

RF Test Report

Report No.: AGC14435230901ER02

PRODUCT DESIGNATION	:	Smart Watch
BRAND NAME	:	Blackview, IOWODO, FeipuQu, Baolubao
MODEL NAME	:	X1_5, X1, X1Pro, W30, W50, W60, W70, W80, W90, W30Pro, W50Pro, W60Pro, W70Pro, W80Pro, W90Pro
APPLICANT	:	Shenzhen Hairuichuang Technology Co., Ltd.
DATE OF ISSUE	:	Sep. 21, 2023
STANDARD(S)	:	ETSI EN 300 328 V2.2.2 (2019-07)
REPORT VERSION	:	V1.0

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Sep. 21, 2023	Valid	Initial Release	

TABLE OF CONTENTS

	VERIFICATION OF CONFORMITY	
2. (GENERAL INFORMATION	5
	2.1. EUT DESCRIPTION	5
	2.2. SUPPORT EQUIPMENT	6
	2.3. DESCRIPTION OF TEST MODES	
	2.4. OBJECTIVE	7
	2.5. TEST ITEMS AND THE RESULTS	7
	2.6. ENVIRONMENTAL CONDITIONS	7
3. I	MEASUREMENT UNCERTAINTY	8
	DENTIFICATION OF THE RESPONSIBLE TESTING LOCATION	
5. E	ETSI EN 300 328 REQUIREMENTS	10
	5.1. RF OUTPUT POWER	10
	5.2. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPIATION AND HOPPING SEQUENCE	13
	5.3. HOPPING FREQUENCY SEPARATION	20
	5.4. OCCUPIED CHANNEL BANDWIDTH	22
	5.5. TRANSMITTER UNWANTED EMISSIONS IN THE OUT OF BAND DOMAIN	
	5.6. TRANSMITTER SPURIOUS EMISSIONS	
	5.7. RECEIVER SPURIOUS EMISSIONS	
	5.8. RECEIVER BLOCKING	
AP	PENDIX A: PHOTOGRAPHS OF THE TEST SETUP	49
AP	PENDIX B: PHOTOGRAPHS OF EUT	51

1. VERIFICATION OF CONFORMITY

Applicant	Shenzhen Hairuichuang Technology Co., Ltd.			
Address	Room 2001, Building A, Weidonglong Business Building, No. 2125, Meilong Avenue, Longhua District, Shenzhen, China			
Manufacturer	Shenzhen Hairuichuang Technology Co., Ltd.			
Address	Room 2001, Building A, Weidonglong Business Building, No. 2125, Meilong Avenue, Longhua District, Shenzhen, China			
Factory	Shenzhen Hairuichuang Technology Co., Ltd.			
Address	Room 2001, Building A, Weidonglong Business Building, No. 2125, Meilong Avenue, Longhua District, Shenzhen, China			
Product Designation	Smart Watch			
Brand Name	Blackview, IOWODO, FeipuQu, Baolubao			
Test Model	X1_5			
Series Model	X1, X1Pro, W30, W50, W60, W70, W80, W90, W30Pro, W50Pro, W60Pro, W70Pro, W80Pro, W90Pro			
Difference Description	All the same except for the model names.			
Date of receipt of test item	Sep. 11, 2023			
Date of test	Sep. 11, 2023 to Sep. 21, 2023			
Deviation	None			
Condition of Test Sample	Normal			
Test Result	Pass			
Report Template	AGCRT-EC-BR/RF			

Note: The test results of this report relate only to the tested sample identified in this report.

にょしう Prepared By Cici Li Sep. 21, 2023 (Project Engineer) Reviewed By Calvin Liu Sep. 21, 2023 (Reviewer) Approved By

Max Zhang Authorized Officer

Sep. 21, 2023

2. GENERAL INFORMATION

2.1. EUT DESCRIPTION

Operating Frequency Range(s)	2402MHz~2480MHz
The type of the equipment	FHSS adaptive equipment with only one antenna
The number of Hopping Frequencies	79
Modulation	BR: ⊠GFSK EDR: ⊠π /4-DQPSK, ⊠8DPSK
Bluetooth Version	V5.3
Hardware Version	V1.0
Software Version	V1.0
The maximum RF Output Power	1.10dBm
Antenna designation	FPC Antenna
Antenna Gain	1.29dBi
Power Supply	DC 3.8V by battery or DC 5V by adapter
The extreme operating conditions	Lowest temperature range (LT): -10°C Normal temperature range (NT): 25°C Highest temperature range (HT): 40°C
Geo-location capability	□Yes ⊠No

Note:

- 1. The above information was declared by the manufacturer.
- 2. The equipment submitted representative production models.
- 3. The EUT cannot operated unmodulated.
- 4. The EUT provides Bluetooth wireless interface operating at 2.4G ISM band (2402MHz-2480MHz).
- 5. Only the Bluetooth was tested according the standard requirement.
- 6. The EUT is a stand-alone and portable equipment according to ETSI EN 300 328 V2.2.2.
- 7. For more details, please refer to the User's manual of the EUT.

2.2. SUPPORT EQUIPMENT

ltem	Equipment	Mfr/Brand	Model/Type No.	Remark

2.3. DESCRIPTION OF TEST MODES

Test Mode	Description	
BR_TX_2402_1Mbps	Bluetooth BR Transmitting mode (Channel: 2402, Rate: 1Mbps)	
BR_TX_2480_1Mbps	Bluetooth BR Transmitting mode (Channel: 2480, Rate: 1Mbps)	
EDR_TX_2402_2Mbps	Bluetooth EDR Transmitting mode (Channel: 2402, Rate: 2Mbps)	
EDR_TX_2480_2Mbps	Bluetooth EDR Transmitting mode (Channel: 2480, Rate: 2Mbps)	
EDR_TX_2402_3Mbps	Bluetooth EDR Transmitting mode (Channel: 2402, Rate: 3Mbps)	
EDR_TX_2480_3Mbps	Bluetooth EDR Transmitting mode (Channel: 2480, Rate: 3Mbps)	
BR_HOP_NA_1Mbps	Bluetooth BR Hopping mode (Rate: 1Mbps)	
EDR_HOP_NA_2Mbps	Bluetooth EDR Hopping mode (Rate: 2Mbps)	
EDR_HOP_NA_3Mbps	Bluetooth EDR Hopping mode (Rate: 3Mbps)	
BR_RX_2402_1Mbps	Bluetooth BR Receiving mode (Channel: 2402, Rate: 1Mbps)	
BR_RX_2480_1Mbps	Bluetooth BR Receiving mode (Channel: 2480, Rate: 1Mbps)	
EDR_RX_2402_2Mbps	Bluetooth EDR Receiving mode (Channel: 2402, Rate: 2Mbps)	
EDR_RX_2480_2Mbps	Bluetooth EDR Receiving mode (Channel: 2480, Rate: 2Mbps)	
EDR_RX_2402_3Mbps	Bluetooth EDR Receiving mode (Channel: 2402, Rate: 3Mbps)	
EDR_RX_2480_3Mbps	Bluetooth EDR Receiving mode (Channel: 2480, Rate: 3Mbps)	

Note:

1. All modes have been tested and the worst mode test data recording in the test report, if no any other data.

2.4. OBJECTIVE

Perform Radio Spectrum tests for CE Marking according to the provisions of article 3.2 of the Radio Equipment Directive (2014/53/EU) for the BT function of the EUT.

2.5. TEST ITEMS AND THE RESULTS

The EUT has been tested according to ETSI EN 300 328 V2.2.2(2019-07).

ETSI EN 300 328	Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band;
V2.2.2 (2019-07)	Harmonised Standard for access to radio spectrum

Test items and the results are as bellow:

No.	Basic Standard	Test Туре	Result
1	ETSI EN 300 328 4.3.1.2	RF Output Power	Pass
2	ETSI EN 300 328 4.3.1.3	Duty Cycle, Tx-sequence, Tx-gap	N/A
3	ETSI EN 300 328 4.3.1.4	Accumulated transmit time, Frequency Occupation and hopping sequence	Pass
4	ETSI EN 300 328 4.3.1.5	Hopping Frequency Separation	Pass
5	ETSI EN 300 328 4.3.1.6	Medium Utilisation (MU) factor	N/A
6	ETSI EN 300 328 4.3.1.7	Adaptivity (Adaptive Frequency Hopping)	N/A
7	ETSI EN 300 328 4.3.1.8	Occupied Channel Bandwidth	Pass
8	ETSI EN 300 328 4.3.1.9	Transmitter unwanted emission in the out of band domain	Pass
9	ETSI EN 300 328 4.3.1.10	Transmitter unwanted emission in the spurious domain	Pass
10	ETSI EN 300 328 4.3.1.11	Receiver Spurious emissions	Pass
11	ETSI EN 300 328 4.3.1.12	Receiver Blocking	Pass

Note:

- 1. N/A means it's not applicable to this item.
- 2. Owing to the maximum declared RF Output power (e.i.r.p.) less than 10 dBm, so the item 2, 5, 6 are not applicable.

2.6. ENVIRONMENTAL CONDITIONS

- Temperature: 15-35°C
- Relative Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

3. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Item	Measurement Uncertainty		
Uncertainty of Radio Frequency	$Uc=\pm 1 \times 10^{-7}$		
Uncertainty of total RF power, conducted	$Uc = \pm 0.8 dB$		
Uncertainty of RF power density, conducted	$Uc = \pm 2.6 dB$		
Uncertainty of spurious emissions, conducted	$U_c = \pm 2.7 dB$		
Uncertainty of spurious emissions, radiated	$U_c = \pm 5.4 dB$		
Uncertainty of Temperature	$U_c = 0.5^\circ$ C		
Uncertainty of Humidity	$U_c = \pm 1 \%$		
Uncertainty of DC and low frequency voltages	$U_c = \pm 2 \%$		

4. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION

Site	Attestation of Global Compliance (Shenzhen) Co., Ltd.
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

LIST OF EQUIPMENTS USED

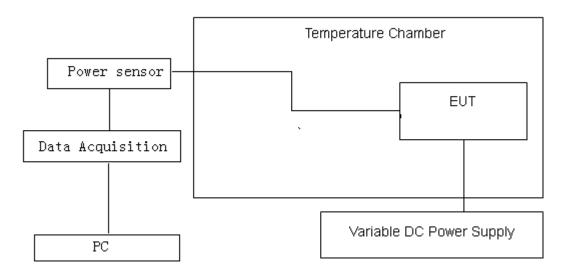
Description	Manufacturer	Model No.	S/N	Cal. Date	Cal. Due
MXG X-Series Vector Signal Generator	Agilent	N5182B	MY53050647	Mar. 03, 2023	Mar. 02, 2024
Signal Generator	Agilent	N5171B	MY53050474	Jun. 01, 2023	May 31, 2024
EXA Signal Analyzer	Agilent	N9020A	MY49100060	Jun. 03, 2023	Jun. 02, 2024
USB Wideband Power Sensor	Agilent	U2021XA	MY54110007	May 11, 2021	May 10, 2025
USB Wideband Power Sensor	Agilent	U2021XA	MY54110009	May 11, 2021	May 10, 2025
RF Communication Tester	R&S	CMW270	101933	Jun. 02, 2023	Jun. 01, 2024
Attenuator	Wariors	W13	11324	N/A	N/A
Power spliter	Mini-Circuits	ZFRSC-183-s	3122	N/A	N/A
2.4G Band Fliter	EM Electronics	2400-2500	N/A	Mar. 22, 2022	Mar. 21, 2024
Small environment tester	ESPEC	SH-242	N/A	Aug. 03, 2022	Aug. 02, 2024
AMPLIFIER	ETS-LINDGREN	3117PA	00225134	Sep. 02, 2022	Sep. 01, 2024
ANTENNA	SCHWARZBECK	VULB9168	494	Jan. 05, 2023	Jan. 04, 2025
Biconilog Antenna	ETS-LINDGREN	3142C	00060447	N/A	N/A
HORN ANTENNA	ETS-LINDGREN	3117	00154520	Mar. 23, 2023	Mar. 22, 2024
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00034609	Mar. 23, 2023	Mar. 22, 2024
RF Cable	Harbour	SHWCB-3000-N	N/A	Mar. 22, 2023	Mar. 21, 2025

5. ETSI EN 300 328 REQUIREMENTS

5.1. RF OUTPUT POWER

5.1.1 LIMIT

RF Output Power <= 100mW (20dBm) over Normal and Extreme conditions.

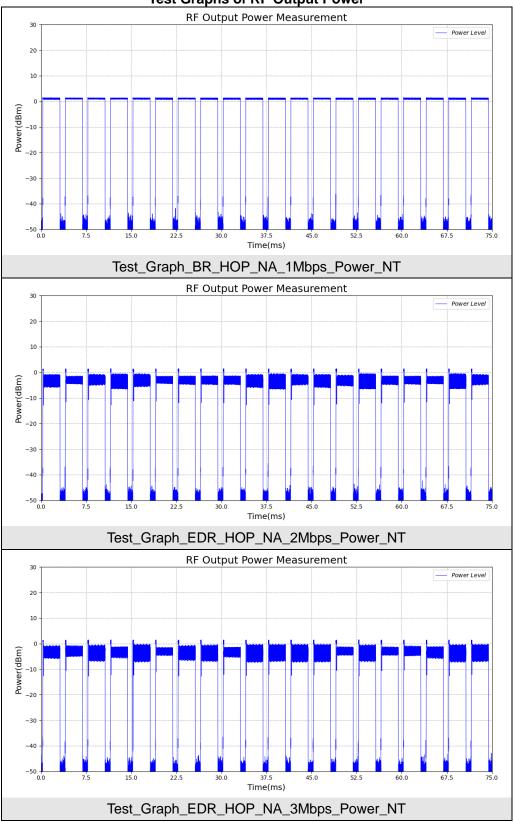

5.1.2 MEASUREMENT PROCEDURE

1) Use a fast power sensor and set the samples speed 1MS/s or faster.

- 2)Connect one power sensor to each transmit port, Trigger the power sensors so that they start sampling at the same time. For each instant in time, sum the power of the individual samples of all ports and store them. Use these stored samples in all following steps.
- 3) Find the start and stop times of each burst in the stored measurement samples.
- 4) Between the start and stop times of each individual burst calculate the RMS power over the burst. Save these P burst values, as well as the start and stop times for each burst.
- 5) The highest of all P burst values (Value "A" in dBm) will be used for maximum e.i.r.p calculations.
- 6)The cable loss and attenuator factor shall be considered to the value "A".
- 6) Add the (stated) antenna assembly gain "G" in dBi of the individual antenna. If applicable, add the additional beamforming gain "Y" in dB.
- 7) The RF output power (P) shall be calculated using the formula: P=A+G+Y

5.1.3 TEST CONFIGURATION

Temperature and Voltage Measurement (under normal and extreme test conditions)



5.1.4 MEASUREMENT RESULTS

Test Data of RF Output Power						
Toot Mode	RF Output Power [dBm]			Limit [dDm]	Verdict	
Test Mode	NT	LT	HT	Limit [dBm]	veruici	
BR_HOP_NA_1Mbps	1.10	1.09	1.08	20	Pass	
EDR_HOP_NA_2Mbps	-2.48	-2.56	-2.47	20	Pass	
EDR_HOP_NA_3Mbps	-2.55	-2.40	-2.53	20	Pass	

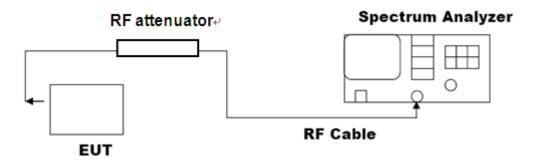
Test Graphs of RF Output Power

Note: Only the data of worst case is reported as above.

5.2. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPIATION AND HOPPING SEQUENCE

5.2.1 LIMIT

ACCUMULATED TRANSMIT TIME				
CONDITION	LIMIT			
Non-adaptive frequency hopping systems	≤ 15 ms			
Adaptive frequency hopping systems	≤ 400 ms			


FREQUENCY OCCUPATION				
CONDITION	LIMIT (OPTION 1)			
	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not			
	exceeding four times the product of the dwell time and the number of hopping frequencies in use.			

HOPPING SEQUENCE(S)					
CONDITION	LIMIT				
Non-adaptive frequency hopping systems	≥5 hopping frequencies or 5/minimum Hopping Frequency Separation in MHz, whichever is the greater.				
⊠Adaptive frequency hopping systems	Operating frequency band ≥58.45MHz (Operating over a minimum of 70 % of the operating in the band 2,4 GHz to 2,4835 GHz)				
	≥15 hopping frequencies or 15/minimum Hopping Frequency Separation in MHz, whichever is the greater.				

5.2.2 TEST PROCEDURE

Please refer to ETSI EN300328 V2.2.2 Section 5.4.4

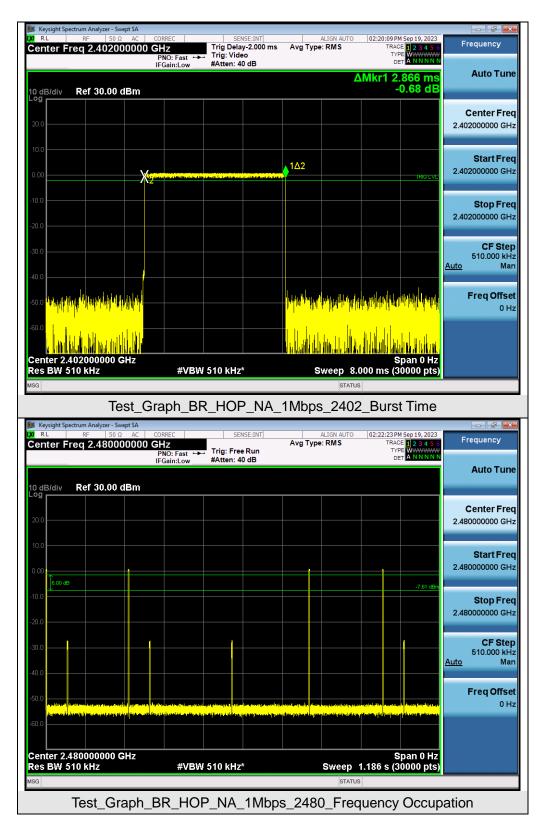
5.2.3 TEST CONFIGURATION

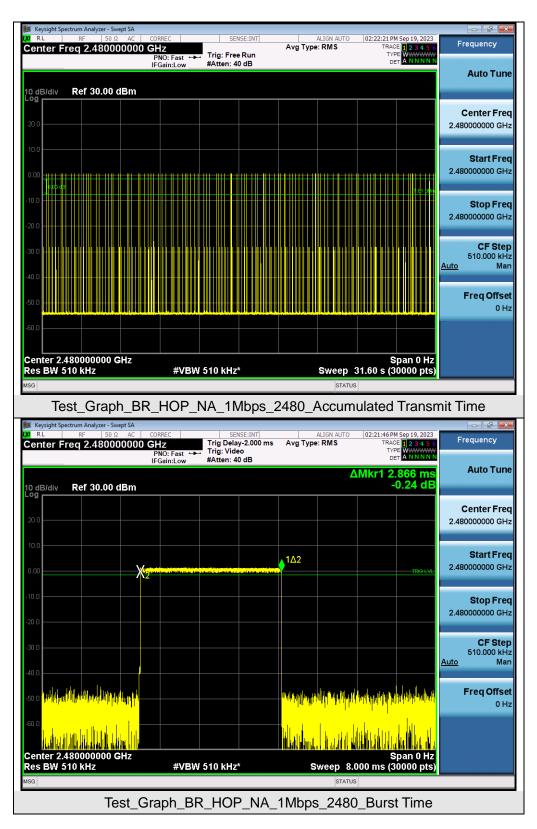
5.2.4 TEST RESULTS


Test Data of Accumulated Transmit Time, Frequency Occupation							
Test ModeChannel (MHz)Accumulated transmit time (ms)Limit (ms)Frequency Occupation (pcs)Limit (pcs)Verdict						Verdict	
BR_HOP_NA_1Mbps	2402	303.796	≪400	4	≥1	Pass	
	2480	306.662	≪400	4	≥1	Pass	

Note: 1) All the modes had been tested, but only the worst data recorded in the report.

2) The Accumulated transmit time and Dwell Time are calculated by a computing device using an appropriate software application or program.


3) Sweep time for Frequency Occupation= Dwell Time*4*79.



TEST RESULT FOR HOPPING SEQUENCE

Channel	Frequency (GHz)	Channel	Frequency (GHz)
01	2.402	42	2.443
02	2.403	43	2.444
03	2.404	44	2.445
04	2.405	45	2.446
05	2.406	46	2.447
06	2.407	47	2.448
07	2.408	48	2.449
08	2.409	49	2.450
09	2.410	50	2.451
10	2.411	51	2.452
11	2.412	52	2.453
12	2.413	53	2.454
13	2.414	54	2.455
14	2.415	55	2.456
15	2.416	56	2.457
16	2.417	57	2.458
17	2.418	58	2.459
18	2.419	59	2.460
19	2.420	60	2.461
20	2.421	61	2.462
21	2.422	62	2.463
22	2.423	63	2.464
23	2.424	64	2.465
24	2.420	65	2.466
25	2.426	66	2.467
26	2.427	67	2.468
27	2.428	68	2.469
28	2.429	69	2.470
29	2.430	70	2.471
30	2.431	71	2.472
31	2.432	72	2.473
32	2.433	73	2.474
33	2.434	74	2.475
34	2.435	75	2.476
35	2.436	76	2.477
36	2.437	77	2.478
37	2.438	78	2.479
38	2.439	79	2.480
39	2.440		
40	2.441		
41	2.442		

Test Data of Hopping Sequence						
Test Mode Number of hopping Limit -20dBc Hopping Limit Verdict frequencies BW [MHz] [MHz]						
BR_HOP_NA_1Mbps	79	≥15	79.653	≥58.45	Pass	

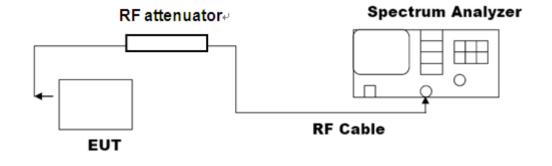
Test Graphs of Hopping Sequence

🚺 Keysight Spectrum Analyzer - Swept SA					
IX RL RF 50 Ω AC Center Freq 2.441750000	CORREC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	02:23:27 PM Sep 19, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWW	Frequency
10 dB/div Ref 30.00 dBm	IFGain:Auto	#Atten: 40 dB	Mkr	1 2.467 20 GHz 1.454 dBm	Auto Tune
	Dadabas	46262292		1	Center Freq 2.441750000 GHz
0.00		111111	******	-20.00 dB 79.65 MHz	Start Freq 2.400000000 GHz
-40.0					Stop Freq 2.483500000 GHz
Start 2.40000 GHz #Res BW 510 kHz	#VBW 5	Y FUN	Sweep (#FFT) ~3	Stop 2.48350 GHz 8.49 ms (1000 pts)	CF Step 8.350000 MHz <u>Auto</u> Man
1 N 1 f 2.4 2 3 4 4 5	67 20 GHz	1.454 dBm			Freq Offset 0 Hz
6 7 8 9 10					
MSG		m	STATUS	* }	
Те	st_Graph_	_BR_HOP_	NA_1Mbps_H	HopNum	

Note: The modulation used during test is GFSK and this is the worst case.

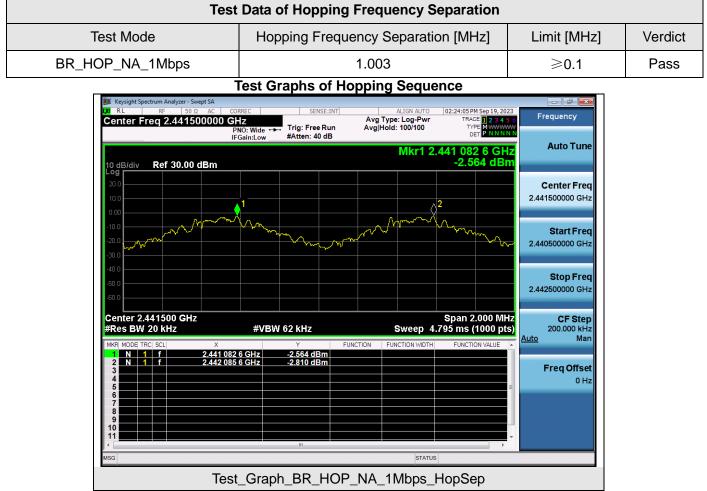
5.3. HOPPING FREQUENCY SEPARATION

5.3.1 LIMIT


For Non-adaptive frequency hopping systems: The minimum Hopping Frequency Separation shall be equal to Occupied Channel Bandwidth (see clause 4.3.1.7) of a single hop, with a minimum separation of 100 kHz.

For Adaptive frequency hopping systems: The minimum Hopping Frequency Separation shall be 100 kHz.

5.2.2 TEST PROCEDURE


Please refer to ETSI EN300328 V2.2.2 Section 5.4.5

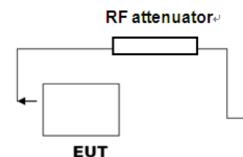
5.2.3 TEST CONFIGURATION

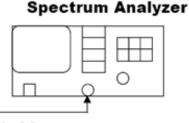
5.3.4 TEST RESULTS

Note: The modulation used during test is GFSK and this is the worst case.

5.4. OCCUPIED CHANNEL BANDWIDTH

5.4.1 LIMIT


The Occupied Channel Bandwidth shall fall completely within the band 2400MHz to 2483.5MHz.


5.4.2 TEST PROCEDURE

1)The spectrum analyser shall be used the following settings: Centre Frequency: The centre frequency of the channel under test Resolution BW: ~1% of the span without going below 1% Video BW: 3×RBW Span: 2×OBW Detector: RMS Trace mode: Max Hold

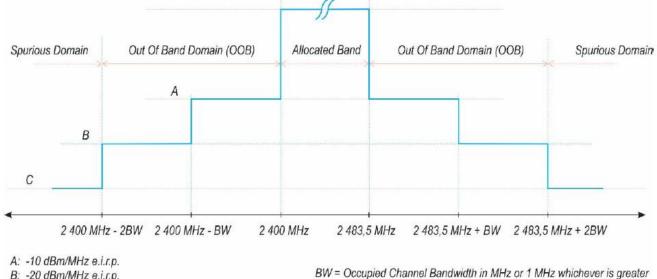
- 2) Wait until the trace is completed, find the peak value of the trace and place the analyser marker on this peak.
- 3) Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

5.4.3 TEST CONFIGURATION

5.4.4 TEST RESULTS

Test Data of Occupied Channel Bandwidth						
Test Mode	Occupied Channel Bandwidth [MHz]			L insit [N/I 1=]	\ / a rali at	
	OCB	FL	FH	Limit [MHz]	Verdict	
BR_2402_1Mbps	0.906	2401.573	2402.478	2400 to 2483.5	Pass	
BR_2480_1Mbps	0.906	2479.572	2480.479	2400 to 2483.5	Pass	
EDR_2402_2Mbps	1.170	2401.434	2402.604	2400 to 2483.5	Pass	
EDR_2480_2Mbps	1.170	2479.435	2480.605	2400 to 2483.5	Pass	
EDR_2402_3Mbps	1.180	2401.435	2402.615	2400 to 2483.5	Pass	
EDR_2480_3Mbps	1.180	2479.436	2480.616	2400 to 2483.5	Pass	

Test Graphs of Occupied Channel Bandwidth



5.5. TRANSMITTER UNWANTED EMISSIONS IN THE OUT OF BAND DOMAIN

5.5.1 LIMIT

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask.

B: -20 dBm/MHz e.i.r.p.

C: Spurious Domain limits

5.5.2 TEST PROCEDURE

1) The spectrum analyser shall be used the following settings:

Centre Frequency: 2484MHz

Resolution BW: 1MHz; Video BW: 3MHz; Span: 0Hz; Detector: RMS

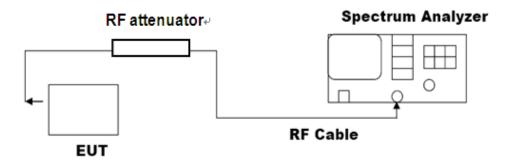
Trace mode: Max Hold; Sweep Points: 5000

2) (segment 2 483.5 MHz to 2 483.5 MHz + BW)

Adjust the trigger level to select the transmissions with the highest power level.

Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483.5 MHz to 2 483.5 MHz + BW.

3)Segment 2 483.5 MHz + BW to 2 483.5 MHz + 2BW

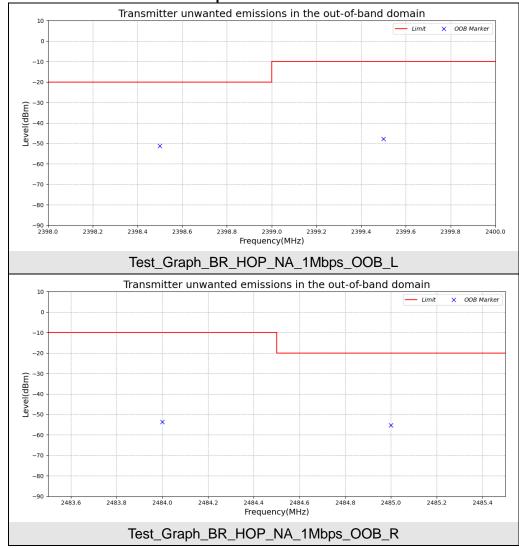

Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483.5 MHz + BW to 2 483.5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW – 0.5 MHz.

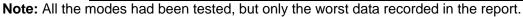
- 4)Segment 2 400 MHz BW to 2 400 MHz
- Change the centre frequency of the analyser to 2 399.5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz 2BW + 0.5 MHz.

5)Segment 2 400 MHz - 2BW to 2 400 MHz - BW

- Change the centre frequency of the analyser to 2 399,5 MHz BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz 2BW to 2 400 MHz BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz 2BW + 0.5 MHz.
- 6)The cable loss and attenuator factor shall be considered to the test result.

5.5.3 TEST CONFIGURATION





5.5.4 TEST RESULT

Test Data of OOB Emissions						
Test Mode	Frequency [MHz]	Level [dBm]	Limit [dBm]	Verdict		
BR_HOP_NA_1Mbps	2399.500	-47.70	-10	Pass		
	2398.500	-51.31	-20	Pass		
	2484.000	-53.55	-10	Pass		
	2485.000	-55.21	-20	Pass		

Test Graphs of OOB Emissions

5.6. TRANSMITTER SPURIOUS EMISSIONS

5.6.1 LIMIT

The spurious emissions of the transmitter shall not exceed the values in tables in the indicated bands:

Frequency Range	Maximum Power e.r.p(<=1GHz)/e.i.r.p(>1GHz)	Bandwidth
30 MHz to 47 MHz	-36dBm	100kHz
47 MHz to 74 MHz	-54dBm	100kHz
74 MHz to 87.5 MHz	-36dBm	100kHz
87.5 MHz to 118 MHz	-54dBm	100kHz
118 MHz to 174 MHz	-36dBm	100kHz
174 MHz to 230 MHz	-54dBm	100kHz
230 MHz to 470 MHz	-36dBm	100kHz
470 MHz to 694 MHz	-54dBm	100kHz
694 MHz to 1GHz	-36dBm	100kHz
1 GHz to 12.75 GHz	-30dBm	1MHz

5.6.2 TEST PROCEDURE

1)The emissions over the range 30 MHz to 1 000 MHz shall be identified.

2)Spectrum analyzer settings:

Resolution bandwidth: 100 kHz

Video bandwidth: 300 kHz

Detector mode: Peak

Sweep Points: ≥19 400

Trace Mode: Max Hold

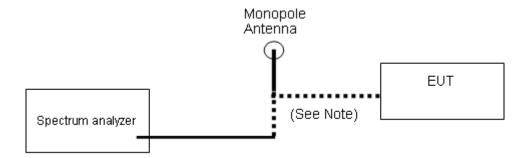
3)Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits.

4) The emissions over the range 1 GHz to 12,75 GHz shall be identified.

5) Resolution bandwidth: 1 MHz

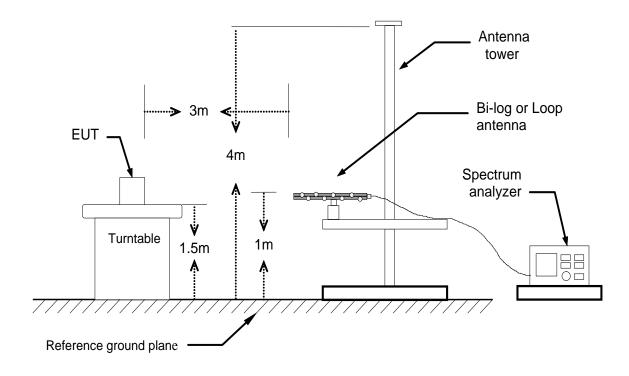
Video bandwidth: 3 MHz

Detector mode: Peak

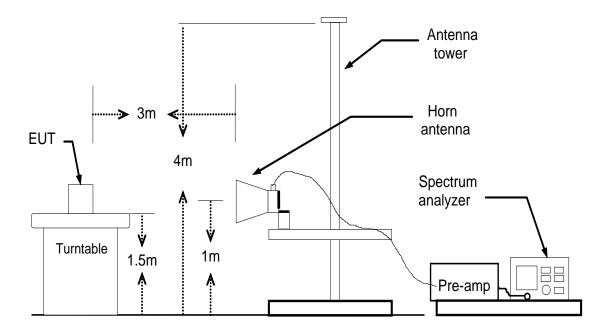

Trace Mode: Max Hold

Sweep Points: \geq 23 500

- 6) Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits.
- 7) For radiated method, the applicable measurement procedures as described in the EN 300 328 V2.2.2 annex C.2 and C.4 are used.

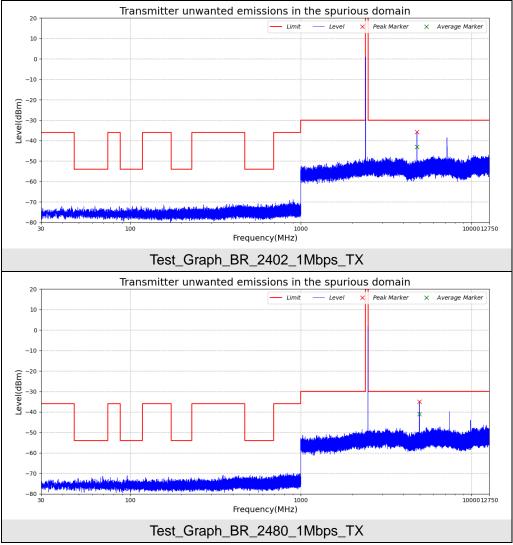


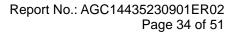
5.6.3 TEST CONFIGURATION



Below 1GHz

Above 1GHz


Radiated Method



5.6.4 TEST RESULT

Test Data of Transmitter Spurious Emissions (Conducted Method)							
Test Mode	Detector	Frequency [MHz]	Level [dBm]	Limit [dBm]	Verdict		
BR_2402_1Mbps	Peak	4804.777	-35.80	-30.00	Pass		
	Average	4804.777	-43.11	-30.00	Pass		
PR 2490 1Mbpc	Peak	4960.665	-34.94	-30.00	Pass		
BR_2480_1Mbps	Average	4960.665	-40.96	-30.00	Pass		

Test Graphs of Transmitter Spurious Emissions (Conducted Method)

Radiated Method: (Worst Case: Low channel)

Transmitter Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
75.73	29.21	V	-62.69	0.03	-1.10	-63.82	-36.00	27.82
237.68	28.60	V	-71.05	0.11	6.60	-64.56	-36.00	28.56
381.70	28.42	V	-70.63	0.28	6.49	-64.42	-36.00	28.42
384.96	29.42	V	-69.25	0.28	6.46	-63.08	-36.00	27.08
425.79	28.40	V	-72.24	0.33	7.00	-65.57	-36.00	29.57
831.82	31.64	V	-68.07	0.66	6.37	-62.36	-36.00	26.36
Other(30-10 00)		V					-36.00/- 54.00	
137.75	31.32	Н	-62.17	0.05	0.00	-62.22	-36.00	26.22
340.98	33.15	Н	-66.51	0.23	5.70	-61.05	-36.00	25.05
398.54	30.27	Н	-70.16	0.30	6.56	-63.90	-36.00	27.90
457.34	28.10	Н	-72.02	0.37	6.61	-65.78	-36.00	29.78
617.64	31.36	Н	-68.21	0.51	6.78	-61.93	-54.00	7.93
766.37	31.20	Н	-67.92	0.62	6.78	-61.76	-36.00	25.76
Other(30-10 00)		Н					-36.00/- 54.00	

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
4804	52.01	V	-41.68	2.64	9.30	-35.02	-30.00	5.02
7206	46.70	V	-45.71	3.14	11.28	-37.57	-30.00	7.57
		V						
		V						
		V						
Other(1000- 12750)		V					-30.00	
4004	54.00		40.00	0.04	0.00	22.00	20.00	2.00
4804	51.32	Н	-40.36	2.64	9.30	-33.69	-30.00	3.69
7206	44.41	Н	-44.99	3.14	11.28	-36.85	-30.00	6.85
		Н						
		Н						
		Н						
Other(1000- 12750)		Н					-30.00	

Transmitter Spurious Emission above 1GHz (1GHz-12.75GHz)

Note: 1. The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

(Worst Case: High channel)

Transmitter Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizati on	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
77.52	29.08	V	-64.29	0.04	-0.70	-65.03	-36.00	29.03
235.25	29.07	V	-71.12	0.11	6.60	-64.63	-36.00	28.63
378.62	29.13	V	-69.81	0.28	6.52	-63.57	-36.00	27.57
388.10	28.78	V	-70.82	0.29	6.42	-64.69	-36.00	28.69
425.75	26.93	V	-73.05	0.33	7.00	-66.38	-36.00	30.38
831.81	29.99	V	-69.25	0.66	6.37	-63.54	-36.00	27.54
Other(30-1000)		V					-36.00/- 54.00	
400.70	04.40			0.05	0.00	00.04		00.04
139.70	31.13	Н	-61.96	0.05	0.00	-62.01	-36.00	26.01
341.57	32.19	Н	-65.93	0.23	5.68	-60.48	-36.00	24.48
397.72	29.73	Н	-69.71	0.30	6.54	-63.47	-36.00	27.47
457.23	28.91	Н	-71.20	0.37	6.61	-64.96	-36.00	28.96
617.01	32.24	Н	-67.07	0.51	6.78	-60.80	-54.00	6.80
765.32	30.61	Н	-67.76	0.61	6.75	-61.62	-36.00	25.62
Other(30-1000)		Н					-36.00/- 54.00	

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
4960	51.83	V	-41.80	2.75	9.62	-34.93	-30.00	4.93
7440	47.22	V	-48.53	3.09	11.62	-40.00	-30.00	10.00
		V						
		V						
		V						
Other(1000- 12750)		V					-30.00	
		1			1		I	
4960	51.70	Н	-41.53	2.75	9.62	-34.66	-30.00	4.66
7440	44.11	Н	-49.31	3.09	11.62	-40.78	-30.00	10.78
		Н						
		Н						
		Н						
Other(1000- 12750)		Н					-30.00	

Transmitter Spurious Emission above 1GHz (1GHz-12.75GHz)

Note: 1. The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

5.7. RECEIVER SPURIOUS EMISSIONS

5.7.1 LIMIT

Receiver spurious emissions are emissions at any frequency when the equipment is in receive mode. The spurious emissions of the receiver shall not exceed the values given in table.

Frequency Range	Maximum Power e.r.p(<=1GHz)/e.i.r.p(>1GHz)	Measurement Bandwidth
30 MHz to 1000 MHz	-57dBm	100kHz
1 GHz to 12.75 GHz	-47dBm	1MHz

5.7.2 TEST PROCEDURE

1)The emissions over the range 30 MHz to 1 000 MHz shall be identified.

2)Spectrum analyzer settings:

Resolution bandwidth: 100 kHz

Video bandwidth: 300 kHz

Detector mode: Peak

Sweep Points: \geq 19 400

Trace Mode: Max Hold

- 3)Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits given in 5.7.1.
- 4) The emissions over the range 1 GHz to 12.75 GHz shall be identified.
- 5) Resolution bandwidth: 1 MHz

Video bandwidth: 3 MHz

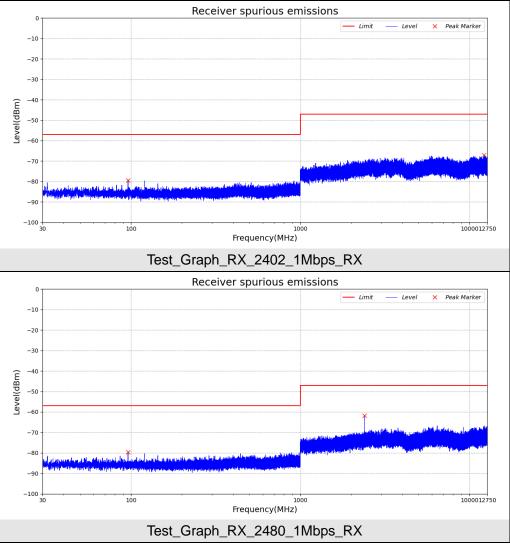
Detector mode: Peak

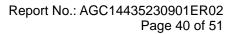
Trace Mode: Max Hold

Sweep Points: ≥23200

- 6) Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits given in 5.7.1.
- 7) For radiated method, the applicable measurement procedures as described in the EN 300 328 V2.2.2 annex C.2 and C.4 are used.

5.7.3 TEST CONFIGURATION


Refer to 5.6.3



5.7.4 TEST RESULT

Test Data of Receiver Spurious Emissions (Conducted Method)									
Test Mode	Detector	Frequency [MHz]	Level [dBm]	Limit [dBm]	Verdict				
DV 2402 1Mbra	Peak	95.995	-79.45	-57.00	Pass				
RX_2402_1Mbps	Peak	12212.224	-67.02	-47.00	Pass				
RX_2480_1Mbps	Peak	95.930	-79.53	-57.00	Pass				
	Peak	2402.213	-61.86	-47.00	Pass				

Test Graphs of Receiver Spurious Emissions (Conducted Method)

Radiated Method: (Worst Case: Low channel)

Receiver Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
91.92	29.66	V	-65.48	0.04	1.48	-64.04	-57.00	7.04
242.07	29.29	V	-70.11	0.12	6.72	-63.51	-57.00	6.51
313.49	28.82	V	-70.71	0.20	6.31	-64.60	-57.00	7.60
384.21	29.01	V	-70.18	0.28	6.46	-64.00	-57.00	7.00
478.00	27.72	V	-71.24	0.39	6.88	-64.75	-57.00	7.75
828.38	30.93	V	-68.70	0.66	6.40	-62.96	-57.00	5.96
Other(30-10 00)		V					-57.00	
400.00	00.40			0.05	0.00	00.07	FT 00	0.07
136.60	30.13	Н	-63.32	0.05	0.00	-63.37	-57.00	6.37
332.97	28.90	Н	-69.61	0.22	6.02	-63.81	-57.00	6.81
396.23	29.65	Н	-70.48	0.30	6.52	-64.25	-57.00	7.25
569.62	29.03	Н	-70.80	0.47	6.81	-64.46	-57.00	7.46
614.01	28.74	Н	-70.55	0.50	6.66	-64.40	-57.00	7.40
815.91	29.65	Н	-70.83	0.65	6.95	-64.53	-57.00	7.53
136.60	30.13	Н	-63.32	0.05	0.00	-63.37	-57.00	6.37

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
1830.63	31.55	V	-68.10	1.26	7.15	-62.20	-47.00	13.86
		V						
		V						
		V						
		V						
Other(1000- 12750)		V					-47.00	
1780.81	30.77	Н	-68.49	1.23	6.93	-62.79	-47.00	15.79
		Н						
		Н						
		Н						
		Н						
Other(1000- 12750)		Н					-47.00	

Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Note: 1. The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

(Worst Case: High channel)

Receiver Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
93.67	28.18	V	-66.63	0.04	1.64	-65.03	-57.00	8.03
237.43	29.34	V	-69.51	0.11	6.60	-63.02	-57.00	6.02
316.78	29.06	V	-69.21	0.21	6.22	-63.20	-57.00	6.20
384.92	29.63	V	-69.55	0.28	6.46	-63.37	-57.00	6.37
476.65	27.47	V	-71.26	0.39	6.86	-64.79	-57.00	7.79
829.39	30.11	V	-68.14	0.66	6.35	-62.45	-57.00	5.45
Other(30-10 00)		V					-57.00	
139.30	29.09	Н	-64.38	0.05	0.00	-64.43	-57.00	7.43
332.64	28.62	Н	-70.00	0.22	6.02	-64.21	-57.00	7.21
398.48	30.55	Н	-69.81	0.30	6.56	-63.55	-57.00	6.55
568.67	28.65	Н	-70.52	0.47	6.82	-64.17	-57.00	7.17
615.31	27.75	Н	-72.43	0.50	6.70	-66.24	-57.00	9.24
818.84	29.69	Н	-70.05	0.65	6.86	-63.84	-57.00	6.84
Other(30-10 00)		Н					-57.00	

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
1832.83	31.80	V	-66.46	1.26	7.15	-60.57	-47.00	13.57
		V						
		V						
		V						
		V						
Other(1000- 12750)		V					-47.00	
1782.60	31.99	Н	-66.09	1.23	6.93	-60.39	-47.00	13.39
		H						
		Н						
		Н						
		Н						
Other(1000- 12750)		Н					-47.00	

Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Note: 1. The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

5.8. RECEIVER BLOCKING

5.8.1 LIMIT

Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from	Blocking signal	Blocking signal	Type of
companion device (dBm)	frequency	power (dBm)	blocking
(see notes 1 and 4)	(MHz)	(see note 4)	signal
(-133 dBm + 10 × log10(OCBW)) or -68 dBm	2 380		
whichever is less (see note 2)	2 504		
	2 300		
	2 330	-34	CW
(-139 dBm + 10 × log10(OCBW)) or -74 dBm	2 360	-34	CVV
whichever is less (see note 3)	2 524		
	2 584		
	2 674		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Receiver Blocking parameters for Receiver Category 2 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency	Blocking signal power (dBm)	Type of blocking	
(see notes 1 and 3)	(MHz)	(see note 3)	signal	
(-139 dBm + 10 × log10(OCBW) + 10 dB)	2 380			
or (-74 dBm + 10 dB) whichever is less	2 504	-34	CW	
· · ·	2 300	-04	000	
(see note 2)	2 584			

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Receiver Blocking parameters for Receiver Category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal	Type of
companion device (dBm)	frequency	power (dBm)	blocking
(see notes 1 and 3)	(MHz)	(see note 3)	signal
(-139 dBm + 10 × log10(OCBW) + 20 dB) or (-74 dBm + 20 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

5.8.2 TEST PROCEDURE

For non-FHSS equipment, having more than one operating channel, the operating channels on which the testing has to be performed shall be selected as follows:

• For testing blocking frequencies less than 2 400 MHz, the equipment shall operate on the lowest operating channel.

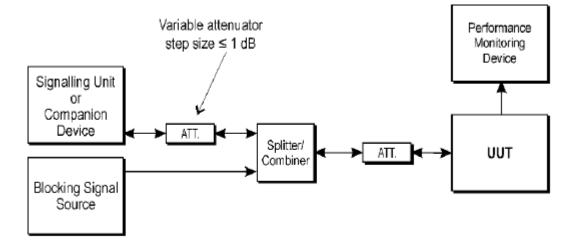
• For testing blocking frequencies greater than 2 500 MHz, the equipment shall operate on the highest operating channel.

The simplified conducted measure procedures are as follows:

1) For non-FHSS equipment, the UUT shall be set to the lowest operating channel on which the blocking test has to be performed.

2) The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

3)With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup. The level of the wanted signal shall be set to the value provided in the table corresponding to the receiver category and type of equipment. This level may be measured directly at the output of the companion device and a correction is made for the coupling loss into the UUT. The actual level for the wanted signal shall be recorded in the test report.


4) The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment. It shall be verified and recorded in the test report that the performance criteria is met.

5) Repeat step 4 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.

6)Repeat step 2 to step 5 with the UUT operating at the highest operating channel.

5.8.3 TEST CONFIGURATION

Test Set-up for receiver blocking

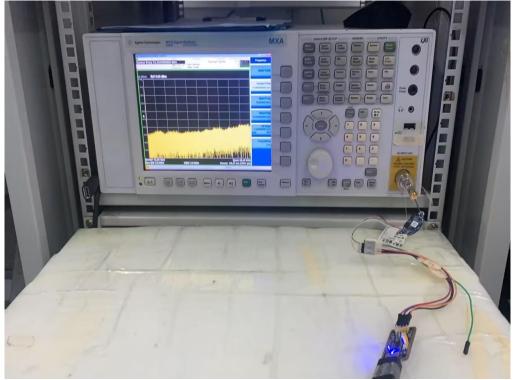
5.8.4 TEST RESULTS

Test Condition	Blocking Signal Frequency(MHz)	Blocking Signal Power(dBm)	Wanted signal mean power from companion device(dBm)	Performance PER	Limit PER	Result
	2 300	-32.71	-68.14	1.65%	10%	
GFSK	2 380	-32.71	-68.14	0.78%	10%	D
Hopping Mode	2 504	-32.71	-68.14	2.21%	10%	Pass
	2 584	-32.71	-68.14	1.45%	10%	

Test Condition	Blocking Signal Frequency(MHz)	Blocking Signal Power(dBm)	Wanted signal mean power from companion device(dBm)	Performance PER	Limit PER	Result
	2 300	-32.71	-67.03	1.32%	10%	
π/4-DQPSK	2 380	-32.71	-67.03	0.56%	10%	D
Hopping Mode	2 504	-32.71	-67.03	2.26%	10%	Pass
	2 584	-32.71	-67.03	1.39%	10%	

Test Condition	Blocking Signal Frequency(MHz)	Blocking Signal Power(dBm)	Wanted signal mean power from companion device(dBm)	Performance PER	Limit PER	Result
8-DPSK Hopping Mode	2 300	-32.71	-66.99	1.23%	10%	Pass
	2 380	-32.71	-66.99	0.85%	10%	
	2 504	-32.71	-66.99	0.35%	10%	
	2 584	-32.71	-66.99	1.12%	10%	

Note: The levels of the blocking signal and wanted signal have to be corrected for the (in-band) antenna assembly gain.


APPENDIX A: PHOTOGRAPHS OF THE TEST SETUP

RADIATED SPURIOUS EMISSION TEST SETUP

CONDUCTED TEST SETUP

APPENDIX B: PHOTOGRAPHS OF EUT

Refer to the Report No.: AGC14435230901AP01

----END OF REPORT----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.