NTEK 北测[®]

RADIO TEST REPORT ETSI EN 300 440 V2.2.1 (2018-07)

Product : 4G Tablet Trade Mark : Blackview Model Name : Tab 12 pro Family Model : N/A Report No. : STR221128001005E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

NTEK ILW Page 2 of 74

Report No.: STR221128001005E

TEST RESULT CERTIFICATION

	OKE COMMUNICATION (HK) LIMITED M 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD
Address	VANCHAI HK CHINA
	henzhen DOKE Electronic Co.,Ltd
Address : 8	01, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China.
Product description	
Product name: 4	G Tablet
Trademark E	lackview
Model and/or type reference : 7	ab 12 pro
Family Model : N	I/A
Standards	TSI EN 300 440 V2.2.1 (2018-07)
equipment under test (EUT) is in requirements. And it is applicable This report shall not be reproduce	been tested by NTEK, and the test results show that the compliance with the of article 3.2 of the Directive 2014/53/EU only to the tested sample identified in the report. ed except in full, without the written approval of NTEK, this sed by NTEK, personnel only, and shall be noted in the revision of
Date of Test	
	Nov 28. 2022 ~ Dec 13. 2022
Date of Issue	1
Test Result	
Testing Engine	er : <u>/rany</u> . Hu (Mary Hu)
Authorized Sig	1.0

K	Table of Contents	Page
	1 . SUMMARY OF TEST RESULTS	7
	1.1 TEST FACILITY	8
	1.2 MEASUREMENT UNCERTAINTY	8
	2 . GENERAL INFORMATION	9
	2.1 GENERAL DESCRIPTION OF EUT	9
	2.2 TEST CONDITIONS	10
	2.3 DESCRIPTION OF TEST CONDITIONS	11
	2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED) 12
	2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	13
	2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	14
	3 . EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)	15
	3.1 APPLICABILITY	15
	3.2 LIMITS	15
	3.3 GENERAL REQUIREMENTS	15
	3.4 TEST PROCEDURES	15
	3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS 3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS	15 16
	3.5 TEST SETUP LAYOUT	16
0	3.6 EUT OPERATION DURING TEST	16
	3.7 TEST RESULT FOR -6 DB BANDWIDTH	17
	3.8 TEST RESULT FOR E.I.R.P	18
1	4 . PERMITTED RANGE OF OPERATING FREQUENCIES	19
1	4.1 APPLIED PROCEDURES / LIMIT	19
	4.2 TEST PROCEDURES	19
	4.3 TEST SETUP LAYOUT	19
	4.4 EUT OPERATION DURING TEST	19
	4.5 TEST RESULTS	20
	5 . UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	23
	5.1 APPLIED PROCEDURES / LIMIT	23
	5.2 MEASURING INSTRUMENTS AND SETTING	23
	5.3 TEST PROCEDURES	23
	5.4 TEST SETUP LAYOUT	24
11		

Page 3 of 74

NTEK 北测®

Page 4 of 74

NTEK ILW®

	Table of Contents	Page
101	5.5 EUT OPERATION DURING TEST	24
	5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS	24
	5.7 TEST RESULTS	25
	6.DUTY CYCLE	27
	6.1 APPLICABILITY AND DESCRIPTION	27
	6.2 LIMITS	27
	6.4 METHOD OF MEASUREMENT	27
	6.5 TEST SETUP	28
	6.6 TEST RESULTS	28
	7 . SPURIOUS EMISSIONS – RX	29
	7.1 APPLIED PROCEDURES / LIMIT	29
	7.2 MEASURING INSTRUMENTS AND SETTING	29
	7.3 TEST PROCEDURES	29
	7.5 TEST SETUP LAYOUT	29
	7.6 EUT OPERATION DURING TEST	29
	7.7 TEST RESULTS	30
	8 . ADJACENT CHANNEL SELECTIVITY	31
	8.1 APPLICABILITY	31
	8.2 LIMITS	31
	8.3 METHODS OF MEASUREMENT	31
	8.4 TEST SETUP LAYOUT	32
1	8.5 TEST RESULTS	32
	9 . BLOCKING OR DESENSITIZATION	33
	9.1 APPLICABILITY	33
	9.2 LIMITS	33
	9.3 TEST PROCEDURES	33
	8.4 TEST SETUP LAYOUT	34
	9.4 TEST RESULTS	35
	10 . TEST RESULTS	42
	10.1 DUTY CYCLE	42
	10.2 -6DB EMISSION BANDWIDTH	50
	10.3 OCCUPIED CHANNEL BANDWIDTH	58
	10.4 RF OUTPUT POWER	66

Page 5 of 74

NTEK 北测®

Table of Contents	Page
11 . EUT TEST PHOTO	74
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	74
APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

NTEK 北测[®] Page 6 of 74

Revision History					
Report No.	Version	Description	Issued Date		
STR221128001005E	Rev.01	Initial issue of report	Dec 13. 2022		
	<u>.</u>		J		

1. SUMMARY OF TEST RESULTS

NTEK 北测

Test procedures according to the technical standards: ETSI EN 300 440 V2.2.1 (2018-07)

Clause	Description of Test Item	Remarks	Results	
	Transmitter Parameters			
4.2.2	-6 dB channel bandwidth	Conducted	Pass	
4.2.2	Effective isotropic radiated power	Conducted	Pass	
4.2.3	Permitted range of operation frequencies	Conducted	Pass	
4.2.4	Unwanted emissions in the spurious domain	Radiated	Pass	
4.2.5	Duty cycle	Conducted	Pass	
4.2.6	Additional requirements for FHSS equipment	Conducted	N/A	
Receiver Parameters				
4.3.3	Adjacent channel selectivity(For Receiver	Conducted	N/A	
	category 1)			
4.3.4 Blocking or desensitization(For Receiver		Conducted	Pass	
	category 1,2,3)			
4.3.5	4.3.5 Spurious emissions(For Receiver category		Pass	
	1,2,3)			

Page 7 of 74

Note: The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter

1.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

Page 8 of 74

1.2 MEASUREMENT UNCERTAINTY

NTEK 北测

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of ~k=2, providing a level of confidence of approximately 95 % $^\circ$

No.	Item	Uncertainty		
1	Radio frequency	±1 x 10-7		
2	RF power (conducted)	±2,5 dB		
3	Radiated emission of transmitter, valid to 26,5 GHz	±6 dB		
4	Radiated emission of transmitter, valid between	±8 dB		
	26,5 GHz and 66 GHz			
5	Radiated emission of receiver, valid to 26,5 GHz	±6 dB		
6	Radiated emission of receiver, valid between 26,5	±8 dB		
	GHz and 66 GHz			
7	Temperature	±1 ℃		
8	Humidity	±5 %		
9	Voltage (DC)	±1 %		
10	Voltage (AC, < 10 kHz)	±2 %		
NOTE: For radiated emissions above 26.5 GHz it may not be possible to				

achieve measurement uncertainties complying with the levels specified in this table. In these cases alone it is acceptable to employ the alternative interpretation procedure specified in EN 300440 V2.2.1 clause 5.9.1. Page 9 of 74

Report No.: STR221128001005E

2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT

NTEK 北测®

Equipment	4G Tablet			
Trade Mark	Blackview	Blackview		
Model Name	Tab 12 pro			
Family Model	N/A			
Model Difference	N/A			
	Operation Frequency: Data Rate:	5745-5825 MHz for 802.11a/n20/ac20; 5755-5795 MHz for 802.11n40/ac40; 5775MHz for 802.11 ac80; 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS7; 802.11ac(VHT20/ VHT40/VHT80): NSS1, MCS0-MCS9, NSS2		
	Modulation	OFDM with BPSK/QPSK/16QAM/64QAM/256QAM		
Product Description	Channel No.:	5 channels for 802.11a/n20/ac20 in the 5745-5825MHz band ; 2 channels for 802.11 n40/ac40 in the 5755-5795MHz band ; 1 channels for 802.11 ac80 in the 5775MHz band ;		
	Antenna Designation:	PIFA Antenna		
	Antenna Gain(Peak)	1.1dBi		
Receiver category	 Category 1: Highly reliable SRD communication media; e.g. serving human life inherent systems (may result in a physical risk to a person). Category 2: Medium reliable SRD communication media e.g. causing inconvenience to persons, which cannot simply be overcome by other means. Category 3: Standard reliable SRD communication media e.g. Inconvenience to persons, which can simply be overcome by other means (e.g. manual). 			
Channel List	Refer to below			
Adapter	Adapter 1: Model: QZ-01000EA00 Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A(10.0W) Adapter 2: Model: HJ-0502000C2-EU Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A(10.0W)			
Battery	DC 3.8V, 6580mAh,25.0Wh			
Rating	DC 3.8V from	DC 3.8V from battery or DC 5V from Adapter.		
Hardware Version	T30-T616-V2.0-221118-Q			
Software Version	Tab_12_Pro_EEA_T30_V1.0			

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Channel list:

NTEK 北测

Frequency and Channel list for 802.11a/n/ac(20 MHz) band IV (5745-5825MHz):

Page 10 of 74

	802.11a/n/ac(20 MHz) Carrier Frequency Channel						
Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-

Frequency and Channel list for 802.11n/ac(40MHz) band IV (5755-5795MHz):

	802.11n/ac 40MHz Carrier Frequency Channel					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
151	5755	159	5795	-	-	

Frequency and Channel list for 802.11ac(80MHz) band IV (5775MHz):

802.11ac 80MHz Carrier Frequency Channel		
Channel	Frequency (MHz)	
155	5775	

2.2 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15°C - 35°C	-10°C ~ 40°C _{Note1}
Relative Humidity	20% - 75%	N/A
Power Rating	DC 3.8V	N/A
Test voltage	DC 3.8V	DC 4.2V-DC 3.4V Note2

Note:

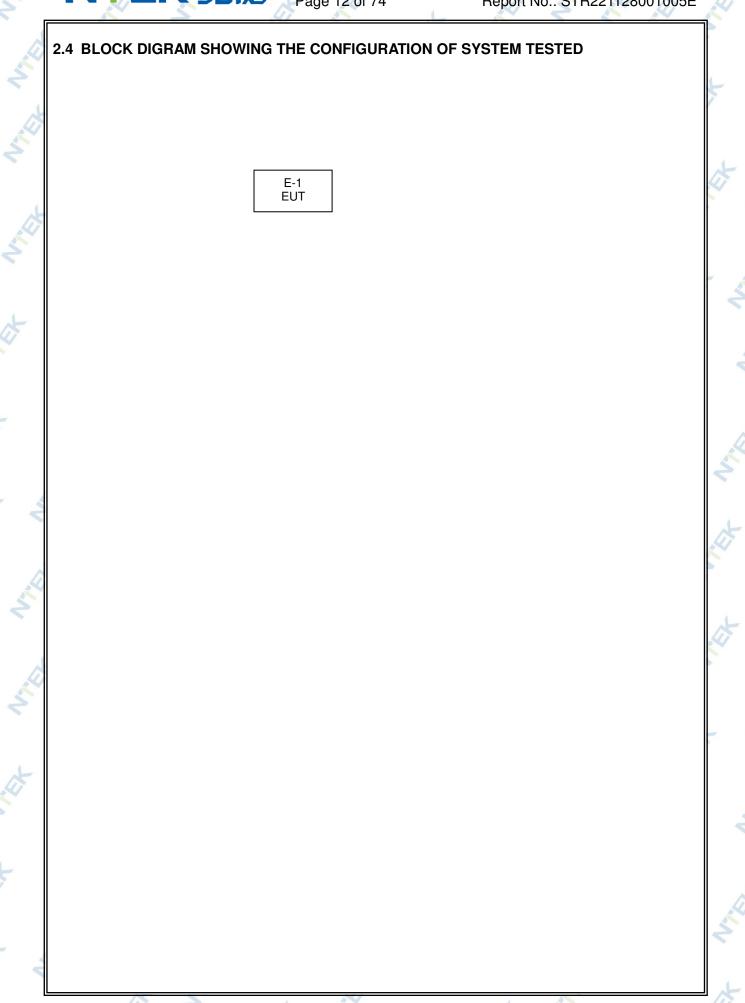
- (1) The temperature range as declared by the manufacturer; or one of the following specified temperature ranges:
 - Temperature category I (General): -20 °C to +55 °C;
 - Temperature category II (Portable): -10 °C to +55 °C;
 - Temperature category III (Equipment for normal indoor use): 5 °C to +35 °C.

(2) The High Voltage 4.2V and Low Voltage 3.4V was declarated by manufacturer.

Page 11 of 74

Report No.: STR221128001005E

2.3 DESCRIPTION OF TEST CONDITIONS


NTEK 北测®

For Conducted Test					
Pretest Mode Description					
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165				
Mode 2	802.11n/ ac40 CH 151 / CH 159				
Mode 3	802.11 ac80 CH 155				

For Radiated Test					
Final Test Mode Description					
Mode 1 802.11a /n/ ac 20 CH149/ CH157/ CH 165					
Mode 2	802.11n/ ac40 CH 151 / CH 159				
Mode 3	802.11 ac80 CH 155				

Page 12 of 74

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	4G Tablet	Tab 12 pro	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^r Length ^l column.
- (3) "YES" means "shielded" or "with ferrite core";"NO" means "unshielded" or "without ferrite core"

Page 14 of 74

Report No.: STR221128001005E

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

NTEK 北测[®]

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
Turn Table	EM	SC100 1	60531	N/A	N/A	Ń/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.01	2023.03.31	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01	2023.03.31	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2022.06.17	2023.06.16	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.04.01	2023.03.31	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.04.01	2023.03.31	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Page 15 of 74

Report No.: STR221128001005E

3. EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)

3.1 APPLICABILITY

NTEK 北测

The equivalent isotropically radiated power requirement shall apply to all transmitters.

3.2 LIMITS

Table 2: Maximum radiated peak power (e.i.r.p.)

Frequency Bands	Power	Application	Notes
2 400 MHz to 2 483,5 MHz	10 mW e.i.r.p.	Non-specific short range devices	
2 400 MHz to 2 483,5 MHz	25 mW e.i.r.p.	Radio determination devices	
(a) 2 446 MHz to 2 454 MHz	500 mW e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
(b) 2 446 MHz to 2 454 MHz	4 W e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
5 725 MHz to 5 875 MHz	25 mW e.i.r.p.	Non-specific short range devices	
9 200 MHz to 9 500 MHz	25 mW e.i.r.p.	Radio determination devices	
9 500 MHz to 9 975 MHz	25 mW e.i.r.p.	Radio determination devices	
10,5 GHz to 10,6 GHz	500 mW e.i.r.p.	Radio determination devices	
13,4 GHz to 14,0 GHz	25 mW e.i.r.p.	Radio determination devices	
17,1 GHz to 17,3 GHz	400 mW e.i.r.p.	Radio determination devices	See annex F
24,00 GHz to 24,25 GHz	100 mW e.i.r.p.	Non-specific short range devices and Radio determination devices	

3.3 GENERAL REQUIREMENTS

1. To measure e.i.r.p. it is first necessary to determine the appropriate method of measurement: see EN 300440 V2.2.1 clauses 4.2.2.3.1 and 4.2.2.3.2. The -6 dB transmitter bandwidth shall be determined using a 100 kHz measuring bandwidth in order to establish which measurement method is applicable:

Со	Method of measurement	
○ Non spread spectrum transmitters with a -6 dB bandwidth of up to 20 MHz and spread spectrum transmitters with channel bandwidth of up to 1 MHz;	 Non spread spectrum equipment with a -6 dB bandwidth of 20 MHz or less and a duty cycle above 50 %; Spread spectrum equipment with a -6 dB channel bandwidth of 1 MHz or less. 	Refer to section 3.4.1
☆ for all other transmitter bandwidths.	□equipment with a -6 dB bandwidth greater than 20 MHz, and equipment with a duty cycle below 50 %;; ⊠spread spectrum equipment with a channel bandwidth above 1 MHz	Refer to section 3.4.2

2. Measurements shall be performed at normal test conditions.

3.4 TEST PROCEDURES

3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS

The measurement shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded. **Equipment measured as constant envelope modulation equipment**

NTEK 北测[®]

Page 16 of 74

Report No.: STR221128001005E

For practical reasons, measurements shall be performed only at the highest power level at which the transmitter is intended to operate. The measurement arrangement in figure 2 shall be used. The measurement shall be performed preferably in the absence of modulation.

When it is not possible to measure it in the absence of modulation, this fact shall be stated in test reports.

The transmitter shall be set in continuous transmission mode. If this is not possible, the measurements shall be carried

out in a period shorter than the duration of the transmitted burst. It may be necessary to extend the duration of the burst.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

Equipment measured as non-constant envelope modulation equipment

The measurement shall be performed with test signals D-M2 or D-M3 as appropriate. The transmitter shall be preferably set in continuous transmission mode. If this is not possible, the measurement can be performed in discontinuous mode.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured. The measuring instrument shall have a measurement bandwidth not less than sixteen times the channel bandwidth.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS

Step 1:

• using a suitable means, the output of the transmitter shall be coupled to a matched diode detector;

- the output of the diode detector shall be connected to the vertical channel of an oscilloscope;
- the combination of the diode detector and the oscilloscope shall be capable of faithfully

reproducing the envelope peaks and the duty cycle of the transmitter output signal;

• the observed duty cycle of the transmitter (Tx on/(Tx on + Tx off)) shall be noted as x, (0 < x < 1) And recorded.

Step 2:

• the average output power of the transmitter shall be determined using a wideband, calibrated RF power meter with a matched thermocouple detector or an equivalent thereof and, where applicable, with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);

• the e.i.r.p. shall be calculated from the above measured power output A, the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

 $- P = A + G + 10 \log (1/x);$

- P should be EIRP POWER.

3.5 TEST SETUP LAYOUT

3.6 EUT OPERATION DURING TEST

Where possible, the equipment shall be able to operate in a continuous transmit mode for testing purposes.

3.7 TEST RESULT FOR -6 DB BANDWIDTH

NTEK 北测[®]

EUT :	4G Tablet	Model Name :	Tab 12 pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.8V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

Page 18 of 74

Report No.: STR221128001005E

3.8 TEST RESULT FOR E.I.R.P

NTEK 北测[®]

EUT :	4G Tablet	Model Name :	Tab 12 pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.8V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

4. PERMITTED RANGE OF OPERATING FREQUENCIES

4.1 APPLIED PROCEDURES / LIMIT

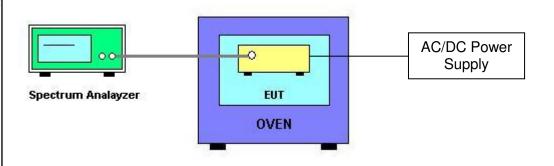
NTEK 北测

The Permitted range of operating frequencies shall apply to all transmitters.

Limits:The width of the power spectrum envelope is fH -fL for a given operating frequency. In equipment that allows adjustment or selection of different operating frequencies, the power envelope takes up different positions in the allowed band. The frequency range is determined by the lowest value of fL and the highest value of fH resulting from the adjustment of the equipment to the lowest and highest operating frequencies.

The occupied bandwidth (i.e. the bandwidth in which 99 % of the wanted emission is contained) of the transmitter shall fall within the assigned frequency band.

For all equipment the frequency range shall lie within the frequency band given by section 3.2, table 2. For non-harmonized frequency bands the available frequency range may differ between national administrations.


4.2 TEST PROCEDURES

These measurements shall be performed under both normal and extreme operating conditions except for the occupied bandwidth assessment for which measurement at normal operating conditions is sufficient.

The measurement procedure shall be as follows:

- a) put the spectrum analyser in video averaging mode with a minimum of 50 sweeps selected;
- b) select the lowest operating frequency of the equipment under test and activate the transmitter with modulation applied. The RF emission of the equipment shall be displayed on the spectrum analyser;
- c) using the marker of the spectrum analyser, find the lowest frequency below the operating frequency at which the spectral power density drops below the level given in clause 4.2.3. This frequency shall be recorded in the test report;
- d) select the highest operating frequency of the equipment under test and find the highest frequency at which the spectral power density drops below the value given in clause 4.2.3. This frequency shall be recorded in the test report;
- e) the difference between the frequencies measured in steps c) and d) is the operating frequency range. It shall be recorded in the test report.

4.3 TEST SETUP LAYOUT

4.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

NTEK 北测[®]

Page 20 of 74

Report No.: STR221128001005E

4.5 TEST RESULTS

EUT :	4G Tablet	Model Name :	Tab 12 pro
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.8V (NORMAL)
Test Mode :	ТХ		
N			

Note: The normal test condition refer to attachment for Occupied Channel Bandwidth 802.11a

Extreme condition			Frequency	range(MHz)	
			F _L CH149	F _н CH165	
		V max (V)	4.2	5736.128	5833.231
T min (°C)	-20	V nom (V)	3.8	5736.129	5833.233
		V min (V)	3.4	5736.125	5833.229
		V max (V)	4.2	5736.126	5833.230
T max (°C)	55	V nom (V)	3.8	5736.127	5833.231
		V min (V)	3.4	5736.128	5833.232
Min. f _L /	Min. f_L / Max. f_H Band Edges			5736.125	5833.233
				F_L > 5725.0	$F_{L} < 5875.0$
Indoor Use Limits			MHz	MHz	
Result			Com	nplies	

802.11n20

Extreme condition			Frequency range (MHz)		
			F _L CH149	F _н CH165	
		V max (V)	4.2	5736.145	5833.787
T min (°C)	-20	V nom (V)	3.8	5736.146	5833.788
		V min (V)	3.4	5736.142	5833.784
		V max (V)	4.2	5736.143	5833.786
T max (°C)	55	V nom (V)	3.8	5736.144	5833.787
		V min (V)	3.4	5736.145	5833.788
Min. f _L / M	Min. f_L / Max. f_H Band Edges			5736.142	5833.788
				F_L > 5725.0	$F_{L} < 5875.0$
Indoor Use Limits			MHz	MHz	
Result			Com	nplies	

NTEK III Page 21 of 74

Report No.: STR221128001005E

802.11n40

	Extreme condition			Frequency	range(MHz)
				F _L CH151	F _н CH159
		V max (V)	4.2	5736.882	5813.038
T min (°C)	-20	V nom (V)	3.8	5736.883	5813.040
		V min (V)	3.4	5736.879	5813.036
		V max (V)	4.2	5736.880	5813.037
T max (°C)	55	V nom (V)	3.8	5736.881	5813.038
		V min (V)	3.4	5736.882	5813.039
Mir	n. f _L / Max	. f _H Band Edg	es	5736.879	5813.040
Indoor Use Limits			F_{L} > 5725.0	$F_{L} < 5875.0$	
			MHz	MHz	
Result			Con	nplies	

802<u>.11ac20</u>

	Extreme condition				range(MHz)
					F _н CH165
		V max (V)	4.2	5736.159	5833.787
T min (°C)	-20	V nom (V)	3.8	5736.160	5833.789
		V min (V)	3.4	5736.156	5833.785
		V max (V)	4.2	5736.157	5833.786
T max (°C)	55	V nom (V)	3.8	5736.158	5833.787
		V min (V)	3.4	5736.159	5833.788
Min	. f _L / Max.	f _H Band Edges	i	5736.156	5833.789
				F _L > 5725.0	$F_{L} < 5875.0$
Indoor Use Limits				MHz	MHz
	R	esult		Com	nplies

802.11ac40

NTEK 北测®

Extreme condition				Frequency range (MHz)		
EX	Extreme condition				F _н CH159	
		V max (V)	4.2	5736.882	5813.014	
T min (°C)	-20	V nom (V)	3.8	5736.883	5813.016	
		V min (V)	3.4	5736.879	5813.012	
		V max (V)	4.2	5736.880	5813.013	
T max (°C)	55	V nom (V)	3.8	5736.881	5813.014	
		V min (V)	3.4	5736.882	5813.015	
Min. f _L /	Max. f _H Ba	nd Edges		5736.879	5813.016	
				F_L > 5725.0	$F_{L} < 5875.0$	
Indoor Use Limits			MHz	MHz		
Result			Com	plies		

Page 22 of 74

802.11ac80

Extreme condition				Frequency r	ange (MHz)
Extreme condition				F _L CH155	F _H CH155
		V max (V)	4.2	5737.068	5812.772
T min (°C)	-20	V nom (V)	3.8	5737.069	5812.774
			3.4	5737.065	5812.770
		V max (V)	4.2	5737.066	5812.771
T max (°C)	55	V nom (V)	3.8	5737.067	5812.772
		V min (V)	3.4	5737.068	5812.773
Min. f _L / Max. f _H Band Edges				5737.065	5812.774
					$F_{L} < 5875.0$
Indoor Use Limits				F_L > 5725.0 MHz	MHz
	Result				plies

NTEK LM Page 23 of 74

5. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

5.1 APPLIED PROCEDURES / LIMIT

The unwanted emissions in the spurious domain requirement shall apply to all transmitters.

	47 MHz to 74 MHz		
State	87.5 MHz to 118 MHz	Other frequencies	Frequencies
Sidle	174 MHz to 230 MHz	≤□ 1 000 MHz	> 1 000 MHz
	470 MHz to 862 MHz		
Operating	4 nW /-54dBm	250 nW/-36dBm	1 µW /-30dBm
Standby	2 nW /-57dBm	2 nW /-57dBm	20 nW /-47dBm

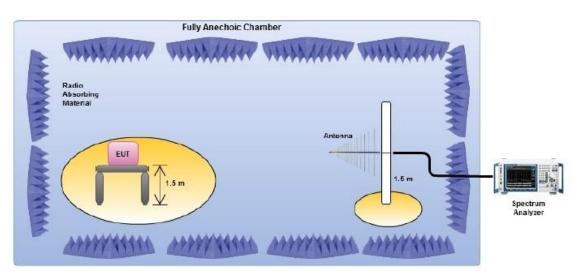
5.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

5.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable. For above 1G, using Horn antenna .
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.


NTEK 北测

Page 24 of 74

Report No.: STR221128001005E

5.4 TEST SETUP LAYOUT

Radiated Emission Test Set-Up

5.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS

For the initial investigation on standby mode and receiving mode, no significant differences in spurious emissions were observed between these 2 modes. So test data for standby mode was omitted in this section.

NTEK 北测

Page 25 of 74

Report No.: STR221128001005E

5.7 TEST RESULTS

EUT :	4G Tablet	Model Name :	Tab 12 pro
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.8V (NORMAL)
Test Mode :	TX-802.11n20 mode		

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	39.74	-77.97	14.91	-63.06	-36	-27.06	peak
V	94.37	-74.49	15.76	-58.73	-54	-4.73	peak
V	226.10	-75.55	15.26	-60.29	-54	-6.29	peak
V	259.50	-76.78	16.03	-60.75	-36	-24.75	peak
V	682.59	-74.99	14.90	-60.09	-54	-6.09	peak
V	790.31	-72.58	16.11	-56.47	-36	-20.47	peak
Н	38.82	-82.09	15.71	-66.38	-36	-30.38	peak
Н	95.56	-79.87	14.42	-65.45	-54	-11.45	peak
Н	177.67	-77.90	15.51	-62.39	-54	-8.39	peak
Н	443.42	-76.64	16.08	-60.56	-36	-24.56	peak
Н	505.25	-75.31	14.30	-61.01	-36	-25.01	peak
Н	727.33	-74.36	14.28	-60.08	-36	-24.08	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

NTEK 北测[®]

Page 26 of 74

Report No.: STR221128001005E

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
		ор	eration frequency	y:5755 MHz			
V	2142.75	-75.12	20.03	-55.09	-30	-25.09	peak
V	3588.53	-73.78	20.14	-53.64	-30	-23.64	peak
V	4412.48	-74.59	20.68	-53.91	-30	-23.91	peak
V	5517.46	-71.61	19.58	-52.03	-30	-22.03	peak
Н	2090.14	-69.91	21.39	-48.52	-30	-18.52	peak
Н	3711.06	-73.91	19.98	-53.93	-30	-23.93	peak
Н	4500.08	-70.40	21.21	-49.19	-30	-19.19	peak
Н	5735.88	-68.56	19.93	-48.63	-30	-18.63	peak
		ор	eration frequency	y:5785 MHz			
V	2712.16	-74.54	20.83	-53.71	-30	-23.71	peak
V	4532.14	-73.85	21.20	-52.65	-30	-22.65	peak
V	4006.37	-72.22	21.25	-50.97	-30	-20.97	peak
V	5200.79	-74.85	20.45	-54.40	-30	-24.40	peak
Н	2429.68	-73.33	21.14	-52.19	-30	-22.19	peak
Н	4032.02	-71.90	19.81	-52.09	-30	-22.09	peak
Н	4369.66	-70.22	20.20	-50.02	-30	-20.02	peak
Н	5386.19	-74.12	21.06	-53.06	-30	-23.06	peak
		ор	eration frequenc	y:5825 MHz			
V	2481.93	-70.41	20.28	-50.13	-30	-20.13	peak
V	3447.40	-67.29	21.24	-46.05	-30	-16.05	peak
V	4369.03	-77.89	20.06	-57.83	-30	-27.83	peak
V	5941.22	-77.78	19.82	-57.96	-30	-27.96	peak
Н	2654.93	-69.40	20.43	-48.97	-30	-18.97	peak
Н	27581.96	-73.33	20.31	-53.02	-30	-23.02	peak
Η	3829.88	-77.74	20.24	-57.50	-30	-27.50	peak
Н	5313.12	-69.48	20.04	-49.44	-30	-19.44	peak

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Note: Only the worst case 802.11n20 mode recorded in the report.

Page 27 of 74

Report No.: STR221128001005E

6. DUTY CYCLE

6.1 APPLICABILITY AND DESCRIPTION

NTEK 北测

Duty Cycle (DC) shall apply to all transmitting equipment except those which utilize Listen Before Talk (LBT) clause 4.4.2, or Detect And Avoid (DAA), clause 4.4.3. RFID transmitters operating in the 2 446 MHz to 2 454 MHz frequency band that transmit at a maximum radiated peak power level of less than 500 mW e.i.r.p. are also excluded.

Duty cycle is the ratio expressed as a percentage, of the cumulative duration of transmissions T_{on_cum} within an observation interval $T_{obs.}$

$$DC = \left(\frac{T_{on_cum}}{T_{obs}}\right)F_{obs}$$

on an observation bandwidth F_{obs} .

Unless otherwise specified, $T_{\mbox{\tiny obs}}$ is 1 hour and the observation bandwidth $F_{\mbox{\tiny obs}}$ is the operational frequency band

Each transmission consists of an RF emission, or sequence of RF emissions separated by intervals $< T_{Dis}$.

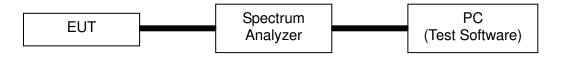
6.2 LIMITS

Table 4 defines the maximum duty cycle within a 1 hour period.

Table 4: Duty cycle limits

Frequency Band	Duty cycle	Application	Notes
2 400 MHz to 2 483,5 MHz	No Restriction	Generic use	
2 400 MHz to 2 483,5 MHz	No Restriction	Detection, movement and alert	
		applications	
(a) 2 446 MHz to 2 454 MHz	No Restriction	RFID	Limits shown in
			annex D shall apply
(b) 2 446 MHz to 2 454 MHz	≤ 15 %	RFID	Limits shown in
			annex D shall apply
5 725 MHz to 5 875 MHz	No Restriction	Generic use	
9 200 MHz to 9 500 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
9 500 MHz to 9 975 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
10,5 GHz to 10,6 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
13,4 GHz to 14,0 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
17,1 GHz to 17,3 GHz	DAA or	Radiodetermination:	Limits shown in
	equivalent	GBSAR detecting and movement	annex F shall apply
	techniques	and alert applications	
24,00 GHz to 24,25 GHz	No Restriction	Generic use and for	
		Radiodetermination:	
		radar, detection, movement and	
		alert applications	

For devices with a 100 % duty cycle transmitting an unmodulated carrier most of the time, a time-out shut-off facility shall be implemented in order to improve the efficient use of spectrum. The method of implementation shall be declared by the manufacturer.


6.4 METHOD OF MEASUREMENT

Please refer to EN 300440 V2.2.1 Clause 4.2.5.3.

NTEK ILW® Page 28 of 74

Report No.: STR221128001005E

6.5 TEST SETUP

6.6 TEST RESULTS

EUT:	4G Tablet	Model Name:	Tab 12 pro
Temperature:	26°C	Relative Humidity:	53 %
Pressure:	1012 hPa	Test Voltage:	DC 3.8V (NORMAL)
Test Mode:	Mode 1/2/3		

Test data reference attachment

Page 29 of 74

Report No.: STR221128001005E

7. SPURIOUS EMISSIONS – RX

NTEK 北测

7.1 APPLIED PROCEDURES / LIMIT

Clause	Test Item	Frequency(MHz)	Limit
4.3.5.4	Spurious emissions	30-1000	-57dBm
4.3.3.4	(radiated)	Above 1000	-47dBm

7.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

7.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.For above 1G, using Horn antenna .
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

7.5 TEST SETUP LAYOUT

This test setup layout is the same as that shown in section 5.4.

7.6 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously receiving mode.

NTEK 北测[®]

Page 30 of 74

Report No.: STR221128001005E

7.7 TEST RESULTS

EUT :	4G Tablet	Model Name :	Tab 12 pro
Temperature :	26°C	Relative Humidity :	53 %
Pressure :	1012 hPa	Test Power :	DC 3.8V (NORMAL)
Test Mode :	RX-802.11n20 mode		

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	39.10	-83.58	18.60	-64.98	-57	-7.98	peak
V	91.39	-83.32	9.62	-73.70	-57	-16.70	peak
V	175.47	-86.52	10.28	-76.24	-57	-19.24	peak
V	365.34	-82.98	12.06	-70.92	-57	-13.92	peak
V	631.05	-86.93	11.56	-75.37	-57	-18.37	peak
V	800.90	-86.59	14.99	-71.60	-57	-14.60	peak
Н	43.04	-85.64	9.91	-75.73	-57	-18.73	peak
Н	93.10	-84.68	10.70	-73.98	-57	-16.98	peak
Н	204.64	-86.18	12.77	-73.41	-57	-16.41	peak
Н	448.16	-83.68	12.34	-71.34	-57	-14.34	peak
Н	604.67	-86.24	15.31	-70.93	-57	-13.93	peak
Н	744.43	-83.15	18.55	-64.60	-57	-7.60	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Above 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	2706.591	-84.78	14.92	-69.86	-47	-22.86	peak
V	3094.646	-77.13	14.56	-62.57	-47	-15.57	peak
V	4199.67	-84.95	15.95	-69.00	-47	-22.00	peak
V	4728.827	-83.33	17.15	-66.18	-47	-19.18	peak
V	5503.12	-81.66	13.73	-67.93	-47	-20.93	peak
V	6194.255	-82.25	20.42	-61.83	-47	-14.83	peak
Н	2873.204	-80.82	14.11	-66.71	-47	-19.71	peak
Н	3324.748	-79.23	15.29	-63.94	-47	-16.94	peak
Н	4381.373	-79.93	15.89	-64.04	-47	-17.04	peak
Н	4563.188	-81.73	16.70	-65.03	-47	-18.03	peak
Н	5169.046	-78.6	17.95	-60.65	-47	-13.65	peak
Н	5558.921	-83.43	18.58	-64.85	-47	-17.85	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

8. ADJACENT CHANNEL SELECTIVITY

NTEK 北测

8.1 APPLICABILITY

This requirement applies to channelized Category 1 receivers..

8.2 LIMITS

The adjacent channel selectivity of the equipment under specified conditions shall not be less than -30 dBm + k.

The correction factor, k, is as follows:

 $k = -20 \log f - 10 \log BW$

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

8.3 METHODS OF MEASUREMENT

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.

Signal generator B shall be unmodulated and shall be adjusted to the adjacent channel centre frequency immediately

above that of the wanted signal.

Initially signal generator B shall be switched off and using signal generator A the level that still gives sufficient

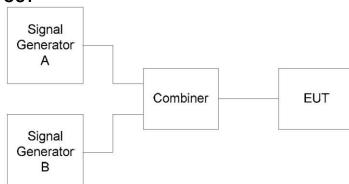
response shall be established. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurements shall be repeated with signal generator B unmodulated and adjusted to the adjacent channel centre immediately below the wanted signal.

The adjacent channel selectivity shall be recorded for the upper and lower adjacent channels as the level in dBm of the unwanted signal.

For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres.

In this case, the adjacent selectivity shall be recorded as the level in dBm of lowest level of the unwanted signal


(generator B) resulting in a non-read of the tag.

NTEK 北测®

Page 32 of 74

Report No.: STR221128001005E

8.4 TEST SETUP LAYOUT

8.5 TEST RESULTS

EUT :	4G Tablet	Model Name :	Tab 12 pro
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	N/A
Test Mode :	N/A		

Not applicable.

9. BLOCKING OR DESENSITIZATION

NTEK 北测

9.1 APPLICABILITY

This requirement applies to all Category 1, 2, and 3 SRD communication media receivers.

9.2 LIMITS

The blocking level, for any frequency within the specified ranges, shall not be less than the values given in table 6, except at frequencies on which spurious responses are found.

Receiver category	Limit
1	-30 dBm + k
2	-45 dBm + k
3	-60 dBm + k

The correction factor, k, is as follows:

 $k = \Box$ -20log f -10log BW

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

9.3 TEST PROCEDURES

This measurement shall be conducted under normal conditions.

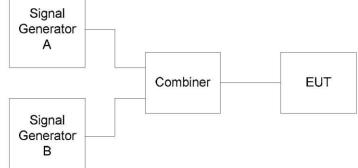
Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or

b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.Signal generator B shall be unmodulated and shall be adjusted to a test frequency at approximately 10 times, 20 times and 50 times of the occupied bandwidth above upper band edge of occupied bandwidth.Initially signal generator B shall be switched off and using signal generator A the level which still gives sufficient response shall be established. The output level of generator A shall then be increased by 3 dB.Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.


The measurement shall be repeated with the test frequency for signal generator B at 10 times, 20 times and 50 times of the occupied bandwidth below the lower band edge of the occupied bandwidth The blocking or desensitization shall be recorded as the level in dBm of lowest level of the unwanted signal(generator B).

For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres. In this case, the blocking or desensitization shall be recorded as the ratio in dB of lowest level of the unwanted signal (generator B) resulting in a non-read of the tag. to the declared sensitivity of the receiver +3 dB.

NTEK 北测®

Page 34 of 74

NTEK 北测[®]

Page 35 of 74

Report No.: STR221128001005E

9.4 TEST RESULTS

EUT :	4G Tablet	Model Name :	Tab 12 pro
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	DC 3.8V (NORMAL)
Test Mode :	RX		

802.11a

5745 MHz

Flow= 5736.821MHz; Fhigh= 5753.219MHz, occupied bandwidth=16.398MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.47	-	-
3	10 times lower band edge of the occupied bandwidth	5571.533	-	-35.45	-87.37(Note1)
	20 times lower band edge of the occupied bandwidth	5406.353	-	-34.54	-87.37
	50 times lower band edge of the occupied bandwidth	4910.813	-	-34.29	-87.37
	10 times upper band edge of the occupied bandwidth	5918.411	-	-34.74	-87.37
	20 times upper band edge of the occupied bandwidth	6083.591	-	-32.03	-87.37
	50 times upper band edge of the occupied bandwidth	6579.131	-	-32.35	-87.37

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.37

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

NTEK III Page 36 of 74

Report No.: STR221128001005E

802.11a

5825 MHz

Flow=5816.677MHz; Fhigh= 5833.075MHz, occupied bandwidth=16.398MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	\geq Limit(dB)		
	5745 MHz	5745	-65.47	-	-		
3	10 times lower band edge of the occupied bandwidth	5651.533	-	-35.31	-87.49(Note1)		
	20 times lower band edge of the occupied bandwidth	5486.353	-	-33.78	-87.49		
	50 times lower band edge of the occupied bandwidth	4990.813	-	-35.98	-87.49		
	10 times upper band edge of the occupied bandwidth	5998.411	-	-34.64	-87.49		
	20 times upper band edge of the occupied bandwidth	6163.591	-	-35.46	-87.49		
	50 times upper band edge of the occupied bandwidth	6659.131	-	-32.74	-87.49		

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

NTEK III Page 37 of 74

Report No.: STR221128001005E

802.11n20

5745 MHz

Flow= 5736.225MHz; Fhigh= 5753.811MHz, occupied bandwidth=17.586MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5559.685	-	-35.33	-87.65(Note1)
	20 times lower band edge of the occupied bandwidth	5383.225	-	-32.57	-87.65
3	50 times lower band edge of the occupied bandwidth	4853.845	-	-32.49	-87.65
	10 times upper band edge of the occupied bandwidth	5930.251	-	-35.06	-87.65
	20 times upper band edge of the occupied bandwidth	6106.711	-	-34.15	-87.65
	50 times upper band edge of the occupied bandwidth	6636.091	-	-34.31	-87.65

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.65

Where:

- f is the frequency in GHz;

NTEK 北测®

Page 38 of 74

Report No.: STR221128001005E

802.11n20

5825 MHz

Flow= 5816.173MHz; Fhigh= 5833.771MHz, occupied bandwidth=17.598MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5639.769	-	-33.25	-87.65(Note1)
	20 times lower band edge of the occupied bandwidth	5463.389	-	-33.59	-87.65
3	50 times lower band edge of the occupied bandwidth	4934.249	-	-32.48	-87.65
	10 times upper band edge of the occupied bandwidth	6010.167	-	-35.91	-87.65
	20 times upper band edge of the occupied bandwidth	6186.547	-	-35.79	-87.65
	50 times upper band edge of the occupied bandwidth	6715.687	-	-33.19	-87.65

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.65

Where:

- f is the frequency in GHz;

Report No.: STR221128001005E

802.11n40

5755 MHz

Flow= 5737.098MHz; Fhigh= 5773.022MHz, occupied bandwidth=35.924MHz

Page 39 of 74

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5375.481	-	-35.1	-90.78(Note1)
	20 times lower band edge of the occupied bandwidth	5014.081	-	-35.65	-90.78
3	50 times lower band edge of the occupied bandwidth	3929.881	-	-34.66	-90.78
	10 times upper band edge of the occupied bandwidth	6134.421	-	-32.43	-90.78
	20 times upper band edge of the occupied bandwidth	6495.821	-	-32.52	-90.78
	50 times upper band edge of the occupied bandwidth	7580.021	-	-33.78	-90.78

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.78

Where:

- f is the frequency in GHz;

NTEK III Page 40 of 74

Report No.: STR221128001005E

802.11n40

5795 MHz

Flow= 5776.986MHz; Fhigh= 5812.878MHz, occupied bandwidth=35.892MHz

10 m = 0110.0	30000112, 11001=3012.07			0.00210112	
Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5415.498	-	-33.45	-90.84(Note1)
	20 times lower band edge of the occupied bandwidth	5054.098	-	-33	-90.84
3	50 times lower band edge of the occupied bandwidth	3969.898	-	-33.76	-90.84
	10 times upper band edge of the occupied bandwidth	6174.438	-	-34.42	-90.84
	20 times upper band edge of the occupied bandwidth	6535.838	-	-32.49	-90.84
	50 times upper band edge of the occupied bandwidth	7620.038	-	-34.44	-90.84

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.84

Where:

- f is the frequency in GHz;

NTEK III

Report No.: STR221128001005E

802.11ac80

5775 MHz

Flow= 5737.628MHz; Fhigh= 5812.48MHz, occupied bandwidth=74.852MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5775	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	4980.028	-	-34.88	-94.05(Note1)
	20 times lower band edge of the occupied bandwidth	4222.988	-	-34.33	-94.05
3	50 times lower band edge of the occupied bandwidth	1951.868	-	-35.22	-94.05
	10 times upper band edge of the occupied bandwidth	6569.812	-	-33.02	-94.05
	20 times upper band edge of the occupied bandwidth	7326.852	-	-32.57	-94.05
	50 times upper band edge of the occupied bandwidth	9597.972	-	-32.44	-94.05

Note1:

The limit :

-60 dBm + k

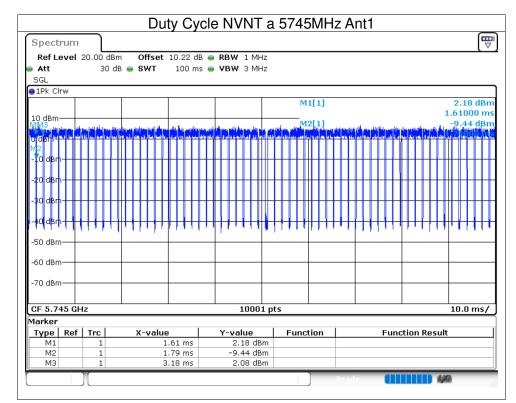
The correction factor, k, is as follows:

k = -20log f -10logBW

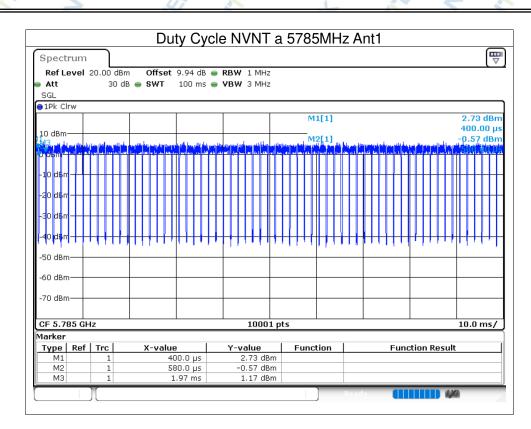
k = -34.05

Where:

- f is the frequency in GHz;

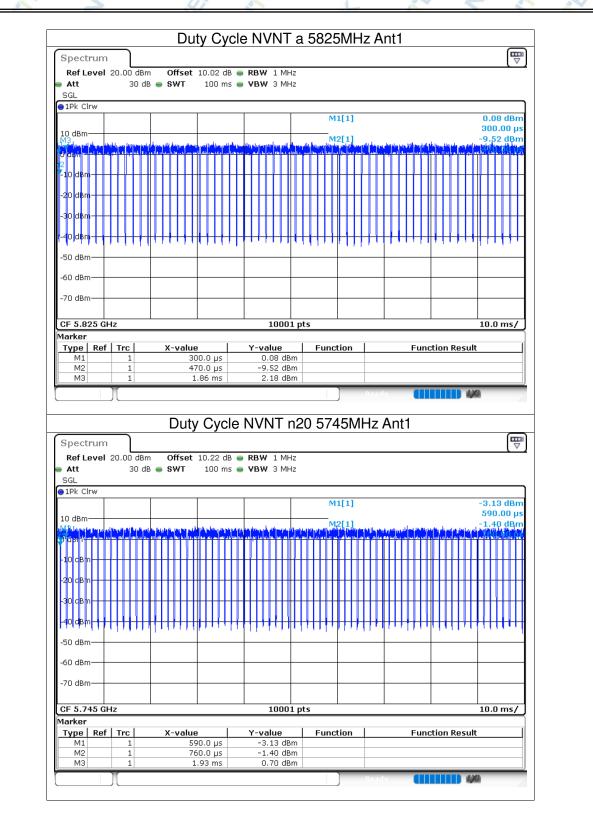

NTEK III Page 42 of 74

Report No.: STR221128001005E


10. TEST RESULTS

10.1 DUTY CYCLE

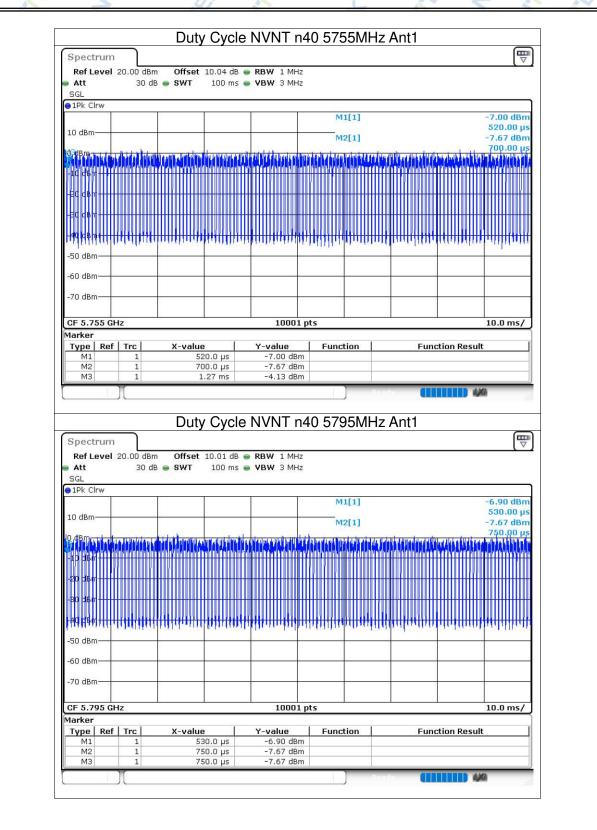
0.1 0011 010				
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	а	5745	88.14	0.55
NVNT	а	5785	88.67	0.52
NVNT	а	5825	88.66	0.52
NVNT	n20	5745	87.42	0.58
NVNT	n20	5785	86.77	0.62
NVNT	n20	5825	87.39	0.59
NVNT	n40	5755	74.41	1.28
NVNT	n40	5795	74.44	1.28
NVNT	ac20	5745	86.71	0.62
NVNT	ac20	5785	87.47	0.58
NVNT	ac20	5825	87.27	0.59
NVNT	ac40	5755	76.91	1.14
NVNT	ac40	5795	76.88	1.14
NVNT	ac80	5775	63.97	1.94



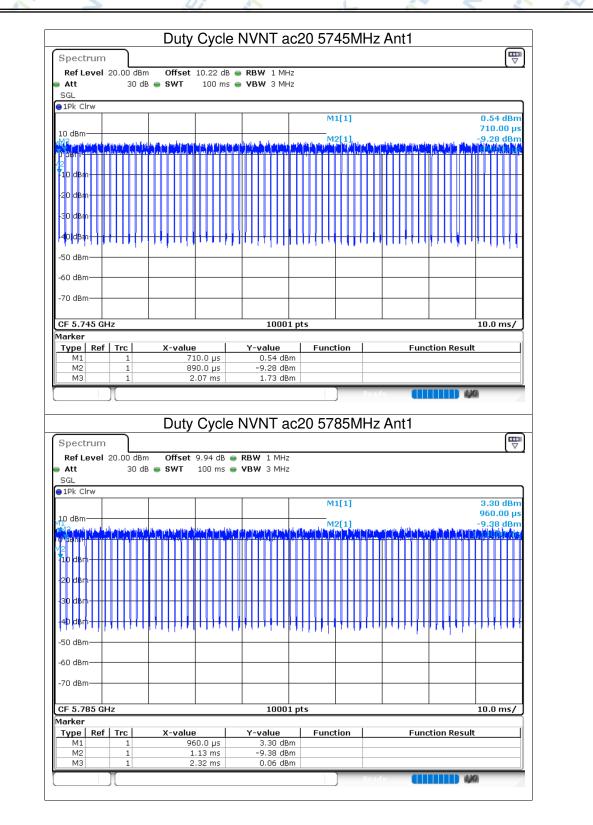
NTEK Lin[®] Page 43 of 74

NTEK ILW[®] Page 44 of 74

Report No.: STR221128001005E

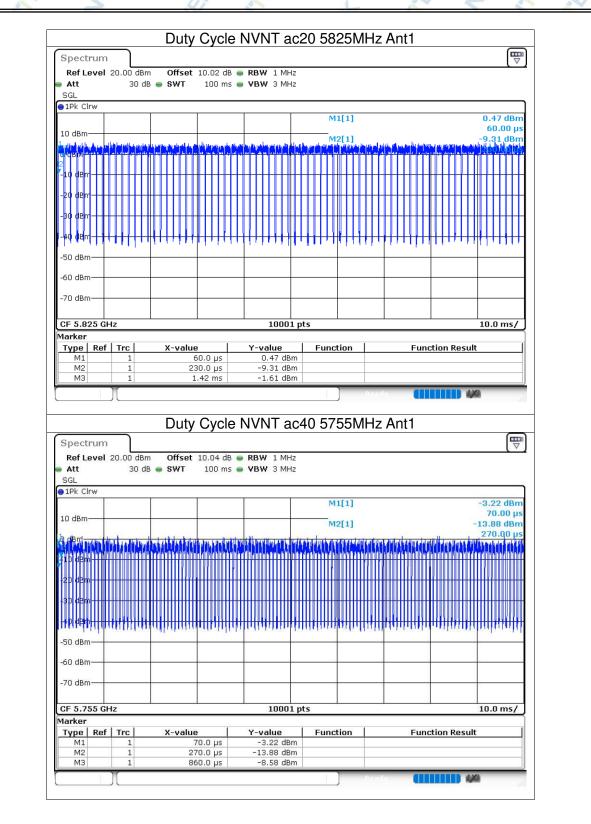

the t

NTEK ILW[®] Page 45 of 74



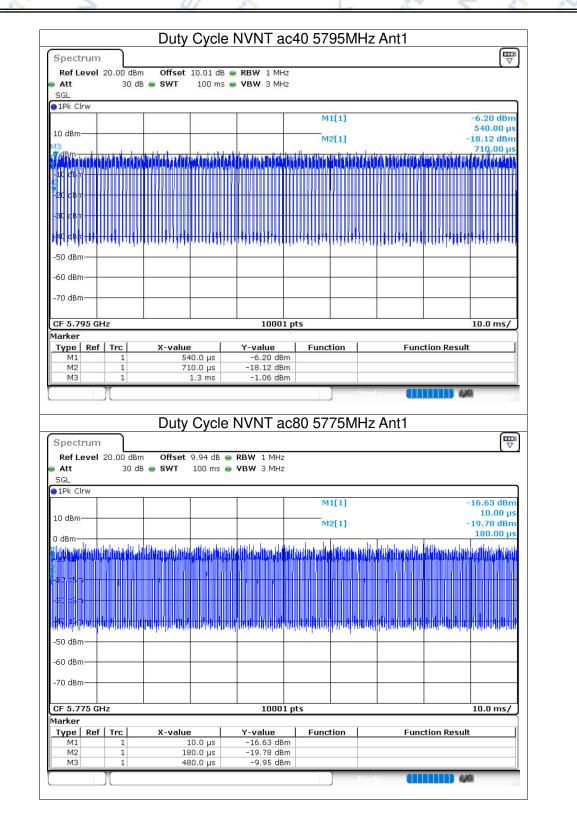
NTEK 北测

Page 46 of 74

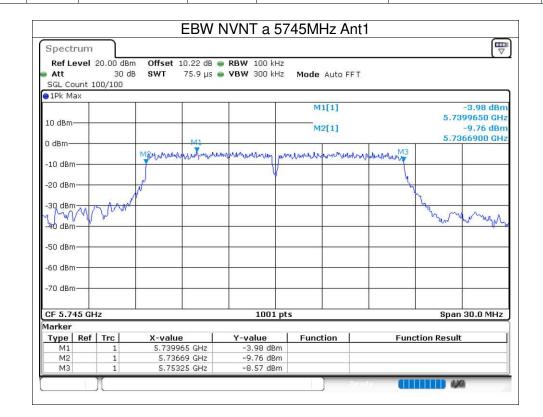


NTEK III Page 47 of 74

NTEK ILW[®] Page 48 of 74


Report No.: STR221128001005E

the to


N.A.

NTEK III Page 49 of 74

NTEK III Page 50 of 74

	10.2 -6DB EM	ISSION	BANDWIDTH				
1	Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
			(MHz)		(MHz)	Bandwidth (MHz)	
	NVNT	а	5745	Ant1	16.56	0.5	Pass
5	NVNT	а	5785	Ant1	16.38	0.5	Pass
1	NVNT	а	5825	Ant1	16.32	0.5	Pass
	NVNT	n20	5745	Ant1	17.31	0.5	Pass
	NVNT	n20	5785	Ant1	17.64	0.5	Pass
	NVNT	n20	5825	Ant1	17.25	0.5	Pass
	NVNT	n40	5755	Ant1	35.94	0.5	Pass
	NVNT	n40	5795	Ant1	35.76	0.5	Pass
	NVNT	ac20	5745	Ant1	17.58	0.5	Pass
	NVNT	ac20	5785	Ant1	17.61	0.5	Pass
	NVNT	ac20	5825	Ant1	17.61	0.5	Pass
	NVNT	ac40	5755	Ant1	35.58	0.5	Pass
	NVNT	ac40	5795	Ant1	35.34	0.5	Pass
	NVNT	ac80	5775	Ant1	75.36	0.5	Pass

NTEK III Page 51 of 74

Spectrum						ſ
Ref Level		m Offset 9.94 dB 🖷	RBW 100 kHz			
Att	30 d		VBW 300 kHz	Mode Auto FF	г	
SGL Count :	100/100					
1Pk Max						
				M1[1]		-2.42 d
10 dBm				100 CAU 194		5.7812240 0
TO GDIII				M2[1]		-7.63 d
0 dBm		M	1			5.7767800 (
o ubiii		M3 mulhar man	march and real way	A sub a boost of the e for	MB	
-10 dBm		And france and all have a	on out definere co offet	manifestandord helter o	And the second s	
			V			
-20 dBm		1				
	1	v/ I			1	
-30 dBm	alla d					Ma
Marian	INVUYN					Marriana
-40 dBm						1 1 1 1 K
-50 dBm						
-60 dBm						
-00 ubiii						
-70 dBm						
, o dbin						
CF 5.785 GI	Ηz		1001 pts	5		Span 30.0 MI
/larker	20 - 12		2			
Type Ref		X-value	Y-value	Function	Funct	ion Result
M1	1	5.781224 GHz	-2.42 dBm			
M2	1	5.77678 GHz	-7.63 dBm			
M3	1	5.79316 GHz	-7.45 dBm			

NTEK III Page 52 of 74

Report No.: STR221128001005E

				NVNT a t			••		
Spectrum									
Ref Level 2	20.00 dBm	Offset	10.02 dB =	RBW 100 kH	17				<u>ر</u> ۷
Att	30 dB			VBW 300 kH		Auto FFT			
SGL Count 10			2014/848/28 19743 197				<i>8</i>		
⊜1Pk Max			~			10100			
					D	11[1]			-1.35 dBm
10 dBm			ļ					5.8	187060 GHz
		M	1		n	12[1]		5.0	-6.41 dBm 168100 GHz
0 dBm		140	4	1 12 1.65	2 14	L so LV	M3	3.0	108100 GH2
10 40-		Julnul	malaner	mannahry	printrul	nowertrailed	mannin		
-10 dBm					1				
-20 dBm		1							
	N	P						1	
-30 dBm	~ age	-1	-	-		-		MANY	Into a p
-30 uBill								V	a war
-40 dBm								2	1.22
-50 dBm						-			
-60 dBm									
70 dBes									
-70 dBm									
	<u></u>								
CF 5.825 GH	2			1001	pts			Spa	n 30.0 MHz
Marker Type Ref	Tre	X-value	a 1	Y-value	Euro	tion	E	nction Resu	lt I
M1	1		06 GHz	-1.35 dBi			Fui	ICCIOIL RESU	n
M2	1		81 GHz	-6.41 dB	n				
MЗ	1	5.833	13 GHz	-6.33 dB	n				
· · · · · · · · · · · · · · · · · · ·									
Spectrum		E	BW N	VNT n20	57451) MHz Ai	nt1		M E
Spectrum Ref Level 2	20.00 dBm) MHz Ai	nt1	IIIIID 4	
Spectrum Ref Level 2 Att	20.00 dBm 20 dB	Offset	10.22 dB 📢	VNT n20 RBW 100 kH VBW 300 kH	łz				XA (_
Ref Level 2	20 dB	Offset	10.22 dB 📢	• RBW 100 kH	łz				M)
Ref Level 2 Att	20 dB	Offset	10.22 dB 📢	• RBW 100 kH	łz				Mi (1997)
Ref Level 2 Att SGL Count 10	20 dB	Offset	10.22 dB 📢	• RBW 100 kH	lz Iz Mode				-0.82 dBm
Ref Level 2 Att SGL Count 10	20 dB	Offset	10.22 dB 📢	• RBW 100 kH	lz Iz Mode	• Auto FFT		5.7	-0.82 dBm 387060 GHz
Ref Level 2 Att SGL Count 10 1Pk Max	20 dB	Offset	10.22 dB (75.9 µs (• RBW 100 kH	lz Iz Mode	e Auto FFT			-0.82 dBm 387060 GHz -6.56 dBm
Ref Level 2 Att SGL Count 10 1Pk Max	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm
Ref Level 2 Att SGL Count 10 1Pk Max	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBp -40 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -20 dBm -30 dBm -60 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	iz iz Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH	12 12 Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm -70 dBm	20 dB	Offset : SWT	10.22 dB 75.9 μs 1	RBW 100 kH VBW 300 kH	12 12 Mode N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.745 GH Marker	20 dB 200/1000	M2 M12 M12 M12 M12 M12 M12 M12 M12 M12 M	10.22 dB 75.9 µs	RBW 100 kH VBW 300 kH uwhumhwn uwhumhwn 1001	12 12 Mode N Investure	Auto FFT 11[1] 12[1]		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm -70 dBm	20 dB 200/1000	M2 X-value X-value	10.22 dB 75.9 µs	RBW 100 kH	12 12 Mode N N N N N N N N N N N N N N N N N N N	• Auto FFT		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm -60 dBm -70 dBm	20 dB 200/1000 200/1000 2 2 Trc 1 1 1	M2 X-value 5.7387	10.22 dB 75.9 µs 1 1 солодицен модицен 1 1 солодицен 1 1 солодицен 1 1 солодицен 1 1 солодицен 1 солоди 1 соди 1 солоди 1 солоди С солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 солоди 1 соло солоди 1 соло солоди 1 солоди 1 соло соло соло со соло соло со соло со со со соло со со со со со со со со со со со со со	RBW 100 kH VBW 300 kH uturnumunun 1001 Y-value -0.82 dB -6.56 dB	12 12 Mode N N N N Puter N N T S	Auto FFT 11[1] 12[1]		5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -60 dBm -70 dBm -70 dBm	20 dB 200/1000 200/1000 2 2 Trc 1 1	M2 X-value 5.7387	10.22 dB 75.9 µs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RBW 100 ki VBW 300 ki uu humhmm 1001 1001 Y-value -0.82 dBi	12 12 Mode N N N N Puter N N T S	Auto FFT 11[1] 12[1]	Fur	5.7	-0.82 dBm 387060 GHz -6.56 dBm 363000 GHz

ET WY

NTEK III Page 53 of 74

				/NT n20			-		G
Spectrum	1								[₩
Ref Level	20.00 dBm	Offset 9.94	4 dB 🥃 I	RBW 100 kHz					
Att	30 de	SWT 75.9	9 µs 🕳 '	VBW 300 kHz	Mode Aut	to FFT			
SGL Count 1	.00/100								
●1Pk Max		~ ~ ~							
					M1[:	1]			-4.29 dBr
10 dBm								5.7	844310 GH
TO GDIII					M2[:	1]			-9.69 dBr
0 dBm				MI				5.7	761500 GH
	1	12 monorman	Anna walk	water and many the	Muluman	LINAS ALS AND	MM	3	
-10 dBm		Ale . 100 A Line 0		- marine -	0.00.00.0000	Contractory	an a read Of the		
		f 1		I V					
-20 dBm	5	1		+ +		2		n	
-30 dBm	N.							2	
-30 dBm	ALAN							www	M. am
	(W							2010	1 2010
10 dbiil									
-50 dBm				+					
-60 dBm				+ +					
-70 dBm				1 1					1.0
CF 5.785 GH	lz			1001 g	ots			Spa	n 30.0 MHz
Marker	2.2				2)				
Type Ref	Trc	X-value		Y-value	Functio	in 📃	Fun	ction Resu	lt
M1	1	5,784431		-4.29 dBm					
M2	1	5.77615		-9.69 dBm					
M3	1	5.79379	GHZ	-8.98 dBm	16 J				
Spectrum	л	EB	W N\	/NT n20	5825MH	Pende Hz Ant ⁻	1		Ø E
Spectrum						Hz Ant	1		N)
Ref Level		n Offset 10.0	02 dB 👄	RBW 100 kH:	z	N. Carlorad	1		
Ref Level Att	20 dE	n Offset 10.0	02 dB 👄		z	N. Carlorad	1		¥Ø (₩
Ref Level Att SGL Count 1	20 dE	n Offset 10.0	02 dB 👄	RBW 100 kH:	z	N. Carlorad	1		(T
Ref Level Att	20 dE	n Offset 10.0	02 dB 👄	RBW 100 kH:	z z Mode At	uto FFT	1		
Ref Level Att SGL Count 1 1Pk Max	20 dE	n Offset 10.0	02 dB 👄	RBW 100 kH:	z	uto FFT	1	5.8	-1.28 dBr 187060 GH
Ref Level Att SGL Count 1	20 dE	0 Offset 10.0 3 SWT 75	02 dB 👄	RBW 100 kH:	z z Mode At	uto FFT	1		-1.28 dBr 187060 GH -7.16 dBr
Ref Level Att SGL Count 1 1Pk Max 10 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	z z Mode At M1[:	uto FFT		5.8	-1.28 dBr 187060 GH
Ref Level Att SGL Count 1 1Pk Max	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr
Ref Level Att SGL Count 1 1Pk Max 10 dBm	20 dE	0 Offset 10.0 3 SWT 75	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	z Mode At M1[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr
Ref Level Att SGL Count 1 PR Max 10 dBm 0 dBm -10 dBm -20 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 PR Max 10 dBm 0 dBm -10 dBm -20 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 ID dBm 0 dBm -10 dBm -20 dBm -30 dBp -40 dBm -60 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dE	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[:	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 SGL Count 1 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20 de .000/1000	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[: 	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 SGL Count 1 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.825 GH	20 de .000/1000	M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 2 Mode Au M1[: M2[: 	uto FFT 1] 1]		5.8	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 SGL Count 1 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.825 GH Marker	20 dE 000/1000	M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M1 M1 M2 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	D2 dB ● .9 µs ●	RBW 100 kH; VBW 300 kH;	2 Mode Au M1[: M2[: 	uto FFT 1] 1]	Manana	5.8 Mm com	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.825 GH Marker Type	20 dE 000/1000	M1 M2 W7WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	02 dB .9 μs .9 μs	RBW 100 kH; VBW 300 kH; 	2 Mode Au M1[: M2[: www/wwy/wy/www have bases Functio	uto FFT 1] 1]	Manana	5.8	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm -70 dBm -70 dBm Type Ref M1	20 d£ 000/1000	M2 M2 M1 M2 M2 M3 M2 M3 M2 M3 M4 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	02 dB .9 μs .9 μs	RBW 100 kH; VBW 300 kH; VBW 3	2 Mode Au M1[: M2[: 	uto FFT 1] 1]	Manana	5.8 Mm com	-1.28 dBr 187060 GH -7.16 dBr 163300 GH
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.825 GH Marker Type	20 dE 000/1000	M1 M2 W7WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	D2 dB .9 μs .9 μs	RBW 100 kH; VBW 300 kH; 	2 Mode Au M1[: M2[: www/w/ty//ty/wy/ b b ts Functio	uto FFT 1] 1]	Manana	5.8 Mm com	-1.28 dBr 187060 GH -7.16 dBr 163300 GH

NTEK III Page 54 of 74

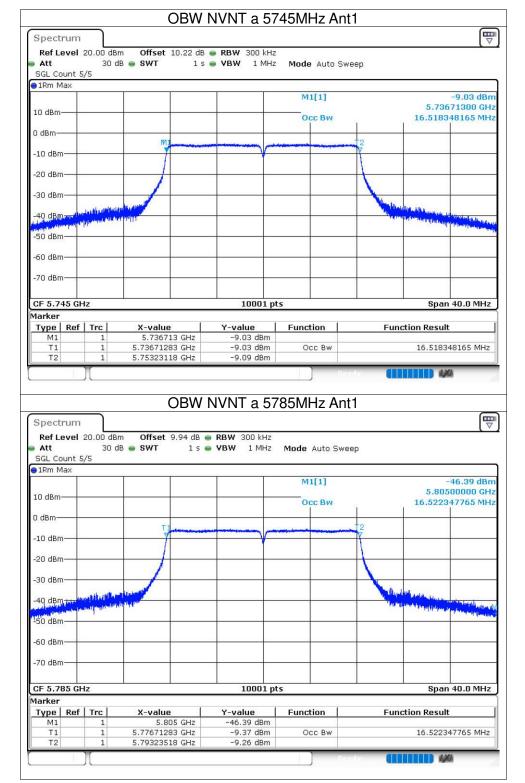
	_			/NT n40	57551		1111		~
Spectrum									₩
Ref Level 2	0.00 dBm	Offset 10	.04 dB 👄	RBW 100 kH	łz				(*
Att 🛛	20 dB			VBW 300 kH		Auto FF1	г		
SGL Count 10	000/1000								
⊖1Pk Max						111111			
					N	11[1]			-4.36 dBm
10 dBm					N	12[1]		5.	-10.32 dBm
						12[1]		5.	7370000 GHz
0 dBm			8	MI					
-10 dBm	Ma	industria for	haventon	Auch huberry	provente	Mahalerow	oblahaberty	Υ ^β	
	í.								
-20 dBm				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~		
00 d0								100	
-30 dBm	ALAW .							WAY AN	MAMMA
140 asm	· W.			-			_	1. Ma	AMANIM
						1			
-50 dBm				++					
-60 dBm									
-70 dBm									
, o goin									
CF 5.755 GH	,			1001	nte			0	an 60.0 MHz
GF 5.755 GH: Marker	2			1001	pts			ъра	III UU.U MHZ
Type Ref	Tre	X-value	1	Y-value	Fund	tion	Eu	nction Resi	ult
M1	1	5.752483	3 GHz	-4.36 dBr			T u	Inction Rest	ait
M2	1	5.737	7 GHz	-10.32 dBr					
M3	1	5,77294	1 CH2	to or in					
		5.11294		-10.05 dBr	m				
	[5.77294		-10.05 dBr	m) •	ody 🚺		()A)
	[5.77294		-10.05 dBr	m] 24	ady 📲		UA)
) MHz A	nt1		NAI
				/NT n40) MHz A	odv 🚺 nt1		Va Gar
Spectrum		EE	BW N\	/NT n40	57951) MHz A	otr 🚺 nt1		
Ref Level 2	.0.00 dBm	Offset 10	3W N\	/NT n40 RBW 100 kH	5795 				(Щ ⊽
Ref Level 2 Att	(Offset 10	3W N\	/NT n40	5795 	MHz A			
Ref Level 2 Att SGL Count 10	(Offset 10	3W N\	/NT n40 RBW 100 kH	5795 				₩
Ref Level 2 Att	(Offset 10	3W N\	/NT n40 RBW 100 kH	57951 ¹² ¹² Mode	Auto FF1			
Ref Level 2 Att SGL Count 10 1Pk Max	(Offset 10	3W N\	/NT n40 RBW 100 kH	57951 ¹² ¹² Mode				-4.43 dBm
Ref Level 2 Att SGL Count 10	(Offset 10	3W N\	/NT n40 RBW 100 kH	12 12 12 Mode	Auto FF1		5.	-4.43 dBm 7987160 GHz
Ref Level 2 Att SGL Count 10 1Pk Max	(Offset 10	3W N\	/NT n40 RBW 100 kH	12 12 12 Mode	Auto FF1			-4.43 dBm
Ref Level 2 Att SGL Count 10 1Pk Max	20.00 dBm 20 dB 2000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5.	-4.43 dBm 7987160 GHz -9.36 dBm
Ref Level 2 Att SGL Count 10 1Pk Max	20.00 dBm 20 dB 2000/1000	Offset 10	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1		5.	-4.43 dBm 7987160 GHz -9.36 dBm
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	20.00 dBm 20 dB 2000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5.	-4.43 dBm 7987160 GHz -9.36 dBm
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	20.00 dBm 20 dB 2000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5.	-4.43 dBm 7987160 GHz -9.36 dBm
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm	:0.00 dBm 20 dB 1000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5. MB	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm	:0.00 dBm 20 dB 1000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5. MB	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm	:0.00 dBm 20 dB 1000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5. MB	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm	:0.00 dBm 20 dB 1000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5. MB	-4.43 dBm 7987160 GHz -9.36 dBm
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm	:0.00 dBm 20 dB 1000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5. MB	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	:0.00 dBm 20 dB 1000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5. MB	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	:0.00 dBm 20 dB 1000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5. MB	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	:0.00 dBm 20 dB 1000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5. MB	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	:0.00 dBm 20 dB 1000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 Mode	Auto FF1	r	5. MB	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	:0.00 dBm 20 dB 000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●		12 12 12 12 12 12 12 12 12 12	Auto FF1	r	S.	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	:0.00 dBm 20 dB 000/1000	Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40 RBW 100 kH VBW 300 kH	12 12 12 12 12 12 12 12 12 12	Auto FF1	r	S.	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	20.00 dBm 20 dB 1000/1000	EE Offset 10 SWT 13	3W N\ .01 dB ● !2.7 μs ●	/NT n40	5795N	Auto FF1 11[1] 12[1]		S.	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 20 dB 3000/1000	EE Offset 10 SWT 13	3W N\ .01 dB • 12.7 μs •	/NT n40	57951	Auto FF1 11[1] 12[1]		S.	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	20.00 dBm 20 dB 3000/1000	EE Offset 10 SWT 13 	3W NN .01 dB • 12.7 μs • 	/NT n40	57951	Auto FF1 11[1] 12[1]		S.	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 20 dB 3000/1000	EE Offset 10 SWT 13	3W N\ .01 dB • /2.7 μs •	/NT n40	2 12 12 12 12 12 12 12 12 12 1	Auto FF1 11[1] 12[1]		S.	-4.43 dBm 7987160 GHz -9.36 dBm 7770000 GHz

NTEK III Page 55 of 74

	_		VNT ac20 5				6
Spectrum)						
Ref Level 20	.00 dBm C	Offset 10.22 dB	• RBW 100 kHz				
Att			• VBW 300 kHz	Mode Auto FFT			
SGL Count 100	/100	Antonio 20191 (201	n on or organist contractions and the Ca				
1Pk Max							
				M1[1]			-2.30 dBr
10 dBm				110[1]		5.7	499450 GH
				M2[1] M1		5 7	-7.61 dBr 361800 GH
0 dBm	M2	and the later in the			N		501000 011
10 10-	July	ana and the production	manument was	herbourselos	une new bring	1	
-10 dBm	1					1	
-20 dBm	d					10	
	5					r A.	
-30 dBm	1. T	5				May m	1
V V0 VW 0	w					hhr	Man
-40 dBm	1						W OV
-50 dBm							
-50 000							
-60 dBm						-	
-70 dBm							
CF 5.745 GHz			1001 pts			Spar	n 30.0 MHz
Marker							
Type Ref 1	Frc D	X-value	Y-value	Function	Fun	ction Resul	t
M1	1	5.749945 GHz	-2.30 dBm				
M2	1	5.73618 GHz	-7.61 dBm				
M3	1	5.75376 GHz	-7.43 dBm				
Spectrum		EBW N	/NT ac20 5	785MHz A	nt1		۵ ج
Spectrum				785MHz A	nt1		
Spectrum Ref Level 20 Att		Offset 9.94 dB 👳			nt1		(U)
Ref Level 20	30 dB 🛛 🛚	Offset 9.94 dB 👳	RBW 100 kHz		nt1		0 7
Ref Level 20 Att	30 dB 🛛 🛚	Offset 9.94 dB 👳	RBW 100 kHz		nt1		0
Ref Level 20 Att SGL Count 100	30 dB 🛛 🛚	Offset 9.94 dB 👳	RBW 100 kHz		nt1		-3.72 dBr
Ref Level 20 Att SGL Count 100	30 dB 🛛 🛚	Offset 9.94 dB 👳	RBW 100 kHz	Mode Auto FFT	nt1	5.7	-3.72 dBr 799350 GH
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm	30 dB 🛛 🛚	Dffset 9.94 dB ● SWT 75.9 μs ●	RBW 100 kHz	Mode Auto FFT	nt1		-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 1Pk Max	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm	30 dB S 1/100	Dffset 9.94 dB ● SWT 75.9 μs ●	RBW 100 kHz VBW 300 kHz	Mode Auto FFT		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm - -10 dBm - -20 dBm -	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 IPk Max 100 dBm -100 dBm	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm - -10 dBm - -20 dBm -	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm -	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm -	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 10 dBm 0 0 -10 dBm -00 0 -20 dBm	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz 1	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr 761800 GH
Ref Level 20 Att SGL Count 100 SGL Count 100 100 ID dBm 00 00 -10 dBm 00 00 -20 dBm 00 00 -30 dBm 00 00 -30 dBm 00 00 -50 dBm 00 00 -60 dBm 00 00 -70 dBm 00 00	30 dB S 1/100	Dffset 9.94 dB SWT 75.9 μs M1	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1]		5.7	-3.72 dBr 799350 GH -7.84 dBr
Ref Level 20 Att SGL Count 100 SGL Count 100 100 IPk Max 100 dBm 00 dBm -00 dBm -20 dBm -00 dBm -30 dBm -00 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm	30 dB S //100	Dffset 9.94 dB SWT 75.9 μs M1 Mμ/M-/ ημμ/M-/ Mu	RBW 100 kHz VBW 300 kHz Improve many Improve many <	Mode Auto FFT	North Matheway (1997)	5.7	-3.72 dBr 799350 GH -7.84 dBr 761800 GH
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB S 1/100 1	Dffset 9.94 dB WT 75.9 μs M1 M3/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/	RBW 100 kHz VBW 300 kHz Image: state st	Mode Auto FFT M1[1] M2[1]	North Matheway (1997)	5.7	-3.72 dBr 799350 GH -7.84 dBr 761800 GH
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB S 1/100 12 1 1 1 1 1 1 1 1 1 1 1 1	Dffset 9.94 dB SWT 75.9 μs M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	RBW 100 kHz VBW 300 kHz Image: state st	Mode Auto FFT	North Matheway (1997)	5.7	-3.72 dBr 799350 GH -7.84 dBr 761800 GH
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB S 1/100 1	Dffset 9.94 dB WT 75.9 μs M1 M3/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/	RBW 100 kHz VBW 300 kHz Image: state st	Mode Auto FFT	North Matheway (1997)	5.7	-3.72 dBr 799350 GH -7.84 dBr 761800 GH

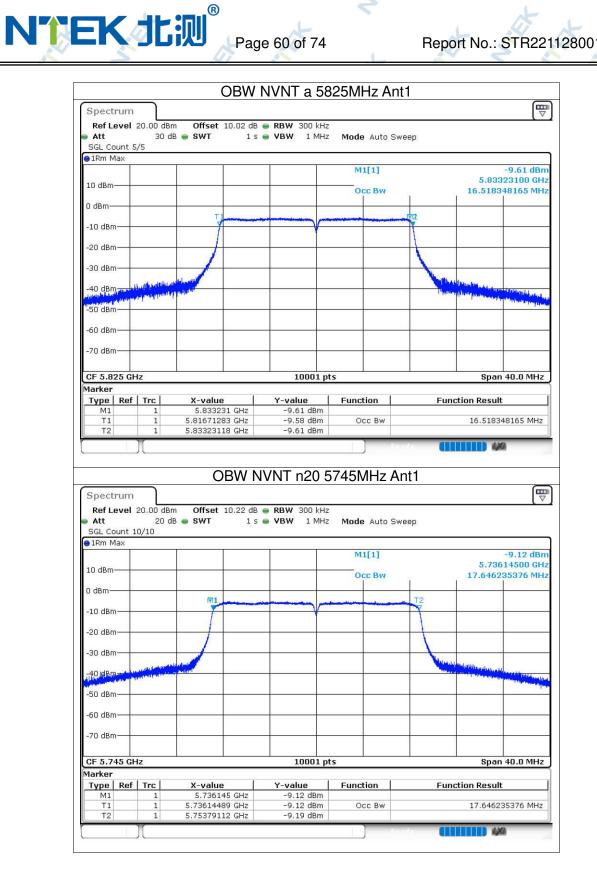
NTEK III Page 56 of 74

	_		/ NVNT ad	20 00		ALL I		~
Spectrum								
Ref Level 20	0.00 dBm	Offset 10.02	2 dB 👄 RBW 10	0 kHz				(v
Att	30 dB		9 µs 💿 VBW 30		lode Auto FF	т		
SGL Count 100	0/100				an an ann an an Ann Ann Ann Ann Ann Ann			
1Pk Max								
					M1[1]		E 0	-3.46 dBm
10 dBm					M2[1]		5.8	199650 GHz -9.22 dBm
0 dbm		M	1		and and		5.8	161500 GHz
0 dBm	MIS			ALC: NO MORE	toh out an ante at			
-10 dBm		Managhaning	hundertenerssishing	www.	Unhandownin markey alo	mannerwhy	N	
				N.			1	
-20 dBm	ſ					29	n.	
-30 dBm	m ^w						"Ly	
the endowed of the	AN						part	mmin
Aprasm	1					-		r v vvvi
1740 B 1000								
-50 dBm						7		
-60 dBm								
-70 dBm								-
CF 5.825 GHz			1	001 pts			Spa	n 30.0 MHz
larker				20	77			
Type Ref		X-value	Y-valu		unction	Fu	nction Resul	lt
M1 M2	1	5.819965 G 5.81615 G		dBm dBm				
M3	1	5.83376 G		dBm				
Spectrum		EBW	/ NVNT ad	:40 57	55MHz /	Ant1		M E
Spectrum	0.00 dBm				55MHz /	Ant1		
Spectrum Ref Level 20 Att	0.00 dBm 30 dB	Offset 10.04	/ NVNT ac	0 kHz	55MHz /			
Ref Level 20 Att SGL Count 100	30 dB	Offset 10.04	4 dB 🥌 RBW 10	0 kHz	K M IS AS SUME			
Ref Level 20 Att	30 dB	Offset 10.04	4 dB 🥌 RBW 10	0 kHz	lode Auto FF			
Ref Level 20 Att SGL Count 100	30 dB	Offset 10.04	4 dB 🥌 RBW 10	0 kHz	K M IS AS SUME			-4.60 dBm
Ref Level 20 Att SGL Count 100	30 dB	Offset 10.04	4 dB 🥌 RBW 10	0 kHz	Node Auto FF			-4.60 dBm 599750 GHz
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm	30 dB	Offset 10.04	4 dB 🥌 RBW 10	0 kHz	lode Auto FF			-4.60 dBm
Ref Level 20 Att SGL Count 100 1Pk Max	30 dB 0/100	Offset 10.0 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz 0 kHz M	M1[1] M2[1]		5.7	-4.60 dBm 599750 GHz -10.28 dBm
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm	30 dB 0/100	Offset 10.0- SWT 132.	4 dB 🥌 RBW 10	0 kHz 0 kHz M	M1[1] M2[1]	045		-4.60 dBm 599750 GHz -10.28 dBm
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm	30 dB 0/100	Offset 10.0 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz 0 kHz M	M1[1] M2[1]	045	5.7	-4.60 dBm 599750 GHz -10.28 dBm
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm	30 dB 0/100	Offset 10.0 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz 0 kHz M	M1[1] M2[1]	045	5.7	-4.60 dBm 599750 GHz -10.28 dBm
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm	30 dB 0/100	Offset 10.0 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz 0 kHz M	M1[1] M2[1]	045	5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	Offset 10.0 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz 0 kHz M	M1[1] M2[1]	045	5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	Offset 10.0 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz 0 kHz M	M1[1] M2[1]	045	5.7	-4.60 dBm 599750 GHz -10.28 dBm
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	Offset 10.0 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz 0 kHz M	M1[1] M2[1]	045	5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	Offset 10.0 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz 0 kHz M	M1[1] M2[1]	045	5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	Offset 10.0 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz 0 kHz M	M1[1] M2[1]	045	5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	30 dB 0/100	Offset 10.0 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz 0 kHz M	M1[1] M2[1]	045	5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	30 dB 0/100	Offset 10.0 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz 0 kHz M	M1[1] M2[1]		5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB 5/100	Offset 10.0 SWT 132.	4 dB RBW 10 7 μs VBW 30		M1[1] M2[1]		5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	30 dB 5/100	Offset 10.0 SWT 132.	4 dB RBW 10 7 μs VBW 30	0 kHz 0 kHz M	M1[1] M2[1]		5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	30 dB 0/100	Offset 10.04 SWT 132.	4 dB • RBW 10 7 μs • VBW 30	0 kHz M	Iode Auto FF M1[1] M2[1] M1 M2[1] M2 Appl. Appl		5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 1Pk Max 100 0 10 dBm 0 0 -10 dBm -00 0 -20 dBm -00 0 -30 dBm -00 0 -50 dBm -00 0 -60 dBm -00 0 -70 dBm -70 0 -70 dBm -70 0 -70 dBm -70 0	30 dB 3/100	Offset 10.04 SWT 132.	4 dB • RBW 10 7 μs • VBW 30 	0 kHz M	M1[1] M2[1]		5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	30 dB 0/100	Offset 10.0- SWT 132.	4 dB • RBW 10 7 μs • VBW 30 	0 kHz M kHz M with excellent 001 pts e 1 dBm	Iode Auto FF M1[1] M2[1] M1 M2[1] M2 Appl. Appl		5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz
Ref Level 20 Att SGL Count 100 TO dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	30 dB 3/100 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	Offset 10.0- SWT 132. ⁷	4 dB • RBW 10 7 μs • VBW 30 	0 kHz M	Iode Auto FF M1[1] M2[1] M1 M2[1] M2 Appl. Appl		5.7	-4.60 dBm 599750 GHz -10.28 dBm 373000 GHz

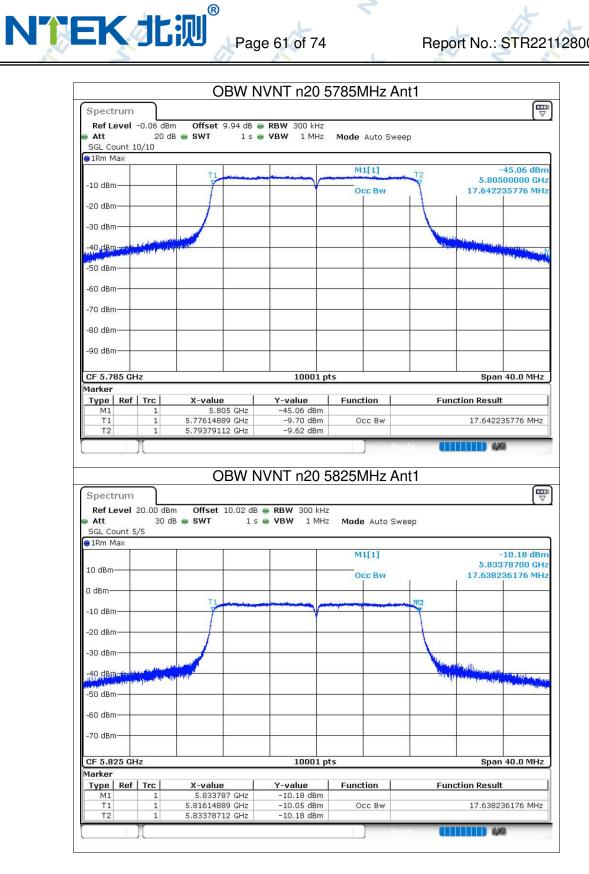

NTEK III Page 57 of 74

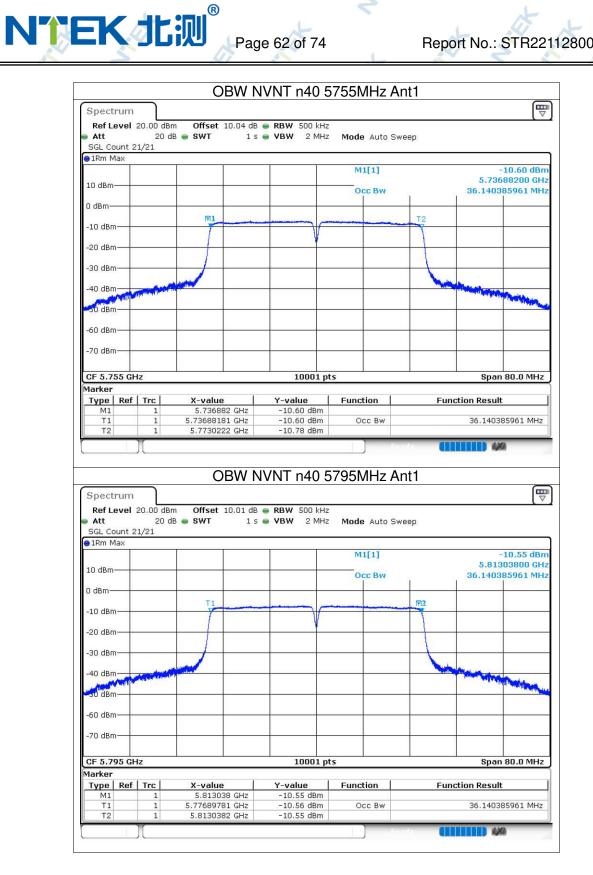
Spectrum			V NVNT a					
Ref Level 2		Offset 10.0	1 dB 🖷 RBW	100 VU>				[▽]
Att	0.00 UBM 30 dB		.7 μs 曼 VBW		ode Auto FF	т		
SGL Count 10	0/100	-4-45.93 	an 149 an 159-5980).			1920		
●1Pk Max			i i		<u>anna</u>			
					M1[1]		5 7	-4.34 dBm 987160 GHz
10 dBm					M2[1]		5.7	987160 GHz -9.74 dBm
0 dBm					1		5.7	773600 GHz
o ubiii	MS	e la la		6		1	V18	
-10 dBm	X	in the hard and the	equilator supplied as	Manag prosphere	Lotte gover the so	mar and and and	A Contraction of the second se	
-20 dBm				U				
-20 UBIII	1							
-30 dBm	-						1	10000
40 dBrot L	MM						Why All Mo	appled J dues a
-40 dBphoto	ww.						Va	J. hall
-50 dBm								
-60 dBm								
-70 dBm								
CF 5.795 GHz	2			1001 pts			Spa	n 60.0 MHz
Marker								
Type Ref		X-value	Y-va		unction	Fui	nction Resu	lt 🔤
M1 M2	1	5.798716		34 dBm 74 dBm				
M3	1	5.8127 (23 dBm				
	r							M74
	L							m
		EBV	V NVNT a	ac80 57	75MHz A	Ant1		
Snectrum		EBV	V NVNT a	ac80 57	75MHz A	Ant1		Ē
Spectrum	0.00.45				75MHz A	Ant1		
Ref Level 2	0.00 dBm 30 dB	Offset 9.9	4 dB 🖷 RBW	100 kHz	1 (1111) 101 1020 (1111)			
Second received	30 dB	Offset 9.9		100 kHz	75MHz A			
Ref Level 2 Att	30 dB	Offset 9.9	4 dB 🖷 RBW	100 kHz	1 (1111) 101 1020 (1111)			(₩)
Ref Level 2 Att SGL Count 10	30 dB	Offset 9.9	4 dB 🖷 RBW	100 kHz	1 (1111) 101 1020 (1111)			-6.95 dBm
Ref Level 2 Att SGL Count 10	30 dB	Offset 9.9	4 dB 🖷 RBW	100 kHz	ode Auto FF ⁻ M1[1]			-6.95 dBm 758700 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm	30 dB	Offset 9.9	4 dB 🖷 RBW	100 kHz	ode Auto FF			-6.95 dBm
Ref Level 2 Att SGL Count 10 1Pk Max	30 dB 0/100	Offset 9.9 SWT 265	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm	30 dB 0/100	Offset 9.9 SWT 265	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm	30 dB 0/100	Offset 9.9 SWT 265	4 dB 🖷 RBW 5 µs 🖷 VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	30 dB 0/100	Offset 9.9 SWT 265	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	30 dB 0/100	Offset 9.9 SWT 265.	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	Offset 9.9 SWT 265.	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	Offset 9.9 SWT 265.	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	Offset 9.9 SWT 265.	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	30 dB 0/100	Offset 9.9 SWT 265.	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30 dB 0/100	Offset 9.9 SWT 265	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	30 dB 0/100	Offset 9.9 SWT 265	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	30 dB 0/100	Offset 9.9 SWT 265	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	30 dB 0/100	Offset 9.9 SWT 265	4 dB ● RBW 5 μs ● VBW	100 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz
Ref Level 2 Att SGL Count 10 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	30 dB 0/100	Offset 9.9 SWT 265	4 dB ● RBW 5 μs ● VBW	100 kHz 300 kHz M	ode Auto FF [*] M1[1] M2[1]	T	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm	30 dB 0/100	Offset 9.9 SWT 265.	M1	100 kHz M	ode Auto FF	T mitel Mightly	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm CF 5.775 GHz Marker Type Ref	30 dB 0/100	Offset 9.9 SWT 265.	M1	100 kHz M	ode Auto FF [*] M1[1] M2[1]	T mitel Mightly	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm	30 dB 0/100	Offset 9.9 SWT 265.	M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	100 kHz M	ode Auto FF	T mitel Mightly	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -60 dBm -70 dBm Type Ref M1	30 dB 0/100 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	Offset 9.9 SWT 265	M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	100 kHz M 300 kHz M http://www.second http://wwww.second http://www.second http://www.second http://ww	ode Auto FF	T mitel Mightly	5.	-6.95 dBm 758700 GHz -10.53 dBm 737320 GHz

NTEK III Page 58 of 74

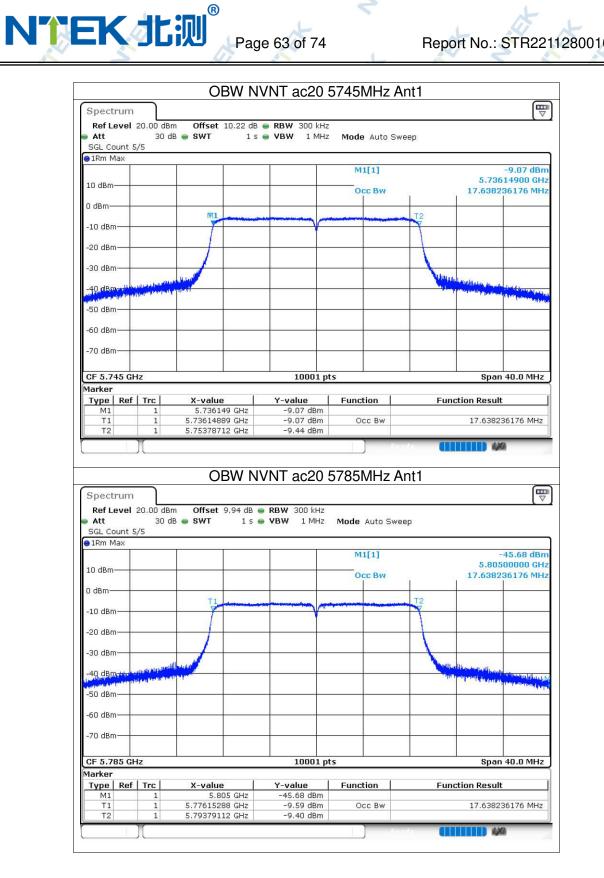

OCCUPIED C	HANNEL	BANDWIDTH			
Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Verdict
NVNT	а	5745	5744.972	16.518	Pass
NVNT	а	5785	5784.974	16.522	Pass
NVNT	а	5825	5824.972	16.518	Pass
NVNT	n20	5745	5744.968	17.646	Pass
NVNT	n20	5785	5784.97	17.642	Pass
NVNT	n20	5825	5824.968	17.638	Pass
NVNT	n40	5755	5754.952	36.14	Pass
NVNT	n40	5795	5794.968	36.14	Pass
NVNT	ac20	5745	5744.968	17.638	Pass
NVNT	ac20	5785	5784.972	17.638	Pass
NVNT	ac20	5825	5824.968	17.638	Pass
NVNT	ac40	5755	5754.936	36.108	Pass
NVNT	ac40	5795	5794.956	36.116	Pass
NVNT	ac80	5775	5774.92	75.704	Pass

NTEK 北测[®] Page 59 of 74

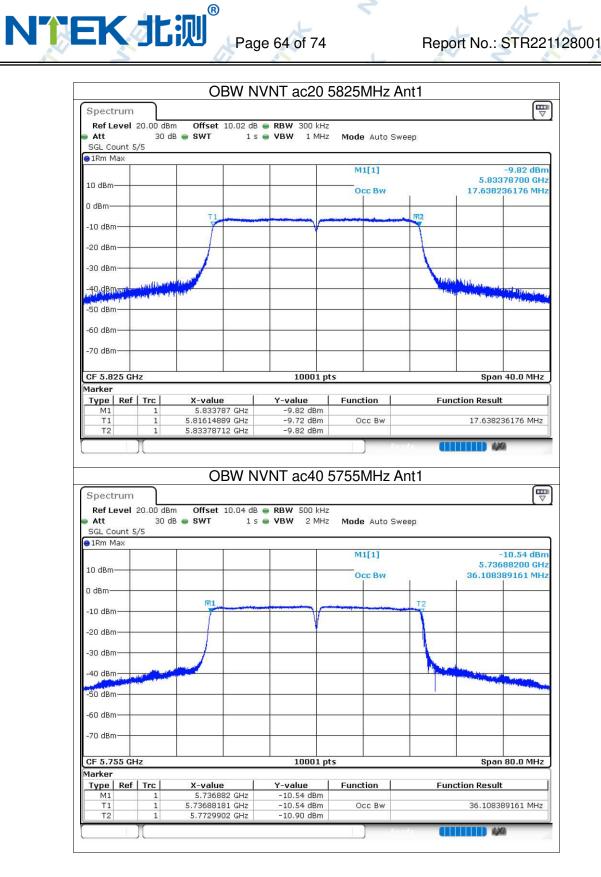


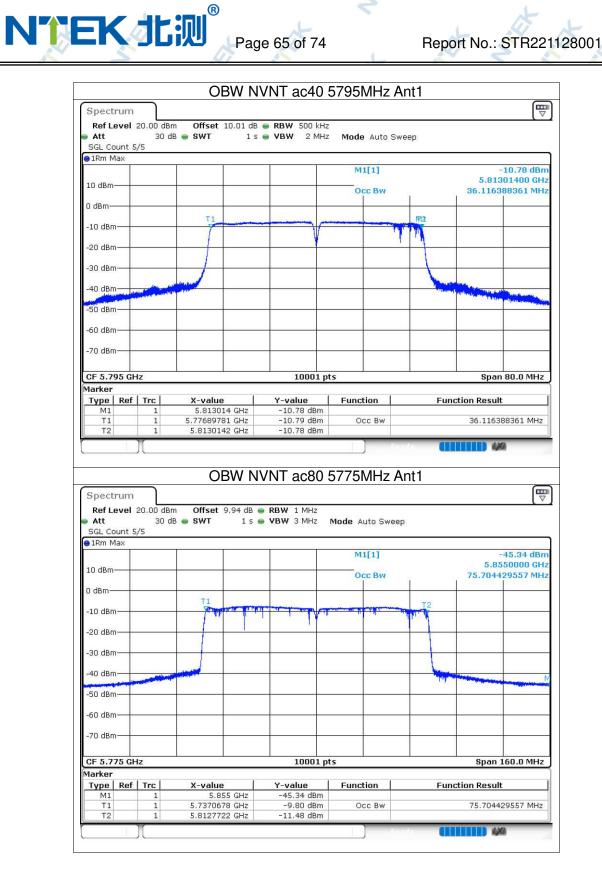

Page 60 of 74

Page 61 of 74



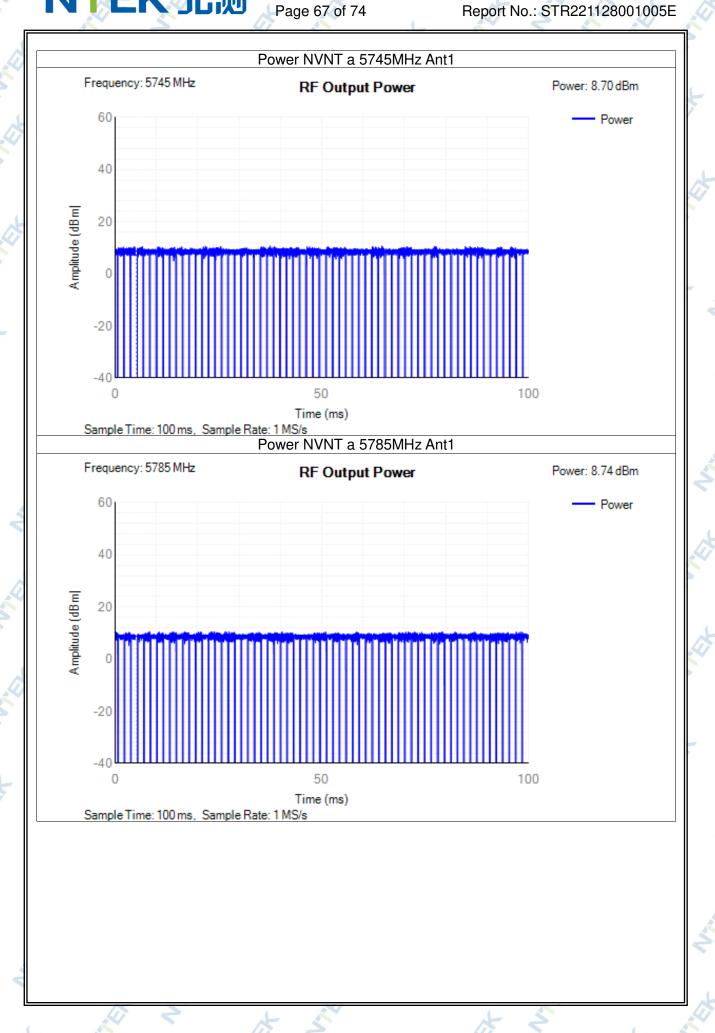
Page 62 of 74

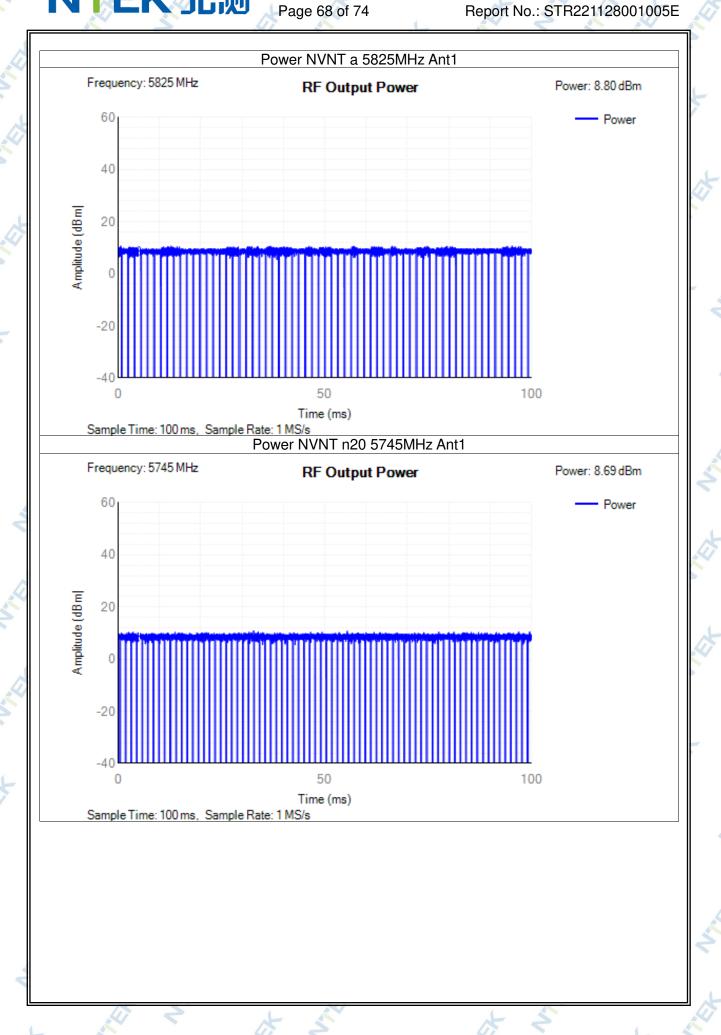



Page 63 of 74

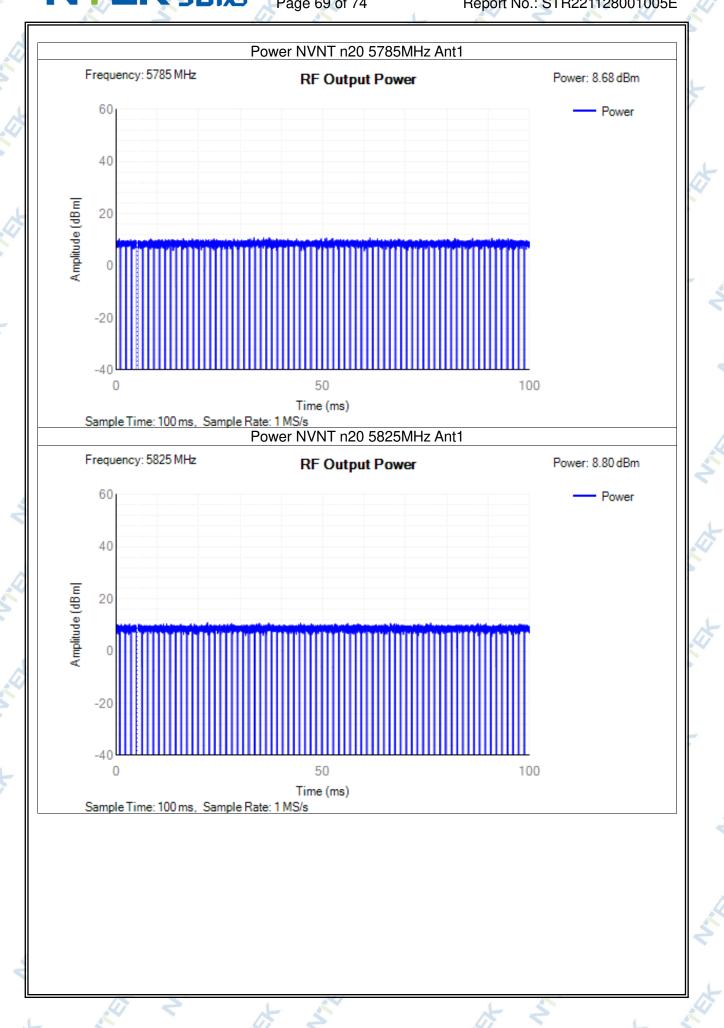
Page 64 of 74

Page 65 of 74

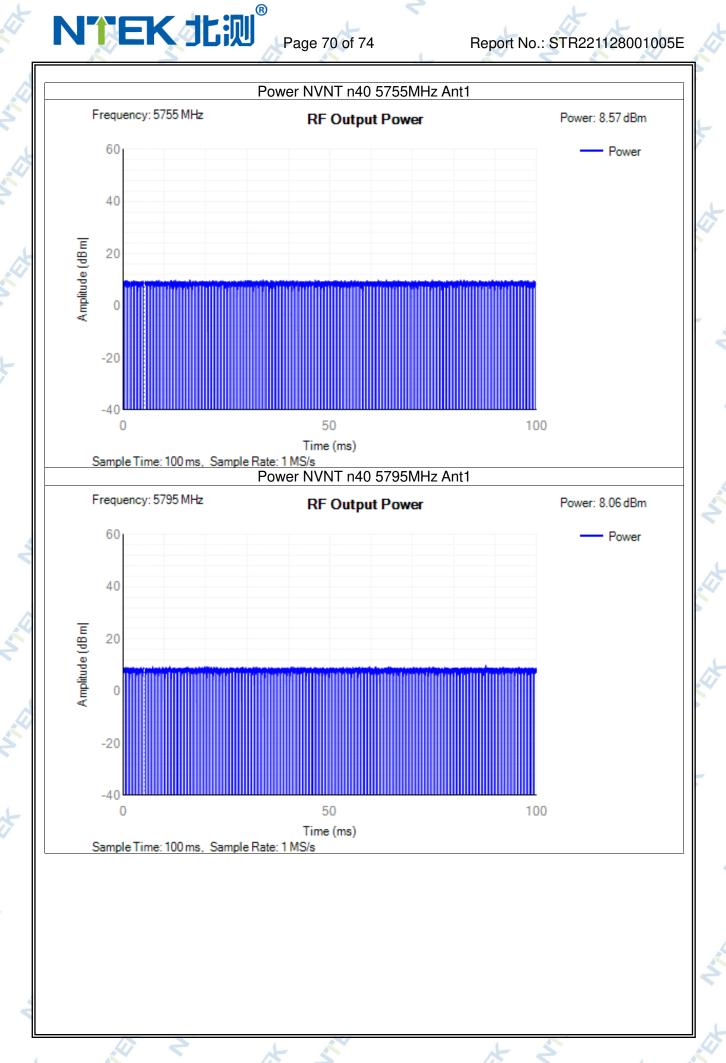


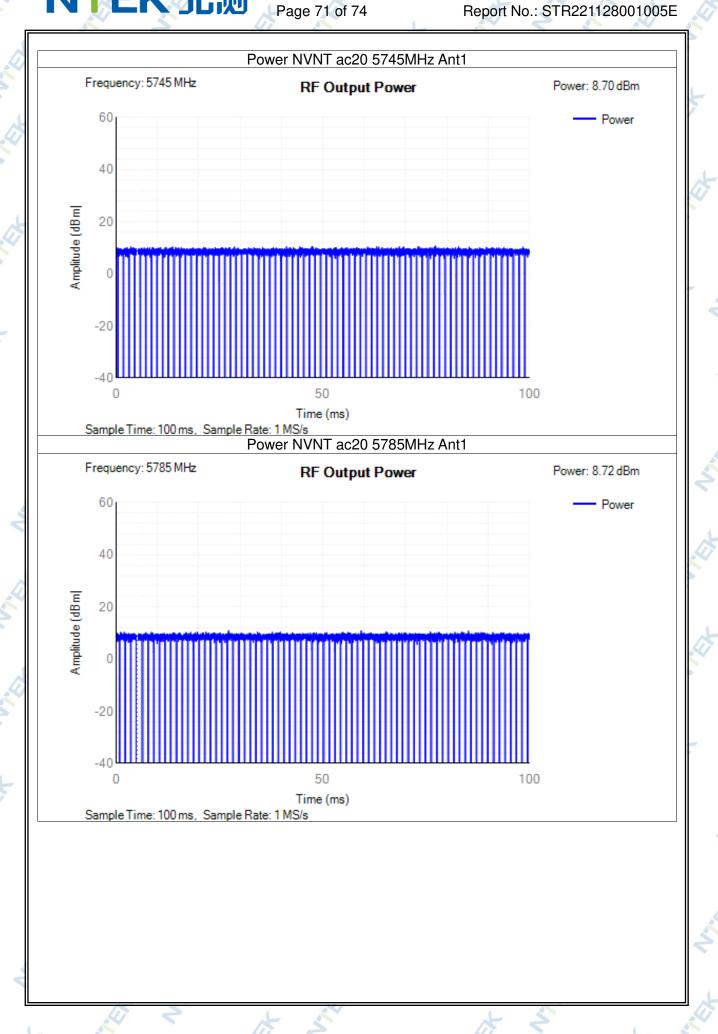

NTEK III Page 66 of 74

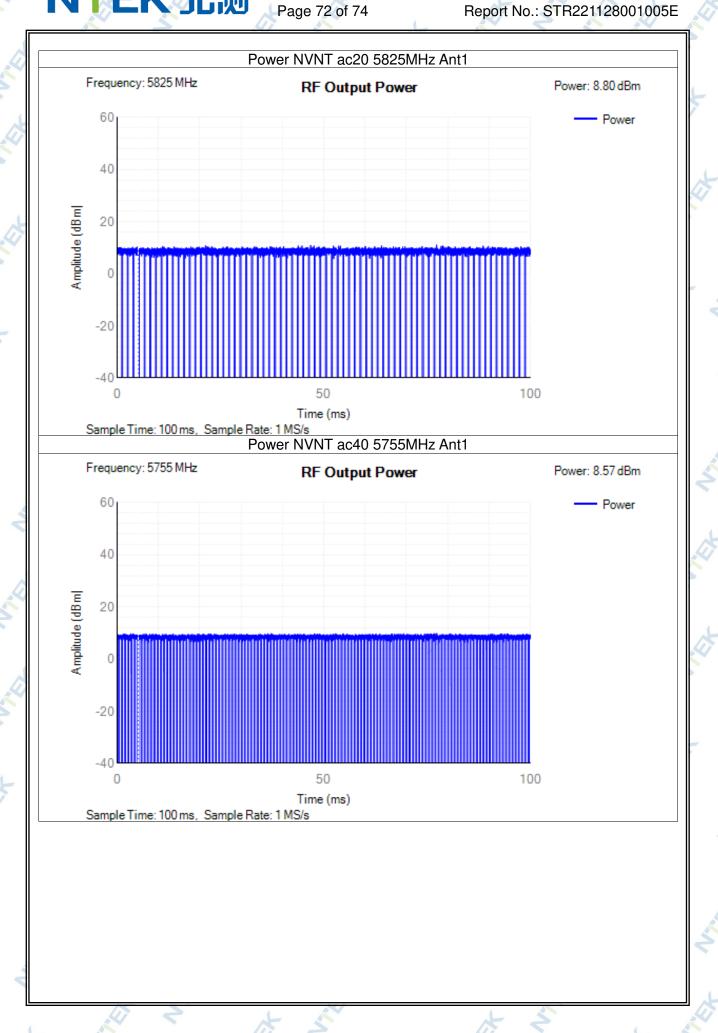
Report No.: STR221128001005E

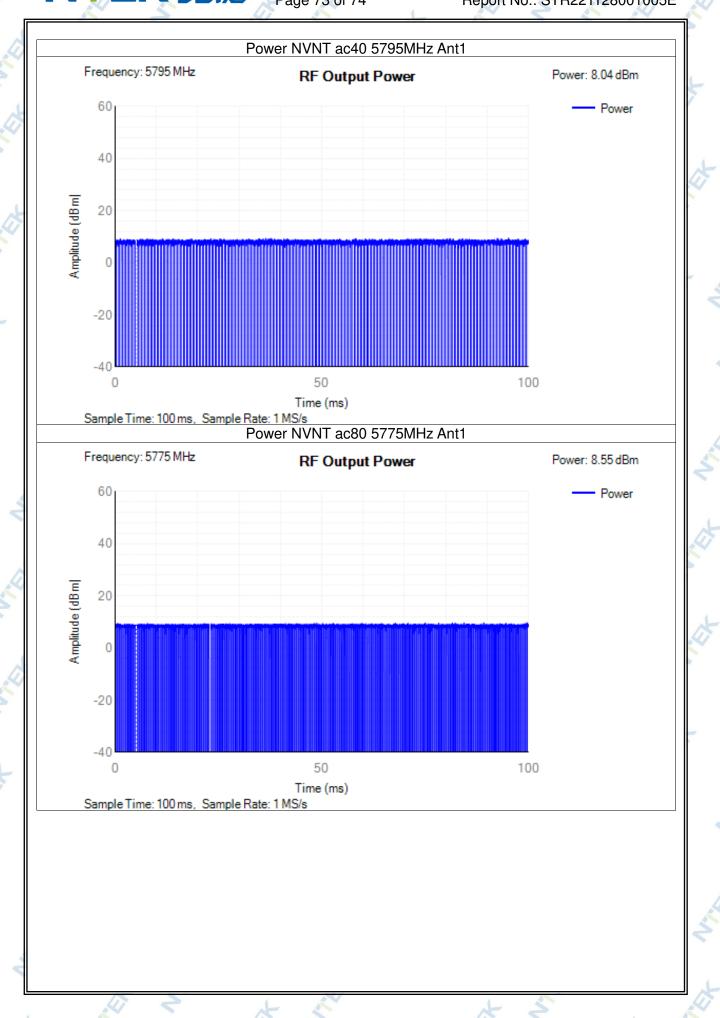

10.4 RF OUTPUT POWER

Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdi
NVNT	802.11a	5745	8.7	64	9.8	13.98	Pas
NVNT	802.11a	5785	8.74	64	9.84	13.98	Pas
NVNT	802.11a	5825	8.8	64	9.9	13.98	Pas
NVNT	802.11n(HT20)	5745	8.69	75	9.79	13.98	Pas
NVNT	802.11n(HT20)	5785	8.68	74	9.78	13.98	Pas
NVNT	802.11n(HT20)	5825	8.8	74	9.9	13.98	Pas
NVNT	802.11n(HT40)	5755	8.57	130	9.67	13.98	Pas
NVNT	802.11n(HT40)	5795	8.06	129	9.16	13.98	Pas
NVNT	802.11ac20	5775	8.7	74	9.8	13.98	Pas
NVNT	802.11ac20	5745	8.72	74	9.82	13.98	Pas
NVNT	802.11ac20	5785	8.8	73	9.9	13.98	Pas
NVNT NVNT	802.11ac40	5825 5755	8.57 8.04	129 129	9.67	13.98	Pas
NVNT	802.11ac40 802.11ac80	5795	8.04	209	9.14 9.65	13.98 13.98	Pas Pas
HVLT	802.11ac80	5745	8.44	64	9.54	13.98	Pas
HVLT	802.11a	5785	8.47	64	9.57	13.98	Pas
HVLT	802.11a	5825	8.44	64	9.54	13.98	Pas
HVLT	802.11n(HT20)	5745	8.39	75	9.49	13.98	Pas
HVLT	802.11n(HT20)	5785	8.17	74	9.27	13.98	Pas
HVLT	802.11n(HT20)	5725	8.20	74	9.3	13.98	Pas
HVLT	802.11n(HT40)	5755	8.17	130	9.27	13.98	Pas
HVLT	802.11n(HT40)	5795	8.12	129	9.22	13.98	Pas
HVLT	802.11ac20	5775	8.09	74	9.19	13.98	Pas
HVLT	802.11ac20	5745	8.04	74	9.14	13.98	Pas
HVLT	802.11ac20	5785	8.01	73	9.11	13.98	Pas
HVLT	802.11ac40	5825	7.96	129	9.06	13.98	Pas
HVLT	802.11ac40	5755	7.93	129	9.03	13.98	Pas
HVLT	802.11ac80	5795	7.90	209	9	13.98	Pas
LVHT	802.11a	5745	7.79	64	8.89	13.98	Pas
LVHT LVHT	802.11a 802.11a	5785 5825	7.82 7.79	64 64	8.92 8.89	13.98 13.98	Pas Pas
LVHT	802.11n(HT20)	5745	7.74	75	8.84	13.98	Pas
LVHT	802.11n(HT20)	5785	8.17	73	9.27	13.98	Pas
LVHT	802.11n(HT20)	5825	8.20	74	9.3	13.98	Pas
LVHT	802.11n(HT40)	5755	8.17	130	9.27	13.98	Pas
LVHT	802.11n(HT40)	5795	8.12	129	9.22	13.98	Pas
LVHT	802.11ac20	5775	8.09	74	9.19	13.98	Pas
LVHT	802.11ac20	5745	8.04	74	9.14	13.98	Pas
LVHT	802.11ac20	5785	8.01	73	9.11	13.98	Pas
LVHT	802.11ac40	5825	7.96	129	9.06	13.98	Pas
LVHT	802.11ac40	5755	7.93	129	9.03	13.98	Pas
LVHT	802.11ac80	5795	7.90	209	9	13.98	Pas
HVHT	802.11a	5745	7.79	64	8.89	13.98	Pas
HVHT	802.11a	5785	7.82	64	8.92	13.98	Pas
HVHT HVHT	802.11a 802.11n(HT20)	5825 5745	7.79 7.74	64 75	8.89 8.84	13.98 13.98	Pas Pas
HVHT	802.11n(HT20) 802.11n(HT20)	5745	8.17	75	9.27	13.98	Pas
HVHT	802.11n(HT20)	5825	8.20	74 74	9.3	13.98	Pas
HVHT	802.11n(HT40)	5755	8.17	130	9.27	13.98	Pas
HVHT	802.11n(HT40)	5795	8.12	129	9.22	13.98	Pas
HVHT	802.11ac20	5775	8.09	74	9.19	13.98	Pas
HVHT	802.11ac20	5745	8.04	74	9.14	13.98	Pas
HVHT	802.11ac20	5785	8.01	73	9.11	13.98	Pas
HVHT	802.11ac40	5825	7.96	129	9.06	13.98	Pas
HVHT	802.11ac40	5755	7.93	129	9.03	13.98	Pas
HVHT	802.11ac80	5795	7.90	209	9	13.98	Pas
LVLT	802.11a	5745	7.79	64	8.89	13.98	Pas
LVHT	802.11a	5785	7.82	64	8.92	13.98	Pas
LVHT LVHT	802.11a	5825	7.79 7.74	64	8.89	13.98	Pas
LVHT	802.11n(HT20) 802.11n(HT20)	5745 5785	8.17	75 74	8.84 9.27	13.98 13.98	Pas Pas
LVHT	802.11n(HT20) 802.11n(HT20)	5785	8.17	74 74	9.27	13.98	Pas
LVHT	802.11n(HT20)	5755	8.17	130	9.27	13.98	Pas
LVHT	802.11n(HT40)	5795	8.17	129	9.27	13.98	Pas
LVHT	802.11ac20	5775	8.09	74	9.19	13.98	Pas
LVHT	802.11ac20	5745	8.04	74	9.14	13.98	Pas
LVHT	802.11ac20	5785	8.01	73	9.11	13.98	Pas
LVHT	802.11ac40	5825	7.96	129	9.06	13.98	Pas
LVHT	802.11ac40	5755	7.93	129	9.03	13.98	Pas
LVHT	802.11ac80	5795	7.92	209	9.02	13.98	Pas






Page 69 of 74


Page 70 of 74

NTEK LM® Page 73 of 74

NTEK ILW Page 74 of 74

Report No.: STR221128001005E

11. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT