Page 1 of 53

RF TEST REPORT

Applicant

: DOKE COMMUNICATION (HK) LIMITED

Address

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD

Addicas

WANCHAI HK CHINA

Manufacturer

Shenzhen DOKE Electronic Co., Ltd

Address

801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road,

Report No.: AIT23071306CW8

ALLA POE AMORE

Guangming District, Shenzhen, China.

Product Name

Tablet

Brand Name

Blackview

Test Model

Active 6

Series Model

: N/A

Date of Receipt

: 2023.07.13

Date of Test

: 2023.07.13~2023.08.07

Issued Date

2023.08.08

Report Version

: V1.0

Test Sample

Engineering Sample No.: AIT23071306-1

Standard(s)

ETSI EN 301 908-1 V15.1.1: 2021-09

ETSI EN 301 908-13 V13.2.1:2022-02

Lab: Dongguan Yaxu (AiT) Technology Limited

Add: No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan,

Guangdong, China

Tel.: +86-769-8202 0499

Fax.: +86-769-8202 0495

This device has been tested and found to comply with the stated standard(s), which is (are) required by the council directive of 2014/53/EU and indicated in the test report and are applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Dongguan Yaxu (AiT) Technology Limited, this document may be altered or revised by Dongguan Yaxu (AiT) Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Reviewed by:

Simba huang

Seal-Chen

Seal-Chen

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	2023.08.02	Valid	Initial Release

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT TECHNICAL DESCRIPTION	
1.2. DESCRIPTION OF TEST MODES AND TEST FREQUENCY	6
1.3. OBJECTIVE	7
1.4. TEST ITEMS AND THE RESULTS	
2. TEST ENVIROMENT	9
2.1 ADDRESS OF THE TEST LABORATORY	9
2.2 ENVIRONMENTAL CONDITIONS	9
2.2 SETUP CONFIGURATION OF EUT	9
2.4 MEASUREMENT UNCERTAINTY	10
2.5 LIST OF EQUIPMENTS USED	11
3. SUMMARY OF TEST RESULTS	12
4. TSI EN 301 908-1/-13 REQUIREMENTS	15
4.1. TRANSMITTER MAXIMUM OUTPUT POWER	15
4.2. TRANSMITTER SPECTRUM EMISSION MASK	17
4.3. TRANSMITTER ADJACENT CHANNEL LEAKAGE POWER RATIO(ACLR)	20
4.4. TRANSMITTER SPURIOUS EMISSIONS	23
4.5. TRANSMITTER MINIMUM OUTPUT POWER	25
4.6. RECEIVER ADJACENT CHANNEL SELECTIVITY (ACS)	27
4.7. RECEIVER BLOCKING CHARACTERISTICS	30
4.8. RECEIVER SPURIOUS RESPONSE	35
4.9. RECEIVER INTERMODULATION CHARACTERISTICS	37
4.10. RECEIVER SPURIOUS EMISSIONS	40
4.11. CONTROL AND MONITORING FUNCTIONS (UE)	42
4.12. RADIATED EMISSIONS (UE)	43
5 PHOTOGRAPHS OF TEST SETUP	53

Page 3 of

53

1. GENERAL INFORMATION

1.1 PRODUCT TECHNICAL DESCRIPTION

Details of technical specification refer to the description in follows:

EUT Name:	Tablet						
Model No:	Active 6						
Serial Model:	N/A						
Difference Description	N/A	 N/A					
Brand Name:	Blackview						
Power Supply	3.87V 13000mAh	for Battery					
LTE Information:							
Frequency Band	以FDD Band 1以FDD Band 20以TDD Band 40□FDD Band 2□FDD Band 25	☐ FDD Band 28 ☐ TDD ☐ TDD Band 41 ☐ TDD ☐ FDD Band 4 ☐ FDD	Band 7				
		Uplink	Downlink				
	FDD Band 1	1920MHz~1980MHz	2110MHz~2170MHz				
	FDD Band 3	1710MHz~1785MHz	1805MHz~1880MHz				
Operation Frequency Range	FDD Band 7	2500MHz~2570MHz	2620MHz~2690MHz				
Operation Frequency Range	FDD Band 8	880MHz~915MHz	925MHz~960MHz				
	FDD Band 20	832MHz~862MHz	791MHz~821MHz				
	TDD Band 38	2 570 MHz to 2 620 MHz	2 570 MHz to 2 620 MHz				
	TDD Band 40	2 300 MHz to 2 400 MHz	2 300 MHz to 2 400 MHz				
	FDD Band 1	☐ 1.4MHz ☐ 3MHz ☐ 5M ☑ 20MHz	lHz ⊠10MHz ⊠15MHz				
	FDD Band 3	□ 1.4MHz □ 3MHz □ 5N □ 20MHz	lHz ⊠ 10MHz ⊠ 15MHz				
Support bandwidth	FDD Band 7	☐ 1.4MHz☐ 3MHz☐ 5M	lHz ⊠10MHz ⊠15MHz				
	FDD Band 8	□ 1.4MHz □ 3MHz □ 5N □ 20MHz	lHz ⊠ 10MHz □ 15MHz				
	FDD Band 20	☐ 1.4MHz ☐ 3MHz ☐ 5N ☐ 20MHz	lHz ⊠ 10MHz ⊠ 15MHz				

Page 5 of 53 Report No.: AIT23071306CW8

	FDD Band 38	□ 1.4MHz □ 3MHz ⊠ 20MHz	z ⊠5MHz ⊠10M	MHz ⊠15MHz		
	FDD Band 40	□ 1.4MHz □ 3MHz ⊠ 20MHz	z ⊠5MHz ⊠10M	MHz ⊠15MHz		
Modulation Type	⊠QPSK ⊠1	6QAM ☐ 64QAM	1			
Power Class	☐ Class 1 ☐ C	Class 2 ⊠ Class 3	B ☐ Class 4			
GSM Release Version	R99					
WCDMA Release Version	Release 6 and later					
Antenna Type	PIFA Antenna					
Main Antenna Gain	Band 1:-0.60dBi	Band 3:-0.70dBi	Band 7:0.20dBi	Band 8:-1.80dBi		
Main Antenna Gain	Band 20:-2.50dBi	Band 38:-2.50dBi	Band 40:-2.50dBi			
Diversity Antonna Cain						
Diversity Antenna Gain						
SIM Card Description	There are dual-SIM cards					
Diversity Antenna Description	-	s only used to receiviver items test resuest.		- 1		

Note:

- 1. The above information was declared by the manufacturer.
- 2. The equipment submitted representative production models.
- 3. For more details, please refer to the User's manual of the EUT.

1.2. DESCRIPTION OF TEST MODES AND TEST FREQUENCY

The EUT has been tested under typical operating condition. UNIVERSAL RADIO COMMUNICATION tester controls the EUT staying in continuous transmitting and receiving mode for testing

53

Page 6 of

	Test Frequency ID	Bandwidth [MHz]	NuL	Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]
		5	18025	1922.5	25	2112.5
	2.73.5	10	18050	1925	50	2115
	Low Range	15	18075	1927.5	75	2117.5
D Band 1:		20	18100	1930	100	2120
	Mid Range	5/10/15/20	18300	1950	300	2140
		5	18575	1977.5	575	2167.5
		10	18550	1975	550	2165
	High Range	15	18525	1972.5	525	2162.5
		20	18500	1970	500	2160
	Test Frequency	Bandwidth	NuL	Frequency of	N _{DL}	Frequency of
	ID	[MHz]	10007	Uplink [MHz]	1007	Downlink [MHz]
		1.4	19207	1710.7	1207	1805.7
		3	19215	1711.5	1215	1806.5
	Low Range	5	19225	1712.5	1225	1807.5
	Low Nange	10	19250	1715	1250	1810
	1 [15 [1]	19275	1717.5	1275	1812.5
		20 [1]	19300	1720	1300	1815
D Band 3:	Mid Range	1.4/3/5/10 15 ^[1] /20 ^[1]	19575	1747.5	1575	1842.5
		1.4	19943	1784.3	1943	1879.3
	l F	3	19935	1783.5	1935	1878.5
	A Company of Language and the	5	19925	1782.5	1925	1877.5
	High Range	10	19900	1780	1900	1875
		15 [1]	19875	1777.5	1875	1872.5
						1012.0
		20 [1]	19850	1775	1850	1870
	NOTE 1: Bandwidt (TS 36.10	20 [1] h for which a rela 11 [27] Clause 7.3		1775 specified UE receiv	1850 ver sensitivi	1870 ty requirement
		h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz]	xation of the B) is allowed.	Frequency of Uplink [MHz]	ver sensitivi	Frequency of Downlink [MHz]
	(TS 36.10	h for which a rela of [27] Clause 7.3 Bandwidth [MHz]	xation of the B) is allowed. Nul.	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz] 2622.5
	(TS 36.10	h for which a rela 01 [27] Clause 7.3 Bandwidth [MHz] 5 10	NuL 20775 20800	Frequency of Uplink [MHz]	N _{DL} 2775 2800	Frequency of Downlink [MHz] 2622.5 2625
	Test Frequency ID	h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz] 5 10 15	NuL 20775 20800 20825	Frequency of Uplink [MHz] 2502.5 2505 2507.5	N _{DL} 2775 2800 2825	Frequency of Downlink [MHz] 2622.5 2625 2627.5
Band 7·	Test Frequency ID Low Range	h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1]	NuL 20775 20800 20825 20850	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510	N _{DL} 2775 2800 2825 2850	Frequency of Downlink [MHz] 2622.5 2625 2627.5 2630
) Band 7:	Test Frequency ID	h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1]	NuL 20775 20800 20825 20850 21100	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535	N _{DL} 2775 2800 2825 2850 3100	Frequency of Downlink [MHz] 2622.5 2625 2627.5 2630 2655
Band 7:	Test Frequency ID Low Range Mid Range	h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5/10/15	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5	N _{DL} 2775 2800 2825 2850 3100 3425	Frequency of Downlink [MHz] 2622.5 2625 2627.5 2630 2655 2687.5
Band 7:	Test Frequency ID Low Range	h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 10	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21400	Frequency of Uplink [MHz] 2502.5 2505. 2507.5 2510 2535 2567.5 2567.5	N _{DL} 2775 2800 2825 2850 3100 3425 3400	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 2687.5 2688.
Band 7:	Test Frequency ID Low Range Mid Range	h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 10 15	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21400 21375	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5 2565 2562.5	N _{DL} 2775 2800 2825 2850 3100 3425 34400 3375	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 2687.5 2685 2682.5
Band 7:	Test Frequency ID Low Range Mid Range High Range	h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 10 15 20 [1]	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21400 21375 21350	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5 2565 2562.5	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 2687.5 2685 2682.5 2682.5 2680
D Band 7:	Test Frequency ID Low Range Mid Range High Range	h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 10 15 20 [1]	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21400 21375 21350 tion of the spe	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5 2565 2562.5	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 2687.5 2685 2682.5 2682.5 2680
D Band 7:	Test Frequency ID Low Range Mid Range High Range	h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 10 15 16 16 16 16 16 16 16 16 16 16 16 16 16	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21400 21375 21350 tion of the spe	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5 2565 2562.5	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350	Frequency of Downlink [MHz] 2622.5 2625.5 2630 2655 2687.5 2685 2682.5 2680 26
Band 7:	Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth (TS 36.101	h for which a rela 1 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 20 [1] for which a relaxal [27] Clause 7.3) is Bandwidth [MHz]	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21400 21375 21350 tion of the spe s allowed.	Frequency of Uplink [MHz] 2502.5 2505. 2507.5 2510 2535 2567.5 2565 2562.5 2560 2cified UE receiver s Frequency of Uplink [MHz]	2775 2800 2825 2850 3100 3425 3400 3375 3350 ensitivity rec	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 2687.5 2685 2682.5 2680 uirement Frequency of Downlink [MHz]
Band 7:	Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth (TS 36.101) Test Frequency ID	h for which a rela 127] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 10 15 20 [1] for which a relaxal [27] Clause 7.3) is	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21350 21355 21350 S allowed.	Frequency of Uplink [MHz] 2502.5 2505. 2507.5 2510 2535 2567.5 2565 2562.5 2560 ecified UE receiver s Frequency of Uplink [MHz] 880.7	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350 ensitivity rec	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 2687.5 2685 2682.5 2680 [uirement]
Band 7:	Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth (TS 36.101	h for which a rela 1 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 20 [1] for which a relaxal [27] Clause 7.3) is Bandwidth [MHz]	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21400 21375 21350 2100 21457 21465 21465	Frequency of Uplink [MHz] 2502.5 2507.5 2510 2535 2567.5 2560 2560 cified UE receiver s Frequency of Uplink [MHz] 880.7 881.5	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350 ensitivity rec	Frequency of Downlink [MHz]
Band 7:	Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth (TS 36.101) Test Frequency ID	h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 10 15 20 [1] 6r which a relaxal [27] Clause 7.3) i Bandwidth [MHz] 1.4 3 5	xation of the b) is allowed. Nul	Frequency of Uplink [MHz] 2502.5 2505.5 2507.5 2510 2535 2567.5 2565 2562.5 2560 ecified UE receiver s Frequency of Uplink [MHz] 880.7 881.5 882.5	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350 ensitivity rec N _{DL}	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 2687.5 2685 2682.5 2680 [uirement]
D Band 7:	Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth (TS 36.101) Test Frequency ID	h for which a rela 11 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5/20 [1] for which a relaxal [27] Clause 7.3) is Bandwidth [MHz] 1.4 3	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21400 21375 21350 2100 21457 21465 21465	Frequency of Uplink [MHz] 2502.5 2507.5 2510 2535 2567.5 2560 2560 cified UE receiver s Frequency of Uplink [MHz] 880.7 881.5	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350 ensitivity rec	Frequency of Downlink [MHz]
	Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth (TS 36.101) Test Frequency ID Low Range	h for which a rela 1 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5/10/15 20 [1] for which a relaxal [27] Clause 7.3) i Bandwidth [MHz] 1.4 3 5 10 [1] 1.4/3/5 10 [1]	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21400 21375 21350 21000 21457 21465 21475 21500 21625	Frequency of Uplink [MHz] 2502.5 2505. 2507.5 2510 2535 2567.5 2566 2562.5 2560 coffied UE receiver s Frequency of Uplink [MHz] 880.7 881.5 882.5 885	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350 ensitivity rec N _{DL} 3457 3465 3475 3500 3625	Frequency of Downlink [MHz]
	Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth (TS 36.101) Test Frequency ID Low Range	h for which a rela 1 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 10 15 20 [1] 6r which a relaxal [27] Clause 7.3) i Bandwidth [MHz] 1.4 3 5 10 [1] 1.4/3/5 10 [1] 1.4	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21350 21350 21457 21465 21475 21500 21625 21793	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5 2566 2562.5 2560 coffied UE receiver s Frequency of Uplink [MHz] 880.7 881.5 882.5 885 897.5	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350 ensitivity rec N _{DL}	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 2687.5 2688.5 2682.5 2680 [Mirement] Frequency of Downlink [MHz] 925.7 926.5 927.5 930 942.5 959.3
	Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth (TS 36.101) Test Frequency ID Low Range	h for which a rela 1 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 10 15 20 [1] for which a relaxal [27] Clause 7.3) is Bandwidth [MHz] 1.4 3 5 10 [1] 1.4/3/5 10 [1] 1.4 3	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21400 21375 21350 2100 21457 21465 21475 21465 21475 21500 21625 21793 21785	Frequency of Uplink [MHz] 2502.5 2507.5 2507.5 2510 2535 2567.5 2565 2562.5 2560 ecified UE receiver s Frequency of Uplink [MHz] 880.7 881.5 882.5 885 897.5 914.3 913.5	NbL 2775 2800 2825 2850 3100 3425 3400 3375 3350 ensitivity rec NbL 3457 3465 3475 3500 3625 3793 3785	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 2687.5 2685 2682.5 2680 puirement Frequency of Downlink [MHz] 925.7 926.5 927.5 930 942.5 959.3 958.5
	Test Frequency ID Low Range Mid Range High Range NOTE 1: Bandwidth (TS 36.101) Test Frequency ID Low Range	h for which a rela 1 [27] Clause 7.3 Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1] 5 10 15 20 [1] 6r which a relaxal [27] Clause 7.3) i Bandwidth [MHz] 1.4 3 5 10 [1] 1.4/3/5 10 [1] 1.4	xation of the b) is allowed. NuL 20775 20800 20825 20850 21100 21425 21350 21350 21457 21465 21475 21500 21625 21793	Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2567.5 2566 2562.5 2560 coffied UE receiver s Frequency of Uplink [MHz] 880.7 881.5 882.5 885 897.5	N _{DL} 2775 2800 2825 2850 3100 3425 3400 3375 3350 ensitivity rec N _{DL}	Frequency of Downlink [MHz] 2622.5 2627.5 2630 2655 2687.5 2688.5 2682.5 2680 [Mirement] Frequency of Downlink [MHz] 925.7 926.5 927.5 930 942.5 959.3

Test Frequency ID	Bandwidth [MHz]	NuL	Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]
	5	24175	834.5	6175	793.5
Low Pango	10[1]	24200	837	6200	796
Low Range	15[1]	24225	839.5	6225	798.5
	20[1]	24250	842	6250	801
Mid Range	5/10[1]/15[1]/20[1]	24300	847	6300	806
	5	24425	859.5	6425	818.5
High range	10[1]	24400	857	6400	816
riigh range	15 ^[1]	24375	854.5	6375	813.5
3	20[1]	24350	852	6350	811
	Low Range	[MHz] 5 10[1] 15[1] 20[1]	MHz 5 24175 10 ^[1] 24200 15 ^[1] 24225 20 ^[1] 24250 2450	MHz Uplink [MHz] 5 24175 834.5 834.5 10 ^[1] 24200 837 15 ^[1] 24225 839.5 20 ^[1] 24225 842 24300 847	Company Comp

53

Page 7 of

1.3. OBJECTIVE

Perform Radio Spectrum tests for CE Marking according to the provisions of article 3.2 of the Radio Equipment Directive (2014/53/EU) for the Radio function of the EUT.

1.4. TEST ITEMS AND THE RESULTS

Leading reference documents for testing:

	-				
ETSI EN 301 908-1	IMT cellular networks; Harmonised Standard for access to radio spectrum;				
L131 LN 301 900-1	Part 1: Introduction and common requirements Release 15				
	IMT cellular networks; Harmonised Standard for access to radio spectrum;				
ETSI EN 301 908-13	Part 13: Evolved Universal Terrestrial Radio Access (E-UTRA) User				
	Equipment (UE)				

Specific reference documents for testing:

3GPP TS 36.521-1	LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing
	LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved
3GPP TS 36.508	Packet Core (EPC); Common test environments for User Equipment (UE) conformance testing

Radio Spectrum Matter (RSM) Part of Transmitter				
No.	Test Item	Test require	Result	
1	Radiated emissions (UE)	EN 301 908-1 Section 4.2.2	Pass	
2	Control and monitoring functions (UE)	EN 301 908-1 Section 4.2.4	Pass	
3	Transmitter Maximum Output Power	EN 301 908-13 Section 4.2.2	Pass	
4	Transmitter Spectrum emission mask	EN 301 908-13 Section 4.2.3	Pass	
5	Transmitter Spurious Emissions	EN 301 908-13 Section 4.2.4	Pass	
6	Transmitter Minimum Output Power	EN 301 908-13 Section 4.2.5	Pass	

7	Transmitter Adjacent Channel Leakage Power Ratio	EN 301 908-13 Section 4.2.11	Pass			
	Radio Spectrum Matter (RSM) Part of Receiver					
No.	Test Item	Test require	Result			
8	Receiver Adjacent Channel Selectivity	EN 301 908-13 Section 4.2.6	Pass			
9	Receiver Blocking Characteristics	EN 301 908-13 Section 4.2.7	Pass			
10	Recevier Spurious Response	EN 301 908-13 Section 4.2.8	Pass			
11	Recevier Intermodulation Characteristics	EN 301 908-13 Section 4.2.9	Pass			
12	Receiver Spurious Emissions	EN 301 908-13 Section 4.2.10	Pass			
13	Receiver Reference Sensitivity Level	EN 301 908-13 Section 4.2.12	Pass			

Note:

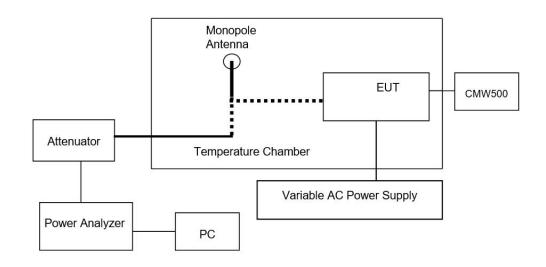
- 1. The measurement uncertainty is not included in the test result.
- 2.N/A: means this test item is not applicable for this device according to the technology characteristic of device.
- 3.EUT Orthogonal Axis: "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand.

2. TEST ENVIROMENT

2.1 ADDRESS OF THE TEST LABORATORY

Test Site	Dongguan Yaxu (AiT) Technology Limited
Location	Add: No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan, Guangdong, China
CNAS- Registration No	L6177

2.2 ENVIRONMENTAL CONDITIONS


	NORMAL CONDITIONS	EXTREME CONDITIONS
Temperature range (℃)	15 - 35	-10-40
Relative humidty range	20 % - 75 %	20 % - 75 %
Pressure range (kPa)	86 - 106	86 - 106
Power supply	DC 3.87V	LV:DC 3.28V/HV: DC 4.45V

Note: 1.The Extreme Temperature and Extreme Voltages declared by the manufacturer.

- 2. The Limit Voltage 5.1V was declared by manufacturer,
- 3. The EUT couldn't be operate normally with higher voltage.
- 4. The maximum temperature of 50 is not a standard requirement and is measured according to the maximum service temperature stated by the manufacturer.

2.2 SETUP CONFIGURATION OF EUT

Conducted measurements configuration of EUT shall be as follows:

Remarks:

The Signal Analyzer could be connected to a monopole antenna or directly connected to the EUT, if the EUT has already employing an antenna connector.

2.4 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%

Parameter	Conditions	Test System Uncertainty
Transmitter Maximum Output power		±0,7 dB
Transmitter spectrum emissions mask		±1,5 dB
Transmitter spurious emissions	9 kHz < f ≤ 4 GHz: ±2,0 dB 4 GHz < f ≤ 12,75 GHz: ±4,0 dB	±2,0 dB ±4,0 dB
Transmitter Minimum output power		±1,0 dB
Receiver Adjacent Channel Selectivity(ACS)		±1,1 dB
Receiver Blocking characteristics	1 MHz < finterferer ≤ 3 GHz 3 GHz < finterferer ≤ 12,75 GHz	±1,3 dB ±3,2 dB
Receiver spurious response	1 MHz < finterferer ≤ 3 GHz 3 GHz < finterferer ≤ 12,75 GHz	±1,3 dB ±3,2 dB
Receiver intermodulation characteristics		±1,4 dB
Receiver spurious emissions	30 MHz ≤ f ≤ 4,0 GHz: ±2,0 dB 4 GHz < f ≤ 12,75 GHz: ±4,0 dB	±2,0 dB ±4,0 dB
Transmitter adjacent channel leakage power ratio		±0,8 dB

- NOTE 1: For RF tests it should be noted that the uncertainties in table 5.2-1 apply to the test system operating into a nominal 50 Ω load and do not include system effects due to mismatch between the EUT and the test system.
- NOTE 2: If the test system for a test is known to have a measurement uncertainty greater than that specified in table 5.2-1, this equipment can still be used provided that an adjustment is made follows: any additional uncertainty in the test system over and above that specified in table 5.2-1 should be used to tighten the test requirements making the test harder to pass (for some tests, e.g. receiver tests, this may require modification of stimulus signals). This procedure will ensure that a test system not compliant with table 5.2-1 does not increase the probability of passing an EUT that would otherwise have failed a test if a test system compliant with table 5.2-1 had been used.

2.5 LIST OF EQUIPMENTS USED

N o	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	101470	2022.09.02	2023.09.01
2	EMI Measuring Receiver	R&S	ESR	101660	2022.09.02	2023.09.01
3	Low Noise Pre Amplifier	HP	HP8447E	1937A0185 5	2022.09.02	2023.09.01
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A0 2-34	2648A0473 8	2022.09.02	2023.09.01
5	Passive Loop	ETS	6512	00165355	2023.09.03	2025.09.04
6	TRILOG Super Broadband test Antenna	SCHWARZBE CK	VULB9160	9160-3206	2021.08.29	2024.08.28
7	Broadband Horn Antenna	SCHWARZBE CK	BBHA9120D	452	2021.08.29	2024.08.28
8	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBE CK	BBHA9170	BBHA9170 367d	2020.11.24	2023.11.23
9	EMI Test Receiver	R&S	ESCI	100124	2022.09.02	2023.09.01
10	LISN	Kyoritsu	KNW-242	8-837-4	2022.09.02	2023.09.01
11	LISN	R&S	ESH3-Z2	0357.8810.54- 101161-S2	2022.09.02	2023.09.01
12	Pro.Temp&Humi.chamb er	MENTEK	MHP-150-1C	MAA081125 01	2022.09.02	2023.09.01
13	RF Automatic Test system	MW	MW100-RFCB	21033016	2022.09.02	2023.09.01
14	Signal Generator	Agilent	N5182A	MY5014300 9	2022.09.02	2023.09.01
15	Wideband Radio communication tester	R&S	CMW500	1201.0002K 50	2022.09.02	2023.09.01
16	RF Automatic Test system	MW	MW100-RFCB	21033016	2022.09.02	2023.09.01
17	DC power supply	ZHAOXIN	RXN-305D-2	280700025 59	N/A	N/A
18	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A
19	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A
20	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A
21	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

3. SUMMARY OF TEST RESULTS

Terms in the column "Verdict" for the test results list of the section:

Verdict	Description
PASS	EUT passed this test case
FAIL	EUT failed this test case
INC.	EUT did not pass and did not fail this test case, therefore the verdict is inconclusive
N/A	Test case not applicable for the EUT, see the column "Note" for detailed

	Test		Test			Verdict			
Test Item	Requirement EN301908-1	-	Conditions	FDD B1	FDD B3	FDD B7	FDD B8	FDD B20	Note:
Radiated emissions (UE)	Section 4.2.2	-	NT/NV	Pass	Pass	Pass	Pass	Pass	Reference to the section 4.12
Control and monitoring functions (UE)	Section 4.2.4	-	NT/NV	Pass	Pass	Pass	Pass	Pass	Reference to the section 4.11
,	Test	Test Method				Verdict			
Test Item	Requirement EN301908- 13	ETSI TS136521-1	Test Conditions	FDD B1	FDD B3	FDD B7	FDD B8	FDD B20	Note:
			NT/NV	Pass	Pass	Pass	Pass	Pass	
Transmitter Maximum Output Power	Section 4.2.2.1	Clause 6.2.2	LT/LV LT/HV HT/LV	Pass Pass Pass	Pass Pass Pass	Pass Pass Pass	Pass Pass Pass	Pass Pass Pass	Reference to the section 4.1
			HT/HV	Pass	Pass	Pass	Pass	Pass	
Transmitter Spectrum emission mask	Section 4.2.3.1	Claue 6.6.2.1	NT/NV	Pass	Pass	Pass	Pass	Pass	
Transmitter Spurious Emissions	Section 4.2.4.1	Claue 6.6.3.2	NT/NV	Pass	Pass	Pass	Pass	Pass	
			NT/NV	Pass	Pass	Pass	Pass	Pass	
Transmitter Minimum Output Power	Section 4.2.5.1	Clause 6.3.2	LT/LV LT/HV HT/LV HT/HV	Pass Pass Pass Pass	Pass Pass Pass Pass	Pass Pass Pass Pass	Pass Pass Pass Pass	Pass Pass Pass Pass	
Receiver Adjacent Channel Selectivity	Section 4.2.6	Clause 7.5	NT/NV	Pass	Pass	Pass	Pass	Pass	
Receiver Blocking Characteristics	Section 4.2.7	Clause 7.6.1	NT/NV	Pass	Pass	Pass	Pass	Pass	
Recevier Spurious Response	Section 4.2.8	Clause 7.7	NT/NV	Pass	Pass	Pass	Pass	Pass	
Recevier Intermodulation Characteristics	Section 4.2.9	Clause 7.8	NT/NV	Pass	Pass	Pass	Pass	Pass	

Receiver Spurious Emissions	Section 4.2.10	Clause 7.9	NT/NV	Pass	Pass	Pass	Pass	Pass	
Transmitter			NT/NV	Pass	Pass	Pass	Pass	Pass	
Adjacent			LT/LV	Pass	Pass	Pass	Pass	Pass	
Channel	Section	Clause	LT/HV	Pass	Pass	Pass	Pass	Pass	
Leakage Power	4.2.11	6.6.2.3	HT/LV	Pass	Pass	Pass	Pass	Pass	
Ratio			HT/HV	Pass	Pass	Pass	Pass	Pass	
			NT/NV	Pass	Pass	Pass	Pass	Pass	
Receiver	Section		LT/LV	Pass	Pass	Pass	Pass	Pass	
Reference	4.2.12	Clause 7.3	LT/HV	Pass	Pass	Pass	Pass	Pass	
Sensitivity Level			HT/LV	Pass	Pass	Pass	Pass	Pass	
			HT/HV	Pass	Pass	Pass	Pass	Pass	

53

Page 13 of

	Test		_		\	/erdict		
Test Item	Requirement EN301908-1	-	Test Conditions	FDD B38	FDD B40	reruiot		Note:
Radiated emissions (UE)	Section 4.2.2	-	NT/NV	Pass	Pass			Reference to the section 5.11
Control and monitoring functions (UE)	Section 4.2.4	-	NT/NV	Pass	Pass			Reference to the section 5.12
Test Item	Test Requirement EN301908- 13	Test Method ETSI TS136521-1	Test Conditions	FDD B38	FDD B40	/erdict		Note:
Transmitter Maximum Output Power	Section 4.2.2.1	Clause 6.2.2	NT/NV LT/LV LT/HV HT/LV HT/HV	Pass Pass Pass Pass Pass	Pass Pass Pass Pass Pass Pass			Reference to the section 5.1
Transmitter Spectrum emission mask	Section 4.2.3.1	Claue 6.6.2.1	NT/NV	Pass	Pass			
Transmitter Spurious Emissions	Section 4.2.4.1	Claue 6.6.3.2	NT/NV	Pass	Pass			
Transmitter Minimum Output Power	Section 4.2.5.1	Clause 6.3.2	NT/NV LT/LV LT/HV HT/LV HT/HV	Pass Pass Pass Pass Pass	Pass Pass Pass Pass Pass			
Receiver Adjacent Channel Selectivity	Section 4.2.6	Clause 7.5	NT/NV	Pass	Pass			
Receiver Blocking Characteristics	Section 4.2.7	Clause 7.6.1	NT/NV	Pass	Pass			
Recevier Spurious Response	Section 4.2.8	Clause 7.7	NT/NV	Pass	Pass			
Recevier Intermodulation Characteristics	Section 4.2.9	Clause 7.8	NT/NV	Pass	Pass			

Page 14 of 53 Report No.: AIT23071306CW8

Receiver Spurious Emissions	Section 4.2.10	Clause 7.9	NT/NV	Pass	Pass		
Transmitter Adjacent Channel Leakage Power Ratio	Section 4.2.11	Clause 6.6.2.3	NT/NV LT/LV LT/HV HT/LV HT/HV	Pass Pass Pass Pass Pass	Pass Pass Pass Pass Pass		
Receiver Reference Sensitivity Level	Section 4.2.12	Clause 7.3	NT/NV LT/LV LT/HV HT/LV HT/HV	Pass Pass Pass Pass Pass	Pass Pass Pass Pass Pass		

Note:

1. Test reports have put the diversity antenna coupled together by the power divider test

4. TSI EN 301 908-1/-13 REQUIREMENTS

4.1. TRANSMITTER MAXIMUM OUTPUT POWER

TEST LIMIT

Clause 6.2.2 of ETSI TS 136 521-1 (V11.1.0) (2013-07) applies.

DEFINITION AND APPLICABILITY

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

This test case applies to all types of E-UTRA UE release 8 and forward.

CONFORMANCE REQUIREMENTS

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH (see section 1.6).

Frequencies to be tested: low range, mid range, high range; as specified in TS 136 508 [2], clause 4.3.1.

Channel bandwidths to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

- Connect the SS to the UE antenna connectors.
- 2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.
- 3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.
- 4) The UL Reference Measurement channels are set according to TS 136 521-1 [1].
- 5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.
- 6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

The UE maximum output power shall be within the shown value in table 4.2.2.1.2-1.

Table 4.2.2.1.2-1: UE power classes	Table	4.2.2.1	1.2-1:	UE	power	classes
-------------------------------------	-------	---------	--------	----	-------	---------

E-UTRA Band	Power Class 3 (dBm)	Tolerance (dB)
1	23	±2,7
3	23	±2,7 (see note)
7	23	±2,7 (see note)
8	23	±2,7 (see note)
20	23	±2,7 (see note)
33	23	±2,7
34	23	±2,7
38	23	±2,7
40	23	±2,7
42	23	+3,0/-4,0
43	23	+3,0/-4,0

NOTE: For transmission bandwidths (TS 136 521-1 [1], clause 5) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} - 4 MHz and F_{UL_high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1,5 dB (tolerance = +2,7/-4,2).

NOTE 1: These requirements do not take into account the maximum power reductions allowed to the UE in subject to certain transmission conditions specified in TS 136 101 [4], clauses 6.2.3 and 6.2.4.

NOTE 2: The range of UE maximum output power for the various power classes are specified in TS 136 101 [4], clause 6.2.2. The values in table 4.2.2.1.2-1 correspond to the measurement limits taking into account the measurement uncertainty of measurement equipment (see clause 5.2).

SET UP FOR TESTING

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to table 6.2.2.1.4.1-1 of TS 136 521-1 [1]. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach PUMAX level.
- 3) Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of one sub-frame (1 ms). For TDD slots with transient periods are not under test.
- 4) Repeat for applicable test frequencies, channel bandwidths, operating band combinations and environmental conditions.

TEST RESULT

 $oxed{oxed}$ Pass $oxed{oxed}$ Not Applicable

Please refer to AIT23071306CW7 Appendix Data LTE

4.2. TRANSMITTER SPECTRUM EMISSION MASK

TEST LIMIT

Clause 6.6.2.1 of ETSI TS 136 521-1 (V11.1.0) (2013-07) applies.

DEFINITION AND APPLICABILITY

Out of band emissions are unwanted emissions immediately outside the nominal channel resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a Spectrum Emission Mask and Adjacent Channel Leakage power

Ratio. This test case applies to all types of E-UTRA UE release 8 and forward.

CONFORMANCE REQUIREMENTS

Test environment: normal (see section 1.6).

Frequencies to be tested: low range, mid range and high range; as specified in TS 136 508 [2], clause 4.3.1. Channel bandwidths to be tested: lowest, 5 MHz, 10 MHZ and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

- 1) Connect the SS to the UE antenna connectors.
- 2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.
- 3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.
- 4) The UL Reference Measurement channels are set according to TS 136 521-1 [1].
- 5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.
- 6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

The power of any UE emission shall fulfil requirements in tables 4.2.3.1.2-1 and 4.2.3.1.2-2.

Table 4.2.3.1.2-1: General E-UTRA spectrum emission mask	c. E UTRA bands ≤ 3 GHz

Δf_{OOB} (MHz)	1,4 MHz	3,0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth
0 to 1	-8,5	-11,5	-13,5	-16,5	-18,5	-19,5	30 kHz
1 to 2,5	-8,5	-8,5	-8,5	-8,5	-8,5	-8,5	1 MHz
2,5 to 2,8	-23,5	-8,5	-8,5	-8,5	-8,5	-8,5	1 MHz
2,8 to 5		-8,5	-8,5	-8,5	-8,5	-8,5	1 MHz
5 to 6		-23,5	-11,5	-11,5	-11,5	-11,5	1 MHz
6 to 10			-23,5	-11,5	-11,5	-11,5	1 MHz
10 to 15		(3		-23,5	-11,5	-11,5	1 MHz
15 to 20		X			-23,5	-11,5	1 MHz
20 to 25						-23,5	1 MHz

- NOTE 1: The first and last measurement position with a 30 kHz filter is at Δf_{OOB} equals to 0,015 MHz and 0,985 MHz.
- NOTE 2: The first and last measurement position with a 1 MHz filter for 1 MHz 2,5 MHz offset range is at Δf_{OOB} equals to 1,5 MHz and 2,0 MHz. Similarly for other Δf_{OOB} ranges.
- NOTE 3: The measurements shall be performed above the upper edge of the channel and below the lower edge of the channel.
- NOTE 4: For the 2,5 MHz 2,8 MHz offset range with 1,4 MHz channel bandwidth, the measurement position is at Δf_{OOB} equals to 3 MHz.

Table 4.2.3.1.2-2: General E-UTRA spectrum emission mask, 3 GHz < E-UTRA bands ≤ 4,2 GHz

		Spectrui	m emissio	n limit (dE	3m)/Chann	el bandwi	dth
Δf _{OOB} (MHz)	1,4 MHz	3,0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth
0 to 1	-8,2	-11,2	-13,2	-16,2	-18,2	-19,2	30 kHz
1 to 2,5	-8,2	111	-				1 MHz
2,5 to 2,8	-23,2	-8,2	-8,2	-8,2	-8,2	-8,2	1 MHz
2,8 to 5		111			1111		1 MHz
5 to 6		-23,2	-11,2	-11,2	-11,2	-11,2	1 MHz
6 to 10		20	-23,2				1 MHz
10 to 15				-23,2			1 MHz
15 to 20					-23,2		1 MHz
20 to 25					50	-23,2	1 MHz

NOTE 1: The first and last measurement position with a 30 kHz filter is at Δf_{OOB} equals to 0,015 MHz and 0,985 MHz.

NOTE 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0,5 MHz and -0,5 MHz, respectively.

NOTE 3: The measurements shall be performed above the upper edge of the channel and below the lower edge of the channel.

NOTE 4: For the 2,5-2,8 MHz offset range with 1,4 MHz channel bandwidth, the measurement position is at Δf_{OOB} equals to 3 MHz.

SET UP FOR TESTING

- SS sends uplink scheduling information via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 6.6.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2) Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at PUMAX level.
- 3) Measure the power of the transmitted signal with a measurement filter of bandwidths according to tables 4.2.3.1.2-1 or 4.2.3.1.2-2, as applicable. The center frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- 4) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

Page 19 of 53 Report No.: AIT23071306CW8

TEST RESULT

Note:

Please refer to AIT23071306CW7_Appendix Data_ LTE

4.3. TRANSMITTER ADJACENT CHANNEL LEAKAGE POWER RATIO(ACLR)

TEST LIMIT

Clause 4.2.11 of ETSI TS 136 521-1 V13.3.0 (2016-12) applies.

DEFINITION AND APPLICABILITY

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency

CONFORMANCE REQUIREMENTS

Test Environment: normal, TL/VL, TL/VH, TH/VL and TH/VH, as specified in(see section 1.6) .

Frequencies to be tested: low range, mid range and high range; see TS 136 508 [2].

Channel bandwidth to be tested: lowest, 5 MHz, 10 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

- 1) Connect the SS to the UE to the UE antenna connectors.
- 2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.
- 3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.
- 4) The UL Reference Measurement channels are set according to TS 136 521-1 [1].
- 5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.
- 6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

If the measured adjacent channel power is greater than -50 dBm then the measured E-UTRAACLR shall be higher than the limits in table 4.2.11.1.2-1.

Channel bandwidth/E-UTRA_{ACLR1}/measurement bandwidth 1.4 MHz 3.0 MHz 5 MHz 10 MHz 15 MHz 20 MHz E-UTRA_{ACLR1} 29,2 dB 29,2 dB 29,2 dB 29,2 dB 29,2 dB 29,2 dB E-UTRA channel 1,08 MHz 2,7 MHz 4,5 MHz 9,0 MHz 13,5 MHz 18 MHz Measurement bandwidth +1,4 MHz or +3 MHz or +5 MHz or +10 MHz or +15 MHz or +20 MHz or UE channel -1,4 MHz -3 MHz -5 MHz -10 MHz -15 MHz -20 MHz

Table 4.2.11.1.2-1: E-UTRA UE ACLR

If the measured UTRA channel power is greater than -50 dBm then the measured UTRAACLR1, UTRAACLR2 shall be higher than the limits in table 4.2.11.1.2-2.

	22-00-00-00-00-00-00-00-00-00-00-00-00-0	Channel	bandwidth/UTRA	:LR1/2/measureme	nt bandwidth	W. Constant Co.
- 3	1,4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
UTRA _{ACLR1}	32,2 dB	32,2 dB	32,2 dB	32,2 dB	32,2 dB	32,2 dB
Adjacent channel centre frequency offset (in MHz)	0,7 + BW _{UTRA} /2 / -0,7 - BW _{UTRA} /2	1,5 + BW _{UTRA} /2 / -1,5 - BW _{UTRA} /2	2,5 + BW _{UTRA} /2 -2,5 - BW _{UTRA} /2	5 + BW _{UTRA} /2 / -5 - BW _{UTRA} /2	7,5 + BW _{UTRA} /2 / -7,5 - BW _{UTRA} /2	10 + BW _{UTRA} /2 -10 - BW _{UTRA} /2
UTRA _{ACLR2}	\$P#-01	S-8	35,2 dB	35,2 dB	35,2 dB	35,2 dB
Adjacent channel centre frequency offset (in MHz)		(* *)	2,5 + 3 × BW _{UTRA} /2 / -2,5 - 3 × BW _{UTRA} /2	5 + 3 × BW _{UTRA} /2 / -5 - 3 × BW _{UTRA} /2	7,5 + 3 × BW _{UTRA} /2 / -7,5 - 3 × BW _{UTRA} /2	10 + 3 × BWUTRA/2 / -10 - 3 × BWUTRA/2
E-UTRA channel Measurement bandwidth	1,08 MHz	2,7 MHz	4,5 MHz	9,0 MHz	13,5 MHz	18 MHz
UTRA 5 MHz channel Measurement bandwidth (see note 1)	3,84 MHz	3,84 MHz	3,84 MHz	3,84 MHz	3,84 MHz	3,84 MHz
UTRA 1,6 MHz channel measurement bandwidth	1,28 MHz	1,28 MHz	1,28 MHz	1,28 MHz	1,28 MHz	1,28 MHz

Table 4.2.11.1.2-2: UTRA UE ACLR

NOTE 1: Applicable for E-UTRA FDD co-existence with UTRA FDD in paired spectrum. NOTE 2: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum. NOTE 3: BW_{UTRA} for UTRA FDD is 5 MHz and for UTRA TDD is 1,6 MHz.

SET UP FOR TESTING

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 6.6.2.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2) Send continuous uplink power control "up" commands in the uplink scheduling information to the UE to ensure that the UE transmits at PUMAX level.
- 3) Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in tables 4.2.11.1.2-1 and 4.2.11.1.2-2. The period of the measurement shall be at least the continuous duration of one sub-frame (1 ms). For TDD slots with transient periods are not under test.
- 4) Measure the filtered mean power for E-UTRA.
- 5) Measure the filtered mean power of the first E-UTRA adjacent channel.
- 6) Measure the RRC filtered mean power of the first and the second UTRA adjacent channel.
- 7) Calculate the ratio of the power between the values measured in step 4) over step 5) for E-UTRAACLR.
- 8) Calculated the ratio of the power between the values measured in step 4) over step 6) for UTRAACLR1, UTRAACLR2.
- 9) Repeat for applicable test frequencies, channel bandwidths, operating band combinations and environmental conditions.

Details of the test method can be found in TS 136 521-1 [1], clause 6.6.2.3.

TEST RESULT

\bowtie	Passed	Not A	plicable

Note:

Please refer to AIT23071306CW7_Appendix Data_ LTE

4.4. TRANSMITTER SPURIOUS EMISSIONS

TEST LIMIT

Clause 6.6.3 of ETSI ETSI TS 136 521-1 (V11.1.0) (2013-07) applies.

DEFINITION AND APPLICABILITY

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions. The spurious emission limits are specified in terms of general requirements in line with Recommendation ITU-R SM.329-12 [i.5] and E-UTRA operating band requirement to address UE co-existence. To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

CONFORMANCE REQUIREMENTS

Test environment: normal condition (see section 1.6).

Frequencies to be tested: low range, mid range, high range; see TS 136 508 [2].

Channel bandwidth to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2].

- 1) Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:
- 2) Connect the SS to the UE antenna connectors.
- 3) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.
- 4) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.
- 5) The UL Reference Measurement channels are set according to TS 136 521-1 [1]. 5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.
- 6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

The spurious emission limits in table 4.2.4.1.2-2 apply for the frequency ranges that are more than Δ fOOB (MHz) from the edge of the channel bandwidth shown in table 4.2.4.1.2-1.

The measured average power of spurious emission for general requirements shall not exceed the described values in table 4.2.4.1.2-2.

The measured average power of spurious emission for E-UTRA operating band specific requirements to protected bands shall not exceed the described values in tables 4.2.4.1.2-3 and 4.2.4.1.2-4.

Table 4.2.4.1.2-1: Δf_{OOB} boundary between E-UTRA channel and spurious emission domain

Channel bandwidth	1,4 MHz	3,0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Δf _{OOB} (MHz)	2,8	6	10	15	20	25

Table 4.2.4.1.2-2: General spurious emissions limits

Frequency range	Maximum level	Measurement bandwidth	Comment
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1 000 MHz	-36 dBm	100 kHz	5
1 GHz ≤ f < 12,75 GHz	-30 dBm	1 MHz	
12,75 GHz ≤ f < 5 th harmonic of the upper frequency edge of the UL	-30 dBm	1 MHz	See note
operating band in GHz			
NOTE: Shall apply for Band	22, 42 and Band 43.	·×	

NOTE 1: In order that the measurement of spurious emissions falls within the frequency ranges that are more than ΔfOOB (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the channel should be Δf_{OOB} + MBW/2. MBW denotes the measurement bandwidth defined in table 4.2.4.1.2-2.

The additional requirements in table 4.2.4.1.2-3 apply for the frequency ranges that are more and less than Δf_{OOB} (MHz) from the edge of the channel bandwidth shown in table 4.2.4.1.2-1.

SET UP FOR TESTING

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 6.6.3.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2) Send continuously Up power control commands in the uplink scheduling information to the UE until the UE transmits at PUMAX level.
- 3) For each applicable requirement in tables 4.2.4.1.2-2, 4.2.4.1.2-3 and 4.2.4.1.2-4; Measure the power of the transmitted signal with a measurement filter of bandwidths. The center frequency of the filter shall be stepped in contiguous steps according to the tables. The measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 4) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

TEST RESULT

	Passed		Not Ap	plicable	
Not					
PΙε	ease refer to	Appendix :			
Ple	ase refer to	AIT230713	06CW7	Appendix Data	LTE

4.5. TRANSMITTER MINIMUM OUTPUT POWER

TEST LIMIT

Clause 4.2.5 of EN 301 908-13 V 6.2.1 applies.

DEFINITION AND APPLICABILITY

The minimum controlled output power of the UE is defined as the broadband transmit power of the UE, i.e. the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

CONFORMANCE REQUIREMENTS

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH (see section 1.6)

Frequencies to be tested: low range, mid range and high range; see TS 136 508 [2].

Channel bandwidths to be tested: lowest, 5 MHz and highest channel bandwidth, as specified in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

- 1) Connect the SS to the UE antenna connectors.
- 2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.
- 3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.
- 4) The UL Reference Measurement channels are set according to TS 136 521-1 [1].
- 5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.
- 6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively. The minimum output power measured shall not exceed the values specified in table 4.2.5.1.2-1.

Table 4.2.5.1.2-1: Minimum output power

	Channel bandwidth/minimum output power/measurement bandwidth								
	1,4 MHz 3,0 MHz 5 MHz 10 MHz 15 MHz 20 MHz								
Minimum output power				y f ≤ 3,0 GHz: GHz < f ≤ 4,2 0	≤ -39 dBm 3Hz: ≤ -38,7 dB	3m			
Measurement bandwidth	1,08 MHz 2,7 MHz 4,5 MHz 9,0 MHz 13,5 MHz 18 MHz								

SET UP FOR TESTING

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 6.3.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2) Send continuous uplink power control "down" commands in the uplink scheduling information to the UE to ensure that the UE transmits at its minimum output power.
- 3) Measure the mean power of the UE in the associated measurement bandwidth specified in table 4.5.2.1-1 for the specific channel bandwidth under test. The period of measurement shall be the continuous duration of one sub-frame (1 ms). For TDD slots with transient periods are not under test.
- 4) Repeat for applicable test frequencies, channel bandwidths, operating band combinations and environmental conditions.

Details of the test method can be found in TS 136 521-1 [1], clause 6.3.2.

TEST RESULTS

	Passed		Not Applicable	
Not	te:			
Ple	ase refer to AIT2307	1306	CW7_Appendix Data_	LTE

4.6. RECEIVER ADJACENT CHANNEL SELECTIVITY (ACS)

TEST LIMIT

Clause 7.5 of ETSI TS 136 521-1 (V11.1.0) (2013-07) applies.

DEFINITION AND APPLICABILITY

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive an E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

CONFORMANCE REQUIREMENTS

Test environment: normal (see section 1.6).

Frequencies to be tested: mid range see TS 136 508 [2].

Channel bandwidth to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

- 1) Connect the SS and interfering source to the UE antenna connectors.
- 2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.
- 3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.
- 4) The UL and DL Reference Measurement channels are set according to TS 136 521-1 [1], table 7.5.4.1-1.
- 5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.
- 6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

The throughput R_{av} shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1] under the conditions specified in table 4.2.6.2-2 and also under the conditions specified in table 4.2.6.2-3.

Table 4.2.6.1.2-1: Adjacent channel selectivity

		Channel bandwidth							
Rx Parameter	Units	1,4 MHz	1,4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz						
ACS	dB	33,0	33,0	33,0	33,0	30	27		

Table 4.2.6.1.2-2: Test parameters for Adjacent channel selectivity, Case 1

Rx Parameter	Units	Channel bandwidth					
KX Parameter	Units	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in Transmission Bandwidth Configuration	dBm			REFSENS	S + 14 dB		
P _{Interferer}	dBm	REFSENS +45,5 dB	REFSENS +45,5 dB	REFSENS +45,5 dB	REFSENS +45,5 dB	REFSENS +42,5 dB	REFSENS +39,5 dB
BW _{Interferer}	MHz	1,4	3	5	5	5	5
F _{Interferer} (offset)	MHz	1,4025	3,0075	5,0025	7,5075	10,0125	12,5025

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L} or P_{CMAX_L} or P_{CMAX_L} as defined in clause 6.2.5 in ETSI

NOTE 2: The interferer shall consist of the Reference measurement channel specified in clause A.3.2 of ETSI TS 136 521-1 [1] with set-up according to clause C.3.1 of ETSI TS 136 521-1 [1].

NOTE 3: REFSENS as defined in ETSI TS 136 521-1 [1].

Table 4.2.6.1.2-3: Test parameters for Adjacent channel selectivity, Case 2

D. Danamatan	11:4	Channel bandwidth							
Rx Parameter	Units	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in Transmission Bandwidth Configuration	dBm	-56,5	-56,5	-56,5	-56,5	-53,5	-50,5		
P _{Interferer}	dBm			-2	25				
BW Interferer	MHz	1,4	3	5	5	5	5		
F _{Interferer} (offset)	MHz	1,4025	3,0075	5,0025	7,5075	10,0125	12,5025		

NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L} or P_{CMAX_L} cA as defined in clause 6.2.5 in ETSI

NOTE 2: The interferer shall consist of the Reference measurement channel specified in clause A.3.2 of ETSI TS 136 521-1 [1] with set-up according to clause C.3.1 of ETSI TS 136 521-1 [1].

SET UP FOR TESTING

- SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.5.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.5.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Set the Downlink signal level to the value as defined in table 4.2.6.2-2 (Case 1). Send Uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.6.2-2 (Case 1) for carrier frequency f ≤ 3,0 GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < f ≤ 4,2 GHz, for at least the duration of the Throughput measurement (obtain correct UE output power as specified in TS 136 521-1 [1]).
- 4) Set the Interferer signal level to the value as defined in table 4.2.6.2-2 (Case 1) and frequency below the wanted signal, using a modulated interferer as defined in TS 136 521-1 [1], annex D.
- Measure the average throughput for a duration sufficient to achieve statistical significance according to clause G.2 of TS 136 521-1 [1].

) Set the Downlink signal level to the value as defined in table 4.2.6.2-3 (Case 2). Send Uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power

53

Report No.: AIT23071306CW8

is within +0, -3,4 dB of the target level in table 4.2.6.2-3 (Case 2) for carrier frequency $f \le 3,0$ GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < $f \le 4,2$ GHz, for at least the duration of the throughput measurement (obtain correct UE output power as specified in TS 136 521-1 [1]).

- 7) Set the Interferer signal level to the value as defined in table 4.2.6.2-3 (Case 2) and frequency below the wanted signal, using a modulated interferer as defined in TS 136 521-1 [1], annex D.
- 8) Measure the average throughput for a duration sufficient to achieve statistical significance according to TS 136 521-1 [1], annex G.
- 9) Repeat for applicable channel bandwidths in both Case 1 and Case 2.
- 10) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

TEST RESULTS

	☐ Not Applicable
Note:	
Please refer to	AIT23071306CW7_Appendix Data_ LTE

4.7. RECEIVER BLOCKING CHARACTERISTICS

TEST LIMIT

Clause 7.6 of ETSI TS 136 521-1 (V11.1.0) (07-2013) applies.

DEFINITION AND APPLICABILITY

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

CONFORMANCE REQUIREMENTS

Test environment: normal (see section 1.6).

For In-band blocking, the frequencies to be tested are mid range as defined in TS 136 508 [2].

For Out of band blocking, the frequency to be tested is low or high range as defined in TS 136 508 [2].

For Narrow-band blocking, the frequencies to be tested are mid range as defined in TS 136 508 [2].

Channel bandwidth to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1. Range 3 of out-of-band blocking is tested only with highest bandwidth.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

- 1) Connect the SS to the UE antenna connectors. 2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.
- 2) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.1 and uplink signals according to clauses H.1 and H.3.0.
- 3) The UL and DL Reference Measurement channels are set according to TS 136 521-1 [1], table 7.6.2.4.1-1.
- 4) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.
- 5) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

With parameters specified in tables 4.2.7.2-1 and 4.2.7.2-2, the throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1].

With parameters specified in tables 4.2.7.2-3 and 4.2.7.2-4, the throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1], except for the spurious response frequencies.

For table 4.2.7.2-4 in frequency range 1, 2 and 3, up to \$\int \(\begin{align*} \ll ()6/6,24\text{maxRBN} \cdot \text{ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1 MHz step size, where RBN is the number of resource blocks in the downlink transmission bandwidth configuration. For these exceptions the requirements of clause 4.2.8 Spurious response are applicable.

With parameters specified in table 4.2.7.2-5, the throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1].

Table 4.2.7.1.2-1: In-band blocking parameters

Rx Parameter	Units	Channel bandwidth					
KX Parameter	Units	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in			REFSENS	+ channel band	width specific	value below	
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9
BW Interferer	MHz	1,4	3	5	5	5	5
Floffset, case 1	MHz	2,1125	4,5075	7,5125	7,5025	7,5075	7,5125
Floffset, case 2	MHz	3,5075	7,5075	12,5075	12,5125	12,5025	12,5075

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L} at the minimum uplink configuration specified in ETSI TS 136 101 [3] (table 7.3.1-2 with P_{CMAX_L} as defined in clause 6.2.5).

NOTE 2: The interferer shall consist of the Reference measurement channel specified in clause A.3.2 of ETSI TS 136 521-1 [1] with a set-up according to clause C.3.1 of ETSI TS 136 521-1 [1].

NOTE 3: REFSENS as defined in ETSI TS 136 521-1 [1].

Table 4.2.7.1.2-2: In-band blocking

	Parameter	Units	Case 1	Case 2
	P _{Interferer}	dBm	-56	-44
E-UTRA band	F _{Interferer} (Offset)	MHz	= -BW/2 - F _{loffset, case 1} and = +BW/2 + F _{loffset, case 1}	≤-BW/2 - F _{loffset, case 2} and ≥+BW/2 + F _{loffset, case 2}
1, 3, 7, 8, 20, 22, 28, 33, 34, 38, 40, 42, 43	F _{Interferer}	MHz	(note 2)	F _{DL_low} - 15 to F _{DL_high} + 15

NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band.

NOTE 2: For each carrier frequency the requirement is valid for two frequencies:

a) the carrier frequency -BW/2 - Floffset, case 1; and b) the carrier frequency + BW/2 + Floffset, case 1.

NOTE 3: Finterferer range values for unwanted modulated interfering signal are interferer center frequencies.

Table 4.2.7.1.2-3: Out-of-band blocking parameters

Rx Parameter	Units	Channel bandwidth						
KX Farameter	Units	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in Transmission		REFSE	NS + chann	nel bandw	idth speci	fic value b	elow	
Bandwidth Configuration	dBm	6	6	6	6	7	9	

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L} at the minimum uplink configuration specified in ETSI TS 136 101 [3] (table 7.3.1-2 with P_{CMAX_L} as defined in clause 6.2.5).

NOTE 2: Reference measurement channel is clause A.3.2 of ETSI TS 136 521-1 [1].

NOTE 3: REFSENS as defined in ETSI TS 136 521-1 [1].

	Doromotor	11:4	Frequency				
E-UTRA band	Parameter	Units	Range 1	Range 2	Range 3		
	P _{Interferer}	dBm	-44	-30	-15		
1, 3, 7, 8, 20, 22, 28, 33, 34, 38,	E (CW)	NAL I-	F _{DL_low} - 15 to F _{DL_low} - 60	F _{DL_low} - 60 to F _{DL_low} - 85	F _{DL_low} - 85 to 1 MHz		
40, 42 (NOTE 2), 43 (NOTE 2)	F _{Interferer} (CW)	MHz	F _{DL_high} + 15 to F _{DL_high} + 60	F _{DL_high} + 60 to F _{DL_high} + 85	F _{DL_high} + 85 to +12 750 MHz		

NOTE 1: Range 3 shall be tested only with the highest channel bandwidth.

NOTE 2: The power level of the interferer ($P_{Interferer}$) for Range 3 shall be modified to -20 dBm for $F_{Interferer}$ > 2 800 MHz and $F_{Interferer}$ < 4 400 MHz.

Table 4.2.7.1.2-5: Narrow-band blocking

Parameter	11	Channel Bandwidth							
	Units	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
P _w	dBm	P _{REFSENS} + channel-bandwidth specific value belo							
· w	w dbiii	22	18	16	13	14	16		
P _{uw} (CW)	dBm	-55	-55	-55	-55	-55	-55		
F_{uw} (offset for $\Delta f = 15 \text{ kHz}$)	MHz	0,9075	1,7025	2,7075	5,2125	7,7025	10,2075		

NOTE 1: The transmitter shall be set a 4 dB below P_{CMAX_L} at the minimum uplink configuration specified in ETSI TS 136 101 [3] (table 7.3.1-2 with P_{CMAX_L} as defined in clause 6.2.5).

NOTE 2: Reference measurement channel is in clause A.3.2 of ETSI TS 136 521-1 [1].

NOTE 3: REFSENS as defined in ETSI TS 136 521-1 [1].

SET UP FOR TESTING

In-Of-Band Procedure

- 1) SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.6.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.6.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Set the parameters of the signal generator for an interfering signal below the wanted signal in Case 1 according to tables 4.2.7.2-1 and 4.2.7.2-2 as specified in TS 136 521-1 [1].
- 4) Set the downlink signal level according to the table 4.2.7.2-1. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.7.2-1 for carrier frequency f ≤ 3,0 GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < f ≤ 4,2 GHz, for at least the duration of the throughput measurement as specified in TS 136 521-1 [1].
- 5) Measure the average throughput for a duration sufficient to achieve statistical significance according to clause G.2 of TS 136 521-1 [1].
- 6) Repeat steps from 3 to 5, using an interfering signal above the wanted signal in Case 1 at step 3.
- 7) Repeat steps from 3 to 6, using interfering signals in Case 2 at step 3) and 6). The ranges of case 2 are

covered in steps equal to the interferer bandwidth. The test frequencies are chosen in analogy to TS 136 521-1 [1], table 7.6.1.4.2-1. 8) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

Out-Of-Band Procedure

- 1) SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.6.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.6.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Set the parameters of the CW signal generator for an interfering signal according to table 4.2.7.2-4 as specified in TS 136 521-1 [1]. The frequency step size is 1 MHz.
- 4) Set the downlink signal level according to the table 4.2.7.2-3. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.7.2-3 for carrier frequency f ≤ 3,0 GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < f ≤ 4,2 GHz, for at least the duration of the throughput measurement as specified in TS 136 521-1 [1].
- 5) Measure the average throughput for a duration sufficient to achieve statistical significance according to clause G.2 of TS 136 521-1 [1].
- 6) For table 4.2.7.2-4 record the frequencies for which the throughput does not meet the requirements.
- 7) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

Narrow-Band Procedure

- 1) SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.6.3.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.6.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Set the parameters of the CW signal generator for an interfering signal below the wanted signal according to table 4.2.7.2-5 as specified in TS 136 521-1 [1].
- 4) Set the downlink signal level according to the table 4.2.7.2-5. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.7.2-5 for carrier frequency f ≤ 3,0 GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < f ≤ 4,2 GHz, for at least the duration of the throughput measurement as specified in TS 136 521-1 [1].
- 5) Measure the average throughput for a duration sufficient to achieve statistical significance according to clause G.2 of TS 136 521-1 [1].
- 6) Repeat steps from 3 to 5, using an interfering signal above the wanted signal at step 3.
- 7) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

TEST RESULTS

|--|

Note:

Please refer to AIT23071306CW7_Appendix Data_ LTE

.

4.8. RECEIVER SPURIOUS RESPONSE

TEST LIMIT

Clause 7.7 of ETSI TS 136 521-1 V13.3.0 (2016-12) applies.

DEFINITION AND APPLICABILITY

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out-of-band blocking limit as specified in table 4.2.7.2-4 is not met.

CONFORMANCE REQUIREMENTS

Test environment: normal (see section 1.6).

Frequencies to be tested: mid range; see TS 136 508 [2].

Channel bandwidths to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

- 1) Connect the SS and interfering sources to the UE antenna connectors.
- 2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.
- 3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1, C.3.1 and uplink signals according to clauses H.1 and H.3.1.
- 4) The UL and DL Reference Measurement channels are set according to TS 136 521-1 [1], table 7.8.4.1-1.
- 5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.
- 6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1] with parameters specified in tables 4.2.8.2-1 and 4.2.8.2-2.

Table 4.2.8.1.2-1: Spurious response parameters

Rx Parameter	Units	ts Channel bandwidth						
RX Farallieler	18	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in Transmission		REFSENS + channel bandwidth specific value below						
Bandwidth Configuration	dBm	6	6	6	6	7	9	
NOTE 1: The transmitter sh	OTE 1: The transmitter shall be set to 4 dB below P _{CMAX L} at the minimum uplink configuration specified						pecified in	
	ETSI TS 136 101 [3] (table 7.3.1-2 with P _{CMAX} L as defined in clause 6.2.5).							
NOTE 2: Reference measur	2: Reference measurement channel is clause A.3.2 of ETSI TS 136 521-1 [1].							
NOTE 3: REFSENS as defi	ned in ETSI	TS 136 521-	1 [1].					

Page 36 of 53 Report No.: AIT23071306CW8

Table 4.2.8.1.2-2: Spurious Response

Parameter	Units	Level
P _{Interferer} (CW)	dBm	-44
F _{Interferer}	MHz	Spurious response frequencies

SET UP FOR TESTING

- 1) SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.6.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.6.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Set the parameters of the CW signal generator for an interfering signal according to table 4.2.8.2-2. The spurious frequencies are taken from step 5) records in clause 5.3.6.1.2.
- 4) Set the downlink signal level according to the table 4.2.8.2-1. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.8.2-1 for carrier frequency f ≤ 3,0 GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < f ≤ 4,2 GHz, for at least the duration of the throughput measurement as specified in TS 136 521-1 [1].
- 5) For the spurious frequency, measure the average throughput for a duration sufficient to achieve statistical significance.

TEST RESULTS

⊠ Passed	☐ Not Applicable	
Note:		
Please refer to	AIT23071306CW7 Appendix Data	LTE

4.9. RECEIVER INTERMODULATION CHARACTERISTICS

TEST LIMIT

Clause 6.7 of ETSI TS 136 521-1 V13.3.0 (2016-12) applies.

DEFINITION AND APPLICABILITY

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

CONFORMANCE REQUIREMENTS

Test environment: normal (see section 1.6).

Frequencies to be tested: mid range; see TS 136 508 [2].

Channel bandwidths to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

- 1) Connect the SS and interfering sources to the UE antenna connectors.
- 2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.
- 3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1, C.3.1 and uplink signals according to clauses H.1 and H.3.1.
- 4) The UL and DL Reference Measurement channels are set according to TS 136 521-1 [1], table 7.8.4.1-1.
- 5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.
- 6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1] with parameters specified in table 4.2.9.2-1 for the specified wanted signal mean power in the presence of two interfering signals.

Table 4.2.9.2-1: Test parameters for Wide band intermodulation

53

Page 38 of

Rx Parameter	Units	Channel bandwidth					
		1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in		RI	FSENS + chan	nel bandwi	dth specific	value below	20
Transmission Bandwidth Configuration	dBm	12	8	6	6	7	9
P _{Interferer 1} (CW)	dBm	-46					
P _{Interferer 2} (Modulated)	dBm	-46					
BW _{Interferer 2}		1,4 3 5					
F _{Interferer 1} (Offset)	MHz	-BW/2 - 2,1 -BW/2 - 4,5 -BW/2 - 7,5 / / / / / / / / / / / / / / / / / / /					
F _{Interferer 2} (Offset)	MHz	2 × F _{interferer 1}					

in TS 136 101 [4] (table 7.3.1-2 with P_{CMAX_L} as defined in clause 6.2.5).

NOTE 2: Reference measurement channel is clause A.3.2 of TS 136 521-1 [1].

NOTE 3: The modulated interferer consists of the Reference measurement channel specified in

clause A.3.2 of TS 136 521-1 [1] with set-up according to clause C.3.1 of TS 136 521-1 [1]. The interfering modulated signal is 5 MHz E-UTRA signal as described in annex D for channel bandwidth ≥ 5 MHz. NOTE 4: REFSENS as defined in TS 136 521-1 [1].

SET UP FOR TESTING

- SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.6.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.6.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Set the parameters of the CW signal generator for an interfering signal according to table 4.2.8.2-2. The spurious frequencies are taken from step 5) records in clause 5.3.6.1.2.
- 4) Set the downlink signal level according to the table 4.2.8.2-1. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.8.2-1 for carrier frequency f ≤ 3,0 GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < f ≤ 4,2 GHz, for at least the duration of the throughput measurement as specified in TS 136 521-1 [1].
- 5) For the spurious frequency, measure the average throughput for a duration sufficient to achieve statistical significance.

TEST RESULTS

	■ Not Applicable	
Note:		
Please refer to	AIT23071306CW7 Appendix Data	ITF

4.10. RECEIVER SPURIOUS EMISSIONS

TEST LIMIT

Clause 7.9 of ETSI TS 136 521-1 V13.3.0 (2016-12) applies.

DEFINITION AND APPLICABILITY

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

CONFORMANCE REQUIREMENTS

Test Environment: normal (see section 1.6).

Frequencies to be tested: low range, mid range and high range; as specified in TS 136 508 [2], clause 4.3.1. Channel bandwidth to be tested: highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

- 1) Connect a spectrum analyzer (or other suitable test equipment) to the UE antenna connectors.
- 2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.
- 3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.1.
- 4) The DL Reference Measurement channels are set according to TS 136 521-1 [1].
- 5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.
- 6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.3-1

Table 7.9.3-1: General receiver spurious emission requirements

Frequency Band	Measurement Bandwidth	Maximum level	Note
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	
1GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	
12.75 GHz ≤ f ≤ 5 th harmonic of the upper frequency edge of the DL operating band in GHz	1 MHz	-47 dBm	Note 1

Note 1: Applies only for Band 22, Band 42 and Band 43.

Note 2: Unused PDCCH resources are padded with resource element groups with power level given by PDCCH_RA/RB as defined in Annex C.3.1.

SET UP FOR TESTING

- 1) Sweep the spectrum analyser (or other suitable test equipment) over a frequency range from 30 MHz to 12,75 GHz and measure the average power of the spurious emissions.
- 2) Repeat step 1) for all E-UTRA Rx antennas of the UE.
- 3) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

Details of the test method can be found in TS 136 521-1 [1], clause 7.9.

TECT		-0		TO
TEST	KI	=5	UL	. 1 5

⊠ Passed	☐ Not Applicable	
Note:		
Please refer to	AIT23071306CW7_Appendix Data_	LTE

4.11. CONTROL AND MONITORING FUNCTIONS (UE)

TEST LIMIT

The maximum measured power during the duration of the test shall not exceed -30 dBm.Table 4.2.4.1.2-1: General spurious emissions requirements.

TEST PROCEDURE

- 1) At the start of the test, the UE shall be switched off. The UE antenna connector shall be connected to a power measuring equipment, with the following characteristics:
 - The RF bandwidth shall exceed the total operating transmit frequency range of the UE for operation with an applicable part.
 - The response time of the power measuring equipment shall be such that the measured power has reached within 1 dB of its steady state value within 100 µs of a CW signal being applied.
 - It shall record the maximum power measured.
 - NOTE: The equipment may include a video low pass filter to minimize its response to transients or Gaussian noise peaks.
- 2) The UE shall be switched on for a period of approximately fifteen minutes, and then switched off.
- 3) The EUT shall remain switched off for a period of at least thirty seconds, and shall then be switched on for a period of approximately one minute.
- 4) The maximum power emitted from the UE throughout the duration of the test shall be recorded. The results obtained shall be compared to the limits in clause 4.2.4.2 in order to prove compliance.

TEST RESULTS

lest Mode IX Mode

Test Case	Power-Real (Voltage)	Max Level (dBm)	Margin to Limit (dBm)	Verdict
Band 1	DC 3.8V	-46.98	-16.98	PASS
Band 3	DC 3.8V	-46.44	-16.44	PASS
Band 7	DC 3.8V	-49.25	-19.25	PASS
Band 8	DC 3.8V	-46.36	-16.36	PASS
Band 20	DC 3.8V	-45.69	-15.69	PASS

Note: Margin to Limit = Max Level – Limit (-30dBm)

4.12. RADIATED EMISSIONS (UE)

TEST LIMIT

The frequency boundary and reference bandwidths for the detailed transitions of the limits between the requirements for out-of-band emissions and spurious emissions are based on Recommendations ITU-R SM.329-12 [1] and SM.1539-1 [i.6].

The requirements shown in table 4.2.2.2-1 are only applicable for frequencies in the spurious domain

Table 4.2.2.2-1: Radiated spurious emissions requirements (UE)

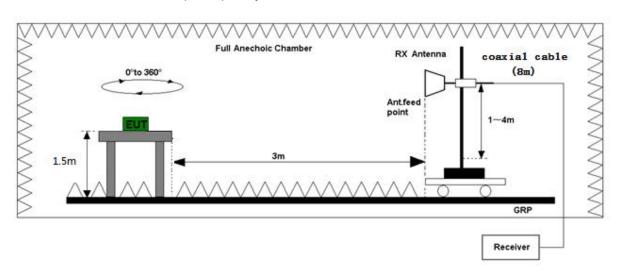
Frequency	Minimum requirement (e.r.p.)/ reference bandwidth idle mode	Minimum requirement (e.r.p.)/ reference bandwidth traffic mode	Applicability
30 MHz ≤ f < 1 000 MHz	-57 dBm/100 kHz	-36 dBm/100 kHz	All
1 GHz ≤ f < 12,75 GHz	-47 dBm/1 MHz	-30 dBm/1 MHz	All
12,75 GHz ≤ f < 5 th harmonic of the upper frequency edge of the Uplink operating band in GHz	-47 dBm/1 MHz	-30 dBm/1 MHz	All (note 3)
12,75 GHz < f < 26 GHz	-47 dBm/1 MHz	-30 dBm/1 MHz	All (note 4)
fc - 2,5 × 5 MHz < f < fc + 2,5 × 5 MHz (note 1 and note 2)	Not defined	Not defined	UTRA FDD, UTRA TDD, 3,84 Mcps option, cdma2000, spreading rate 3
fc - 2,5 × BW _{Channel} MHz < f < fc + 2,5 × BW _{Channel} MHz (note 1 and note 2)	Not defined	Not defined	E-UTRA FDD, E-UTRA TDD, Mobile WiMAX TM
fc - (1,5 x BW _{Channel} + 5) MHz < f < fc + (1,5 x BW _{Channel} + 5) MHz (note 1)	Not defined	Not defined	NR operating in FR1
fc - 2,5 × 10 MHz < f < fc + 2,5 × 10 MHz (note 1 and note 2)	Not defined	Not defined	UTRA TDD, 7,68 Mcps option
fc - 4 MHz < f < fc + 4 MHz (note 1 and note 2)	Not defined	Not defined	UTRA TDD, 1,28 Mcps option cdma2000, spreading rate 1

NOTE 1: fc is the UE transmit centre frequency.

NOTE 2: This frequency range is not in the spurious domain, no requirement is then defined for this frequency range.


NOTE 3: Applies for Band that the upper frequency edge of the Uplink Band more than 2,69 GHz.

NOTE 4: Applies for Band that the upper frequency edge of the Uplink Band more than 5,2 GHz.



TEST SETUP

Radiated Emission Test Set-Up Frequency 30 MHz ~ 1 GHz

Radiated Emission Test Set-Up Frequency Above 1 GHz

TEST PROCEDURE

Step 1:

The measurement is carried out in the fully anechoic chamber. EUT was placed on a 1.50 meter high nonconductive table at a 3 meter test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. The height of receiving antenna is 1.50 m and varies in certain range to find the maximum power value. Connect the EUT to the BTS simulator via the air interface.

The measurement is carried out using a spectrum analyzer or receiver. Then the antenna height and turn table rotation is adjusted till the maximum power value is founded on spectrum analyzer or receiver.

A filter is necessary in the band near to the carrier frequency. A filter is needed to avoid the distortion of the testing equipment in the band above the carrier frequency.

Step 2:

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT.

The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

Calculation procedure:

The data of cable loss, antenna gain and air loss has been calibrated in full testing frequency range before the testing.

The power of the Radiated Spurious Emissions is calculated by adding the cable loss, antenna gain and air loss.

The basic equation with a sample calculation is as followed:

P=PR+LC+LA-G

Where

P: Power of the Radiated Spurious Emissions (dBm)

PR: reading of the receiver (dBm)

LC: Cable Lose and power amilifer gain and filter cable loss (dB)

LA: Air loss (dB)

G: Antenna Gain (dBi)

TEST RESULTS

This test was carried out in all the test modes, and record worst case as blow.

The EUT has met the requirements of 3GPP2 C.S0011-A's requirement.

Remark: Normal and extreme voltage test conditions have been tested, only the measurement data of normal voltage condition are reported.

Note: Pre-scan all kinds of bandwidth and channel, so only show the worse test data on the report.

		LTE Band	1(5MHz)	
Te	est mode:	Traffic Mode	Polarity:	Horizontal
Suspected	d List	-	-	
NO.	Freq.	Result Level	Limit	Margin
	[MHz]	[dBm]	(dBm)	(dB)
1	3899.82	-39.68	-30.00	-9.68
2	5849.61	-41.13	-30.00	-11.13
3	7799.79	-37.87	-30.00	-7.87
4	9749.73	-42.60	-30.00	-12.60
Te	est mode:	Traffic Mode	Polarity:	Vertical
Suspected	d List	······································	-	
NO	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	3899.16	-38.68	-30.00	-8.68
2	5849.15	-40.45	-30.00	-10.45
3	7799.29	-35.92	-30.00	-5.92
4	9749.87	-41.75	-30.00	-11.75
Te	est mode:	Idle Mode	Polarity:	Horizontal
Suspected	d List	···		
NO	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	147.33	-76.00	-54.00	-22.00
2	667.56	-70.34	-54.00	-16.34
3	1038.29	-64.08	-47.00	-17.08
4	8346.92	-63.79	-47.00	-16.79
Te	est mode:	Idle Mode	Polarity:	Vertical
Suspected	d List			
NO.	Freq.	Result Level	Limit	Margin
NU.	[MHz]	[dBm]	(dBm)	(dB)
1	117.46	-74.69	-54.00	-20.69
2	803.39	-69.74	-54.00	-15.74
3	1874.61	-62.70	-47.00	-15.70
4	9586.84	-62.26	-47.00	-15.26

Page 46 of

53

RESULT: PASS

- Result Level = Reading Level + Correct Factor.
 Argin Level = Limit Value- Result Level

		LTE Band 3	(1.4MHz)	
Te	est mode:	Traffic Mode	Polarity:	Horizontal
Suspected	d List	······································		
NO.	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	3494.29	-40.70	-30.00	-10.70
2	5241.73	-42.15	-30.00	-12.15
3	6989.08	-36.72	-30.00	-6.72
4	8737.16	-43.41	-30.00	-13.41
Te	est mode:	Traffic Mode	Polarity:	Vertical
Suspected	d List			- L
	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	3494.86	-39.39	-30.00	-9.39
2	5241.63	-41.28	-30.00	-11.28
3	6989.01	-35.53	-30.00	-5.53
4	8737.24	-42.69	-30.00	-12.69
To	est mode:	Idle Mode	Polarity:	Horizontal
Suspected	d List	-		. i.
110	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	227.79	-72.24	-54.00	-18.24
2	818.51	-68.58	-54.00	-14.58
3	4040.55	-63.21	-47.00	-16.21
4	7297.04	-62.70	-47.00	-15.70
Te	est mode:	Idle Mode	Polarity:	Vertical
Suspected	d List	<u> </u>		
NO.	Freq.	Result Level	Limit	Margin
NU.	[MHz]	[dBm]	(dBm)	(dB)
1	228.30	-72.15	-54.00	-18.15
2	817.85	-68.29	-54.00	-14.29
3	4039.86	-62.51	-47.00	-15.51
4	7297.58	-62.90	-47.00	-15.90

RESULT: PASS

Result Level = Reading Level + Correct Factor.
 Argin Level = Limit Value- Result Level

		LTE Band	7(5MHz)	
Te	est mode:	Traffic Mode	Polarity:	Horizontal
Suspected	l List	······································		
NO.	Freq.	Result Level	Limit	Margin
1	[MHz] 5070.00	[dBm] -39.32	(dBm) -30.00	(dB) -9.32
1 2	7605.00	-39.32 -40.81	-30.00	-9.32 -10.81
	10140.00	-40.61	-30.00	-5.23
3				
4	12675.00	-43.45	-30.00	-13.45
T	est mode:	Traffic Mode	Polarity:	Vertical
Suspected	l List			
NO	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	5070.00	-39.31	-30.00	-9.31
2	7605.00	-41.44	-30.00	-11.44
3	10140.00	-35.69	-30.00	-5.69
4	12675.00	-43.02	-30.00	-13.02
Te	est mode:	Idle Mode	Polarity:	Horizontal
Suspected	l List			J
NO.	Freq.	Result Level [dBm]	Limit (dBm)	Margin (dB)
1	224.10	-72.21	-54.00	-18.21
2	502.14	-69.74	-54.00	-15.74
3	3703.02	-66.51	-47.00	-19.51
4	7531.72	-65.42	-47.00	-18.42
				-10.42
Te	st mode:	Idle Mode	Polarity:	Vertical
Suspected	 l List	J		.i
	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	228.27	-71.66	-54.00	-17.66
2	817.85	-68.14	-54.00	-14.14
3	4040.41	-62.98	-47.00	-15.98
4	7297.60	-62.58	-47.00	-15.58

RESULT: PASS

Result Level = Reading Level + Correct Factor.
 Argin Level = Limit Value- Result Level

		LTE Band 8	S(1.4MHz)	
Te	est mode:	Traffic Mode	Polarity:	Horizontal
Suspected	l List	······································		
NO.	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	1795.00	-39.72	-30.00	-9.72
2	2692.50	-41.17	-30.00	-11.17
3	3590.00	-35.04	-30.00	-5.04
4	4487.50	-43.47	-30.00	-13.47
Te	est mode:	Traffic Mode	Polarity:	Vertical
Suspected	l List	······································		
110	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	1795.00	-37.42	-30.00	-7.42
2	2692.50	-41.34	-30.00	-11.34
3	3590.00	-41.74	-30.00	-11.74
4	4487.50	-41.38	-30.00	-11.38
Te	est mode:	Idle Mode	Polarity:	Horizontal
Suspected	l List	······································		
NO	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	223.93	-72.69	-54.00	-18.69
2	501.99	-69.01	-54.00	-15.01
3	3703.11	-67.02	-47.00	-20.02
4	7531.80	-65.74	-47.00	-18.74
Te	est mode:	Idle Mode	Polarity:	Vertical
Suspected	l List			
NO.	Freq.	Result Level	Limit	Margin
INO.	[MHz]	[dBm]	(dBm)	(dB)
1	228.44	-72.02	-54.00	-18.02
2	817.91	-68.46	-54.00	-14.46
3	4040.27	-62.40	-47.00	-15.40
4	7297.85	-63.05	-47.00	-16.05

RESULT: PASS

Result Level = Reading Level + Correct Factor.
 Argin Level = Limit Value- Result Level

		LTE Band 2	20(5MHz)	
Test mode:		Traffic Mode	Polarity:	Horizontal
Suspected	l List	······································		··
NO.	Freq.	Result Level	Limit	Margin
110.	[MHz]	[dBm]	(dBm)	(dB)
1	1694.00	-39.35	-30.00	-9.35
2	2541.00	-41.22	-30.00	-11.22
3	3388.00	-34.88	-30.00	-4.88
4	4235.00	-42.75	-30.00	-12.75
Test mode:		Traffic Mode	Polarity:	Vertical
Suspected	l List	-		*
NIO	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	1694.00	-37.47	-30.00	-7.47
2	2541.00	-41.69	-30.00	-11.69
3	3388.00	-41.25	-30.00	-11.25
4	4235.00	-40.64	-30.00	-10.64
Test mode:		Idle Mode	Polarity:	Horizontal
Suspected	l List	-		J
	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	224.06	-72.01	-54.00	-18.01
2	502.16	-69.21	-54.00	-15.21
3	3703.68	-66.64	-47.00	-19.64
4	7531.67	-66.19	-47.00	-19.19
Test mode:		Idle Mode	Polarity:	Vertical
Suspected	l List	-		······································
NO.	Freq.	Result Level	Limit	Margin
NO.	[MHz]	[dBm]	(dBm)	(dB)
1	228.24	-71.64	-54.00	-17.64
2	818.41	-68.07	-54.00	-14.07
3	4040.02	-63.19	-47.00	-16.19
4	7297.86	-62.64	-47.00	-15.64

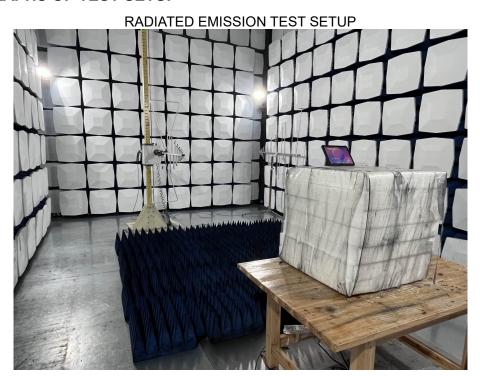
Page 50 of

53

RESULT: PASS

- 1. Result Level = Reading Level + Correct Factor.
- 2.Margin Level = Limit Value- Result Level

LTE Band 38(5MHz)						
Test mode:		Traffic Mode	Polarity:	Horizontal		
Suspected	l List	······································				
NO.	Freq.	Result Level	Limit	Margin		
NO.	[MHz]	[dBm]	(dBm)	(dB)		
1	3494.80	-39.73	-30.00	-9.73		
2	5241.65	-40.76	-30.00	-10.76		
3	6989.11	-35.18	-30.00	-5.18		
4	8736.51	-43.49	-30.00	-13.49		
Te	est mode:	Traffic Mode	Polarity:	Vertical		
Suspected	l List	······································				
NO	Freq.	Result Level	Limit	Margin		
NO.	[MHz]	[dBm]	(dBm)	(dB)		
1	3899.50	-37.50	-30.00	-7.50		
2	5849.74	-41.14	-30.00	-11.14		
3	7799.58	-42.01	-30.00	-12.01		
4	9749.66	-40.64	-30.00	-10.64		
Te	est mode:	Idle Mode	Polarity:	Horizontal		
Suspected	l List					
NO	Freq.	Result Level	Limit	Margin		
NO.	[MHz]	[dBm]	(dBm)	(dB)		
1	224.13	-72.79	-54.00	-18.79		
2	501.88	-69.58	-54.00	-15.58		
3	3703.49	-66.68	-47.00	-19.68		
4	7531.54	-66.07	-47.00	-19.07		
Te	est mode:	Idle Mode	Polarity:	Vertical		
Suspected	l List	······································				
NO	Freq.	Result Level	Limit	Margin		
NO.	[MHz]	[dBm]	(dBm)	(dB)		
1	228.33	-71.46	-54.00	-17.46		
2	818.02	-68.33	-54.00	-14.33		
3	4040.47	-62.85	-47.00	-15.85		
4	7297.71	-62.44	-47.00	-15.44		



Page 52 of 53

LTE Band 40(5MHz)							
Test mode:		Traffic Mode	Polarity:	Horizontal			
Suspected List							
NO.	Freq.	Result Level	Limit	Margin			
NO.	[MHz]	[dBm]	(dBm)	(dB)			
1	3494.80	-39.59	-30.00	-9.59			
2	5242.44	-41.40	-30.00	-11.40			
3	6989.74	-35.61	-30.00	-5.61			
4	8736.55	-43.03	-30.00	-13.03			
Te	est mode:	Traffic Mode	Polarity:	Vertical			
Suspected List							
NO	Freq.	Result Level	Limit	Margin			
NO.	[MHz]	[dBm]	(dBm)	(dB)			
1	3899.58	-37.73	-30.00	-7.73			
2	5849.48	-41.83	-30.00	-11.83			
3	7799.31	-41.24	-30.00	-11.24			
4	9749.07	-40.83	-30.00	-10.83			
Test mode:		Idle Mode	Polarity:	Horizontal			
Suspected	l List	····					
NO	Freq.	Result Level	Limit	Margin			
NO.	[MHz]	[dBm]	(dBm)	(dB)			
1	224.35	-72.87	-54.00	-18.87			
2	501.88	-69.13	-54.00	-15.13			
3	3703.71	-66.76	-47.00	-19.76			
4	7532.26	-66.09	-47.00	-19.09			
Te	est mode:	Idle Mode	Polarity:	Vertical			
Suspected	l List						
NO.	Freq.	Result Level	Limit	Margin			
NU.	[MHz]	[dBm]	(dBm)	(dB)			
1	228.04	-71.78	-54.00	-17.78			
2	818.60	-68.01	-54.00	-14.01			
3	4040.52	-62.51	-47.00	-15.51			
4	7297.60	-62.69	-47.00	-15.69			

5. PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION ABOVE 1G TEST SETUP

----END OF REPORT----