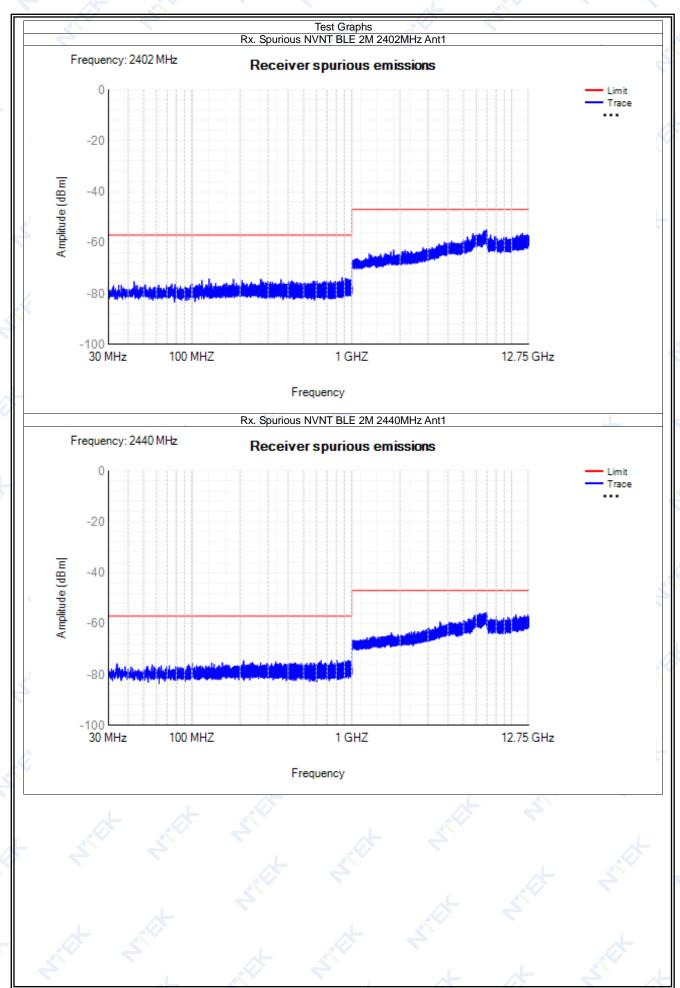


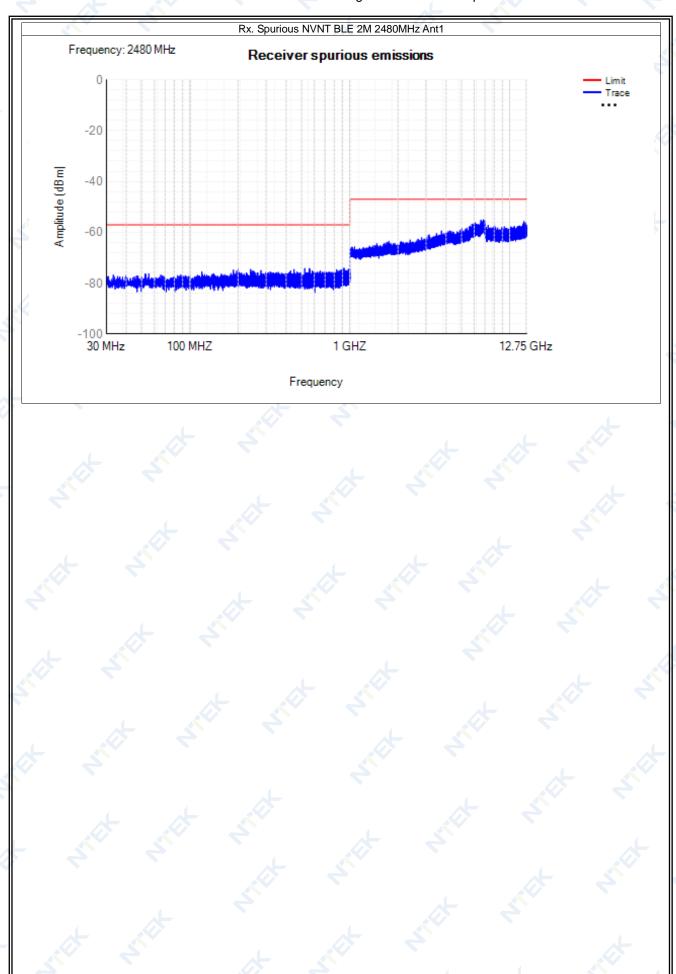
4.4	Transm	itter un	wanted emi	ssions in	the out-of-ba	and domain		
C	ondition	Mode	Frequency (MHz)	Antenna	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict
	NVNT BLE 2M		2402	Ant1	2399.5	-38.07	-10	Pass
	NVNT B		2402	Ant1	2398.5	-54.41	-10	Pass
	NVNT	BLE 2M	2402	Ant1	2398.43	-54.54	-10	Pass
	NVNT	BLE 2M	2402	Ant1	2397.43	-55.8	-20	Pass
	NVNT	BLE 2M	2402	Ant1	2396.43	-55.9	-20	Pass
	NVNT BLE 2M		2402	Ant1	2396.36	-55.94	-20	Pass
*	NVNT BI		2402	Ant1	2484	-55.83	-10	Pass
	NVNT	BLE 2M	2402	Ant1	2485	-55.67	-20	Pass
	NVNT BLE 2M NVNT BLE		2480	Ant1	2399.5	-56.37	-10	Pass
			2480	Ant1	2398.5	-55.97	-20	Pass
			2480	Ant1	2484	-55.28	-10	Pass
				Ant1	2485	-55.68	-10	Pass
			2480	Ant1	2485.07	-55.67	-10	Pass
			2480	Ant1	2486.07	-55.71	-20	Pass
			2480	Ant1	2487.07	-55.7	-20	Pass
	NVNT	BLE 2M	2480	Ant1	2487.14	-55.7	-20	Pass


4.5 Transmitter unwanted emissions in the spurious domain									
Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdic
NVNT	BLE 2M	2402	Ant1	30 -47	46.45	-76.21	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	47 -74	49.55	-75.64	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	74 -87.5	79.00	-76.00	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	87.5 -118	115.55	-76.00	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	118 -174	157.05	-74.89	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	174 -230	183.35	-74.77	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	230 -470	236.30	-74.25	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	470 -694	542.10	-74.15	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	694 -1000	898.15	-73.90	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	1000 -2396	1947.50	-52.60	NA	-30	Pass
NVNT	BLE 2M	2402	Ant1	2487.5 -12750	6973.00	-44.38	NA	-30	Pass
NVNT	BLE 2M	2440	Ant1	30 -47	44.95	-75.99	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	47 -74	49.50	-75.87	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	74 -87.5	75.60	-76.03	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	87.5 -118	109.60	-75.73	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	118 -174	166.25	-75.18	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	174 -230	194.85	-74.31	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	230 -470	244.95	-74.19	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	470 -694	605.25	-74.35	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	694 -1000	988.35	-73.04	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	1000 -2396	2116.50	-53.37	NA	-30	Pass
NVNT	BLE 2M	2440	Ant1	2487.5 -12750	6895.50	-44.51	NA	-30	Pass
NVNT	BLE 2M	2480	Ant1	30 -47	42.60	-76.21	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	47 -74	72.05	-75.27	NA	-54	Pass
NVNT	BLE 2M	2480	Ant1	74 -87.5	85.15	-77.22	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	87.5 -118	115.55	-75.35	NA	-54	Pass
NVNT	BLE 2M	2480	Ant1	118 -174	122.10	-75.08	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	174 -230	205.50	-75.38	NA	-54	Pass

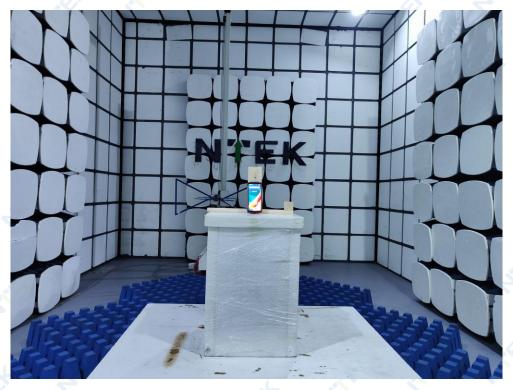


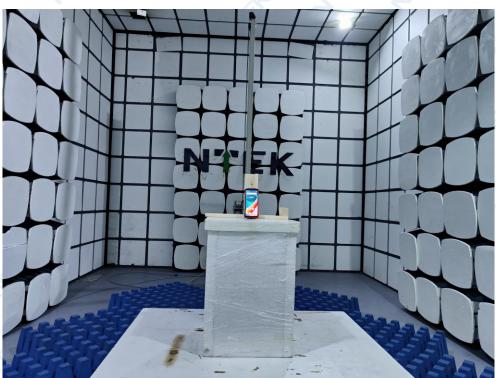
NVNT	BLE 2M	2480	Ant1	230 -470	239.30	-74.42	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	470 -694	590.10	-74.83	NA	-54	Pass
NVNT	BLE 2M	2480	Ant1	694 -1000	963.25	-73.44	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	1000 -2396	2171.00	-52.42	NA	-30	Pass
NVNT	BLE 2M	2480	Ant1	2487.5 -12750	6885.50	-44.82	NA	-30	Pass




4 6 5 4 7		
4.6 Receiver	Spurious	emissions
710 110001101	Opulloud	

Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	30 -1000	869.65	-73.73	NA	-57	Pass
NVNT	BLE 2M	2402	Ant1	1000 -12750	6966.5	-54.72	NA	-47	Pass
NVNT	BLE 2M	2440	Ant1	30 -1000	950.6	-74.34	NA	-57	Pass
NVNT	BLE 2M	2440	Ant1	1000 -12750	6883.5	-55.69	NA	-47	Pass
NVNT	BLE 2M	2480	Ant1	30 -1000	920.4	-74.08	NA	-57	Pass
NVNT	BLE 2M	2480	Ant1	1000 -12750	6839	-55.04	NA	-47	Pass





5. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT