

RADIO TEST REPORT ETSI EN 303 345-1 V1.1.1 (2019-06) ETSI EN 303 345-3 V1.1.1 (2021-06)

Product: Tablet PC

Trade Mark: Blackview

Model Number: Active 8 Pro

Family Model: N/A

Report No.: \$23081004401009

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China

Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name	DOKE COMMUNICATION	N (HK) LIMITED	
		BLDG 253-261 HENNESSY ROA	D WANCHAI
Manufacturer's Name.	Shenzhen DOKE Electror	nic Co., Ltd	
Address	801, Building3, 7th Indust Guangming District, Shen	rial Zone, Yulv Community, Yutanç zhen, China.	g Road,
Product description			
Product name	Tablet PC		
Trademark	Blackview		
Model and/or type reference	Active 8 Pro		
Family Model	N/A		
Standards	·· ETSI EN 303 345-1 V1.1. ETSI EN 303 345-3 V1.1.		
the equipment under tes	st (EUT) is in compliance wi	nenzhen NTEK, and the test resul th the 2014/53/EU RED Directive sample identified in the report.	
This report shall not be	reproduced except in full, w	ithout the written approval of She	nzhen NTEK,
this document may be a	Itered or revised by Shenzh	en NTEK, personnel only, and sh	all be noted in
the revision of the docu			
Test Sample Number .	S23052600800	1	
Date of Test			
Date (s) of performance	of tests May 29, 2023 ~	Jun 21, 2023	
Date of Issue	Aug 30, 2023		
Test Result	Pass		
	eport are based on the origina	l test report	
S23052600801009 dated	by Jun 25, 2023		
(
Testing	g Engineer :	18 Men lin	
	-	(Allen Liu)	
Autho	rized Signatory :	Alex	
	4	(Alex Li)	
İ			

of 24 Report No.: S23081004401009

Table of Contents	Page
1 . GENERAL INFORMATION	5
1.1 GENERAL DESCRIPTION OF EUT	5
1.2 TEST CONDITIONS AND CHANNEL	6
1.3 DESCRIPTION OF TEST CONDITIONS	7
1.4 DESCRIPTION OF SUPPORT UNITS	8
1.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	9
2 . SUMMARY OF TEST RESULTS	10
2.1 TEST FACILITY	11
2.2 MEASUREMENT UNCERTAINTY	11_
3 . TEST PROCEDURES AND RESUTLS	12
3.1 SENSITIVITY	12
3.1.1 LIMITS	12
3.1.2 TEST PROCEDURE	12
3.1.3 TEST SETUP 3.1.4 TEST SIGNALS	13 13
3.1.5 TEST RESULTS	14
3.2 . ADJACENT CHANNEL SELECTIVITY AND BLOCKING	15
3.2.1 LIMITS	15
3.2.2 TEST PROCEDURE 3.2.3 TEST SETUP	16 16
3.2.4 TEST SIGNALS	16
3.2.5 TEST RESULTS	17
3.3 . UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	18
3.3.1 LIMITS 3.3.2 LIMITS OF RADIATED EMISSION MEASUREMENT	18 18
3.3.3 TEST PROCEDURE	19
3.3.4 TEST SETUP	20
3.3.5 EUT OPERATING CONDITIONS 3.3.6 TEST RESULTS (30-1000MHz)	20 21
3.3.7 TEST RESULTS (30-1000MHz)	23
4 . EUT TEST PHOTO	24

Page 4 of 24

Report No.: S23081004401009

Revision History

Report No.	Version	Description	Issued Date
S23052600801009	Rev.01	Initial issue of report	Jun 25, 2023
S23081004401009	Rev.02	Updated report number	Aug 30, 2023
.0	2, 4	,L ,A	250
4		* 30 5	
	, t 2°	, L	st si
		* 30	
	.40	- 31	ر ب
			
		4	4
	4,	*	d 300
		\$ 2° 5	
		4	
	4		F
A TOTAL STATE OF THE PARTY OF T	4		*

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Tablet PC	* * *
Trade Mark	Blackview	
Model Number.	Active 8 Pro	
Family Model	N/A	L 0 3
Model Difference	N/A	A S
	The EUT is Tablet PC	
A A	Operation Frequency:	FM: 87.5 MHz to 108 MHz
Product Description	Modulation Type:	FM: Analog modulation
4	Number Of Channel	Please see Note 2.
, L	Antenna Designation:	Use earphone as Antenna
Channel List	Refer to below	¥ 30 10
Adapter	Model: HJ-C6-33-EU Input: 100-240V~50/60 Output: (PD) 5.0V==3. or 9.0V==3.0A 27 or 12.0V==2.5A 3 or 15.0V==2.0A 3 or 20.0V==1.5A 3 (PPS)3.3V-11.0V==3.0	0A 15.0W 7.0W 30.0W 30.0W 30.0W
Battery	DC 3.87V, 22000mAh	
Rating	DC 3.87V from battery	or DC 5V from adapter
I/O Ports	Refer to users manual	At 180
Hardware Version	TP769_A1_V1.0	<u> </u>
Software Version	Active8Pro_EEA_TP76	69_V1.0

Note:

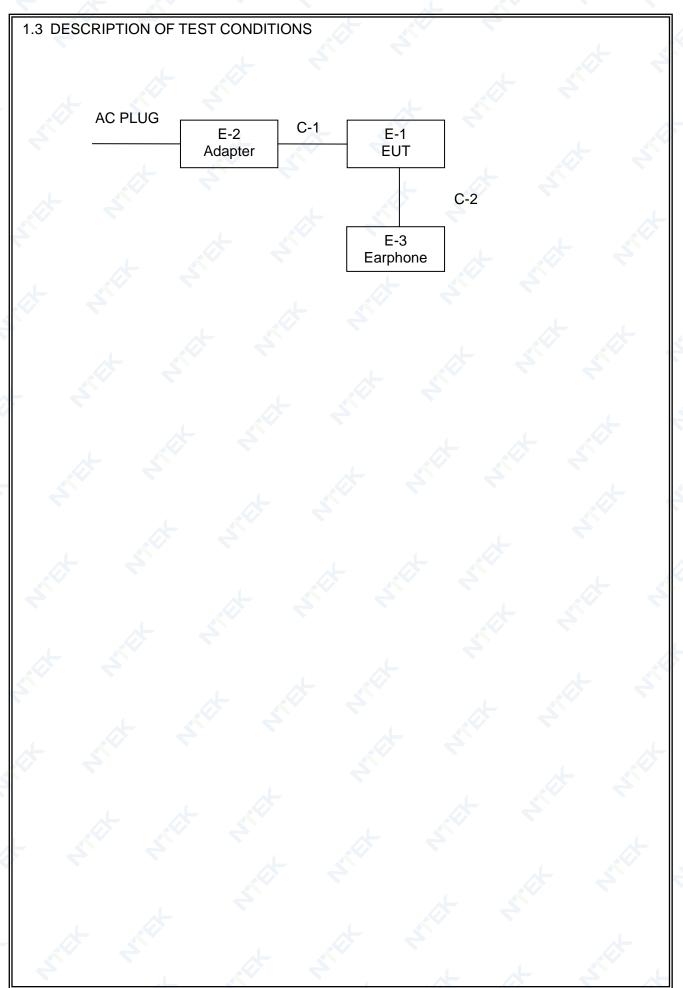
1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.2 TEST CONDITIONS AND CHANNEL

	Normal Test Conditions
Temperature	15°C - 35°C
Relative Humidity	20% - 75%
Supply Voltage	DC 5V

Number Of Channel

Channel	Frequency (MHz)
01	87.5
02	87.6
k	87.5+0.1(k-1)
106	98.0
Ø P	.i
205	107.9
206	108.0


Test Channel	EUT Channel	Test Frequency (MHz)
Middle	CH106	98.0

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

1.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Tablet PC	Active 8 Pro	N/A	EUT
E-2	Adapter	HJ-C6-33-EU	N/A	Peripherals
E-3	Earphone	N/A	N/A	Peripherals
				*
		3"		

Item	Туре	Shielded Type	Ferrite Core	Length	Note
C-1	USB Cable	YES	NO	1.0m	
C-2	Earphone Cable	NO	NO	1.2m	6

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

1.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
1	ESG VETCTOR SIGNAL GENERAR OR	Agilent	E4438C	MY450933 47	2023.03.27	2024.03.26	1 year
2	MXG Vector Signal Generator r	Agilent	N5182A	MY470703	2022.06.17 2023.06.15	2023.06.16 2023.06.14	1 year
3	Coupler	Mini-Circuits	ZADC-1 0-63-S+	SF7941014 10	2023.03.27	2024.03.26	3 year
4	Audio Analyzer	audio precision	ATS-1	41128	2023.03.27	2024.03.26	1 year
5	Spectrum Analyzer	Aglient	E4407B	MY451080 40	2023.03.27	2024.03.26	1 year
6	NTEK-EMC -Cable 005	N/A	N/A	N/A	N/A	N/A	N/A

Item	Kind of Equipmen t	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.27	2024.03.26	1 year
2	Test Cable	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
3	Test Cable	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
4	EMI Test Receiver	R&S	ESCI-7	101318	2023.03.27	2024.03.26	1 year
5	Antenna Mast	EM	SC100_1	N/A	N/A	N/A	N/A
6	Turn Table	EM	SC100	060531	N/A	N/A	N/A
7_	50Ω Switch	Anritsu Corp	MP59B	6200983705	2023.05.06	2026.05.05	3 year
8	Spectrum Analyzer	Aglient	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
9	Horn Antenna	EM	EM-AH-10180	2011071402	2023.03.27	2024.03.26	1 year
10	Amplifier	EMC	EMC051835S E	980246	2022.06.17 2023.06.15	2023.06.16 2023.06.14	1 year

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

ETSI EN 303 345-1 V1.1.1 (2019-06)

ETSI EN 303 345-3 V1.1.1 (2021-06)

Clause	Test Item	Results
4.2	Sensitivity	Pass
4.3	Adjacent channel selectivity and blocking	Pass
4.4	Unwanted emissions in the spurious domain	Pass

Page 11 of 24 Report No.: S23081004401009

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add.: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District,

Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.:9270A-1

CNAS Registration No.:L5516

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Uncertainty in conducted measurements	±1 dB
2	Uncertainty in radiated measurements	±6 dB
4	All emissions,radiated	±0.21dB

3. TEST PROCEDURES AND RESUTLS

3.1 SENSITIVITY

3.1.1 LIMITS

Refer to chapter 4.2 of ETSI EN 303 345-3 V1.1.1 (2021-06)

Table 2: FM sensitivity requirements

De-modulation	Tuned	Wanted signal	Required ser	nsitivity limit	
	frequency band		Conducted (dBm)	Radiated (dBµV/m)	
FM	VHF band II	98	-90	50 (see note)	
NOTE: For products with an integral antenna, the requirement is relaxed to 67 dBµV/m.					

The limits for sensitivity specified in table 2 shall apply. Each figure quoted is the required level of wanted signal which provides a given level of audio quality. The audio impairment criteria relevant for these tests is that the audio SNR ≥ 40 dBQ ref ±60,8 kHz deviation, and that there shall be 10 seconds of audio with no subjective impairments (e.g. clicks resulting from FM threshold effects).

3.1.2 TEST PROCEDURE

Refer to chapter 5.3.4 of ETSI EN 303 345-1 V1.1.1 (2019-06)

M	easurement
Conducted measurement	

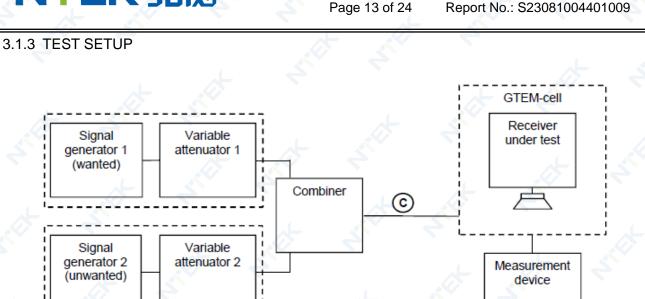


Figure 1: Generic measurement arrangement for receivers with built-in or integral antennas

3.1.4 TEST SIGNALS

The generated FM signals (wanted and unwanted) and the blocking signal shall be in accordance with table 2. The configuration is based on Recommendation ITU-R BS.641 [i.6].

Table 1: FM configuration

Parameter	FM:	FM signals		
Parameter	Wanted	Unwanted	Blocking	
Audio modulation	1 kHz tone	Weighted noise Recommendation ITU-R BS.559-2 [3], clause 1, band- limited to 15 kHz (see note 1)	1 kHz tone	
Other modulation parameters	±60,8 kHz peak deviation	15,9 kHz RMS deviation (see note 2)	80 % depth	
Pilot tone	None	None		

NOTE 1: The filter shall have a cut-off frequency of 15 kHz and a minimum roll-off of 60 dB/octave.

NOTE 2: This is equivalent to a quasi-peak deviation of 34,8 kHz and has pre-emphasis enabled. The quasi-peak level measurement is defined by Recommendation ITU-R BS.641 [i.5], clause 5; with pre-emphasis disabled the quasi-peak deviation is 32 kHz (14,5 kHz RMS).

The means of generating the noise modulation for the "unwanted" signal is shown in figure 1.

Page 14 of 24

Report No.: S23081004401009

3.1.5 TEST RESULTS

EUT:	Tablet PC	Model Number :	Active 8 Pro
Temperature:	26°C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	RX-Middle Channel		A

FM (Integral)	4	4	*		Zill Comment
Frequency	Е	*	Sound	Noise	
(MHz)	(dBuV/m)	Signal(dBm)	(mV)	(mV)	SN (dBQ)
98	67	-24.88	367.268	1.121	50.30754955

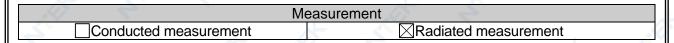
3.2. ADJACENT CHANNEL SELECTIVITY AND BLOCKING

3.2.1 LIMITS

Refer to chapter 4.3 of ETSI EN 303 345-3 V1.1.1 (2021-06)

The limits for selectivity and blocking specified in table 4 shall apply with the channel spacings given in table 3. Each figure quoted is the minimum acceptable level of unwanted signal, relative to that of the wanted signal, which provides a given level of audio quality. The audio impairment criteria relevant for these tests is that the audio $SNR \ge 40 \text{ dBQ}$ ref $\pm 60.8 \text{ kHz}$ deviation, and that there shall be 10 seconds of audio with no subjective impairments (e.g. clicks resulting from FM threshold effects).

Table 4: Adjacent channel selectivity and blocking requirements


De- modulation (see note 1)	Tuned frequency band	C Wanted signal centre frequency (MHz)	Wanted si	ignal level		Required (see note	d I/C ratio s 2 and 3	
			Conducted (dBm)	Radiated (dBµV/m)	N = 2 (dB)	N = 3 (dB)	N = 4 (dB)	Blocking (dB)
FM (built-in or integral antenna)	VHF band II	98	n/a	56 (see note 4)	-15	-3	8	20
FM (external antenna)	VHF band II	98	-84	n/a	3	17	30	30

- NOTE 1: The ACS and blocking requirements are currently separated into different limits for radiated and conducted testing methods. These limits are likely to be unified in a future revision of the present document. Users of the present document should consult frequently the latest list published in the Official Journal of the European Union.
- NOTE 2: The frequency of the interferer shall be calculated using the channel spacing data in table 3 for each of the 6 defined adjacent channels N = {-4, -3, -2, +2, +3, +4} and the two blocking offsets. Each row of table 4 thus defines 8 individual tests.
- NOTE 3: The minimum level of I for the relevant level of impairment is calculated by adding the I/C ratio to the wanted C level.
- NOTE 4: The wanted signal level for receivers with integral antenna is 73 dBµV/m.

3.2.2 TEST PROCEDURE

Refer to chapter 5.3.5 of ETSI EN 303 345-1 V1.1.1 (2019-06)

3.2.3 TEST SETUP

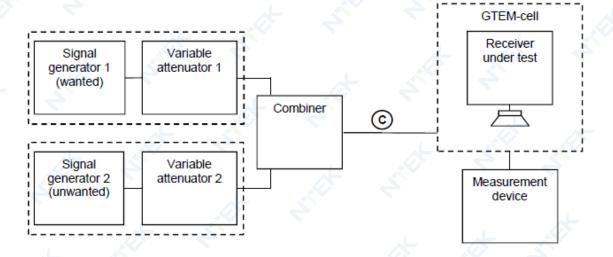


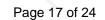
Figure 1: Generic measurement arrangement for receivers with built-in or integral antennas

Figure 6: Arrangement for generating AM and FM interferers

3.2.4 TEST SIGNALS

The generated FM signals (wanted and unwanted) and the blocking signal shall be in accordance with table 2. The configuration is based on Recommendation ITU-R BS.641 [i.6].

Table 1: FM configuration


Parameter	FM	AM signal		
Parameter	Wanted	Unwanted	Blocking 1 kHz tone	
Audio modulation	1 kHz tone	Weighted noise Recommendation ITU-R BS.559-2 [3], clause 1, band- limited to 15 kHz (see note 1)		
Other modulation parameters	±60,8 kHz peak deviation	15,9 kHz RMS deviation (see note 2)	80 % depth	
Pilot tone	None	None		

NOTE 1: The filter shall have a cut-off frequency of 15 kHz and a minimum roll-off of 60 dB/octave.

This is equivalent to a quasi-peak deviation of 34,8 kHz and has pre-emphasis enabled. The quasi-peak NOTE 2: level measurement is defined by Recommendation ITU-R BS.641 [i.5], clause 5; with pre-emphasis disabled the quasi-peak deviation is 32 kHz (14,5 kHz RMS).

The means of generating the noise modulation for the "unwanted" signal is shown in figure 1.

The signal generator 1 provides the wanted Signal (dBm), and the signal generator 2 provides unwanted signal (dBm).

3.2.5 TEST RESULTS

EUT:	Tablet PC	Model Number :	Active 8 Pro
Temperature:	26°C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	RX-Middle Channel	3	1

EN 303 345 A	djacent cha	ınnel selectivi	ty		4
FM (Integral)				A	
Frequency	E		Sound	Noise	3
(MHz)	(dBuV/m)	Signal(dBm)	(mV)	(mV)	SN (dBQ)
98	73	-18.28	6		*
97.6	81	-9.93	364.961	1.018	51.090
97.7	70	-21.86	372.407	0.945	51.912
97.8	58	-34.28	366.012	1.062	50.747
98.2	58	-34.3	361.697	1.141	50.021
98.3	70	-21.93	358.47	0.979	51.273
98.4	81	-10.36	375.591	0.979	51.679

EN 303 345 Receiver blocking						
FM (Integral)						
Frequency	E	- 3	Sound	Noise	1	
(MHz)	(dBuV/m)	Signal(dBm)	(mV)	(mV)	SN (dBQ)	
98	73	-18.28	,	4		
98.8	93	2.42	360.614	1.021	50.960	
97.2	93	2.35	366.415	1.041	50.930	

K 7.

3.3.1 LIMITS

Refer to chapter 4.2.6.2 of ETSI EN 303 345-3 V1.1.1 (2021-06) The limits in CENELEC EN 55032 [4], table A.4, table A5and A6.

3.3. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

3.3.2 LIMITS OF RADIATED EMISSION MEASUREMENT (Below 1000MHz)

Table	Frequency				Class B limits
clause range MHz	Facility (see Table A.1)	Distance m	Detector type / bandwidth	dB(μV/m)	
A4.1	30 to 230	OATS/SAC	40	.0	30
	230 to 1 000	UATS/SAC	10	Quasi Peak /	37
A4.2	30 to 230	OATO/SAG	120 kHz		40
	230 to 1 000	OATS/SAC			47
A4.3	30 to 230	FAD	40	4	32 to 25
	230 to 1 000	FAR	10	Quasi Peak /	32
A4.4	30 to 230	EAD	3	120 kHz	42 to 35
	230 to 1 000	FAR	3		42

Apply only table clause A4.1 or A4.2 or A4.3 or A4.4 across the entire frequency range.

These requirements are not applicable to the local oscillator and harmonics frequencies of equipment covered by Table A.6.

Table Clause	Frequency		Class B Limi	Class B Limit $dB(\mu V/m)$		
	Range MHz	Facility (see Table A.1)	Distance m	Detector type / Bandwidth	Fundamental	Harmonics
A6.1	30 to 230					42
	230 to 300	OATS/SAC	10	50	50	42
	300 to 1 000			Quasi Peak /		46
A6.2	2 30 to 230			120 kHz	4	52
	230 to 300	OATS/SAC	3		60	52
	300 to 1 000					56
A6.3	30 to 230			,	52 to 45	44 to 37
	230 to 300	FAR	10		45	37
	300 to 1 000	.1 4		Quasi Peak /	45	41
A6.4	30 to 230		3	120 kHz	62 to 55	54 to 47
	230 to 300	FAR			55	47
	300 to 1 000			Σ	55	51

Apply only A6.1 or A6.2 or A6.3 or A6.4 across the entire frequency range.

These relaxed limits apply only to emissions at the fundamental and harmonic frequencies of the LO. Signals at all other frequencies shall be compliant with the limits given in Table A.4.

Page 19 of 24 Report No.: S23081004401009

(Above 1000MHz)

Table	Frequency	Measurement			Class B limits	
clause	range MHz	Facility (see Table A.1)	Distance m	Detector type/ bandwidth	dB(μV/m)	
A5.1	1 000 to 3 000	3 000 to 6 000		Average/	50	
	3 000 to 6 000		1 MHz	54		
A5.2	1 000 to 3 000	FSOATS 3	3	Peak/	70	
	3 000 to 6 000		1 MHz	1 MHz	74	

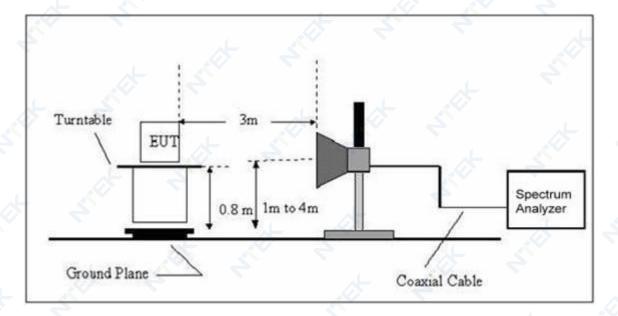
Apply A5.1 and A5.2 across the frequency range from 1 000 MHz to the highest required frequency of measurement derived from Table 1.

Notes:

- (1) The limit for radiated test was performed according to as following: EN55032.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

3.3.3 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3M meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.



3.3.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

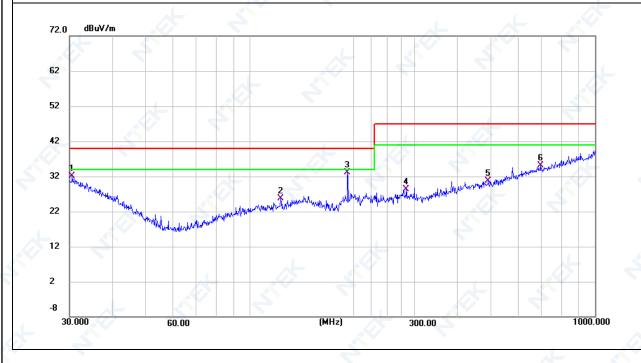
(B) Radiated Emission Test Set-Up Frequency Above 1GHz

3.3.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

Page 21 of 24

Report No.: S23081004401009

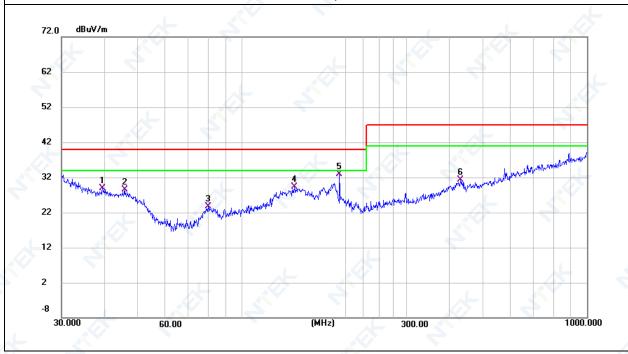

3.3.6 TEST RESULTS (30-1000MHz)

EUT:	Tablet PC	Model Number :	Active 8 Pro
Temperature:	25.4℃	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Horizontal
HAST POWER .	DC 5V from Adapter AC 230V/50Hz	Test Mode :	FM

Frequency	Meter Reading	Factor	Emission Level Limits		Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	, t
30.5305	6.03	26.17	32.20	40.00	-7.80	QP
122.8340	6.99	18.75	25.74	40.00	-14.26	QP
191.7450	16.73	16.44	33.17	40.00	-6.83	QP
283.9791	8.21	20.02	28.23	47.00	-18.77	QP
490.7447	5.91	24.77	30.68	47.00	-16.32	QP
694.4174	7.23	27.86	35.09	47.00	-11.91	QP

Remark:

1. Factor = Antenna Factor + Cable Loss - Pre-amplifier.


Page 22 of 24 Report No.: S23081004401009

EUT:	Tablet PC	Model Number :	Active 8 Pro
Temperature:	25.4 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Vertical
TAST POWAL .	DC 5V from Adapter AC 230V/50Hz	Test Mode :	FM

Frequency	Meter Reading	Factor	Emission Level Limits		Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	, toman
39.4371	7.60	_21.32	28.92	40.00	-11.08	QP
45.6948	10.85	17.75	28.60	40.00	-11.40	QP
79.8003	8.39	15.35	23.74	40.00	-16.26	QP
141.8262	10.56	18.67	29.23	40.00	-10.77	QP
191.7450	16.39	16.44	32.83	40.00	-7.17	QP
429.5228	7.55	23.84	31.39	47.00	-15.61	QP

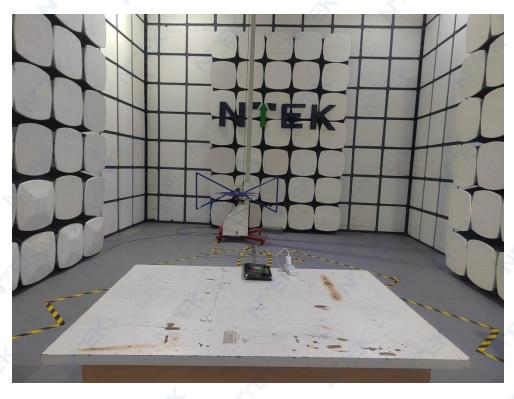
Remark:

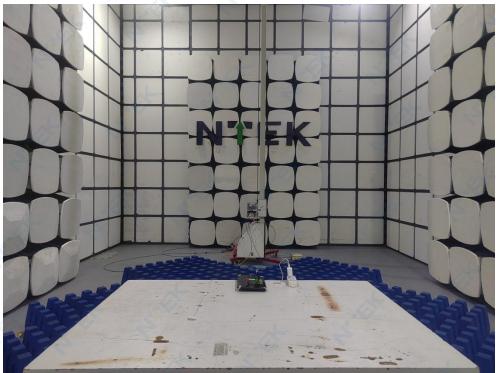
1. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Page 23 of 24 Report No.: S23081004401009

3.3.7 TEST RESULTS(1000-6000 MHz)

EUT:	Tablet PC	Model Number :	Active 8 Pro
Temperature:	25.1℃	Relative Humidity:	53%
Pressure:	1010 hPa	Test Mode :	FM
Test Power :	DC 5V from Adapter AC 230V/50H	-lz	


Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
V	1209.160	37.24	7.48	44.72	70.00	-25.28	peak
V	1209.160	26.64	7.48	34.12	50.00	-15.88	AVG
V	1329.615	37.74	7.59	45.33	70.00	-24.67	peak
V	1329.615	25.66	7.59	33.25	50.00	-16.75	AVG
V	1940.000	37.19	8.60	45.79	70.00	-24.21	peak
V	1940.000	26.42	8.60	35.02	50.00	-14.98	AVG
V	2990.000	35.68	12.24	47.92	70.00	-22.08	peak
V	2990.000	19.91	12.24	32.15	50.00	-17.85	AVG
V	4375.000	35.78	15.20	50.98	74.00	-23.02	peak
V	4375.000	18.16	15.20	33.36	54.00	-20.64	AVG
V	5050.000	34.34	17.05	51.39	74.00	-22.61	peak
V	5050.000	23.97	17.05	41.02	54.00	-12.98	AVG
H	1179.207	38.67	7.46	46.13	70.00	-23.87	peak
Н	1179.207	28.56	7.46	36.02	50.00	-13.98	AVG
Н	1303.666	38.45	7.57	46.02	70.00	-23.98	peak
Н	1303.666	27.79	7.57	35.36	50.00	-14.64	AVG
Н	1878.924	36.40	8.18	44.58	70.00	-25.42	peak
H	1878.924	26.04	8.18	34.22	50.00	-15.78	AVG
H	2304.722	37.06	9.82	46.88	70.00	-23.12	peak
Н	2304.722	23.43	9.82	33.25	50.00	-16.75	AVG
Н	2980.000	35.40	12.20	47.60	70.00	-22.40	peak
Н	2980.000	18.05	12.20	30.25	50.00	-19.75	AVG
Н	4405.000	35.51	15.27	50.78	74.00	-23.22	peak
Н	4405.000	21.42	15.27	36.69	54.00	-17.31	AVG


Remark:
Emission Level= ReadingLevel+ Factor, Margin= Emission Level - Limit

4. EUT TEST PHOTO

Measurement Photos

END OF REPORT