RADIO TEST REPORT ETSI EN 300 440 V2.2.1 (2018-07)

Product :	Tablet PC
Trade Mark :	Blackview
Model Name :	Active 8 Pro
Family Model :	N/A
Report No. :	S23081004401005

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

Page 2 of 82

Report No.: S23081004401005

TEST RESULT CERTIFICATION

Applicant's name	: DOKE COMMUNICATION (HK) LIMITED
Address	RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA
Manufacturer's Name	: Shenzhen DOKE Electronic Co., Ltd
Address	
Product description	
Product name	· Tablet PC

Product name	.: Tablet PC
Trademark	: Blackview
Model and/or type reference	[:] Active 8 Pro
Family Model	: N/A

Standards: ETSI EN 300 440 V2.2.1 (2018-07)

This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.

Test Sample Number:	S230526008001
Date of Test	
Date (s) of performance of tests:	May 29, 2023 ~ Jun 21, 2023
Date of Issue:	Aug 30, 2023
Test Result	Pass
Note: All test data of this report are based on	the original test report
S23052600801005 dated by Jun 25, 2023	

Testing Engineer

Allen lin

(Allen Liu)

Authorized Signatory:

(Alex Li)

Page 3 of 82

NTEK 北测[®]

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	
1.2 MEASUREMENT UNCERTAINTY	0 8
	0
2. GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT 2.2 TEST CONDITIONS	9 10
2.3 DESCRIPTION OF TEST CONDITIONS	10
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	13
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	14
3 . EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)	15
3.1 APPLICABILITY	15
3.2 LIMITS	15
3.3 GENERAL REQUIREMENTS	15
3.4 TEST PROCEDURES	15
3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS	15
3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS	16
3.5 TEST SETUP LAYOUT	16
3.6 EUT OPERATION DURING TEST	16
3.7 TEST RESULT FOR -6 DB BANDWIDTH	17
3.8 TEST RESULT FOR E.I.R.P	18
4. PERMITTED RANGE OF OPERATING FREQUENCIES	19
4.1 APPLIED PROCEDURES / LIMIT	- 19
4.2 TEST PROCEDURES	19
4.3 TEST SETUP LAYOUT	19
4.4 EUT OPERATION DURING TEST	19
4.5 TEST RESULTS	20
5. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	23
5.1 APPLIED PROCEDURES / LIMIT	23
5.2 MEASURING INSTRUMENTS AND SETTING	23
5.3 TEST PROCEDURES	23
5.4 TEST SETUP LAYOUT	24

Page 4 of 82

Table of Contents	Page
5.5 EUT OPERATION DURING TEST	24
5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS	24
5.7 TEST RESULTS	25
6. DUTY CYCLE	27
6.1 APPLICABILITY AND DESCRIPTION	27
6.2 LIMITS	27
6.4 METHOD OF MEASUREMENT	27
6.5 TEST SETUP	28
6.6 TEST RESULTS	28
7. SPURIOUS EMISSIONS – RX	29
7.1 APPLIED PROCEDURES / LIMIT	29
7.2 MEASURING INSTRUMENTS AND SETTING	29
7.3 TEST PROCEDURES	29
7.5 TEST SETUP LAYOUT	29
7.6 EUT OPERATION DURING TEST	29
7.7 TEST RESULTS	30
8 . ADJACENT CHANNEL SELECTIVITY	31
8.1 APPLICABILITY	31
8.2 LIMITS	31
8.3 METHODS OF MEASUREMENT	31
8.4 TEST SETUP LAYOUT	32
8.5 TEST RESULTS	32
9. BLOCKING OR DESENSITIZATION	33
9.1 APPLICABILITY	33
9.2 LIMITS	33
9.3 TEST PROCEDURES	33
8.4 TEST SETUP LAYOUT	34
9.4 TEST RESULTS	35
10. TEST RESULTS	42
10.1 DUTY CYCLE	42
10.2 -6DB EMISSION BANDWIDTH	50
10.3 FREQUENCY RANGE	58
10.4 OCCUPIED CHANNEL BANDWIDTH	65

Page 5 of 82

Table of Contents	Page
10.5 RF OUTPUT POWER	73
11 . EUT TEST PHOTO 🦽 🧹 🥆	82 🔬
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	82
APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DET	AILS

Page 6 of 82

Report No.: S23081004401005

	R	Revision History	×
Report No.	Version	Description	Issued Date
S23052600801005	Rev.01	Initial issue of report	Jun 25, 2023
S23081004401005	Rev.02	Updated report number	Aug 30, 2023
	5 7	* *	
~		* 3 * *	
	8 X		dt .
<u> </u>		1 - S	4
~			A C
	4	A	St A
Jer L			
		4	<u></u>
	7	4	
			<u> </u>
		~	X
			<u></u>
	Ariter Arit		
et fret		A. Arith	and and

Report No.: S23081004401005

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: ETSI EN 300 440 V2.2.1 (2018-07)

Clause	Description of Test Item	Remarks	Results	
	<u> </u>			
4.2.2	-6 dB channel bandwidth	Conducted	Pass	
4.2.2	Effective isotropic radiated power	Conducted	Pass	
4.2.3	Permitted range of operation frequencies	Conducted	Pass 🔨	
4.2.4	Unwanted emissions in the spurious domain	Radiated	Pass	
4.2.5	Duty cycle	Conducted	Pass	
4.2.6	Additional requirements for FHSS equipment	Conducted	N/A	
	Receiver Parameters			
4.3.3	Adjacent channel selectivity(For Receiver category 1)	Conducted	N/A	
4.3.4	Blocking or desensitization(For Receiver category 1,2,3)	Conducted	Pass	
4.3.5	Spurious emissions(For Receiver category 1,2,3)	Radiated	Pass	

Page 7 of 82

Note: The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter

Report No.: S23081004401005

NTEK 北测[®]

Page 8 of 82

1.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.: 9270A-1

CNAS Registration No.:L5516 1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

No.	Item 🖉 🍝 🔟	Uncertainty
1	Radio frequency	±1 x 10-7
2	RF power (conducted)	±2,5 dB
3	Radiated emission of transmitter, valid to 26,5 GHz	±6 dB
4	Radiated emission of transmitter, valid between 26,5 GHz and 66 GHz	±8 dB
5	Radiated emission of receiver, valid to 26,5 GHz	±6 dB
6	Radiated emission of receiver, valid between 26,5 GHz and 66 GHz	±8 dB
7	Temperature	±1℃
8	Humidity	±5 %
9	Voltage (DC)	±1 %
10	Voltage (AC, < 10 kHz)	±2 %

NOTE: For radiated emissions above 26,5 GHz it may not be possible to achieve measurement uncertainties complying with the levels specified in this table. In these cases alone it is acceptable to employ the alternative interpretation procedure specified in EN 300440 V2.2.1 clause 5.9.1.

Page 9 of 82

2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT

Equipment	Tablet PC				
Trade Mark	Blackview	A S			
Model Name	Active 8 Pro				
Family Model	N/A				
Model Difference	N/A		2		
2					
	Operation	5745-5825 MHz for 802.11a/n2			
	Frequency:	5755-5795 MHz for 802.11n40 5775MHz for 802.11 ac80;			
	Data Rate:	802.11a: 6,9,12,18,24,36,48,54 802.11n(HT20/HT40):MCS0-M	CS7;		
		802.11ac(VHT20/ VHT40/VHT MCS0-MCS9, NSS2	80): NSS1,		
Draduat Description	Modulation	OFDM with BPSK/QPSK/16QAM/64QAM/2	256QAM		
Product Description	Channel No.:	5 channels for 802.11a/n20/ac. 5745-5825MHz band ;	20 in the		
		2 channels for 802.11 n40/ac4	0 in the		
		5755-5795MHz band ;			
		1 channels for 802.11 ac80 in t band ;	ne 5775MHz		
	Antenna Designation:	PIFA Antenna	Å		
A	Antenna Gain(Peak)	1.2 dBi			
	e.g. serving hu physical risk to		result in a		
Receiver category	e.g. causing in	2: Medium reliable SRD communiconvenience to persons, which by other means.			
		3: Standard reliable SRD comm	inication media		
		ence to persons, which can sim			
	overcome by c	other means (e.g. manual).			
Channel List	Refer to below				
	Model: HJ-C6-		4		
		0V~50/60Hz 0.8A			
5		5.0V3.0A 15.0W 🥄 3.0A 27.0W			
Adapter					
	or 15.0V2.0A 30.0W				
to the	or 20.0V1.5A 30.0W (PPS)3.3V-11.0V3.0A (33.0W MAX)				
Battery	DC 3.87V, 220	000mAh			
Rating	DC 3.87V from	n battery or DC 5V from adapter	<u>x</u> x		
Hardware Version	TP769_A1_V1	1.0			
Software Version	Activo9Dro E	EA_TP769_V1.0			

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Channel list:

Frequency and Channel list for 802.11a/n/ac(20 MHz) band IV (5745-5825MHz):

	802.11a/n/ac(20 MHz) Carrier Frequency Channel						
Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	1	-	-	-	- 7	-2

Frequency and Channel list for 802.11n/ac(40MHz) band IV (5755-5795MHz):

802.11n/ac 40MHz Carrier Frequency Channel						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
151	5755	159	5795	-	ŀ	

Frequency and Channel list for 802.11ac(80MHz) band IV (5775MHz):

Channel Frequency (MHz)	802.11ac 80MHz Carrier Frequency Channel				
	Channel	Frequency (MHz)			
155 🔬 🔬 5775	155 🔨	5775			

2.2 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15°C - 35°C	-10°C ~ 40°C _{Note1}
Relative Humidity	20% - 75%	N/A
Power Rating	DC 3.87V	N/A
Test voltage	DC 3.87V	DC 4.4V-DC 3.4V Note2

Note:

(1) The temperature range as declared by the manufacturer; or one of the following specified temperature ranges:

- Temperature category I (General): -20 °C to +55 °C;

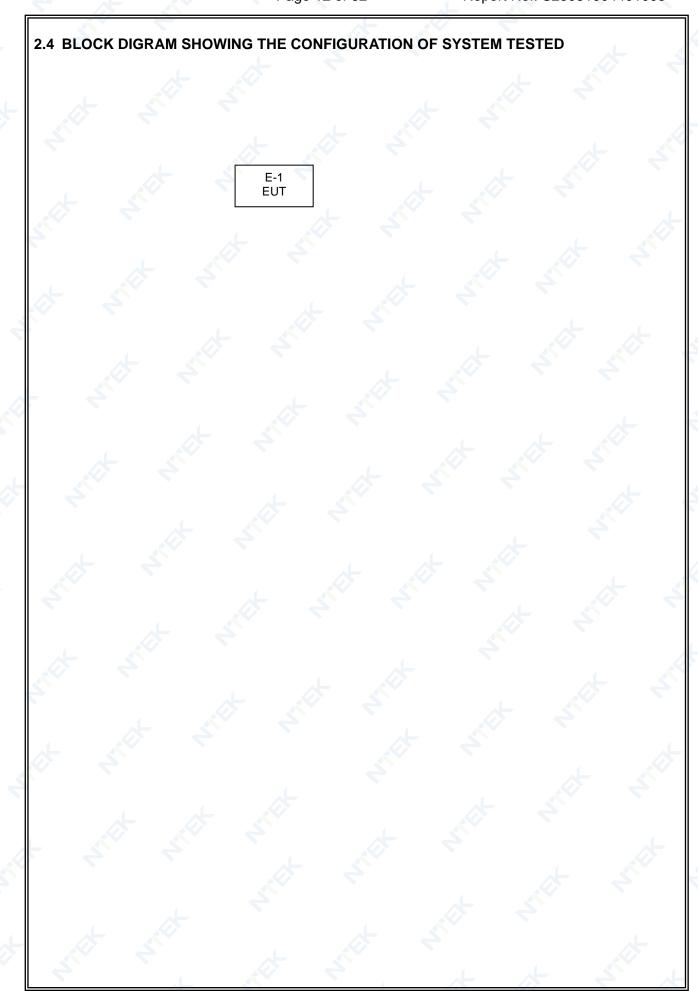
- Temperature category II (Portable): -10 °C to +55 °C;

- Temperature category III (Equipment for normal indoor use): 5 °C to +35 °C.

(2) The High Voltage 4.4V and Low Voltage 3.4V was declarated by manufacturer.

Page 11 of 82

Report No.: S23081004401005


2.3 DESCRIPTION OF TEST CONDITIONS

For Conducted Test					
Pretest Mode	Description				
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165				
Mode 2	802.11n/ ac40 CH 151 / CH 159				
Mode 3	802.11 ac80 CH 155				

For Radiated Test					
Final Test Mode Description					
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165				
Mode 2 802.11n/ ac40 CH 151 / CH 159					
Mode 3	802.11 ac80 CH 155				

Page 12 of 82

Report No.: S23081004401005

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Tablet PC	Active 8 Pro	N/A	EUT
	5		L S	
			~ ~ `	
	. [
	<u>A</u>	2	× ×	
				1

Item	Shielded Type	Ferrite Core		Length	Note	
	¥					
			×-	5		
		* *		•	1	
	*				A.C.	~

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\[\]$ column.
- (3) "YES" means "shielded" or "with ferrite core";"NO" means "unshielded" or "without ferrite core"

Report No.: S23081004401005

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.27	2024.03.26	1 year
Turn Table	EM 🏑	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM 🔨	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2023.03.27	2024.03.26	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2023.03.27	2024.03.26	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17 2023.06.15	2023.06.16 2023.06.14	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
Filter	TRILTHIC	2400MHz	29	2023.03.27	2024.03.26	3 year
Attenuator	Weinschel	33-10-33	AR4010	2023.03.27	2024.03.26	3 year
Attenuator	Weinschel	24-20-34	BP4485	2023.03.27	2024.03.26	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17 2023.06.15	2023.06.16 2023.06.14	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2023.03.27	2024.03.26	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2023.03.27	2024.03.26	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2023.03.27	2024.03.26	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2023.03.27	2024.03.26	🔨 3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17 2023.06.15	2023.06.16 2023.06.14	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.17 2023.06.15	2023.06.16 2023.06.14	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.17 2023.06.15	2023.06.16 2023.06.14	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Page 14 of 82

Page 15 of 82

3. EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)

3.1 APPLICABILITY

The equivalent isotropically radiated power requirement shall apply to all transmitters.

3.2 LIMITS

Table 2: Maximum radiated peak power (e.i.r.p.)

Frequency Bands	Power	Application	Notes
2 400 MHz to 2 483,5 MHz	10 mW e.i.r.p.	Non-specific short range devices	
2 400 MHz to 2 483,5 MHz	25 mW e.i.r.p.	Radio determination devices	
(a) 2 446 MHz to 2 454 MHz	500 mW e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
(b) 2 446 MHz to 2 454 MHz	4 W e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
5 725 MHz to 5 875 MHz	25 mW e.i.r.p.	Non-specific short range devices	
9 200 MHz to 9 500 MHz	25 mW e.i.r.p.	Radio determination devices	
9 500 MHz to 9 975 MHz	25 mW e.i.r.p.	Radio determination devices	
10,5 GHz to 10,6 GHz	500 mW e.i.r.p.	Radio determination devices	
13,4 GHz to 14,0 GHz	25 mW e.i.r.p.	Radio determination devices	
17,1 GHz to 17,3 GHz	400 mW e.i.r.p.	Radio determination devices	See annex F
24,00 GHz to 24,25 GHz	100 mW e.i.r.p.	Non-specific short range devices	
	4	and Radio determination devices	

3.3 GENERAL REQUIREMENTS

1. To measure e.i.r.p. it is first necessary to determine the appropriate method of measurement: see EN 300440 V2.2.1 clauses 4.2.2.3.1 and 4.2.2.3.2. The -6 dB transmitter bandwidth shall be determined using a 100 kHz measuring bandwidth in order to establish which measurement method is applicable:

Со	Method of measurement	
Non spread spectrum transmitters with a -6 dB bandwidth of up to 20 MHz and spread		Refer to section 3.4.1
spectrum transmitters with channel bandwidth of up to 1 MHz;	Spread spectrum equipment with a -6 dB channel bandwidth of 1 MHz or less.	to atter
for all other transmitter bandwidths.	☐equipment with a -6 dB bandwidth greater than 20 MHz, and equipment with a duty cycle below 50 %;; ⊠spread spectrum equipment with a channel bandwidth above 1 MHz	Refer to section 3.4.2

2. Measurements shall be performed at normal test conditions.

3.4 TEST PROCEDURES

3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS

The measurement shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded. **Equipment measured as constant envelope modulation equipment**

Page 16 of 82

For practical reasons, measurements shall be performed only at the highest power level at which the transmitter is intended to operate. The measurement arrangement in figure 2 shall be used. The measurement shall be performed preferably in the absence of modulation.

When it is not possible to measure it in the absence of modulation, this fact shall be stated in test reports.

The transmitter shall be set in continuous transmission mode. If this is not possible, the measurements shall be carried

out in a period shorter than the duration of the transmitted burst. It may be necessary to extend the duration of the burst.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

Equipment measured as non-constant envelope modulation equipment

The measurement shall be performed with test signals D-M2 or D-M3 as appropriate. The transmitter shall be preferably set in continuous transmission mode. If this is not possible, the measurement can be performed in discontinuous mode.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured. The measuring instrument shall have a measurement bandwidth not less than sixteen times the channel bandwidth.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS

Step 1:

• using a suitable means, the output of the transmitter shall be coupled to a matched diode detector;

- the output of the diode detector shall be connected to the vertical channel of an oscilloscope;
- the combination of the diode detector and the oscilloscope shall be capable of faithfully

reproducing the envelope peaks and the duty cycle of the transmitter output signal;

• the observed duty cycle of the transmitter (Tx on/(Tx on + Tx off)) shall be noted as x, (0 < x < 1)And recorded.

Step 2:

• the average output power of the transmitter shall be determined using a wideband, calibrated RF power meter with a matched thermocouple detector or an equivalent thereof and, where applicable, with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);

• the e.i.r.p. shall be calculated from the above measured power output A, the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

 $- P = A + G + 10 \log (1/x);$

- P should be EIRP POWER.

3.5 TEST SETUP LAYOUT

3.6 EUT OPERATION DURING TEST

Where possible, the equipment shall be able to operate in a continuous transmit mode for testing purposes.

Report No.: S23081004401005

3.7 TEST RESULT FOR -6 DB BANDWIDTH

EUT :	Tablet PC	Model Name :	Active 8 Pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	Mode 1/2/3	7	<u>ک</u> +

Page 17 of 82

Test data reference attachment

Page 18 of 82

Report No.: S23081004401005

3.8 TEST RESULT FOR E.I.R.P

EUT :	Tablet PC	Model Name :	Active 8 Pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

4. PERMITTED RANGE OF OPERATING FREQUENCIES

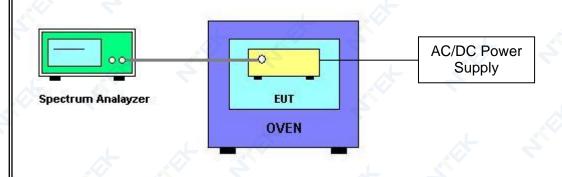
4.1 APPLIED PROCEDURES / LIMIT

The Permitted range of operating frequencies shall apply to all transmitters.

Limits: The width of the power spectrum envelope is fH -fL for a given operating frequency. In equipment that allows adjustment or selection of different operating frequencies, the power envelope takes up different positions in the allowed band. The frequency range is determined by the lowest value of fL and the highest value of fH resulting from the adjustment of the equipment to the lowest and highest operating frequencies.

The occupied bandwidth (i.e. the bandwidth in which 99 % of the wanted emission is contained) of the transmitter shall fall within the assigned frequency band.

For all equipment the frequency range shall lie within the frequency band given by section 3.2, table 2. For non-harmonized frequency bands the available frequency range may differ between national administrations.


4.2 TEST PROCEDURES

These measurements shall be performed under both normal and extreme operating conditions except for the occupied bandwidth assessment for which measurement at normal operating conditions is sufficient.

The measurement procedure shall be as follows:

- a) put the spectrum analyser in video averaging mode with a minimum of 50 sweeps selected;
- b) select the lowest operating frequency of the equipment under test and activate the transmitter with modulation applied. The RF emission of the equipment shall be displayed on the spectrum analyser;
- c) using the marker of the spectrum analyser, find the lowest frequency below the operating frequency at which the spectral power density drops below the level given in clause 4.2.3. This frequency shall be recorded in the test report;
- d) select the highest operating frequency of the equipment under test and find the highest frequency at which the spectral power density drops below the value given in clause 4.2.3. This frequency shall be recorded in the test report;
- e) the difference between the frequencies measured in steps c) and d) is the operating frequency range. It shall be recorded in the test report.

4.3 TEST SETUP LAYOUT

4.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

Page 20 of 82

4.5 TEST RESULTS

EUT :	Tablet PC	Model Name :	Active 8 Pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	тх 🖉	7	

802.11a

F 4	Extreme condition			Frequency range (MHz)		
E				F _L CH149	F _н CH165	
T nom (°C)	20	V nom (V)	3.87	5736.63	5833.089	
	4	V max (V)	4.4	5736.641	5833.097	
T min (°C)	-10	V nom (V)	3.87	5736.652	5833.105	
		V min (V)	3.4	5736.663	5833.113	
al-		V max (V)	4.4	5736.674	5833.121	
T max (°C)	40	V nom (V)	3.87	5736.685	5833.129	
		V min (V)	3.4	5736.696	5833.137	
Min. f∟	/ Max. f _H Ba	and Edges		5736.630	5833.137	
× 4	Indoor Use Limits				F _L < 5875.0 MHz	
2	Result				olies	

802.11n20

				Frequency range (MHz)		
EX	Extreme condition				F _н CH165	
T nom (°C)	20	V nom (V)	3.87	5736.311	5833.932	
	4	V max (V)	4.4	5736.322	5833.94	
T min (°C)	-10	V nom (V)	3.87	5736.333	5833.948	
		V min (V)	3.4	5736.344	5833.956	
4		V max (V)	4.4	5736.355	5833.964	
T max (°C)	40	V nom (V)	3.87	5736.366	5833.972	
		V min (V)	3.4	5736.377	5833.98	
Min. f _L /	Min. f _L / Max. f _H Band Edges				5833.980	
L				F _L > 5725.0	$F_L < 5875.0$	
Indoor Use Limits				MHz	MHz	
Result			Con	nplies		

Page 21 of 82

Report No.: S23081004401005

			Frequency range (MHz)			
	Extreme condition				F _н CH159	
T nom (°C)	20	V nom (V)	3.87	5737.046	5813.18	
5		V max (V)	4.4	5737.057	5813.188	
T min (°C)	-10	V nom (V)	3.87	5737.068	5813.196	
		V min (V)	3.4	5737.079	5813.204	
× 2		V max (V)	4.4	5737.09	5813.212	
T max (°C)	40	V nom (V)	3.87	5737.101	5813.22	
4		V min (V)	3.4	5737.112	5813.228	
Min	. f _L / Max	f _H Band Edges		5737.046	5813.228	
Z	Indoor	Use Limits	`ک `	F _L > 5725.0 MHz	$F_L < 5875.0 \text{ MHz}$	
	R	esult		Complies		
802.11ac20	4			-	2° 2°	
			Frequency	y range (MHz)		
	Extreme	e condition		F _L CH149	F _н CH165	

Extreme condition				F _L CH149	F_H CH165
T nom (°C)	20	V nom (V)	3.87	5736.058	5833.672
	~	V max (V)	4.4	5736.069	5833.68
T min (°C)	-10	V nom (V)	3.87	5736.08	5833.688
		V min (V) 3.4 5		5736.091	5833.696
4		V max (V)	4.4	5736.102	5833.704
T max (°C)	40	V nom (V)	3.87	5736.113	5833.712
		V min (V)	3.4	5736.124	5833.72
	Min. f∟ /	Max. f _H Band Edg	ges	5736.058	5833.720
1	In	door Use Limits		F _L > 5725.0 MHz	$\mathbf{F}_{L} < 5875.0 \text{ MHz}$
	Result			Con	nplies

Page 22 of 82

Report No.: S23081004401005

r.		Frequency range (MHz)			
Extreme condition				F _L CH151	F _н CH159
T nom (°C)	20	V nom (V)	3.87	5737.767	5813.942
		V max (V)	4.4	5737.778	5813.95
T min (°C)	-10	V nom (V)	3.87	5737.789	5813.958
	~	V min (V)	3.4	5737.8	5813.966
~ ~		V max (V)	4.4	5737.811	5813.974
T max (°C)	40	V nom (V)	3.87	5737.822	5813.982
		V min (V)	3.4	5737.833	5813.99
Min. fL	Max. f _H Ba	nd Edges		5737.767	5813.990
				F_L > 5725.0	$F_{L} < 5875.0$
Ir	ndoor Use L	MHz	MHz		
Result				Com	plies

802.11ac80

Extreme condition				Frequency range (MHz)	
Extr	eme condi	tion		F _L CH155	F _н CH155
T nom (°C)	20	V nom (V)	3.87	5737.48	5812.725
		V max (V)	4.4	5737.491	5812.733
T min (°C)	-10	V nom (V)	3.87	5737.502	5812.741
+		V min (V)	3.4	5737.513	5812.749
		V max (V)	4.4	5737.524	5812.757
T max (°C)	40	V nom (V)	3.87	5737.535	5812.765
	~	V min (V)	3.4	5737.546	5812.773
Min. f _L / N	∕lax. f _H Bar	nd Edges		5737.480	5812.773
				F _L > 5725.0	F _L < 5875.0
Indoor Use Limits				MHz 🔶	MHz
Result				Com	plies

5. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

5.1 APPLIED PROCEDURES / LIMIT

The unwanted emissions in the spurious domain requirement shall apply to all transmitters.

2		47 MHz to 74 MHz	* * `	
	State	87.5 MHz to 118 MHz	Other frequencies	Frequencies
	Sidle	174 MHz to 230 MHz	≤□ 1 000 MHz	> 1 000 MHz
Ĺ	7 7	470 MHz to 862 MHz		
	Operating	4 nW /-54dBm 📈	250 nW/-36dBm	1 µW /-30dBm
	Standby	2 nW /-57dBm	2 nW /-57dBm	20 nW /-47dBm

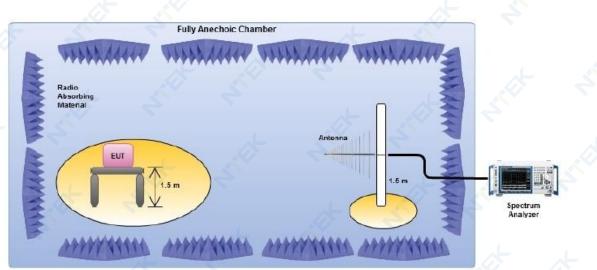
5.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Setting	
Auto	5
30 MHz	
40GHz	
Positive Peak	
Auto	
For frequency 30MHz~1G:100 kHz~120 kHz	3
For frequency above 1G:1MHz	
	Auto 30 MHz 40GHz Positive Peak Auto For frequency 30MHz~1G:100 kHz~120 kHz

5.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable. For above 1G, using Horn antenna .
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.


NTEK 北测

Page 24 of 82

Report No.: S23081004401005

5.4 TEST SETUP LAYOUT

Radiated Emission Test Set-Up

5.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS

For the initial investigation on standby mode and receiving mode, no significant differences in spurious emissions were observed between these 2 modes. So test data for standby mode was omitted in this section.

Page 25 of 82

5.7 TEST RESULTS

EUT :	Tablet PC	Model Name :	Active 8 Pro
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V (NORMAL)
Test Mode :	TX-802.11a mode	2	1 × ×

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	40.109	-74.69	14.47	-60.22	-36	-24.22	peak
V	117.532	-86.64	7.22	-79.42	-54	-25.42	peak
V	128.99	-76.96	12.25	-64.71	-36	-28.71	peak
V	188.535	-84.48	13.31	-71.17	-54	-17.17	peak
V	458.799	-76.73	15.91	-60.82	-36	-24.82	peak
V	705.741	-84.22	21.65	-62.57	-54	-8.57	peak
Н	32.313	-72.22	18.31	-53.91	-36	-17.91	peak
H	94.024	-77.51	6.20	-71.31	-54	-17.31	peak
Н	139.371	-72.35	10.27	-62.08	-36	-26.08	peak
Н	185.487	-80.3 🔨	12.05	-68.25	-54	-14.25	peak
Н	302.086	-69.75	12.93	-56.82	36	-20.82	peak
H	797.897	-83.99	17.58	-66.41	-54 🔨	-12.41	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Page 26 of 82

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
		o	peration frequen	cy:5745 MHz			J-
V	2804.514	-75.7	2.61	-73.09	-30	-43.09	peak
V	3840.936	-67.4	3.32	-64.08	-30	-34.08	peak
V	2762.709	-77.51	8.34	-69.17	-30	-39.17	peak
V	5270.445	-76.01	8.72	-67.29	-30	-37.29	peak
Н	2503.191	-73.89	3.12	-70.77	-30	-40.77	peak
Н	4629.95	-67.83	8.53	-59.30	-30	-29.30	peak
Н	2673.65	-72.38	9.58	-62.80	-30	-32.80	peak
Н	4019.075	-69.92	14.73	-55.19	-30	-25.19	peak
		<u> </u>	peration frequen	cy:5785 MHz		~	X
V	2710.986	-73.21	2.61	-70.60	-30	-40.60	peak
V	5741.05	-71.7	3.32	-68.38	-30	-38.38	peak
V	2181.689	-74.02	8.34	-65.68	-30	-35.68	peak
V	5536.921	-70.11	8.72	-61.39	-30	-31.39	peak
V	2000.399	-75.99	3.12	-72.87	-30	-42.87	peak
H	5777.871	-71.29	8.53	-62.76	-30 📈	-32.76	peak
Н	2246.4	-73.18	9.58	-63.60	-30	-33.60	peak
H	4300.368	-74.93	14.73	-60.20	-30	-30.20	peak
Н	5459.711	-73.9	14.73	-59.17	-30	-29.17	peak
			peration frequen	cy:5825 MHz	X		
V	2921.118	-74.31	2.61	-71.70	-30	-41.70	peak
V	3068.867	-75.27	3.32	-71.95	-30	-41.95	peak
V	2428.945	-73.7	8.34	-65.36	-30	-35.36	peak
V	3236.723	-70.94	8.72	-62.22	-30	-32.22	peak
V	2830.847	-71.76	3.12	-68.64	-30	-38.64	peak
Н	5832.239	-72.35	8.53	-63.82	-30	-33.82	peak
Н	2244.309	-74.78	9.58	-65.20	-30	-35.20	peak
Н	3140.005	-69.67	14.73	-54.94	-30	-24.94	peak
Н	3028.525	-77.29	14.73	-62.56	-30	-32.56	peak

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Note: Only the worst case 802.11a mode recorded in the report.

NTEK 北测

Page 27 of 82

6. DUTY CYCLE

6.1 APPLICABILITY AND DESCRIPTION

Duty Cycle (DC) shall apply to all transmitting equipment except those which utilize Listen Before Talk (LBT) clause 4.4.2, or Detect And Avoid (DAA), clause 4.4.3. RFID transmitters operating in the 2 446 MHz to 2 454 MHz frequency band that transmit at a maximum radiated peak power level of less than 500 mW e.i.r.p. are also excluded.

Duty cycle is the ratio expressed as a percentage, of the cumulative duration of transmissions T_{on_cum} within an observation interval $T_{obs.}$

$$DC = \left(\frac{T_{on_cum}}{T_{obs}}\right)F_{obs}$$

on an observation bandwidth Fobs.

Unless otherwise specified, $T_{\mbox{\tiny obs}}$ is 1 hour and the observation bandwidth $F_{\mbox{\tiny obs}}$ is the operational frequency band

Each transmission consists of an RF emission, or sequence of RF emissions separated by intervals $< T_{Dis}$.

6.2 LIMITS

Table 4 defines the maximum duty cycle within a 1 hour period. Table 4: Duty cycle limits

Frequency Band	Duty cycle	Application	Notes
2 400 MHz to 2 483,5 MHz	No Restriction	Generic use	<u> </u>
2 400 MHz to 2 483,5 MHz	No Restriction	Detection, movement and alert applications	
(a) 2 446 MHz to 2 454 MHz	No Restriction	RFID	Limits shown in annex D shall apply
(b) 2 446 MHz to 2 454 MHz	≤ 15 %	RFID	Limits shown in annex D shall apply
5 725 MHz to 5 875 MHz	No Restriction	Generic use	
9 200 MHz to 9 500 MHz	No Restriction	Radiodetermination: radar, detection, movement and alert applications	
9 500 MHz to 9 975 MHz	No Restriction	Radiodetermination: radar, detection, movement and alert applications	+ 5
10,5 GHz to 10,6 GHz	No Restriction	Radiodetermination: radar, detection, movement and alert applications	
13,4 GHz to 14,0 GHz	No Restriction	Radiodetermination: radar, detection, movement and alert applications	
17,1 GHz to 17,3 GHz	DAA or equivalent techniques	Radiodetermination: GBSAR detecting and movement and alert applications	Limits shown in annex F shall apply
24,00 GHz to 24,25 GHz	No Restriction	Generic use and for Radiodetermination: radar, detection, movement and alert applications	*

For devices with a 100 % duty cycle transmitting an unmodulated carrier most of the time, a time-out shut-off facility shall be implemented in order to improve the efficient use of spectrum. The method of implementation shall be declared by the manufacturer.

6.4 METHOD OF MEASUREMENT

Please refer to EN 300440 V2.2.1 Clause 4.2.5.3.

Page 28 of 82

Report No.: S23081004401005

6.5 TEST SETUP			
EUT	Spectrum Analyzer	PC (Test Software)	

6.6 TEST RESULTS

EUT:	Tablet PC	Model Name:	Active 8 Pro
Temperature:	26°C	Relative Humidity:	53 %
Pressure:	1012 hPa	Test Voltage:	DC 3.87V (NORMAL)
Test Mode:	Mode 1/2/3		

Test data reference attachment

NTEK 北测

7. SPURIOUS EMISSIONS – RX

7.1 APPLIED PROCEDURES / LIMIT

	Clause	Test Item	Frequency(MHz)	Limit
	4.3.5.4	Spurious emissions	30-1000	-57dBm
Ż		(radiated)	Above 1000	-47dBm

7.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

7.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.For above 1G, using Horn antenna .
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

7.5 TEST SETUP LAYOUT

This test setup layout is the same as that shown in section 5.4.

7.6 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously receiving mode.

NTEK 比测[®] Page 30 of 82

Report No.: S23081004401005

7.7 TEST RESULTS

EUT :	Tablet PC	Model Name :	Active 8 Pro
Temperature :	26°C	Relative Humidity :	53 %
Pressure :	1012 hPa	Test Power :	DC 3.87V (NORMAL)
Test Mode :	RX-802.11a mode	~	

Below 1G :

	· ·						
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBm) (dB)	
V	32.979	-77.26	18.82	-58.44	-57	-1.44	peak
V	92.119	-79.18	11.11	-68.07	-57	-11.07	peak
V	201.589	-78.77	11.41	-67.36	-57	-10.36	peak
V	281.03	-79.42	12.72	-66.70	-57	-9.70	peak
V	656.709	-83.44	12.66	-70.78	-57	-13.78	peak
V	541.172	-81.69	12.62	-69.07	-57	-12.07	peak
Н	39.41	-82.51	19.94	-62.57	-57	-5.57	peak
ΗĽ	115.704	-80.82	10.96	-69.86	-57	-12.86	peak
Н	214.877	-80.51 🏑	9.42	-71.09	-57	-14.09	peak
Н	464.955	-77.21	12.65	-64.56	-57	-7.56	peak
Н	568.325	-78.41	11.78	-66.63	-57	-9.63	peak
H	674.812	-80.79	15.38	-65.41	-57 🦯	-8.41	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Above 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	2112.514	-82.25	11.33	-70.92	-47	-23.92	peak
V	4175.908	-79.96	10.97	-68.99	-47	-21.99	peak
V	2632.402	-81.43	10.14	-71.29	-47	-24.29	peak
V	3603.245	-80.9	16.83	-64.07	-47	-17.07	peak
V	2440.111	-82.51	10.52	-71.99	-47	-24.99	peak
Н	4161.787	-81.2	11.70	-69.50	-47	-22.50	peak
Н	2699.168	-82.13	6.62	-75.51	-47	-28.51	peak
Н	3787.569	-83.8	14.99	-68.81	-47	-21.81	peak 🏑
Н	5723.769	-69.67	8.25	-61.42	-47	-14.42	peak
Н	3393.422	-79.69	14.99	-64.70	-47	-17.70	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Page 31 of 82

Report No.: S23081004401005

8. ADJACENT CHANNEL SELECTIVITY

8.1 APPLICABILITY

This requirement applies to channelized Category 1 receivers..

8.2 LIMITS

The adjacent channel selectivity of the equipment under specified conditions shall not be less than -30 dBm + k.

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

8.3 METHODS OF MEASUREMENT

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.

Signal generator B shall be unmodulated and shall be adjusted to the adjacent channel centre frequency immediately

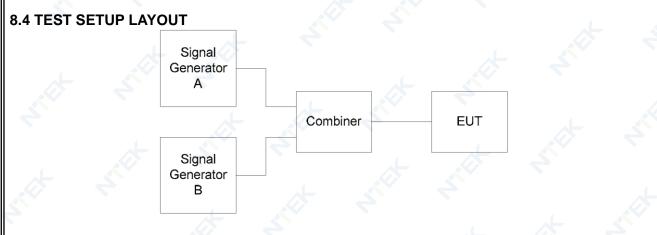
above that of the wanted signal.

Initially signal generator B shall be switched off and using signal generator A the level that still gives sufficient

response shall be established. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurements shall be repeated with signal generator B unmodulated and adjusted to the adjacent channel centre immediately below the wanted signal.

The adjacent channel selectivity shall be recorded for the upper and lower adjacent channels as the level in dBm of the unwanted signal.


For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres.

In this case, the adjacent selectivity shall be recorded as the level in dBm of lowest level of the unwanted signal

(generator B) resulting in a non-read of the tag.

Page 32 of 82

Report No.: S23081004401005

8.5 TEST RESULTS

EUT :	Tablet PC	Model Name	Active 8 Pro
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	N/A
Test Mode :	N/A 📈 🤝		

Not applicable.

NTEK 北测

Page 33 of 82

9. BLOCKING OR DESENSITIZATION

9.1 APPLICABILITY

This requirement applies to all Category 1, 2, and 3 SRD communication media receivers.

9.2 LIMITS

The blocking level, for any frequency within the specified ranges, shall not be less than the values given in table 6, except at frequencies on which spurious responses are found.

Receiver category	Limit
1	-30 dBm + k
2	-45 dBm + k
3	-60 dBm + k

The correction factor, k, is as follows:

k =□ -20log f -10log BW

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

9.3 TEST PROCEDURES

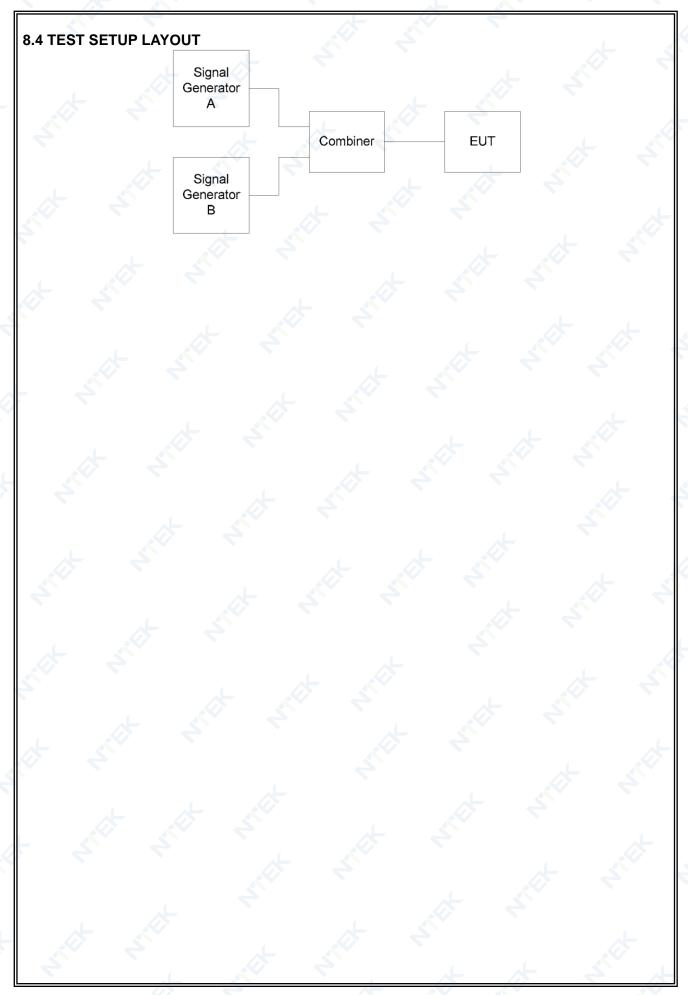
This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or

b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.


Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.Signal generator B shall be unmodulated and shall be adjusted to a test frequency at approximately 10 times, 20 times and 50 times of the occupied bandwidth above upper band edge of occupied bandwidth.Initially signal generator B shall be switched off and using signal generator A the level which still gives sufficient response shall be established. The output level of generator A shall then be increased by 3 dB.Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurement shall be repeated with the test frequency for signal generator B at 10 times, 20 times and 50 times of the occupied bandwidth below the lower band edge of the occupied bandwidth The blocking or desensitization shall be recorded as the level in dBm of lowest level of the unwanted signal(generator B).

For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres. In this case, the blocking or desensitization shall be recorded as the ratio in dB of lowest level of the unwanted signal (generator B) resulting in a non-read of the tag. to the declared sensitivity of the receiver +3 dB.

Page 34 of 82

Report No.: S23081004401005

Page 35 of 82

9.4 TEST RESULTS

EUT :	Tablet PC	Model Name :	Active 8 Pro
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	RX 🔶 🖉	~	

802.11a

5745 MHz

Flow= 5736.77682MHz; Fhigh= 5753.15518MHz, occupied bandwidth=16.37836MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
L .	5745 MHz	5745	-64.69		-
2 4	10 times lower band edge of the occupied bandwidth	5572.99322	-	-29.98	-87.33(Note ¹)
	20 times lower band edge of the occupied bandwidth	5409.20962	-	-35.56	-87.33
3	50 times lower band edge of the occupied bandwidth	4917.85882	L - X	-35.88	-87.33
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 times upper band edge of the occupied bandwidth	5916.93878	- 7	-30.30	-87.33
4	20 times upper band edge of the occupied bandwidth	6080.72238	-	-35.52	-87.33
	50 times upper band edge of the occupied bandwidth	6572.07318	- 4	-31.97	-87.33

#### Note1:

The limit : -60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$ 

Where:

- f is the frequency in GHz;
- BW is the occupied bandwidth in MHz.

#### 802.11a

#### 5825 MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
3 3	5825 MHz	5825	-65.36	-	* - 2
	10 times lower band edge of the occupied bandwidth	5652.78522	-	-30.73	-87.45(Note ¹ )
	20 times lower band edge of the occupied bandwidth	5488.80162	<u>A</u>	-34.81	-87.45
	50 times lower band edge of the occupied bandwidth	4996.85082	- 1	-35.68	-87.45
	10 times upper band edge of the occupied bandwidth	5997.15078	-	-31.01	-87.45
	20 times upper band edge of the occupied bandwidth	6161.13438	な -  な	-34.72	-87.45
	50 times upper band edge of the occupied bandwidth	6653.08518	-	-31.96	-87.45

#### Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$ 

```
k = -27.45
```

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

#### Page 37 of 82

#### 802.11n20

#### 5745 MHz

Flow= 5736.18488MHz; Fhigh= 5753.75512MHz, occupied bandwidth=17.57024MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
5	5745 MHz	5745	-65.82	-	-
	10 times lower band edge of the occupied bandwidth	5560.48248	-	-28.52	-87.63(Note ¹ )
	20 times lower band edge of the occupied bandwidth	5384.78008	*	-33.65	-87.63
3	50 times lower band edge of the occupied bandwidth	4857.67288	<u> </u>	-34.31	-87.63
	10 times upper band edge of the occupied bandwidth	5929.45752	-	-29.61	-87.63
	20 times upper band edge of the occupied bandwidth	6105.15992	-	-35.42	-87.63
	50 times upper band edge of the occupied bandwidth	6632.26712	Ø - 4	-31.11	-87.63

#### Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.63

Where:

- f is the frequency in GHz;

#### 802.11n20

#### 5825 MHz

Flow= 5816	6.17688MHz; Fhigh= 5833	3.76312MHz, oc	cupied bandwi	idth=17.58624M	1Hz
Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
7	5825 MHz	5825	-64.60	-	لم الم
	10 times lower band edge of the occupied bandwidth	5640.31448	Ē	-28.34	-87.76(Note ¹ )
1. At	20 times lower band edge of the occupied bandwidth	5464.45208	<u>_</u>	-34.07	-87.76
3	50 times lower band edge of the occupied bandwidth	4936.86488	-	-35.07	-87.76
	10 times upper band edge of the occupied bandwidth	6009.62552	-	-29.13	-87.76
* *	20 times upper band edge of the occupied bandwidth	6185.48792	か · よ	-35.39	-87.76
	50 times upper band edge of the occupied bandwidth	6713.07512	-	-30.40	-87.76

Note1:

The limit : -60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

Where:

- f is the frequency in GHz;

Page 39 of 82

#### Report No.: S23081004401005

#### 802.11n40

5755 MHz

Flow= 5737.0098MHz; Fhigh= 5772.9582MHz, occupied bandwidth=35.9484MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5755 MHz	5755	-65.33	-	1 - 2
	10 times lower band edge of the occupied bandwidth	5377.5258	Ļ	-29.83	-90.76(Note ¹ )
	20 times lower band edge of the occupied bandwidth	5018.0418	<u> </u>	-35.57	-90.76
3	50 times lower band edge of the occupied bandwidth	3939.5898	-	-35.05	-90.76
	10 times upper band edge of the occupied bandwidth	6132.4422	-	-29.91	-90.76
* 4	20 times upper band edge of the occupied bandwidth	6491.9262	令 -	-35.37	-90.76
	50 times upper band edge of the occupied bandwidth	7570.3782	-	-32.61	-90.76

#### Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.76

Where:

- f is the frequency in GHz;

Page 40 of 82

#### 802.11n40

5795 MHz

#### Flow= 5777.0258MHz; Fhigh= 5812.9502MHz, occupied bandwidth=35.9244MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5795	-64.91	-	x - 2
	10 times lower band edge of the occupied bandwidth	5417.7818	Ļ	-30.01	-90.81(Note ¹ )
	20 times lower band edge of the occupied bandwidth	5058.5378	<u> </u>	-33.82	-90.81
3	50 times lower band edge of the occupied bandwidth	3980.8058	-	-35.56	-90.81
	10 times upper band edge of the occupied bandwidth	6172.1942	-	-29.72	-90.81
	20 times upper band edge of the occupied bandwidth	6531.4382	令 -	-35.10	-90.81
	50 times upper band edge of the occupied bandwidth	7609.1702	-	-30.60	-90.81

#### Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

- k = -20log f -10logBW
  - k = -30.81

Where:

- f is the frequency in GHz;
- BW is the occupied bandwidth in MHz.

#### 802.11ac80

5775 MHz

Flow= 5737.3	3078MHz; Fhigh= 5812.6	762MHz, occup	ied bandwidth	=75.3684MHz	s, ,
Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
7	5795 MHz	5775	-65.30	-	لم الم
	10 times lower band edge of the occupied bandwidth	4983.624	-	-29.52	-94.00(Note ¹ )
.et	20 times lower band edge of the occupied bandwidth	4229.940	<u>_</u>	-34.83	-94.00
3	50 times lower band edge of the occupied bandwidth	1968.888	-	-35.01	-94.00
	10 times upper band edge of the occupied bandwidth	6566.360	-	-30.79	-94.00
* *	20 times upper band edge of the occupied bandwidth	7320.044	な -	-35.22	-94.00
	50 times upper band edge of the occupied bandwidth	9581.096	-	-30.62	-94.00

Note1:

The limit : -60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

```
k = -34.00
```

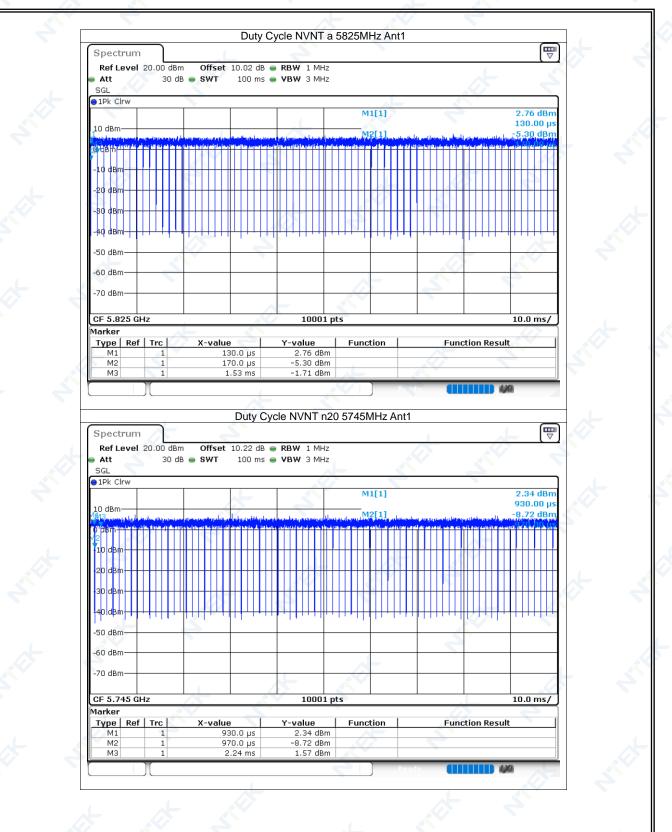
Where:

- f is the frequency in GHz;

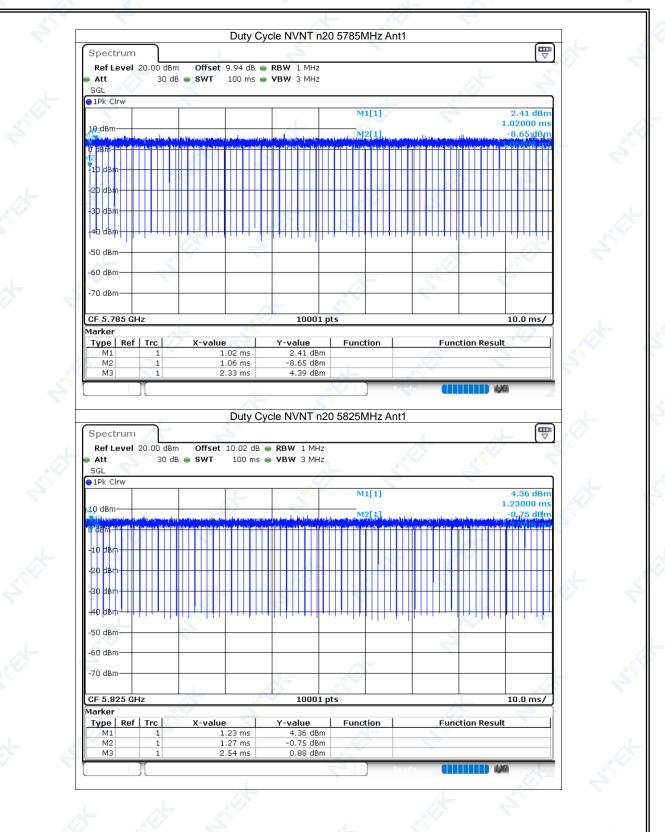

Page 42 of 82

#### 10. TEST RESULTS

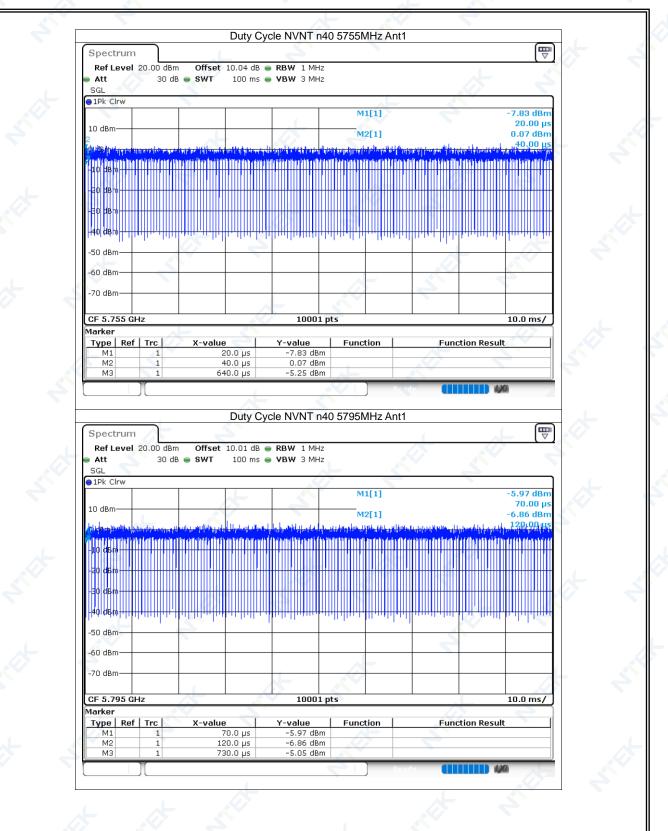
#### 10.1 DUTY CYCLE


Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	а	5745	Ant1	98.2	0.08	0.74
NVNT	а	5785	Ant1	98.22	0.08	0.74
NVNT	а	5825	Ant1	98.17	0.08	0.74
NVNT	n20	5745	Ant1	98.02	0.09	0.79
NVNT	n20	5785	Ant1	98.04	0.09	0.79
NVNT	n20	5825	Ant1	98.01	0.09	0.79
NVNT	n40	5755	Ant1	93.03	0.31	1.67
NVNT	n40	5795	Ant1	93.04	0.31	1.64
NVNT	ac20	5745	Ant1	98.08	0.08	0.78
NVNT	ac20	5785	Ant1	98.11	0.08	0.78
NVNT	ac20	5825	Ant1	98.1	0.08	0.78
NVNT	ac40	5755	Ant1	96.85	0.14	1.54
NVNT	ac40	5795	Ant1	96.3	0.16	1.56
NVNT	ac80	5775	Ant1	92.06	0.36	3.23

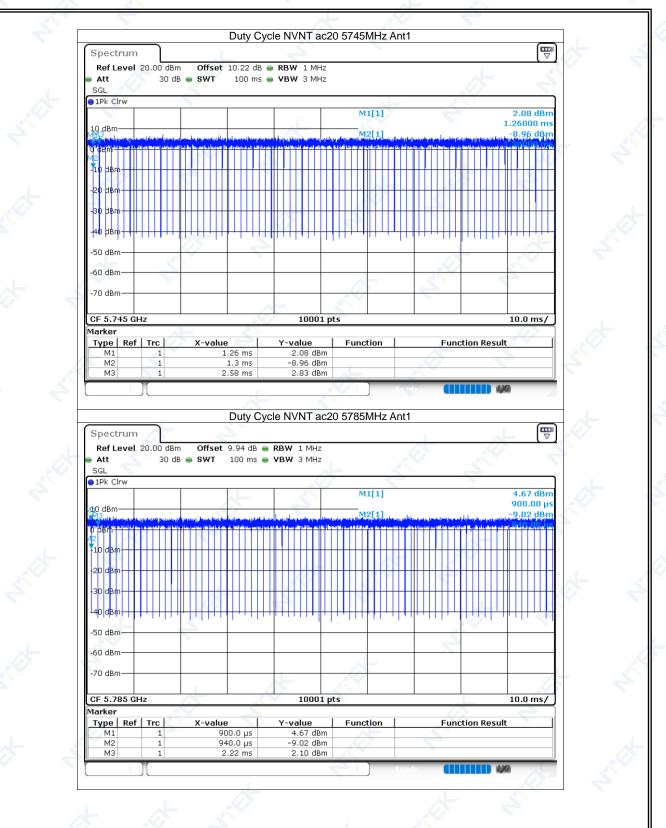
#### Report No.: S23081004401005



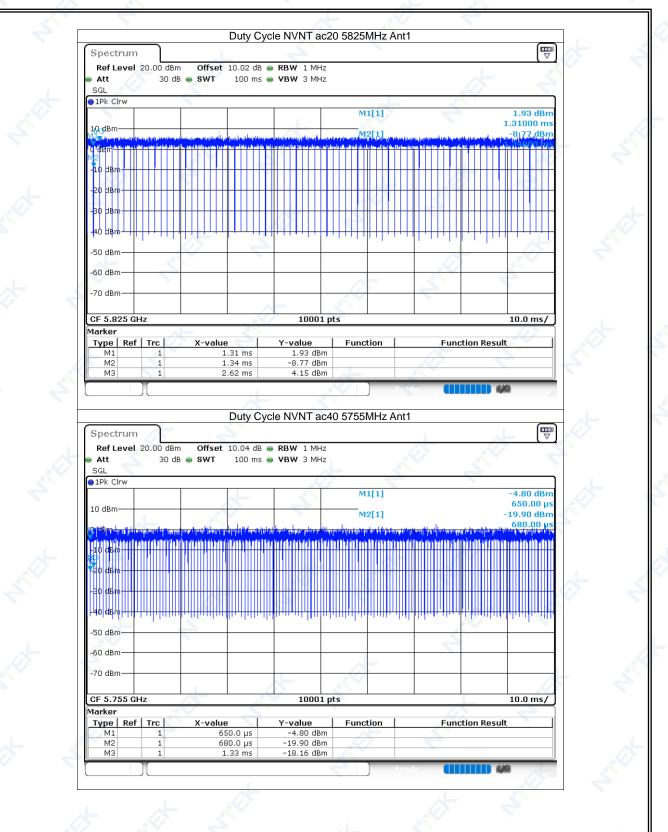

Page 43 of 82


#### Page 44 of 82

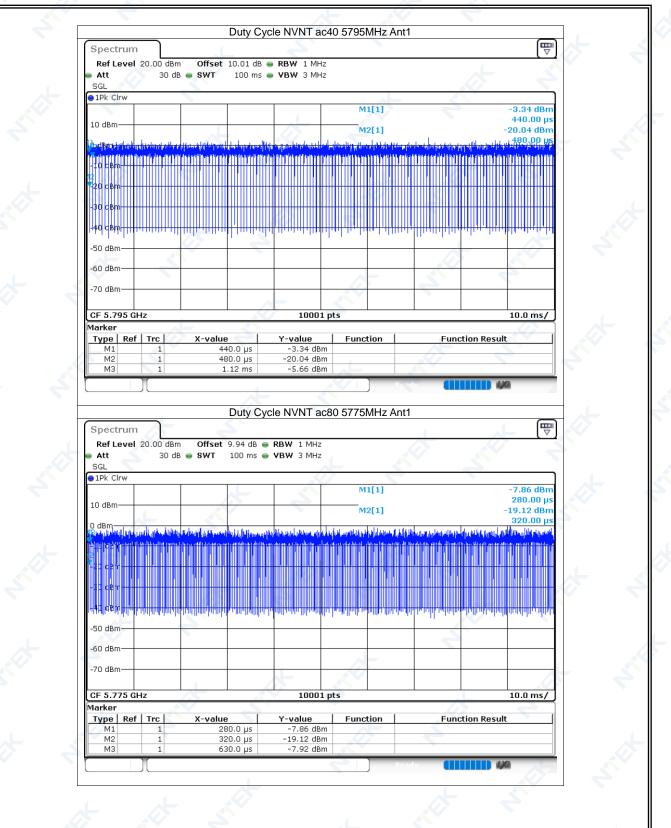



#### Page 45 of 82




#### Page 46 of 82




#### Page 47 of 82



#### Page 48 of 82



#### Page 49 of 82



Page 50 of 82

#### Report No.: S23081004401005

#### 10.2 -6DB EMISSION BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	а	5745	Ant1	16.32	0.5	Pass
NVNT	a 🇸	5785	Ant1	14.16	0.5	Pass
NVNT	а	5825	Ant1	13.23	0.5	Pass
NVNT	n20	5745	Ant1	14.67	0.5	Pass
NVNT	n20	5785	Ant1 🔨	13.44	0.5	Pass
NVNT	n20	5825	Ant1	15.06	0.5	Pass
NVNT	n40	5755	Ant1	35.1	0.5	Pass
NVNT	n40	5795	Ant1	35.1	0.5	Pass
NVNT	ac20	5745	Ant1	16.53	0.5	Pass
NVNT	ac20	5785	Ant1	17.55	0.5	Pass
NVNT	ac20	5825	Ant1	17.19	0.5	Pass
NVNT	ac40	5755	Ant1	35.1	0.5	Pass
NVNT	ac40	5795	Ant1	36.06	0.5	Pass
NVNT	ac80	5775	Ant1	75.12	0.5	Pass

Report No.: S23081004401005



Page 51 of 82

#### Page 52 of 82

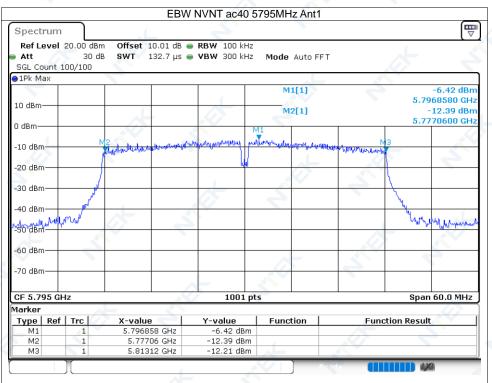



#### Page 53 of 82



Page 54 of 82




#### Page 55 of 82



#### Page 56 of 82

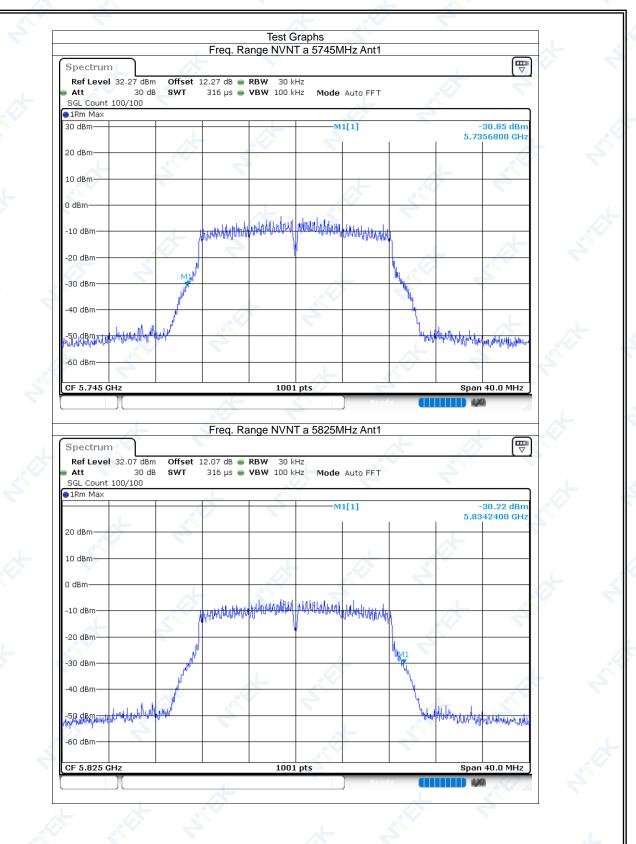
Ref Level 20.00 Att 3 SGL Count 100/10					(₩)
	dBm Offset 10.02 d	IB 😑 RBW 100 kHz			
SGL Count 100/10		ıs 👄 <b>VBW</b> 300 kHz	Mode Auto FFT		
1Pk Max	.U				
			M1[1]	<u> </u>	-2.75 dBm
10 dBm				5.8	237110 GHz
		M1	M2[1]	5.8	-8.56 dBm 161800 GHz
0 dBm	M2		m Data a dan 1		
-10 dBm	M12 Januparally had	month and he	mmulmundente	mound of the second of the sec	
-20 dBm		Y Y			
-20 0811					
-30 dBm					
-40 dBm			<u> </u>		
mannarh				l W	Ammen
-50 dBm					
-60 dBm					
-70 dBm					
CF 5.825 GHz		1001 pt	5	Sna	n 30.0 MHz
Marker		1001 pt		000	
Type Ref Trc		Y-value	Function	Function Resu	lt
M1 1 M2 1					
M3 1					
Spectrum					
Ref Level 20.00	dBm Offset 10.04 d	B 👄 RBW 100 kHz		1 0	
	30 dB <b>SWT</b> 132.7 µ	IB 🖷 RBW 100 kHz Is 🖷 VBW 300 kHz			
Att 3 SGL Count 100/10	30 dB <b>SWT</b> 132.7 µ				
🛛 Att 🔄 3	30 dB <b>SWT</b> 132.7 µ		Mode Auto FFT		
Att 3 SGL Count 100/10 1Pk Max	30 dB <b>SWT</b> 132.7 µ		Mode Auto FFT	5.7	-3.78 dBm 524830 GHz
Att 3 SGL Count 100/10	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT		-3.78 dBm 524830 GHz -9.07 dBm
Att 3 SGL Count 100/10 1Pk Max	30 dB <b>SWT</b> 132.7 µ		Mode Auto FFT		-3.78 dBm 524830 GHz
Att 3 SGL Count 100/10 1Pk Max 10 dBm	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm 524830 GHz -9.07 dBm
Att 3 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm 524830 GHz -9.07 dBm
Att 3 SGL Count 100/10 P1Pk Max 10 dBm 0 dBm	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm 524830 GHz -9.07 dBm
Att 3 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm 524830 GHz -9.07 dBm
Att 3 SGL Count 100/10 TPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm 524830 GHz -9.07 dBm 374200 GHz
Att 3 SGL Count 100/10  PIPk Max  10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm /524830 GHz -9.07 dBm /374200 GHz
Att 3 SGL Count 100/10 TPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm 524830 GHz -9.07 dBm 374200 GHz
Att 3 SGL Count 100/10 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm -50 dBm	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm /524830 GHz -9.07 dBm /374200 GHz
Att 3 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -60 dBm -60 dBm	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm /524830 GHz -9.07 dBm /374200 GHz
Att 3 SGL Count 100/10 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm -50 dBm	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm /524830 GHz -9.07 dBm /374200 GHz
Att 3 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -60 dBm -70 dBm	30 dB <b>SWT</b> 132.7 µ	IS VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm 524830 GHz -9.07 dBm 374200 GHz
Att 3 SGL Count 100/10 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -70 dBm	30 dB <b>SWT</b> 132.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm /524830 GHz -9.07 dBm /374200 GHz
Att 3 SGL Count 100/10 P1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm	80 dB SWT 132.7 µ 10 12.7 µ 14. 14. 14. 14. 14. 14. 14. 14.	IS VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm 524830 GHz -9.07 dBm 374200 GHz
Att 3 SGL Count 100/10 • 1Pk Max 10 dBm • 10 dBm • 10 dBm • 20 dBm • 30 dBm • 40 dBm • 40 dBm • 50 dBm • 70 dBm • 70 dBm • 70 dBm • 70 dBm	30 dB SWT 132.7 µ 10 12.7 µ 12.7 µ	IS • VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm 524830 GHz -9.07 dBm 374200 GHz
Att 3 SGL Count 100/10 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -70 dBm	30 dB <b>SWT</b> 132.7 µ	IS VBW 300 kHz	Mode Auto FFT	5.7	-3.78 dBm 524830 GHz -9.07 dBm 374200 GHz

#### Report No.: S23081004401005



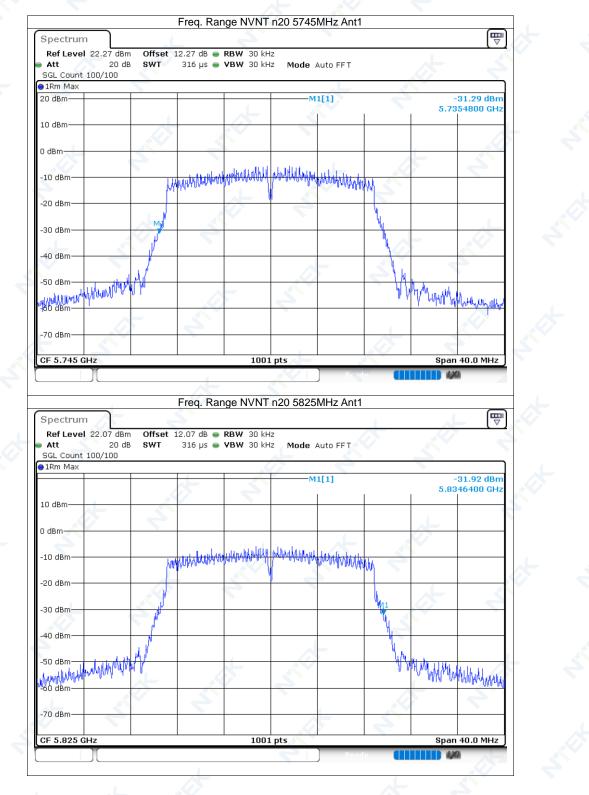
Page 57 of 82

	4		EBW	NVNT ac80 \$	5775MH	lz Ant1			
Spectrum		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
Ref Level	20.00 dBr	m Offset 9	.94 dB 🔵	RBW 100 kHz					
Att	30 d	B <b>SWT</b> 26	5.5 µs 👄	<b>VBW</b> 300 kHz	Mode	Auto FF	т		
SGL Count	100/100								
1Pk Max									
					M	1[1]		_	-6.68 dBr
10 dBm						0[1]			772480 GH: -10.84 dBn
					IM	2[1]			-10.84 UBN 737440 GH
) dBm				M1					
-10 dBm	Ma	2		I LIVE	hand	uu .		МЗ	
-10 UBIII	)	hellowillight	hand and the state of the state	man Langer and the second	Krankin-India	h had a full and	whichthere		
-20 dBm		~~~~~~					_		
-30 dBm —					_	-	· ·	+	
	1								
-40 dBm	11							1	
SO dBm	Maria							እ እሳሌ	whenderman
SO GDIII									
-60 dBm		+ +							
-70 dBm		+ +							
CF 5.775 G	Hz			1001 p	ts			Span	120.0 MHz
1arker									
Type Ref		X-value		Y-value	Func	tion	Fun	ction Resu	t
M1	1	5.77248		-6.68 dBm					
M2 M3	1	5.73744		-10.84 dBm -10.86 dBm					
110		5.01250		10.00 0011					


#### Page 58 of 82

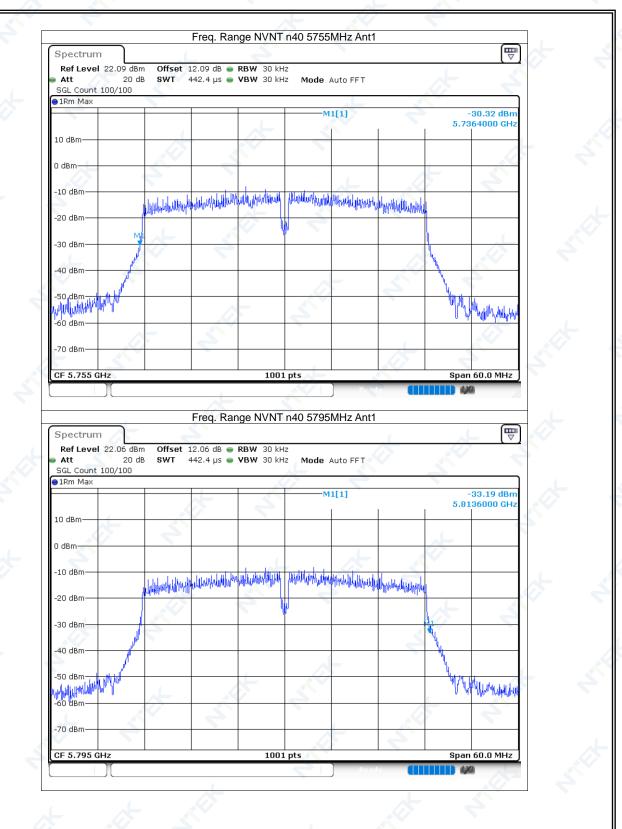
#### Report No.: S23081004401005

#### 10.3 FREQUENCY RANGE


Condition	Mode	Frequency (MHz)	Antenna	Frequency Range (MHz)	Limit (MHz)	Verdict
NVNT	а	5745	Ant1	5735.68	>=5725	Pass
NVNT	а	5825	Ant1	5834.24	<=5875	Pass
NVNT	n20	5745	Ant1	5735.48	>=5725	Pass
NVNT	n20	5825	Ant1	5834.64	<=5875	Pass
NVNT	n40	5755	Ant1	5736.4	>=5725	Pass
NVNT	n40	5795	Ant1	5813.6	<=5875	Pass
NVNT	ac20	5745	Ant1	5735.36	>=5725	Pass
NVNT	ac20	5825	Ant1	5834.64	<=5875	Pass
NVNT	ac40	5755	Ant1	5736.4	>=5725	Pass
NVNT	ac40	5795	Ant1	5813.6	<=5875	Pass
NVNT	ac80	5775	Ant1	5736.6	>=5725	Pass

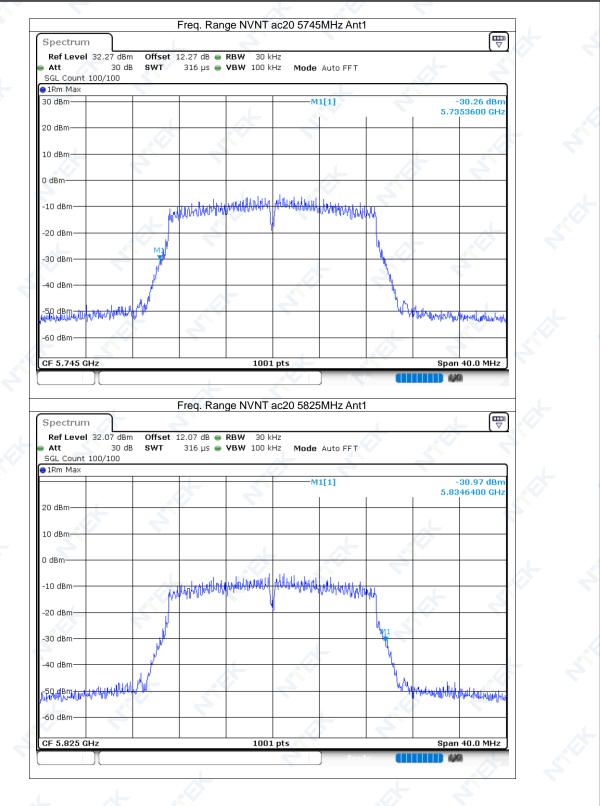
Page 59 of 82 Report



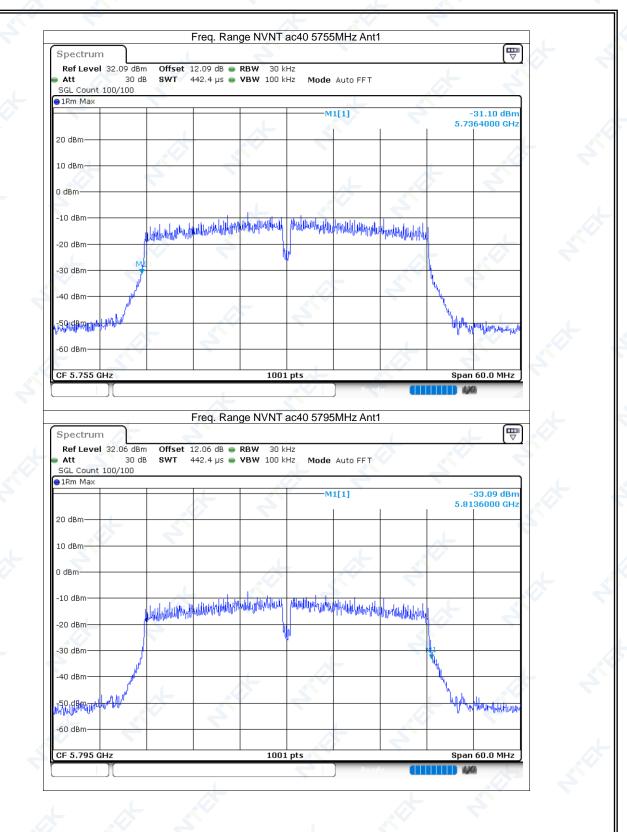

Page 60 of 82

Report No.: S23081004401005




1

Report No.: S23081004401005




Page 61 of 82

Page 62 of 82



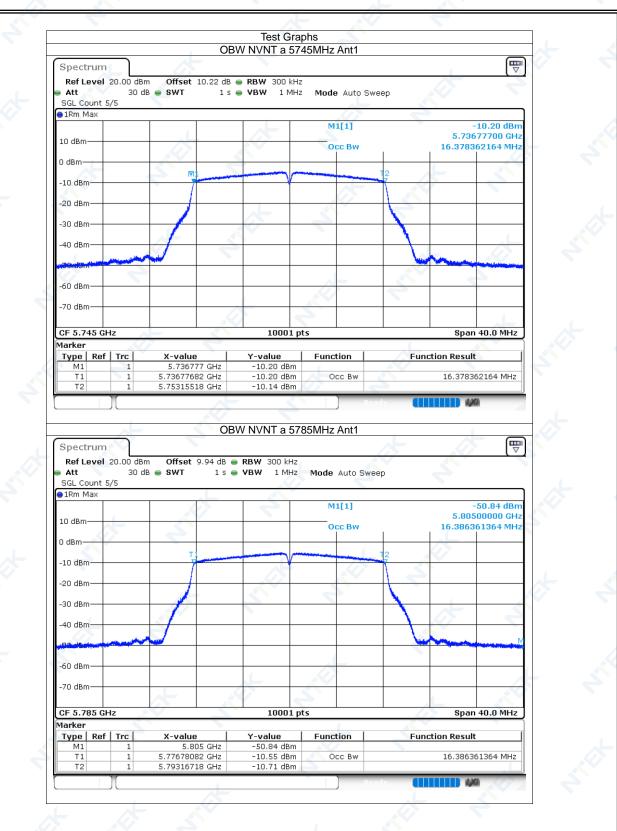
Page 63 of 82



Report No.: S23081004401005

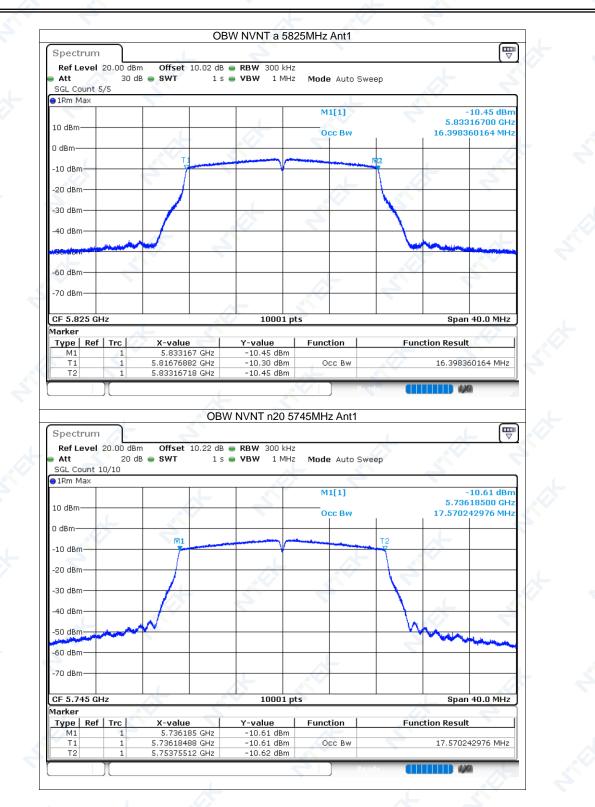
pectrum			2					
Ref Level 31.99		99 dB 👄 RBV						
Att 30 GL Count 100/100		.9 µs 👄 <b>VBV</b>	V 100 KHZ	Mode	Auto FFT			
1Rm Max								
				M	1[1]		>	-30.70 dBm
								5.736600 GHz
) dBm						-		
D dBm								
dBm								
.0 dBm				-				
	and the second data	patter for a declar between the	- Internality Issue	had in the la	at and have had	ي السيبيان		
20 dBm	Philipper and a subject of the	^{Theore} and an adda take	1000-1	of a collooloo	analy, a st ⁰ (that Pillon	and a considerated and a	white the second	
	M1							
30 dBm	<u>*</u>							
O dBm								
				21			4	
iO dBm							WA.	had been all war word
0 dBm								
				s			Spa	

Page 64 of 82

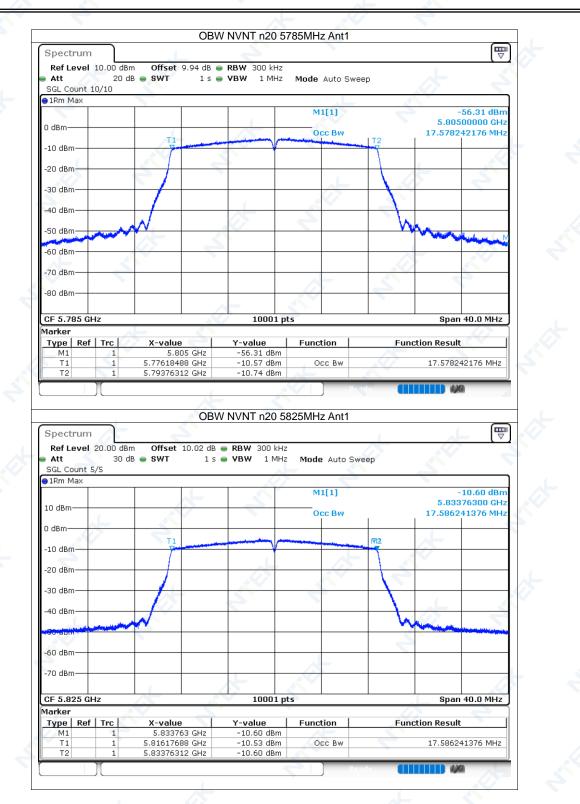

Page 65 of 82

Report No.: S23081004401005

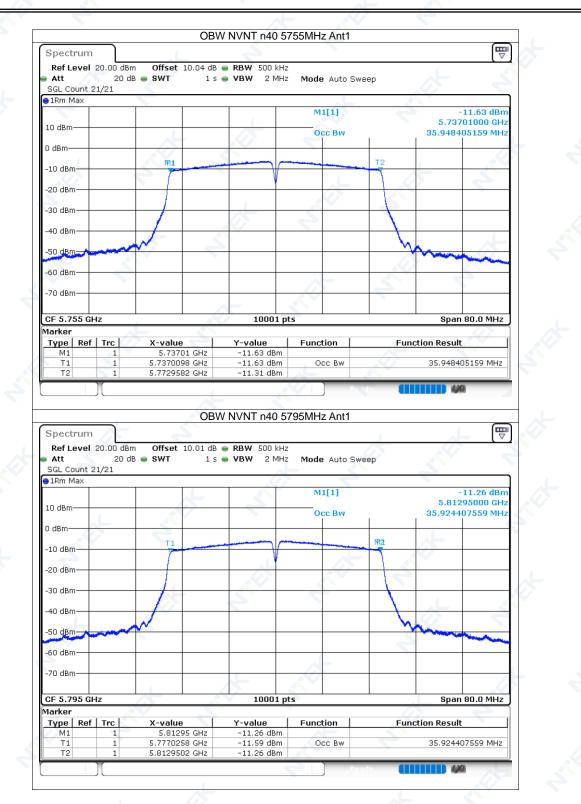
#### 10.4 OCCUPIED CHANNEL BANDWIDTH


Condition	Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Verdict
NVNT	а	5745	Ant1	5744.966	16.378	Pass
NVNT	а	5785	Ant1	5784.974	16.386	Pass
NVNT	а	5825	Ant1	5824.968	16.398	Pass
NVNT	n20	5745	Ant1	5744.97	17.57	Pass
NVNT	n20	5785	Ant1	5784.974	17.578	Pass
NVNT	n20	5825	Ant1	5824.97	17.586	Pass
NVNT	n40	5755	Ant1	5754.984	35.948	Pass
NVNT	n40	5795	Ant1	5794.988	35.924	Pass
NVNT	ac20	5745	Ant1	5744.974	17.57	Pass
NVNT	ac20	5785	Ant1	5784.974	17.578	Pass
NVNT	ac20	5825	Ant1	5824.972	17.582	Pass
NVNT 🗸	ac40	5755	Ant1	5754.988	35.956	Pass
NVNT	ac40	5795	Ant1	5794.984	35.932	Pass
NVNT	ac80	5775	Ant1	5774.992	75.368	Pass

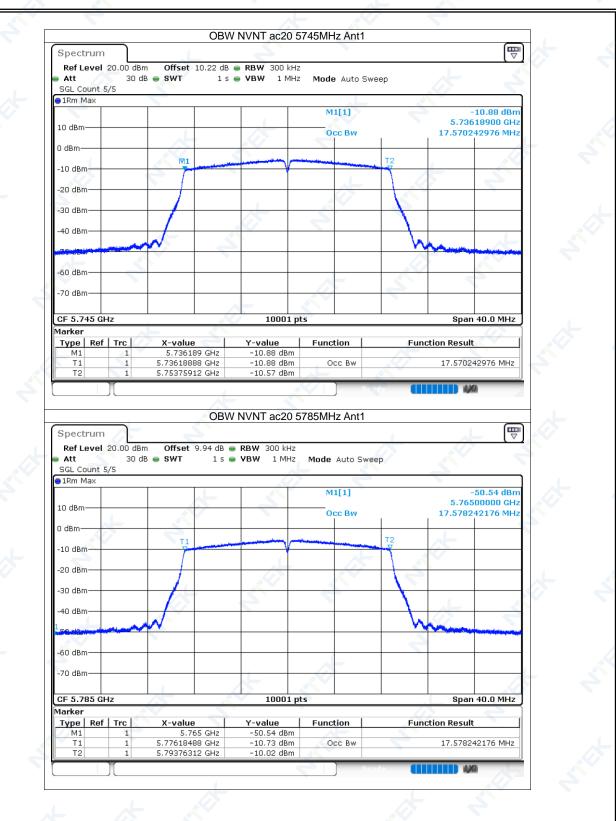
Report No.: S23081004401005




Page 66 of 82


#### Page 67 of 82




#### Page 68 of 82




#### Page 69 of 82



#### Page 70 of 82



#### Page 71 of 82



#### Report No.: S23081004401005

OBW NVNT ac40 5795MHz Ant1 ₽ Spectrum 
 Ref Level
 20.00
 dBm
 Offset
 10.01
 dB
 RBW
 500
 kHz

 Att
 30
 dB
 SWT
 1 s
 VBW
 2
 MHz
 Att 1 s 🖷 VBW 2 MHz 🛛 Mode Auto Sweep SGL Count 5/5 1Rm Max M1[1] -11.49 dBm 5.81295000 GHz 10 dBm Occ Bw 35.932406759 MH 0 dBm т1 w: -10 dBm -20 dBm -30 dBm 40 dBm -60 dBm 70 dBm CF 5.795 GHz 10001 pts Span 80.0 MHz Marker 
 Type
 Ref
 Trc

 M1
 1

 T1
 1

 T2
 1
 Function Function Result X-value Y-value 5.81295 GHz 5.7770178 GHz 5.8129502 GHz -11.49 dBm -11.65 dBm -11.49 dBm 35.932406759 MHz Occ Bw LX. OBW NVNT ac80 5775MHz Ant1 ₽ Spectrum Ref Level 20.00 dBm Offset 9.94 dB 👄 RBW 1 MHz

Page 72 of 82

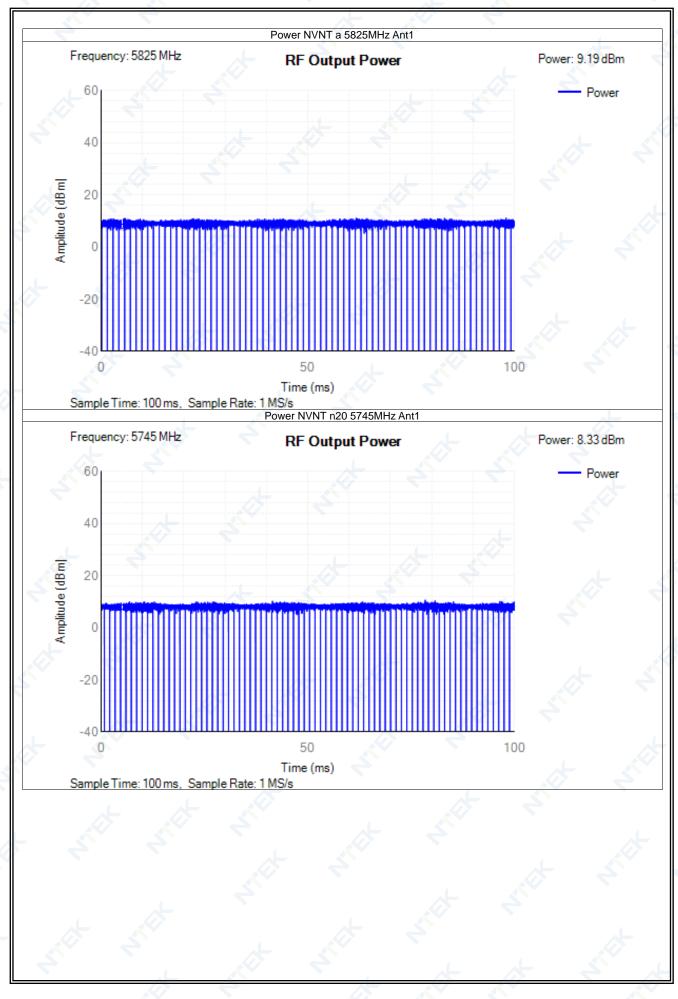
1Rm Max									
			M1[1]		1[1]			-45.88 dBr	
								50000 GH	
				0	cc Bw		75.3684	63154 MH	
) dBm									
10 dBm		T1				T2			
			1 / 1						
20 dBm									
20 0011									
30 dBm									
So abiii									
40 dBm								×	
to ubiii						- m			
50 dBm									
So abiii									
60 dBm									
70 dBm			4						
CF 5.775 GI	lz		10001 p	ts			Span 1	.60.0 MHz	
larker			×						
Type   Ref	Trc	X-value	Y-value	Function		Function Result			
M1	1	5.855 GHz	-45.88 dBm	n A					
T1	1	5.7373078 GHz	-11.72 dBm	Occ Bw			75.368463154 MHz		
T2	1	5.8126762 GHz	-11.46 dBm						

Page 73 of 82

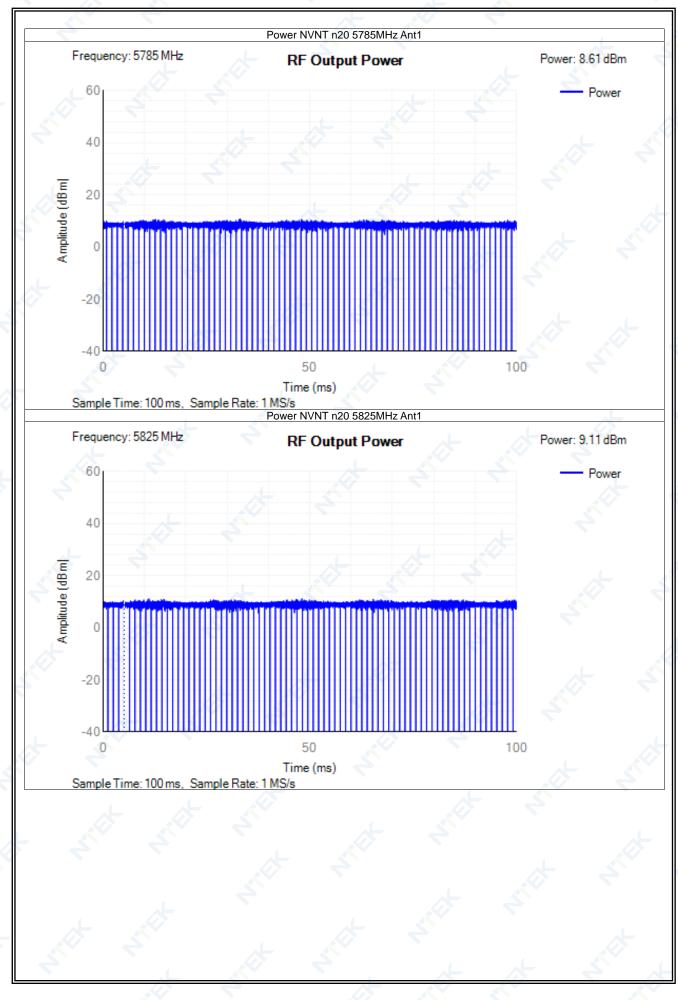

#### 10.5 RF OUTPUT POWER

Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdic
NVNT	а	5745	8.87	73	10.07	13.98	Pass
NVNT	a	5785	8.79	72	9.99	13.98	Pass
NVNT	а	5825	9.19	73	10.39	13.98	Pass
NVNT	n20	5745	8.33	77	9.53	13.98	Pass
NVNT	n20	5785	8.61	77	9.81	13.98	Pass
NVNT	n20	5825	9.11	77	10.31	13.98	Pass
NVNT	n40	5755	9.08	151	10.28	13.98	Pass
NVNT	n40	5795	8.83	151	10.03	13.98	Pass
NVNT	ac20	5745	8.26	77	9.46	13.98	Pass
NVNT	ac20	5785	8.69	77	9.89	13.98	Pass
NVNT	ac20	5825	9.14	77	10.34	13.98	Pass
NVNT	ac40	5755	9.11	149	10.31	13.98	Pass
NVNT	ac40	5795	8.72	149	9.92	13.98	Pass
NVNT	ac80	5775	8.72	286	9.92	13.98	Pass
HVLT	а	5745	8.61	43	9.81	13.98	Pass
HVLT	а	5785	8.64	43	9.84	13.98	Pass
HVLT	а	5825	8.61	43	9.81	13.98	Pass
HVLT	n20	5745	8.56	45	9.76	13.98	Pass
HVLT	n20	5785	8.17	44	9.37	13.98	Pass
HVLT	n20	5825	8.20	44	9.4	13.98	Pass
HVLT	n40	5755	8.17	61	9.37	13.98	Pass
HVLT	n40	5795	8.12	62	9.32	13.98	Pass
HVLT	ac20	5745	8.09	76	9.29	13.98	Pass
HVLT	ac20	5785	8.04	44	9.24	13.98	Pass
HVLT	ac20	5825	8.01	44	9.21	13.98	Pass
HVLT	ac40	5755	7.96	45	9.16	13.98	Pass
HVLT	ac40	5795	7.93	62	9.13	13.98	Pass
HVLT	ac80	5775	7.90	62	9.1	13.98	Pass
LVHT	а	5745	7.79	43	8.99	13.98	Pass
LVHT	a	5785	7.82	43	9.02	13.98	Pass
LVHT	а	5825	7.79	43	8.99	13.98	Pass
LVHT	n20	5745	7.74	45	8.94	13.98	Pass
LVHT	n20	5785	8.17	44	9.37	13.98	Pass
LVHT	n20	5825	8.20		9.4	13.98	Pass

### NTEK 北测[®] Page 74 of 82


								·
LVH	Т	n40	5755	8.17	61	9.37	13.98	Pass
LVH	т	n40	5795	8.12	62	9.32	13.98	Pass
LVH	т	ac20	5745	8.09	76	9.29	13.98	Pass
LVH	т	ac20	5785	8.04	44	9.24	13.98	Pass
LVH	т	ac20	5825	8.01	44	9.21	13.98	Pass
LVH	т	ac40	5755	7.96	45	9.16	13.98	Pass
LVH	т	ac40	5795	7.93	62	9.13	13.98	Pass
LVH	т	ac80	5775	7.90	62	9.1	13.98	Pass
HVH	т	а	5745	7.79	43	8.99	13.98	Pass
HVH	т	а	5785	7.82	43	9.02	13.98	Pass
HVH	п	a	5825	7.79	43	8.99	13.98	Pass
HVH	т	n20	5745	7.74	45	8.94	13.98	Pass
HVH	т	n20	5785	8.17	44	9.37	13.98	Pass
HVH	ΙТ	n20	5825	8.20		9.4	13.98	Pass
HVH	п	n40	5755	8.17	61	9.37	13.98	Pass
HVH	т	n40	5795	8.12	62	9.32	13.98	Pass
HVH	IT	ac20	5745	8.09	76	9.29	13.98	Pass
HVH	IT	ac20	5785	8.04	44	9.24	13.98	Pass
НУН	IT	ac20	5825	8.01	44	9.21	13.98	Pass
НИН	IT	ac40	5755	7.96	45	9.16	13.98	Pass
HVH	IT	ac40	5795	7.93	62	9.13	13.98	Pass
НУН	IT	ac80	5775	7.90	62	9.1	13.98	Pass
LVL	т	а	5745	7.79	43	8.99	13.98	Pass
LVH	т	а	5785	7.82	43	9.02	13.98	Pass
LVH	т	а	5825	7.79	43	8.99	13.98	Pass
LVH	т	n20	5745	7.74	45	8.94	13.98	Pass
LVH	Т	n20	5785	8.17	44	9.37	13.98	Pass
LVH	т	n20	5825	8.20	5	9.4	13.98	Pass
LVH	т	n40 🧹	5755	8.17	61	9.37	13.98	Pass
LVH	т	n40	5795	8.12	62	9.32	13.98	Pass
LVH	т	ac20	5745	8.09	76	9.29	13.98	Pass
LVH	т	ac20	5785	8.04	44	9.24	13.98	Pass
LVH	т	ac20	5825	8.01	44	9.21	13.98	Pass
LVH	т	ac40	5755	7.96	45	9.16	13.98	Pass
LVH	т	ac40	5795	7.93	62	9.13	13.98	Pass
LVH	т	ac80	5775	7.92	62	9.12	13.98	Pass

Report No.: S23081004401005

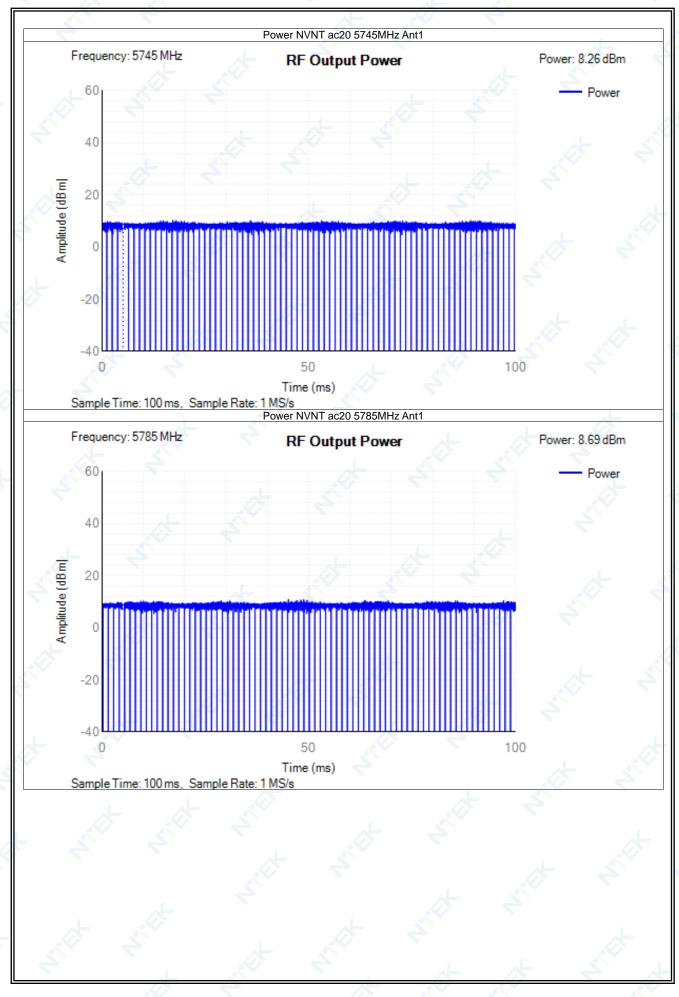



Page 75 of 82

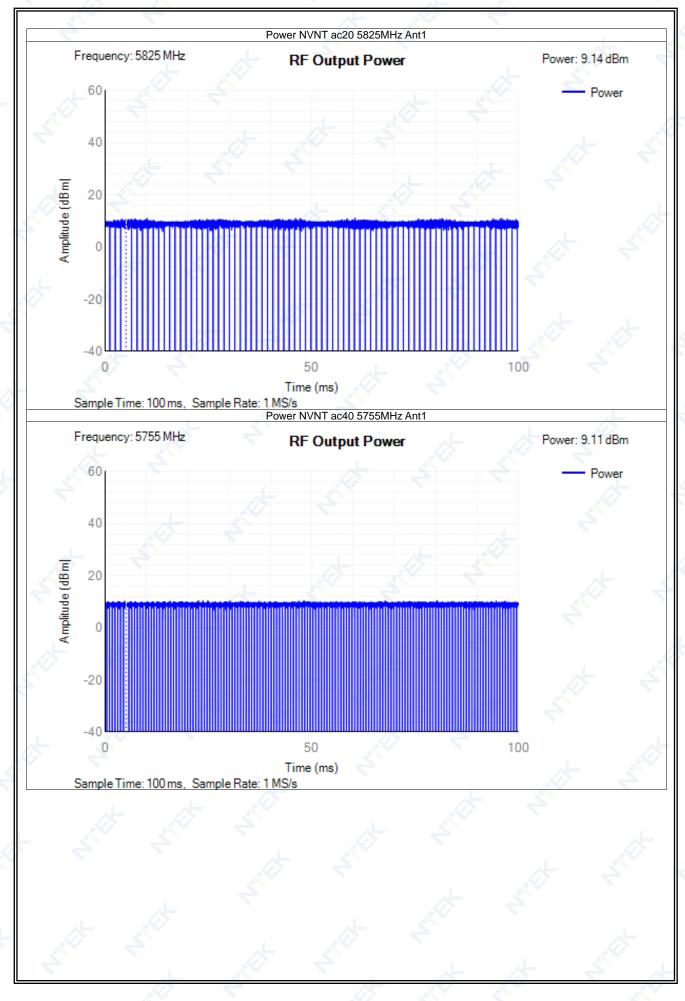
Page 76 of 82



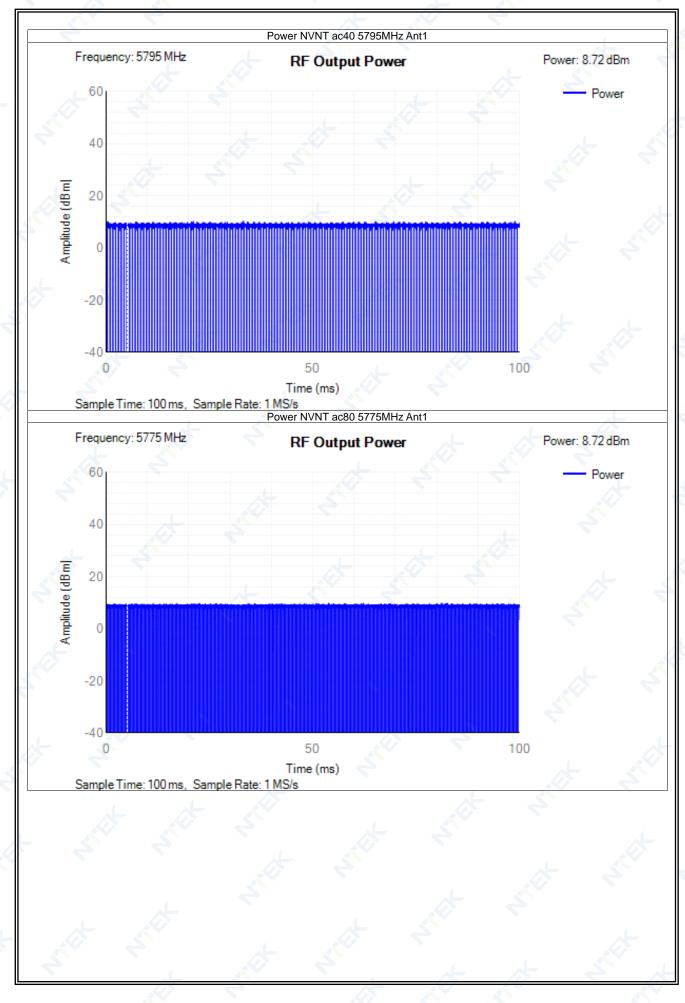

#### Report No.: S23081004401005




Page 77 of 82


#### Page 78 of 82




Page 79 of 82



Page 80 of 82



Page 81 of 82



Page 82 of 82

Report No.: S23081004401005

#### 11. EUT TEST PHOTO



END OF REPORT