

RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product: 4G Tablet

Trade Mark: Blackview

Model Name: Tab 16

Family Model: N/A

Report No.: STR221031005001E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090
Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Report No.: STR221031005001E

	: DOKE COMMUNICATION (HK) LIMITED
Address	: RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA
	: Shenzhen DOKE Electronic Co.,Ltd
Address	 801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China.
Product description	
Product name	.: 4G Tablet
Trademark	: Blackview
Model Name	: Tab 16
Family Model	: N/A
Standards	: ETSI EN 300 328 V2.2.2 (2019-07)
requirements. And it is applicate This report shall not be reproduced document may be altered or rethe document. Test Sample Number	
Date of Test	
Date (s) of performance of tes	ts Nov 02. 2022 ~ Dec 01. 2022
Date of Issue	Dec 02. 2022
Test Result	Pass
Testing Engi	neer: 1) Wen lin
	(Allen Liu)
Authorized S	Signatory:
	(Alex Li)
- 41/11 41/11	

Table of Contents	Page
1 . GENERAL INFORMATION	7
1.1 GENERAL DESCRIPTION OF EUT	7 4
1.2 INFORMATION ABOUT THE EUT	8
1.3 TEST CONDITIONS	13
1.4 TEST CONFIGURATION OF EUT	13
1.5 DESCRIPTION OF TEST CONDITIONS	14
1.6 DESCRIPTION OF SUPPORT UNITS	15
1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS	16
2 . SUMMARY OF TEST RESULTS	17
2.1 TEST FACILITY	18
3 . RF OUTPUT POWER	19
3.1 LIMITS OF RF OUTPUT POWER	19
3.2 TEST PROCEDURE	19
3.3 DEVIATION FROM TEST STANDARD	19
3.4 TEST SETUP	19
3.5 TEST RESULTS	20
4 . ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION	AND HOPPING
SEQUENCE	21
4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCC	
HOPPING SEQUENCE	21
4.2 TEST PROCEDURE	21
4.3 DEVIATION FROM TEST STANDARD	21
4.4 TEST SETUP	22
4.5 TEST RESULTS	22
5 . OCCUPIED CHANNEL BANDWIDTH	23
5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	23
5.2 TEST PROCEDURE	23
5.3 DEVIATION FROM TEST STANDARD	24
5.4 TEST SETUP	24
5.5 TEST RESULTS	24
6 . TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAN	D DOMAIN 25
6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT	
O. I LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT	-OI -DAIND

	Table of Contents	Page
DOMAIN		25
	PROCEDURE	25
	ATION FROM TEST STANDARD	26
6.4 TEST		26
6.5 TEST	RESULTS	26
7 . HOPPIN	G FREQUENCY SEPARATION	27
7.1 LIMIT	S OF HOPPING FREQUENCY SEPARATION	27
7.2 TEST	PROCEDURE	27
7.3 DEVIA	ATION FROM TEST STANDARD	27
7.4 TEST	SETUP	28
7.5 TEST	RESULTS	28
8. TRANSM	MITTER UNWANTED EMISSIONS IN THE SPURIOUS DOM	//AIN 29
8.1 LIMIT	S OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS	IN THE
SPURIOL	JS DOMAIN	29
8.2 TEST	PROCEDURE	29
8.3 DEVIA	ATION FROM TEST STANDARD	29
8.4 TEST	SETUP	30
8.5 TEST	RESULTS (Radiated measurement)	31
8.6 TEST	RESULTS (Conducted measurement)	32
9 . RECEIVE	ER SPURIOUS EMISSIONS	33
9.1 LIMIT	S OF RECEIVER SPURIOUS RADIATION	33
9.2 TEST	PROCEDURE	33
9.3 DEVIA	ATION FROM TEST STANDARD	33
9.4 TEST	SETUP	34
9.5 TEST	RESULTS (Radiated measurement)	35
9.6 TEST	RESULTS (Conducted measurement)	36
10. RECEIV	/ER BLOCKING	37
10.1 PER	RFORMANCE CRITERIA	37
10.2 LIMI	TS OF RECEIVER BLOCKING	37
10.3 TES	T PROCEDURE	38
10.4 DEV	IATION FROM TEST STANDARD	39
10.5 TES	T SETUP	39
10.6 TES	T RESULTS	40
11. TEST RI	ESULTS	42

Table of Contents Pa	ige
11.1 ACCUMULATED TRANSMIT TIME	42
11.2 FREQUENCY OCCUPATION	49
11.3 ONE PULSE DWELL TIME	56
11.4 RF OUTPUT POWER	66
11.5 HOPPING FREQUENCY SEPARATION	68
11.6 OCCUPIED CHANNEL BANDWIDTH	72
11.7 TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	75
11.8 TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	78
11.9 HOPPING SEQUENCE	83
12. EUT TEST PHOTO	85
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	85

Revision History

Report No.	Version	Description	Issued Date
STR221031005001E	Rev.01	Initial issue of report	Dec 02. 2022
AL (40)		4 10	4,
الم الم		4	
* 30° 5			4
V .			* *
* *			4" 4"
4			. 4
* 30			
3,00	4		*
*		7	
* 5		L & &	<u> </u>
200	*	40 20 B	

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	4G Tablet		
Trade Mark	Blackview		
Model Name.	Tab 16		
Family Model	N/A		
Model Difference	N/A		
	The EUT is 4G Tablet		
	Operation Frequency:	2402~2480 MHz	
	Modulatin Type:	GFSK,π/4-DQPSK,8-DPSK	
	Modulation Technology:	FHSS	
	Adaptive/non-adaptive	Adaptive equipment	
	Receiver categories	2	
Product Description	Number Of Channel	79CH	
	Antenna Designation:	PIFA Antenna	
	Antenna Gain(Peak)	-0.1dBi	
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.		
Channel List	Refer to below Table		
Adapter	Model: QZ-01800EA00 Input: 100-240V~50/60Hz 0.5A Output: 5.0V==3.0A or 7.0V==2.0A or 9.0V==2.0A or 12.0V==1.5A (18.0W)		
Battery	DC 3.8V, 7680mAh		
Rating	DC 3.8V from battery or DC 5V from Adapter.		
I/O Ports	Refer to users manual		
Hardware Version	P30-T616-V1.0-221112-Q		
Software Version	Tab_16_NEU_P30_V1.0_20221122V01		
	<u> </u>		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

79 channels are provided to (GFSK, $\pi/4$ -DQPSK, 8-DPSK)

Channel	Frequency (MHz	
00	2402	
01	2403	
A	1	
	· · · · · · · · · · · · · · · · · · ·	
77	2479	
78	2480	

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:
other forms of modulation
b) In case of FHSS modulation:
In case of non-Adaptive Frequency Hopping equipment:
The number of Hopping Frequencies:
In case of Adaptive Frequency Hopping Equipment:
The maximum number of Hopping Frequencies: 79
The minimum number of Hopping Frequencies: 79
The (average) Dwell Time: 311.904ms Maximum
c) Adaptive / non-adaptive equipment:
non-adaptive Equipment
adaptive Equipment without the possibility to switch to a non-adaptive mode
adaptive Equipment which can also operate in a non-adaptive mode
d) In case of adaptive equipment:
The maximum Channel Occupancy Time implemented by the equipment:/ ms
☐ The equipment has implemented an LBT based DAA mechanism
In case of equipment using modulation different from FHSS:
The equipment is Frame Based equipment
The equipment is Load Based equipment
☐ The equipment can switch dynamically between Frame Based and Load Based equipment
The CCA time implemented by the equipment:/ µs
The equipment has implemented a non-LBT based DAA mechanism
The equipment can operate in more than one adaptive mode

The maximum RF Output Power (e.i.r.p.):
The maximum (corresponding) Duty Cycle:
Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations
of duty cycle and corresponding power levels to be declared):
The worst case operational mode for each of the following tests:
RF Output Power
GFSK
Power Spectral Density
N/A
Duty cycle, Tx-Sequence, Tx-gap
N/A
 Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment) π/4-DQPSK
Hopping Frequency Separation (only for FHSS equipment) 8-DPSK
Medium Utilization
N/A
Adaptivity
N/A
Receiver Blocking
GFSK
Nominal Channel Bandwidth
8-DPSK
Transmitter unwanted emissions in the OOB domain
8-DPSK
Transmitter unwanted emissions in the spurious domain
GFSK
Receiver spurious emissions
GFSK
g) The different transmit operating modes (tick all that apply):
Operating mode 1: Single Antenna Equipment
Equipment with only one antenna
Equipment with two diversity antennas but only one antenna active at any moment in time
Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only
one antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming
☐ Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
High Throughput (> 1 spatial stream) using Nominal Channel Randwidth 2

NOTE 1: Add more lines if more channel bandwidths are supported. Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode) High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1 High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2 NOTE 2: Add more lines if more channel bandwidths are supported. h) In case of Smart Antenna Systems: • The number of Receive chains: The number of Transmit chains: ... symmetrical power distribution asymmetrical power distribution In case of beam forming, the maximum (additional) beam forming gain: dB NOTE: The additional beam forming gain does not include the basic gain of a single antenna. i) Operating Frequency Range(s) of the equipment: Operating Frequency Range 1: 2402 MHz to 2480 MHz Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported. i) Nominal Channel Bandwidth(s): Nominal Channel Bandwidth 1: 1.197MHz • Nominal Channel Bandwidth 2:/..... MHz NOTE: Add more lines if more channel bandwidths are supported. k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.): X Stand-alone Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment) Plug-in radio device (Equipment intended for a variety of host systems) The normal and the extreme operating conditions that apply to the equipment: Normal operating conditions (if applicable): Operating temperature: 15 °C ~35 °C Other (please specify if applicable): Extreme operating conditions: Operating temperature range: Minimum: -10°C Maximum 40°C Other (please specify if applicable): Minimum: Maximum . Details provided are for the: stand-alone equipment combined (or host) equipment test jig

			gs and one or more antenna
The intended combin	nation(s) of the radio e	equipment power settin	J
assemblies and their	corresponding e.i.r.p	. levels:	
Antenna Type: PIFA	Antenna		
Integral Antenna (information to be provide	ded in case of conducted	I measurements)
Antenna Gain: -0			
If applicable, addition	onal beamforming gain	(excluding basic antenna	a gain):/ dB
	F connector provided		
	y RF connector provide	ed S	
	ntennas (equipment wit		
	level with corresponding	•	
	er settings and correspond		
	rent Power Levels:		
Power Level 1:		•	
Power Level 2:			
Power Level 3:			
		quipment has more powe	er levels.
		ucted power levels (at ar	
NOTE 2. THESE		ucteu power levels (at al	iterina connector).
For each of the Davier	I aviala muavida tha int	anded antenne coccabi	an their corresponding going
	•		es, their corresponding gains
G) and the resulting e.i	.r.p. levels also taking i		es, their corresponding gains ming gain (Y) if applicable
G) and the resulting e.i Power Level 1:	.r.p. levels also taking i		ming gain (Y) if applicable
6) and the resulting e.i Power Level 1: Number of ante	.r.p. levels also taking i	into account the beamfor	ming gain (Y) if applicable
6) and the resulting e.i Power Level 1: Number of ante Assembly #	.r.p. levels also taking i dBm nna assemblies provide	into account the beamfor	ming gain (Y) if applicable
G) and the resulting e.i Power Level 1: Number of ante Assembly #	r.p. levels also taking in the control of the contr	ed for this power level: e.i.r.p. (dBm)	ming gain (Y) if applicable
G) and the resulting e.i Power Level 1: Number of ante Assembly # 1	r.p. levels also taking in the control of the contr	ed for this power level: e.i.r.p. (dBm)	ming gain (Y) if applicable
6) and the resulting e.i Power Level 1: Number of ante Assembly # 1 2	r.p. levels also taking in the control of the contr	ed for this power level: e.i.r.p. (dBm) 3.49	ming gain (Y) if applicable
Power Level 1: Number of ante Assembly # 1 2 3 NOTE 3: Add m	.r.p. levels also taking in the control of the cont	ed for this power level: e.i.r.p. (dBm) 3.49	ming gain (Y) if applicable Part number or model name
Power Level 1: Number of ante Assembly # NOTE 3: Add m	.r.p. levels also taking in the control of the cont	ed for this power level: e.i.r.p. (dBm) 3.49	Part number or model name
Power Level 1: Number of ante Assembly # NOTE 3: Add m Power Level 2: Number of ante	.r.p. levels also taking in the control of the cont	ed for this power level: e.i.r.p. (dBm) 3.49 antenna assemblies are	Part number or model name
Power Level 1: Number of ante Assembly # 1 2 3 NOTE 3: Add m	.r.p. levels also taking in the control of the cont	ed for this power level: e.i.r.p. (dBm) 3.49 antenna assemblies are	Part number or model name supported for this power level
Power Level 1: Number of ante Assembly # 1 2 3 NOTE 3: Add m Power Level 2: Number of ante Assembly # 1	.r.p. levels also taking in the control of the cont	ed for this power level: e.i.r.p. (dBm) 3.49 antenna assemblies are	Part number or model name supported for this power level
Power Level 1: Number of ante Assembly # 1 2 3 NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2	.r.p. levels also taking in the control of the cont	ed for this power level: e.i.r.p. (dBm) 3.49 antenna assemblies are	Part number or model name supported for this power level
Power Level 1: Number of ante Assembly # 1 2 3 NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3 1 2 3 1 2 3 1 2 3 4 3 4 4 5 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8	.r.p. levels also taking in the control of the cont	ed for this power level: e.i.r.p. (dBm) 3.49 antenna assemblies are ed for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name
Power Level 1: Number of ante Assembly # 1 2 3 NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3 1 2 3 1 2 3 1 2 3 4 3 4 4 5 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8	.r.p. levels also taking in the control of the cont	ed for this power level: e.i.r.p. (dBm) 3.49 antenna assemblies are ed for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level
Power Level 1: Number of ante Assembly # 1 2 3 NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3 NOTE 4: Add m Power Level 3:	.r.p. levels also taking in the control of the cont	ed for this power level: e.i.r.p. (dBm) 3.49 antenna assemblies are ed for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level 1: Number of ante Assembly # 1 2 3 NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3 NOTE 4: Add m Power Level 3: Number of ante	.r.p. levels also taking in the control of the cont	e.i.r.p. (dBm) 3.49 antenna assemblies are ed for this power level: e.i.r.p. (dBm) antenna assemblies are antenna assemblies are	Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level 1: Number of ante Assembly # 1 2 3 NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3 NOTE 4: Add m Power Level 3: Number of ante	.r.p. levels also taking in the control of the cont	e.i.r.p. (dBm) antenna assemblies are e.i.r.p. (dBm) antenna assemblies are ed for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level 1: Number of ante Assembly # 1 2 3 NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3 NOTE 4: Add m Power Level 3: Number of ante Assembly # 1 2	.r.p. levels also taking in the control of the cont	e.i.r.p. (dBm) antenna assemblies are e.i.r.p. (dBm) antenna assemblies are ed for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name supported for this power level.
Power Level 1: Number of ante Assembly # 1 2 3 NOTE 3: Add m Power Level 2: Number of ante Assembly # 1 2 3 NOTE 4: Add m Power Level 3: Number of ante Assembly #	.r.p. levels also taking in the control of the cont	e.i.r.p. (dBm) antenna assemblies are e.i.r.p. (dBm) antenna assemblies are ed for this power level: e.i.r.p. (dBm)	Part number or model name supported for this power level. Part number or model name supported for this power level.

Page 12 of 85 Report No.: STR221031005001E n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined (host) equipment or test jig in case of plug-in devices: Details provided are for the: stand-alone equipment combined (or host) equipment test jig Supply Voltage AC mains State AC voltage V DC State DC voltage: DC 3.8V In case of DC, indicate the type of power source Internal Power Supply External Power Supply or AC/DC adapter: DC 5V Battery: DC 3.8V Other: o) Describe the test modes available which can facilitate testing: See clause 1.4 p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802.15.4™ [i.4], proprietary, etc.): Bluetooth® q) If applicable, the statistical analysis referred to in clause 5.4.1 q) (to be provided as separate attachment) r) If applicable, the statistical analysis referred to in clause 5.4.1 r) (to be provided as separate attachment) s) Geo-location capability supported by the equipment: Yes The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user t) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or clause 4.3.2.11.3): GFSK(CH00) = 0.94%

1.3 TEST CONDITIONS

A- 8	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	-10℃ ~ 40℃ Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.8V	1

Note:

- (2) The measurements are performed at the highest, middle, lowest available channels.

1.4 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing			
Bluetooth mode	Data rate	Modulation type	
BR	1Mbps	GFSK	
EDR	2Mbps	π/4-DQPSK	
EDR	3Mbps	8-DPSK	

Test Channel Frequencies Configuration					
Test Channel	EUT Channel	Test Frequency (MHz)			
Lowest	CH00	2402			
Middle	CH39	2441			
Highest	CH78	2480			

1.5	DESCRIPTION	OF TEST	CONDITIONS	

E-1 EUT

1.6 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	4G Tablet	Tab 16	N/A	EUT
	4.	% -	140	
		4 30		
	*			
_	4			4
			3	
	4	J 4		

Item	Shielded Type	Ferrite Core	Length	Note	
		*	3	,L	
	* 3		4		4
					,L

Note:

- (1)
- The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in \lceil Length \rfloor column. (2)

1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
Turn Table	EM	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.01	2023.03.31	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01	2023.03.31	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2022.06.17	2023.06.16	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.04.01	2023.03.31	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.04.01	2023.03.31	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
	TRANSMITTER PARAMETERS	
4.3.1.2	RF Output Power	Pass
4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
4.3.1.5	Hopping Frequency Separation	Pass
4.3.1.6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.1.7	Adaptivity	Not Applicable (See Note 1)
4.3.1.8	Occupied Channel Bandwidth	Pass
4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
l	RECEIVER PARAMETERS	
4.3.1.11	Receiver Spurious Emissions	Pass
4.3.1.12	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add.: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District,

Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.:9270A-1

CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively 95 % and 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Maximum measurement uncertainty

No.	Item	Uncertainty
1 .	Occupied Channel Bandwidth	± 5%
2	RF output Power,conducted	±1.5dB
3	Power Spectral Density, conducted	± 3dB
4	Unwanted emissions, conducted	± 3dB
5	All emissions,radiated	± 6dB
6	Temperature	±3°C
7	Humidity	± 3%
9	Time	± 5%

TRANSMITTER PARAMETERS

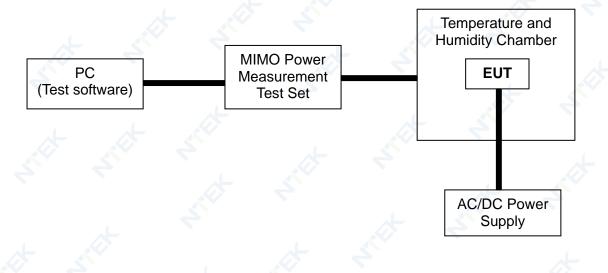
3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER

Refer to chapter 4.3.1.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER		
Condition	Limit	
☐ Non-adaptive frequency hopping systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.	
Adaptive frequency hopping systems	equal to or less than 20 dBm.	

3.2 TEST PROCEDURE


Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement		
	Radiated measurement	

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

3.5 TEST RESULTS

EUT:	4G Tablet	Model Name :	Tab 16
Temperature:	20°C	Relative Humidity:	55 %
Pressure:	1012 hPa	Test Voltage :	DC 3.8V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK	7	* <

Test data reference attachment

4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Refer to chapter 4.3.1.4.3 of ETSI EN 300 328 V2.2.2 (2019-07)

Accumulated Transmit Time			
Condition	Limit		
Non-adaptive frequency hopping systems	≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]		
Adaptive frequency hopping systems	≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]		
MINIMUM	FREQUENCY OCCUPATION TIME		
Condition	Limit		
Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not		
Adaptive frequency hopping systems	exceeding four times the product of the dwell time and the number of hopping frequencies in use.		
, C	OPPING SEQUENCE (S)		
Condition	Limit		
Non-adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum		
	Operating over a minimum of 70% of the Operating in the band 2.4 GHz to 2.4835 GHz		
hopping systems	≥15 hopping frequencies or 15/minimum		

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of ETSI EN 300 328 V2.2.2 (2019-07)

Me	easurement
	Radiated measurement

4.3 DEVIATION FROM TEST STANDARD

No deviation

4.4 TEST SETUP

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

4.5 TEST RESULTS

EUT:	4G Tablet	Model Name :	Tab 16
Temperature:	26°C	Relative Humidity	60 %
Pressure:	1012 hPa Test Voltage : DC 3.8V		
Test Mode : BT-GFSK/π/4-DQPSK /8-DPSK-Hopping Mode			

Test data reference attachment

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH Refer to chapter 4.3.1.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

		4
	OCCUPIED CHANNEL BA	NDWIDTH
.07	Condition	Limit
A	Il types of equipment	Shall fall completely within the band 2400 to 2483.5 MHz
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Me	easurement	
⊠Conducted n	neasurement	Radiated measu	urement
The setting of the Specti	rum Analyzer	300	
Center Frequency	The centre frequence	cy of the channel under test	
Frequency Span	2 x Nominal Channe	el Bandwidth	
Detector	RMS	A 30 3	
RBW	~ 1 % of the span w	ithout going below 1 %	
VBW	3 × RBW		4
Trace	Max hold	4	
Sweep time	1s		,L &

5.3 DEVIATION FROM TEST STANDARD

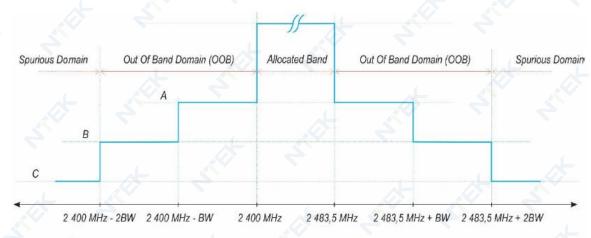
No deviation

5.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

5.5 TEST RESULTS

EUT:	4G Tablet	Model Name :	Tab 16
Temperature:	26°C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.8V
Test Mode :	Test Mode : BT-GFSK/π/4-DQPSK /8-DPSK-(CH00/CH78)		


Test data reference attachment

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition Limit		
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	

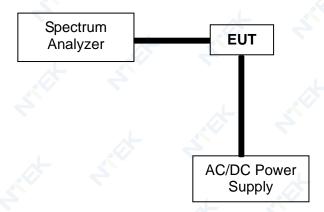
- A: -10 dBm/MHz e.i.r.p.
- B: -20 dBm/MHz e.i.r.p.
- C: Spurious Domain limits

BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

Figure 1: Transmit mask

6.2 TEST PROCEDURE

Refer to chapter 5.4.8.2of ETSI EN 300 328 V2.2.2 (2019-07)


Measurement				
	ment Radiated measurement			
The setting of the Spectrum Ana	alyzer			
Span	0Hz			
Filter Mode	Channel Filter			
Trace Mode	Clear/Write			
Trigger Mode	Video Trigger			
Detector	RMS			
Sweep Point / Sweep Mode	5000 / Continuous			
RBW / VBW	1MHz / 3MHz			

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

6.5 TEST RESULTS

EUT:	4G Tablet	Model Name :	Tab 16
Temperature:	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa Test Voltage : DC 3.8V		
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-(CH78)		

Test data reference attachment

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of ETSI EN 300 328 V2.2.2 (2019-07)

HOPPING FREQUENCY SEPARATION		
Condition	Limit	
☐ Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.	
Adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be 100 kHz.	

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Me	easurement
⊠Conducted n	neasurement	Radiated measurement
he setting of the Spect	rum Analyzer	
Center Frequency	Centre of the two adjacent hopping frequencies	
Frequency Span	Sufficient to see the complete power envelope of both hopping frequencies	
Detector	Max Peak	5. 5.
RBW	~ 1 % of the span	<i>.</i> ₽ ₹,
VBW	3 × RBW	<u> </u>
Trace	Max hold	
Sweep Time	Auto	

7.3 DEVIATION FROM TEST STANDARD

No deviation

7.4 TEST SETUP

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

7.5 TEST RESULTS

EUT:	4G Tablet	Model Name :	Tab 16
Temperature:	26°C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.8V
Test Mode :	ode : BT-GFSK/π/4-DQPSK /8-DPSK-(CH00/CH39/CH78)		

Test data reference attachment

Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz. 2.The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

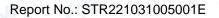
8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Refer to chapter 4.3.1.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED E	MISSIONS IN THE SPURIOUS DO	OMAIN
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

8.2 TEST PROCEDURE

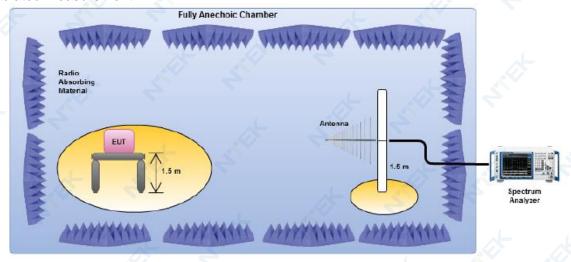
Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

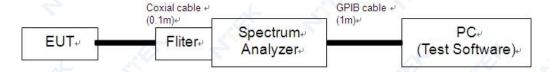

M M	easurement

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)
VBW	300K(<1GHz) / 3M(>1GHz)

8.3 DEVIATION FROM TEST STANDARD


No deviation



8.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

54%

Relative Humidity

8.5 TEST RESULTS (Radiated measurement)

BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)

EUT: 4G Tablet Model Name: Tab 16

Pressure: 1010 hPa Test Power: DC 3.8V

Test Mode : BT-GFSK (CH00)

24 °C

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Roman
V	38.89	-72.32	10.77	-61.55	-36	-25.55	peak
V	97.128	-74.93	11.26	-63.67	-54	-9.67	peak
V	212.717	-72.56	11.22	-61.34	-54	-7.34	peak
V	249.534	-75.1	11.19	-63.91	-36	-27.91	peak
V	514.785	-75.9	9.53	-66.37	-54	-12.37	peak
Н	38.815	-73.09	10.45	-62.64	-36	-26.64	peak
Н	97.58	-73.98	10.20	-63.78	-54	-9.78	peak
Н	211.177	-70.76	10.83	-59.93	-54	-5.93	peak
Н	451.049	-72.02	_ 11.11 <	-60.91	-36	-24.91	peak
Н	522.346	-71.71	11.03	-60.68	-54	-6.68	peak

Remark:

Temperature:

1. Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.

2. All the modes had been tested, but only the worst data recorded in the report.

ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

Report No.: STR221031005001E

EUT:	4G Tablet	Model Name :	Tab 16
Temperature:	24 ℃	Relative Humidity	54%
Pressure:	1010 hPa	Test Power :	DC 3.8V
Test Mode :	GFSK (CH00/CH39/CH78)	7	* 4

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
	4	ор	eration frequ	uency:2402	<i>*</i>		- 2
V	2064.137	-52.78	10.22	-42.56	-30	-12.56	peak
V	5161.064	-56.47	9.68	-46.79	-30	-16.79	peak
V	2929.968	-53.56	10.95	-42.61	-30	-12.61	peak
V	3869.534	-56.02	9.85	-46.17	-30	-16.17	peak
Н	2218.09	-56.26	10.50	-45.76	-30	-15.76	peak
Н	3804.88	-54.57	11.22	-43.35	-30	-13.35	peak
Н	2555.505	-52.69	10.13	-42.56	-30	-12.56	peak
Н	5412.432	-54.71	10.38	-44.33	-30	-14.33	peak
	•	ор	eration frequ	uency:2441			
V	2607.309	-55.46	10.17	-45.29	-30	-15.29	peak
V	4523.143	-54.59	10.22	-44.37	-30	-14.37	peak
V	2735.184	-54.18	10.42	-43.76	-30	-13.76	peak
V	4433.255	-55.19	10.79	-44.40	-30	-14.40	peak
Н	2206.534	-56.17	9.82	-46.35	-30	-16.35	peak
Н	3013.187	-55.89	9.57	-46.32	-30	-16.32	peak
Н	2044.078	-54.69	9.66	-45.03	-30	-15.03	peak
H_	3364.63	-52.72	11.33	-41.39	-30	-11.39	peak
		•	eration frequ	uency:2480			
V	2641.447	-54.37	10.13	-44.24	-30	-14.24	peak
V	5744.488	-52.02	9.68	-42.34	-30	-12.34	peak
V	2984.565	-55.86	10.78	-45.08	-30	-15.08	peak
V	4523.404	-53.65	10.82	-42.83	-30	-12.83	peak
Н	2144.011	-56.91	11.38	-45.53	-30	-15.53	peak
Н	5379.036	-55.68	10.36	-45.32	-30	-15.32	peak
Н	2591.067	-57.07	10.60	-46.47	-30	-16.47	peak
Н	3258.756	-57.9	10.51	-47.39	-30	-17.39	peak

Remark:

- 1. Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
- 2. All the modes had been tested, but only the worst data recorded in the report.

8.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

9. RECEIVER SPURIOUS EMISSIONS

9.1 LIMITS OF RECEIVER SPURIOUS RADIATION

Refer to chapter 4.3.1.11.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS					
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth			
30 MHz ~ 1 GHz	-57dBm	100KHz			
1 GHz ~ 12.75 GHz	-47dBm	1MHz			

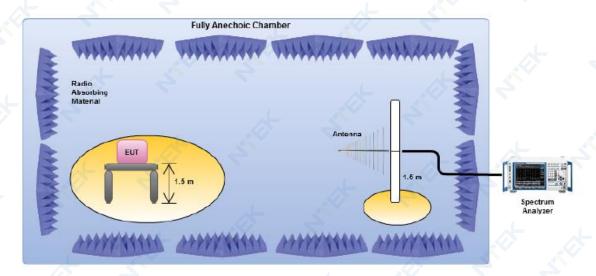
9.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

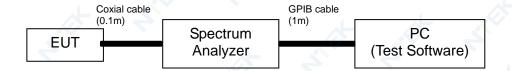
M	easurement
	⊠Radiated measurement
<u></u>	Zi,

The setting of the Spectrum Analyzer

RBW	100K(<1GHz) / 1M(>1GHz)	*	
VBW	300K(<1GHz) / 3M(>1GHz)		


9.3 DEVIATION FROM TEST STANDARD

No deviation



9.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

9.5 TEST RESULTS (Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)

EUT:	4G Tablet	Model Name :	Tab 16
Temperature:	24 ℃	Relative Humidity	54%
Pressure:	1010 hPa	Test Power :	DC 3.8V
Test Mode :	GFSK(CH00)		

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	3
V	43.096	-77.72	12.25	-65.47	-57	-8.47	peak
_ V	89.252	-80.67	16.13	-64.54	-57	-7.54	peak
V	219.97	-82.79	14.05	-68.74	-57	-11.74	peak
V	446.722	-83.02	17.01	-66.01	-57	-9.01	peak
V	613.197	-84.28	15.51	-68.77	-57	-11.77	peak
Н	46.037	-82.6	14.62	-67.98	-57	-10.98	peak
Н	90.825	-82.25	17.87	-64.38	-57	-7.38	peak
H	226.673	-79.08	16.70	-62.38	-57	-5.38	peak
Н	397.244	-80.31	15.79	-64.52	-57	-7.52	peak
Н	523.829	-80.79	17.54	-63.25	-57	-6.25	peak

Remark:

- Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 36 of 85

RX ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

Report No.: STR221031005001E

EUT:	4G Tablet	Model Name :	Tab 16
Temperature:	24 ℃	Relative Humidity	54%
Pressure:	1010 hPa	Test Power :	DC 3.8V
Test Mode :	GFSK (CH00)		2

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	/
V	2535.937	-81.43	10.46	-70.97	-47	-23.97	peak
V	4059.071	-83.89	10.21	-73.68	-47	-26.68	peak
V	2941.501	-81.78	10.57	-71.21	-47	-24.21	peak
V	5122.545	-79.52	16.88	-62.64	-47	-15.64	peak
Н	2420.126	-80.84	10.29	-70.55	-47	-23.55	peak
Н	5335.567	-78.2	11.29	-66.91	-47	-19.91	peak
Н	2395.915	-77.16	6.79	-70.37	-47	-23.37	peak
Н	3512.84	-83.21	15.06	-68.15	-47	-21.15	peak

9.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

10. RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

☐ Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504	-34	CW
(-139 dBm + 10 x log₁₀(OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524	4, 4,	
(SEE HOLE S)	2584 2574	4	

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Blocking parameters	receiver category 2 equi	pment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB)	2 380	-34	CW
or (-74 dBm + 10 dB) whichever is less	2 504		1 x S
(see note 2)	2 300	*	
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	cw
or (-74 dBm + 20 dB) whichever is less	2 504	*	
(see note 2)	2 300	* *	
(11111111111111111111111111111111111111	2 584	1 4 4 A	*

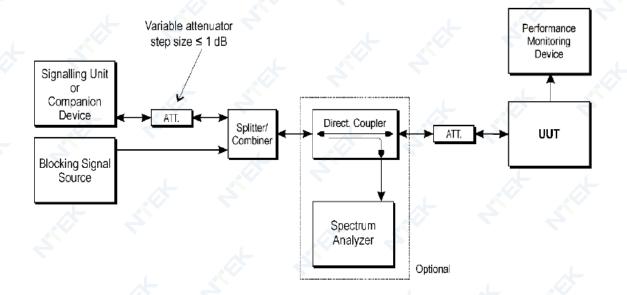
NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

10.3 TEST PROCEDURE

Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)


Measurement
Radiated measurement

10.4 DEVIATION FROM TEST STANDARD

No deviation

10.5 TEST SETUP

10.6 TEST RESULTS

EUT:	4G Tablet	Model Name :	Tab 16
Temperature:	24 ℃	Relative Humidity	54%
Pressure:	1010 hPa	Test Power :	DC 3.8V
Test Mode :	GFSK Hopping mode (RX)		* 2

receiver category 2

	30.7 =		
Blocking signal	Blocking signal		PER
Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
			%
2 380	<i>∞ ←</i> .	0.37%	/10
2 504	24	0.54%	≤10
2 300	-34	0.23%	<10
2 584		0.26%	≤10
	Blocking signal Frequency (MHz) 2 380 2 504 2 300	Frequency (MHz) power(dBm) (see note 3) 2 380 2 504 2 300 -34	Blocking signal power(dBm) (see note 3) PER %

EUT:	4G Tablet	Model Name :	Tab 16	
Temperature:	24 ℃	Relative Humidity	54%	
Pressure:	1010 hPa	Test Power :	DC 3.8V	
Test Mode : BT-∏/4-DQPSK Hopping mode (RX)				

receiver category 2

Wanted signal mean power from companion device (dBm)	Blocking signal Frequency (MHz)	Blocking signal power(dBm) (see note 3)	PER %	PER Limit
(see notes 1 and 3)		*		%
\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)	2 380		0.61%	≤10
-68.25	2 504	-34	0.80%	210
	2 300		0.26%	≤10
	2 584	×	0.28%	≥10

EUT: 4G Tablet Model Name: Tab 16

Temperature: 24 °C Relative Humidity 54%

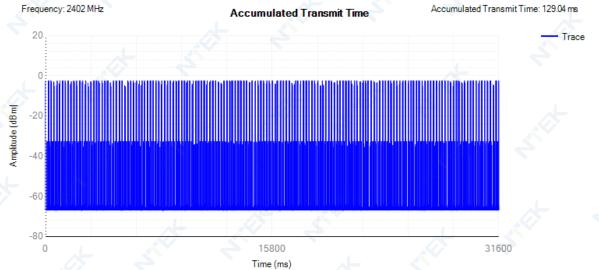
Pressure: 1010 hPa Test Power: DC 3.8V

Test Mode: BT-8-DPSK Hopping mode (RX)

receiver category 2

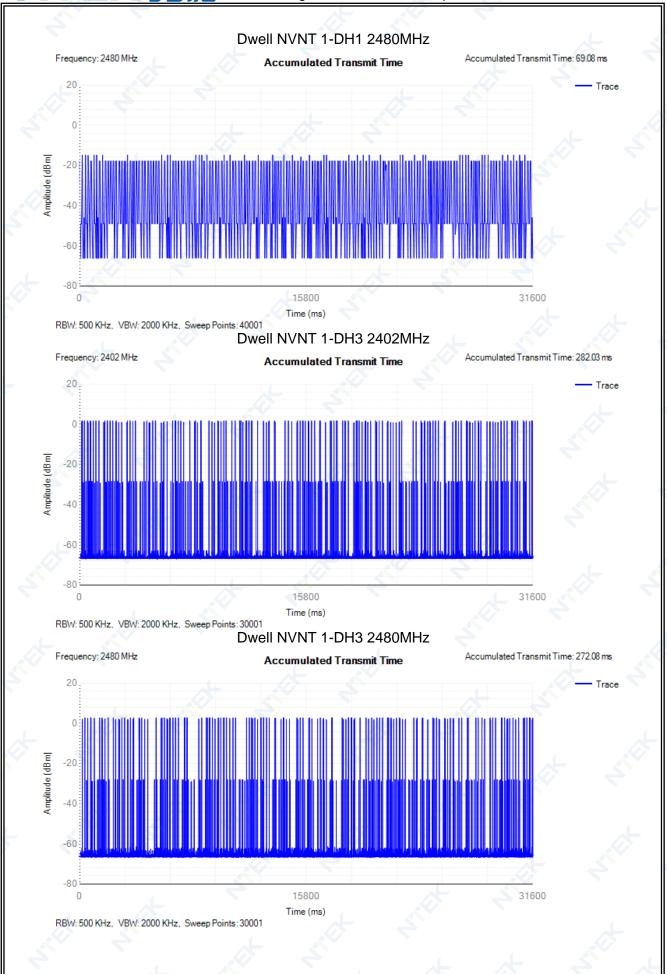
Wanted signal mean power	Blocking signal	Blocking signal	4.	PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)				%
-68.22	2 380	-34	0.48%	≤10
	2 504		0.14%	
	2 300		0.62%	/10
*	2 584		0.69%	≤10

Note: (1) The above results were obtained from laboratory tests.

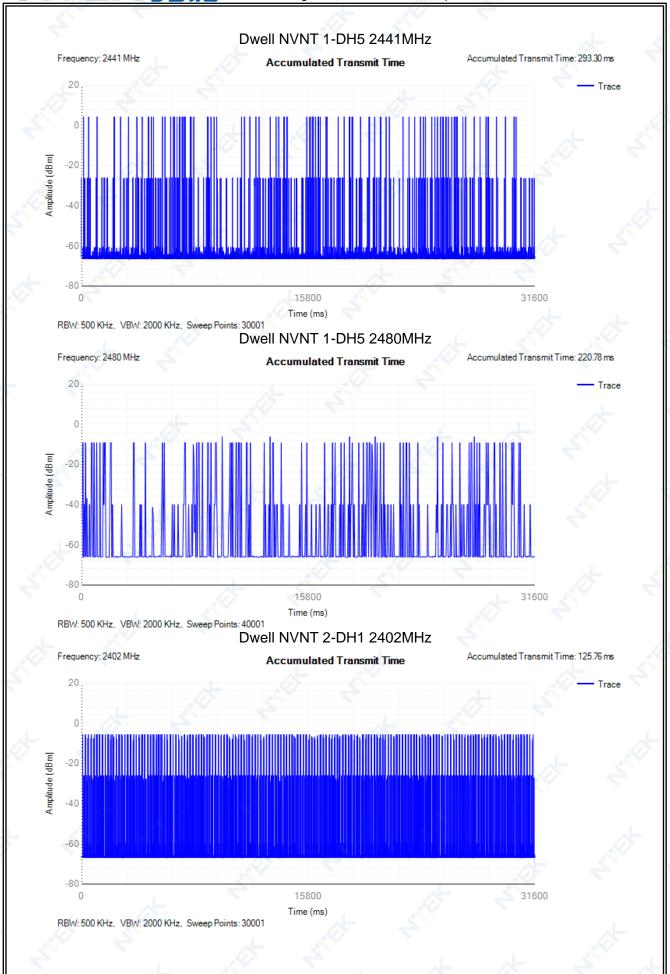


11. TEST RESULTS

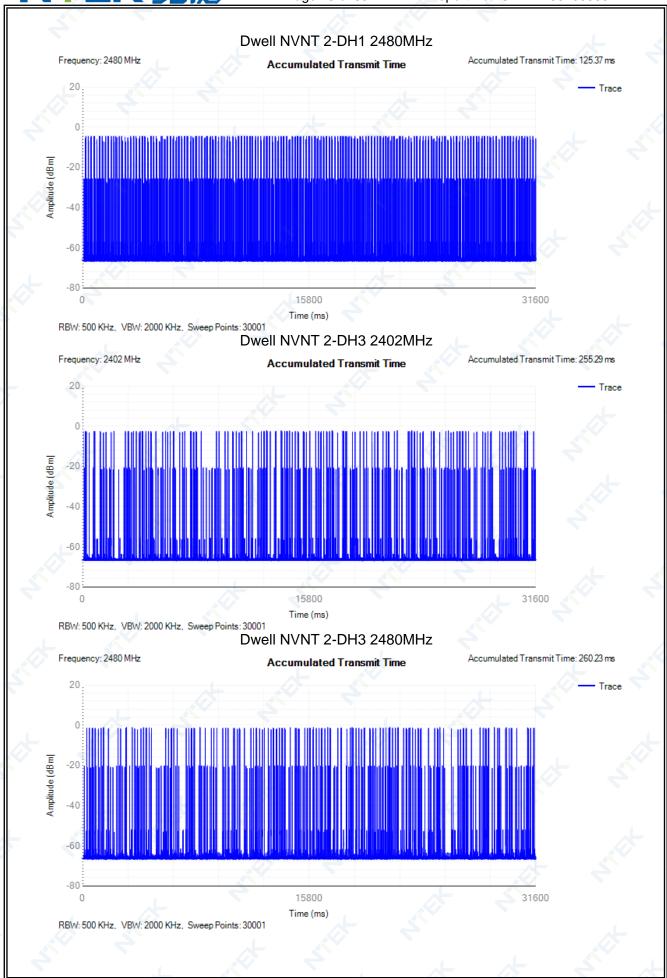
11.1 ACCUMULATED TRANSMIT TIME

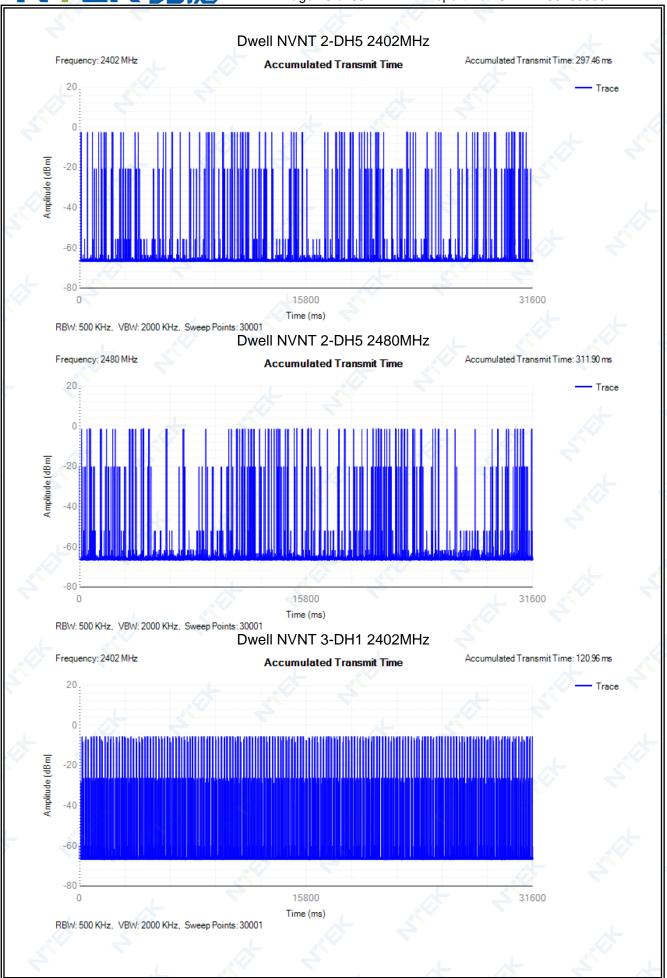

Condition	Mode	Frequency	Accumulated	Limit	Sweep	Burst	Verdict
		(MHz)	Transmit Time (ms)	(ms)	Time (ms)	Number	
NVNT	1-DH1	2402	129.042	400	31600	321	Pass
NVNT	1-DH1	2480	69.084	400	31600	171	Pass
NVNT	1-DH3	2402	282.03	400	31600	170	Pass
NVNT	1-DH3	2480	272.076	400	31600	164	Pass
NVNT	1-DH5	2441	293.304	400	31600	101	Pass
NVNT	1-DH5	2480	220.78	400	31600	76	Pass
NVNT	2-DH1	2402	125.76	400	31600	320	Pass
NVNT	2-DH1	2480	125.367	400	31600	319	Pass
NVNT	2-DH3	2402	255.285	400	31600	155	Pass
NVNT	2-DH3	2480	260.226	400	31600	158	Pass
NVNT	2-DH5	2402	297.464	400	31600	103	Pass
NVNT	2-DH5	2480	311.904	400	31600	108	Pass
NVNT	3-DH1	2402	120.96	400	31600	320	Pass
NVNT	3-DH1	2480	126.153	400	31600	321	Pass
NVNT	3-DH3	2402	200.49	400	31600	123	Pass
NVNT	3-DH3	2480	271.26	400	31600	165	Pass
NVNT	3-DH5	2402	304.08	400	31600	105	Pass
NVNT	3-DH5	2480	225.264	400	31600	78	Pass

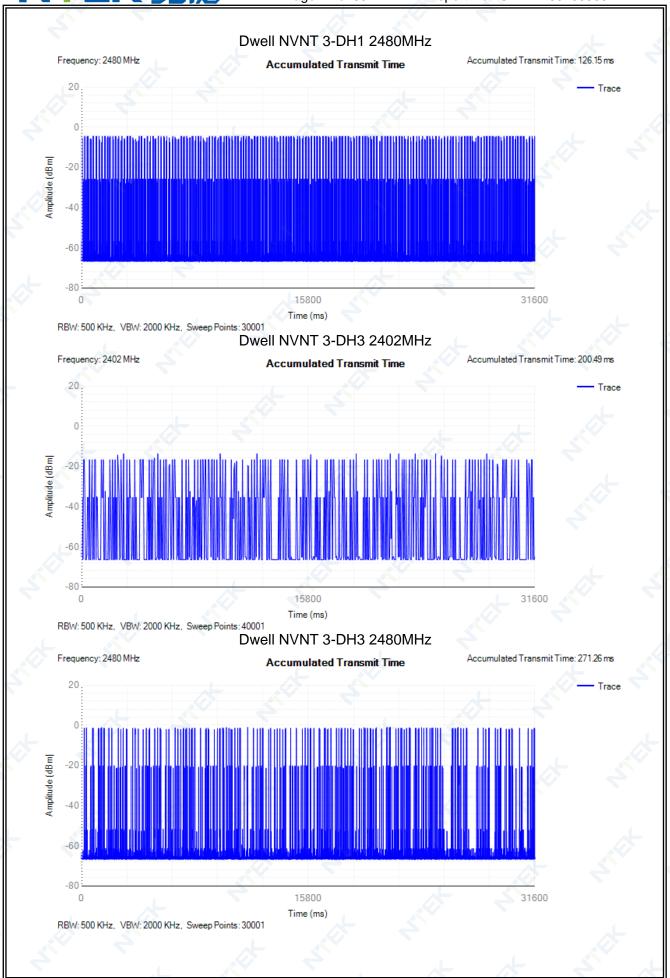
Dwell NVNT 1-DH1 2402MHz

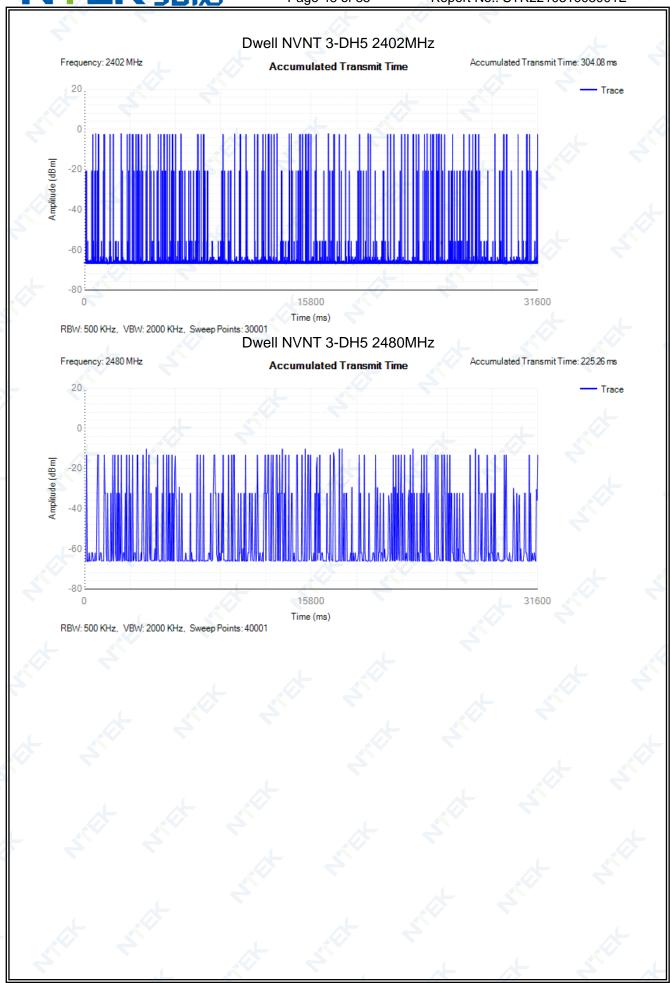


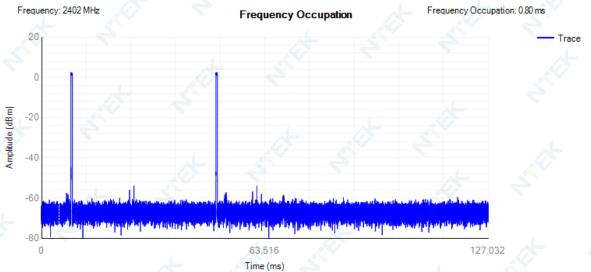
RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

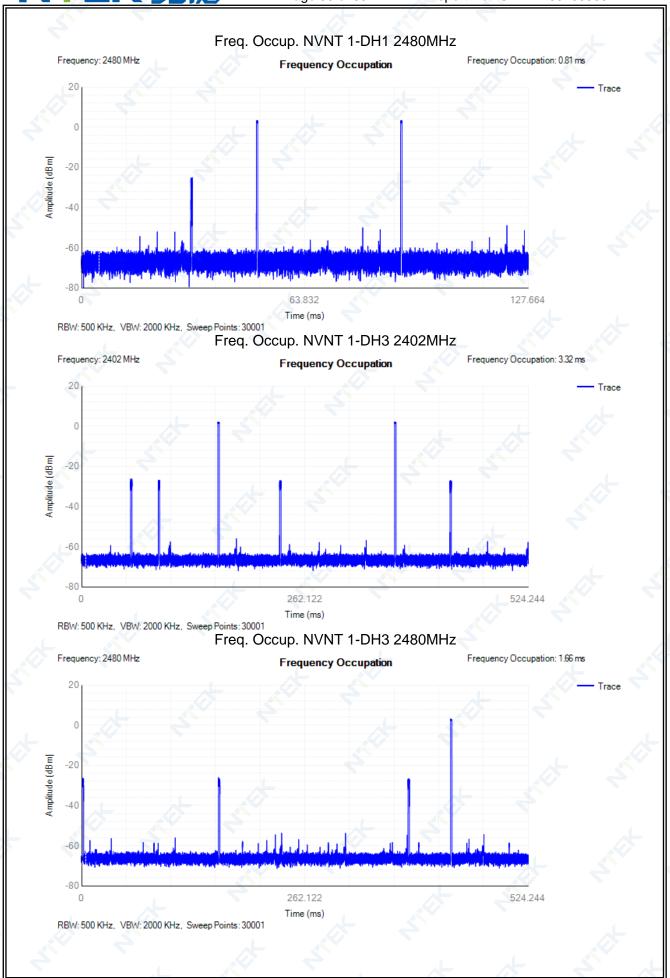


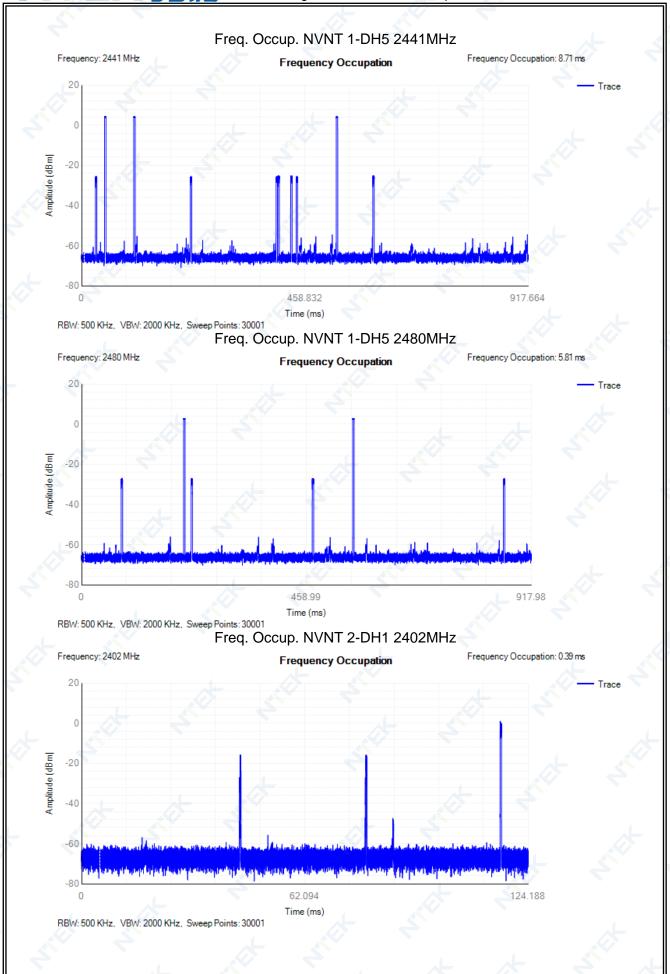


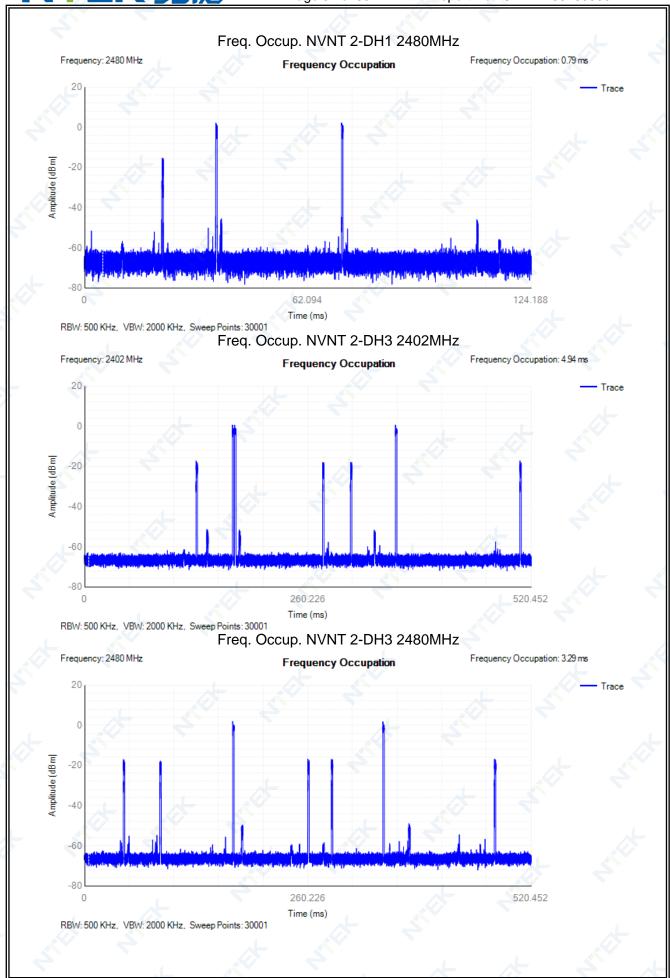


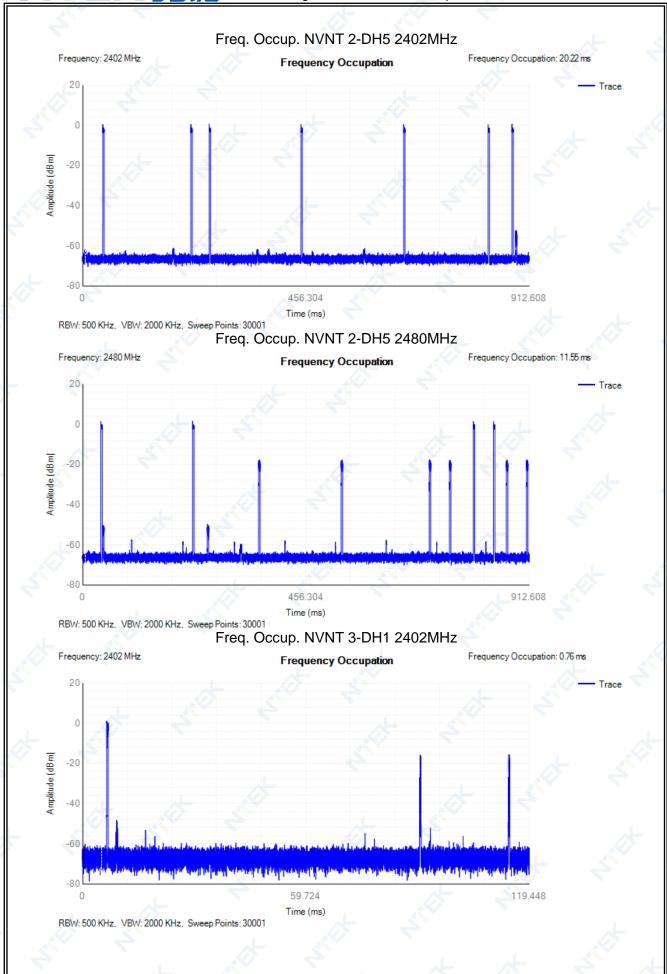


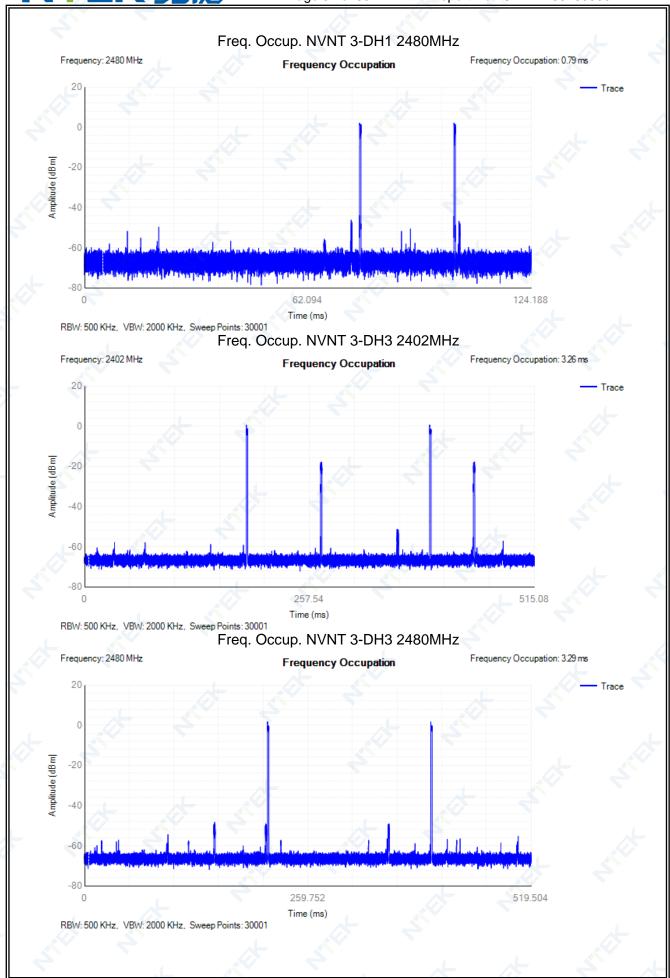


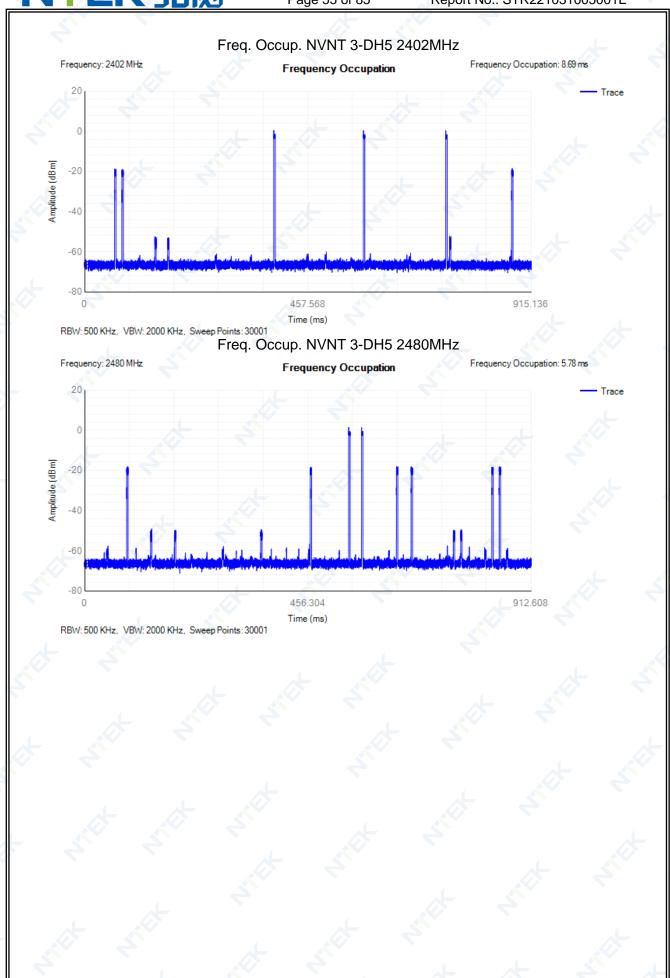

ON

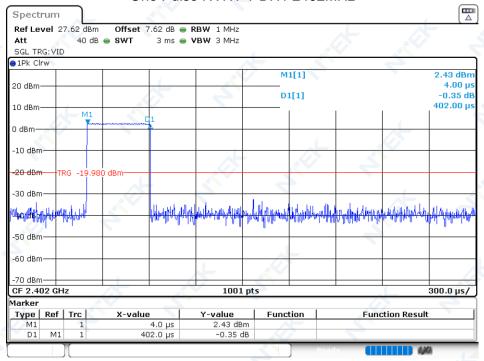

Condition	Mode	Frequency	Frequency	Limit	Sweep	Burst	Verdict
		(MHz)	Occupation (ms)	(ms)	Time (ms)	Number	
NVNT	1-DH1	2402	0.804	0	127.032	2	Pass
NVNT	1-DH1	2480	0.808	0	127.664	2	Pass
NVNT	1-DH3	2402	3.318	0	524.244	2	Pass
NVNT	1-DH3	2480	1.659	0	524.244	1	Pass
NVNT	1-DH5	2441	8.712	0	917.664	3	Pass
NVNT	1-DH5	2480	5.81	0	917.98	2	Pass
NVNT	2-DH1	2402	0.393	0	124.188	1	Pass
NVNT	2-DH1	2480	0.786	0	124.188	2	Pass
NVNT	2-DH3	2402	4.941	0	520.452	3	Pass
NVNT	2-DH3	2480	3.294	0	520.452	2	Pass
NVNT	2-DH5	2402	20.216	0	912.608	7	Pass
NVNT	2-DH5	2480	11.552	0	912.608	4	Pass
NVNT	3-DH1	2402	0.756	0	119.448	2	Pass
NVNT	3-DH1	2480	0.786	0	124.188	2	Pass
NVNT	3-DH3	2402	3.26	0	515.08	2	Pass
NVNT	3-DH3	2480	3.288	0	519.504	2	Pass
NVNT	3-DH5	2402	8.688	0	915.136	3	Pass
NVNT	3-DH5	2480	5.776	0	912.608	2	Pass

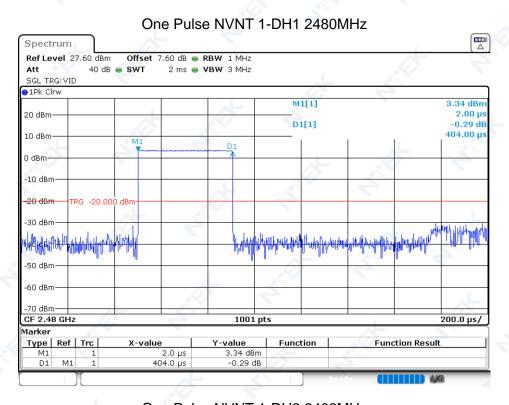

Freq. Occup. NVNT 1-DH1 2402MHz

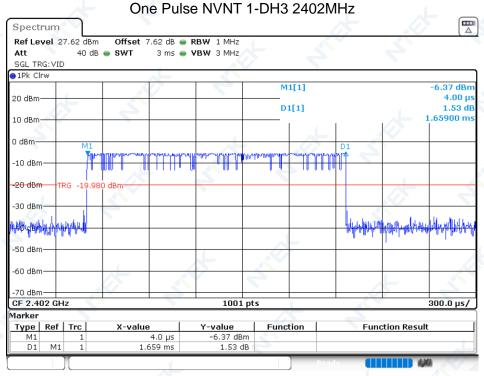



RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

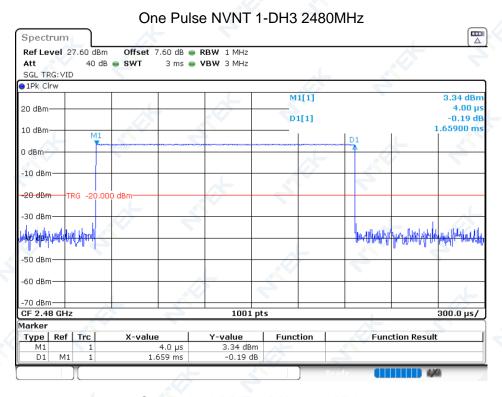


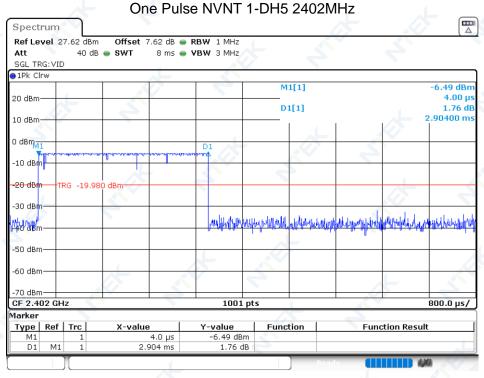



11.3 ONE PULSE DWELL TIME


Condition	Mode	Frequency (MHz)	Pulse Time (ms)
NVNT	1-DH1	2402	0.402
NVNT	1-DH1	2480	0.404
NVNT	1-DH3	2402	1.659
NVNT	1-DH3	2480	1.659
NVNT	1-DH5	2402	2.904
NVNT	1-DH5	2480	2.905
NVNT	2-DH1	2402	0.393
NVNT	2-DH1	2480	0.393
NVNT	2-DH3	2402	1.647
NVNT	2-DH3	2480	1.647
NVNT	2-DH5	2402	2.888
NVNT	2-DH5	2480	2.888
_NVNT _	3-DH1	2402	0.378
NVNT	3-DH1	2480	0.393
NVNT	3-DH3	2402	1.63
NVNT	3-DH3	2480	1.644
NVNT	3-DH5	2402	2.896
NVNT	3-DH5	2480	2.888

One Pulse NVNT 1-DH1 2402MHz





Spectrum

SGL TRG: VID 1Pk Clrw

10 dBm 0 dBm

-70 dBm CF 2.48 GHz

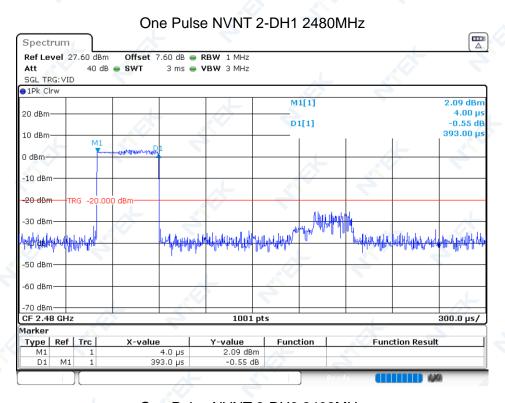
Marker

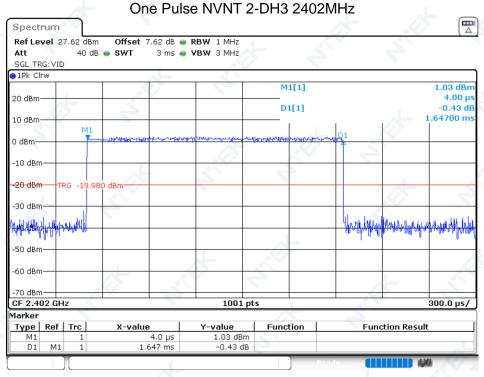
M1 D1

Type | Ref | Trc |

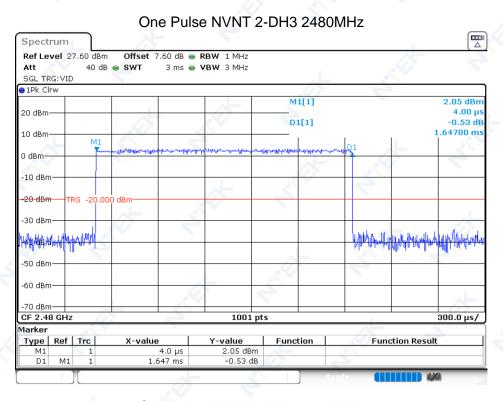
One Pulse NVNT 1-DH5 2480MHz Ref Level 27.60 dBm Offset 7.60 dB @ RBW 1 MHz 40 dB 🅌 SWT 5 ms 🍅 **VBW** 3 MHz M1[1] 5.00 µ D1[1] . -0.16 dB .90500 ms 1001 pts 500.0 μs/

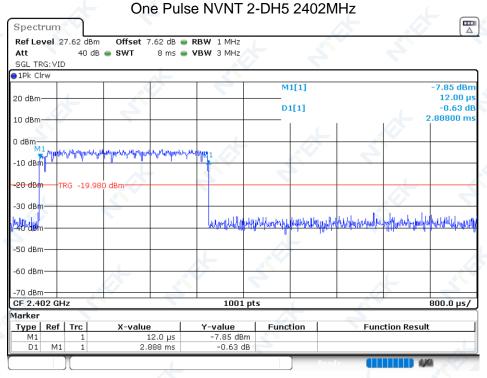
Report No.: STR221031005001E

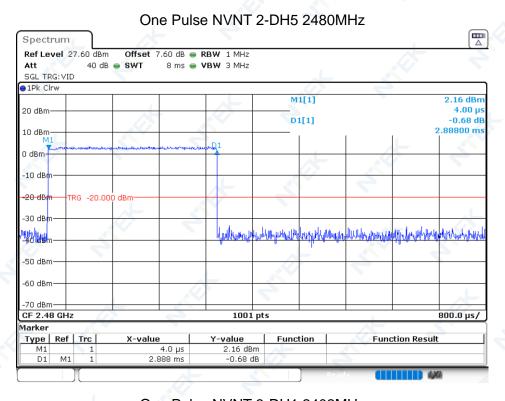

One Pulse NVNT 2-DH1 2402MHz Spectrum Ref Level 27.62 dBm Offset 7.62 dB @ RBW 1 MHz 40 dB 🅌 SWT 3 ms 🌞 VBW 3 MHz Att SGL TRG: VID ●1Pk Clrw M1[1] 1.14 dBn D1[1] -0.53 dB 393.00 µs -10 dBm -20 d0m -50 dBm -60 dBm -70 dBm-CF 2.402 GHz 1001 pts 300.0 µs/ Marker Type Ref Trc **Y-value** 1.14 dBm -0.53 dB Function **Function Result** X-value 4.0 µs 393.0 µs

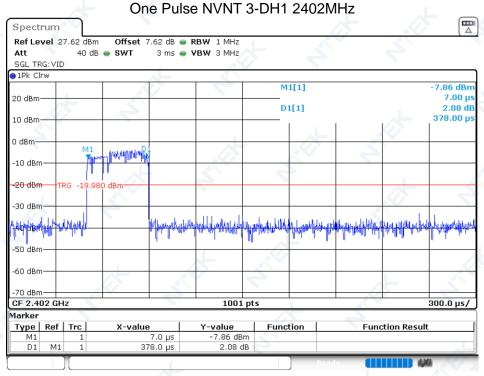

value

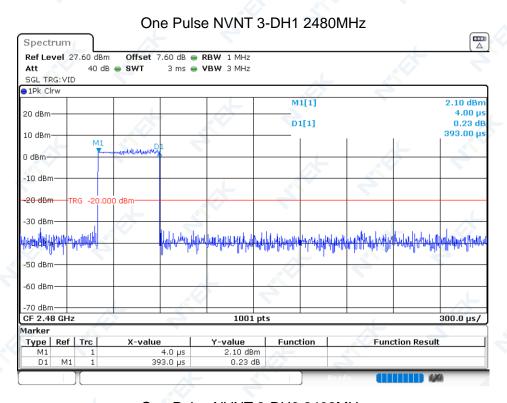
3.35 dBm -0.16 dB

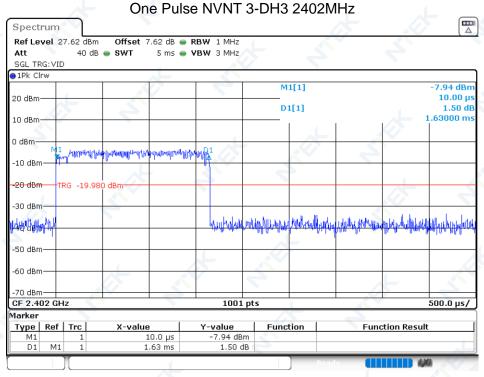

5.0 µs 2.905 ms

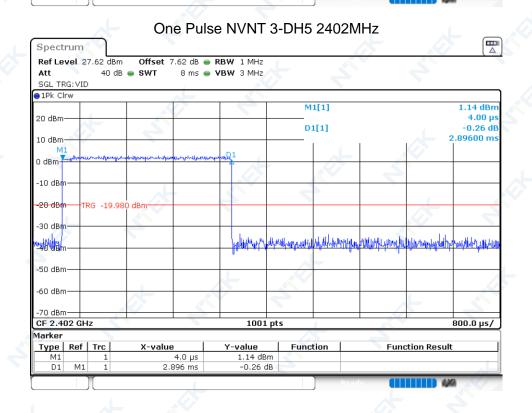


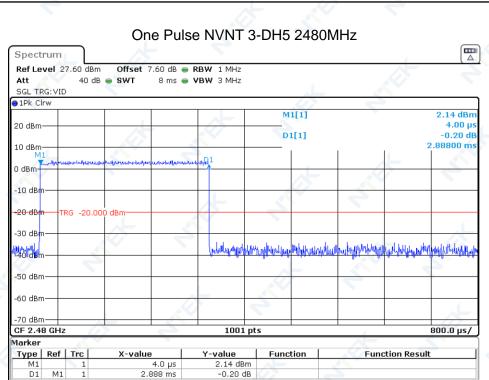






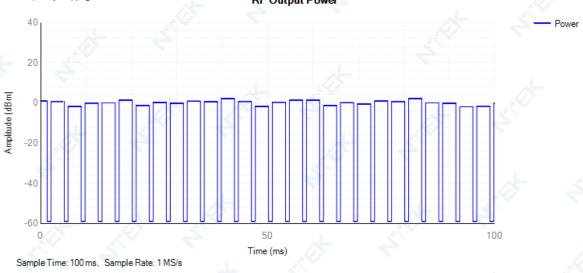


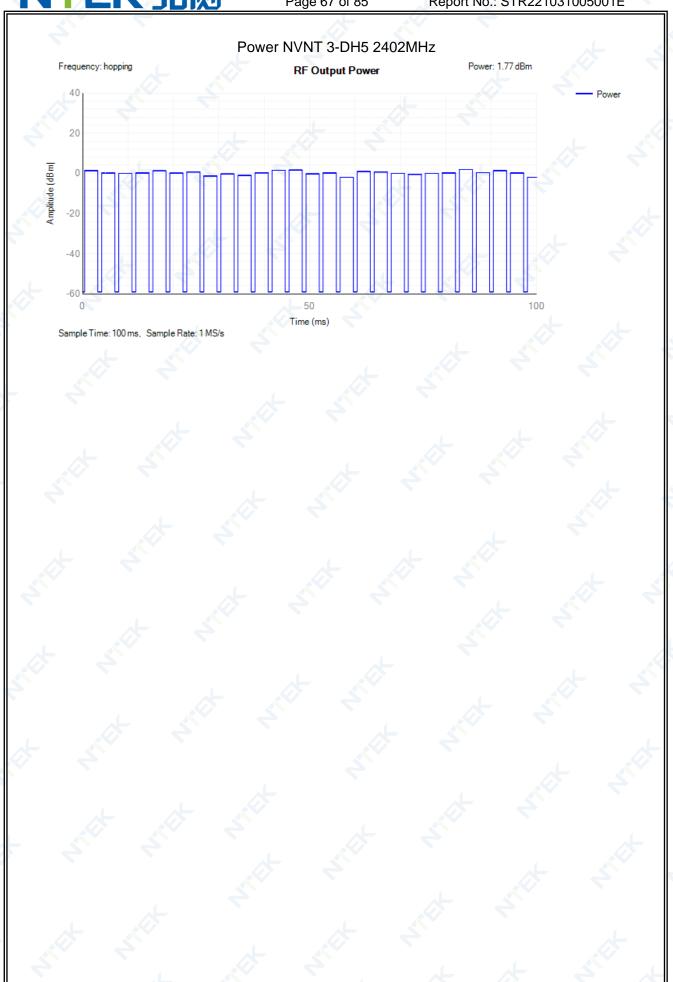




M1 D1

One Pulse NVNT 3-DH3 2480MHz Spectrum Ref Level 27.60 dBm Offset 7.60 dB @ RBW 1 MHz 40 dB 🅌 SWT 3 ms 🍅 **VBW** 3 MHz SGL TRG: VID 1Pk Clrw M1[1] 4.00 µ D1[1] 0.36 dB .64400 m 10 dBm-0 dBm--70 dBm CF 2.48 GHz 1001 pts 300.0 µs/ Marker Type | Ref | Trc | value 4.0 μs 1.644 ms 2.05 dBm 0.36 dB





11.4 RF OUTPUT POWER									
Condition Mode		Frequency	Max Burst RMS	Burst	Max EIRP	Limit	Verdict		
.∐		(MHz)	Power (dBm)	Number	(dBm)	(dBm)			
NVNT	1-DH5	hopping	3.59	27	3.49	20	Pass		
NVNT	2-DH5	hopping	2.13	28	2.03	20	Pass		
NVNT	3-DH5	hopping	1.87	27	1.77	20	Pass		
NVLT	1-DH5	hopping	2.91	28	2.81	20	Pass		
NVLT	2-DH5	hopping	1.54	27	1.44	20	Pass		
NVLT	3-DH5	hopping	1.3	27	1.2	20	Pass		
NVHT	1-DH5	hopping	2.88	28	2.78	20	Pass		
NVHT	2-DH5	hopping	1.44	27	1.34	20	Pass		
NVHT	3-DH5	hopping	1.1	27	1	20	Pass		

Power NVNT 1-DH5 2402MHz Frequency: hopping RF Output Power Power: 3.49 dBm Power 2.03 dBm Power Power

3-DH5

NVNT

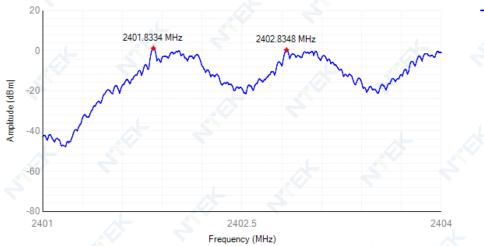
Report No.: STR221031005001E

0.8481

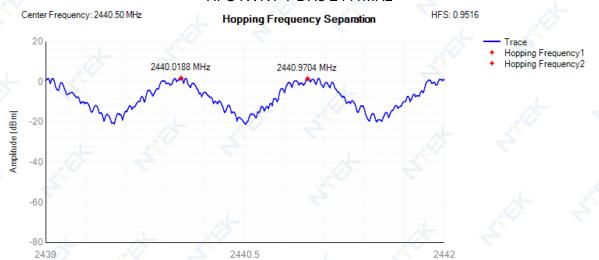
HFS: 1.0014

11.5 HOPPING FREQUENCY SEPARATION									
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict			
		(MHz)	(MHz)	(MHz)	(MHz)				
NVNT	1-DH5	2401.8334	2402.8348	1.0014	0.1	Pass			
NVNT	1-DH5	2440.0188	2440.9704	0.9516	0.1	Pass			
NVNT	1-DH5	2479.0548	2480.0538	0.999	0.1	Pass			
NVNT	2-DH5	2402.1601	2403.0232	0.8631	0.1	Pass			
NVNT	2-DH5	2441.023	2442.0226	0.9996	0.1	Pass			
NVNT	2-DH5	2479.023	2480.0037	0.9807	0.1	Pass			
NVNT	3-DH5	2402.0224	2403.1606	1.1382	0.1	Pass			
NIV/NIT	3-DH5	2441 0146	2442 016	1 0014	0.1	Pass			

2480.0076

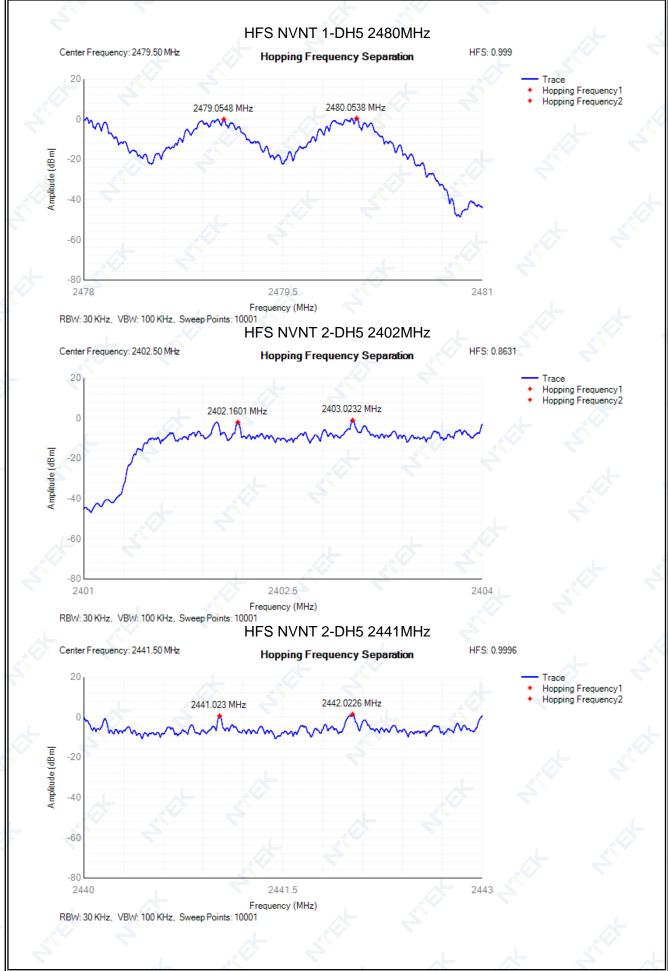

Center Frequency: 2402.50 MHz HFS NVNT 1-DH5 2402MHz Hopping Frequency Separation

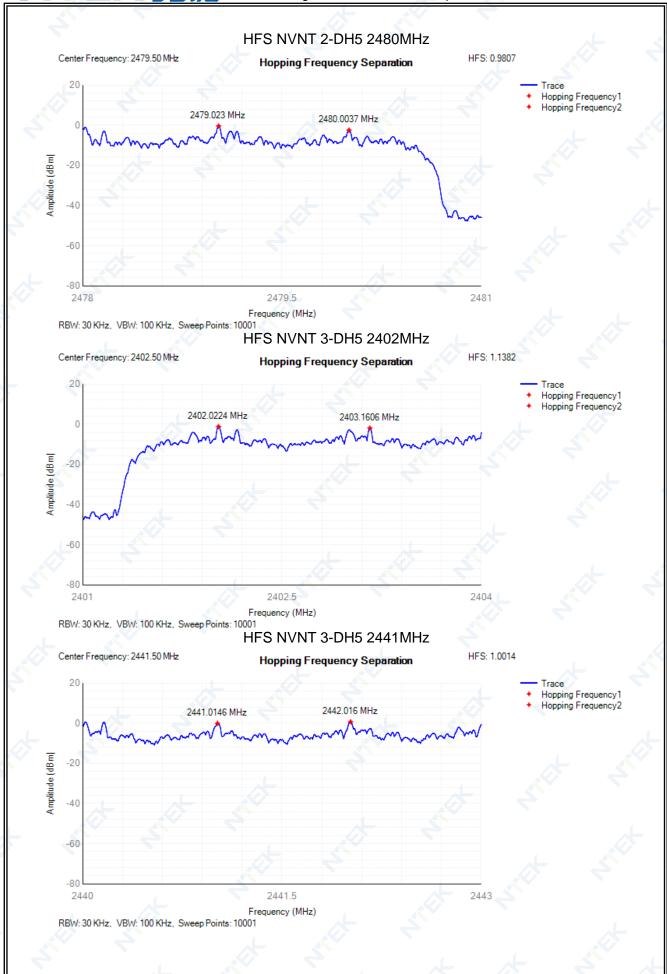
2479.1595


0.1

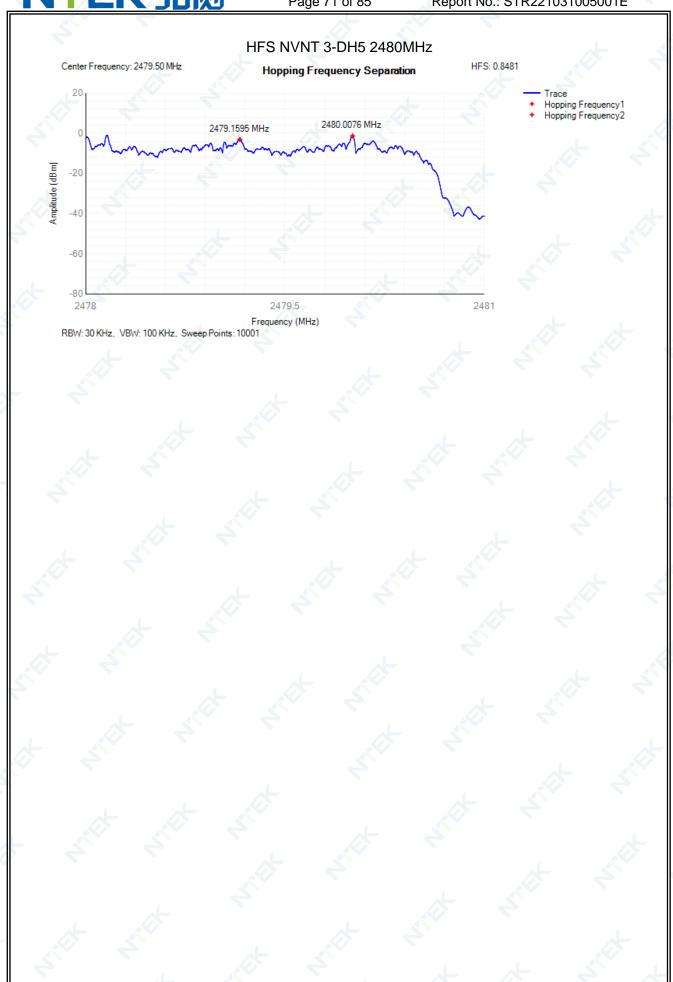
Pass

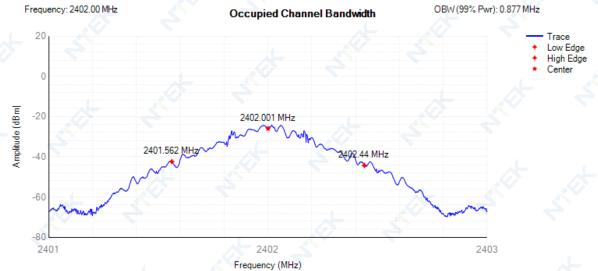
RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001


HFS NVNT 1-DH5 2441MHz

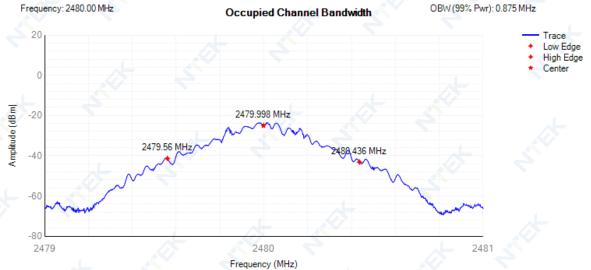


Frequency (MHz) RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001

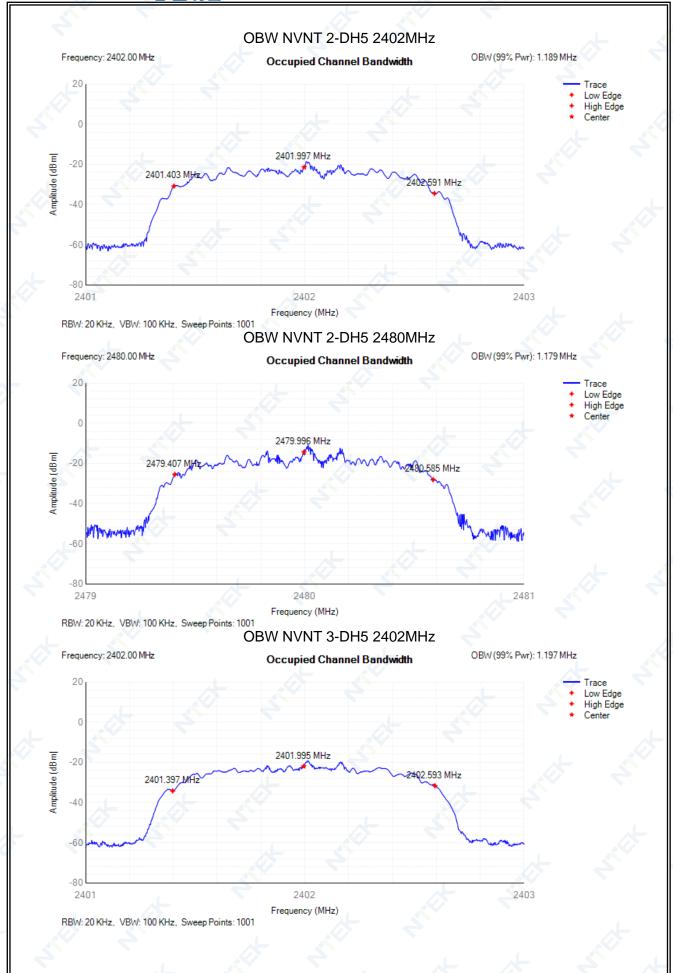




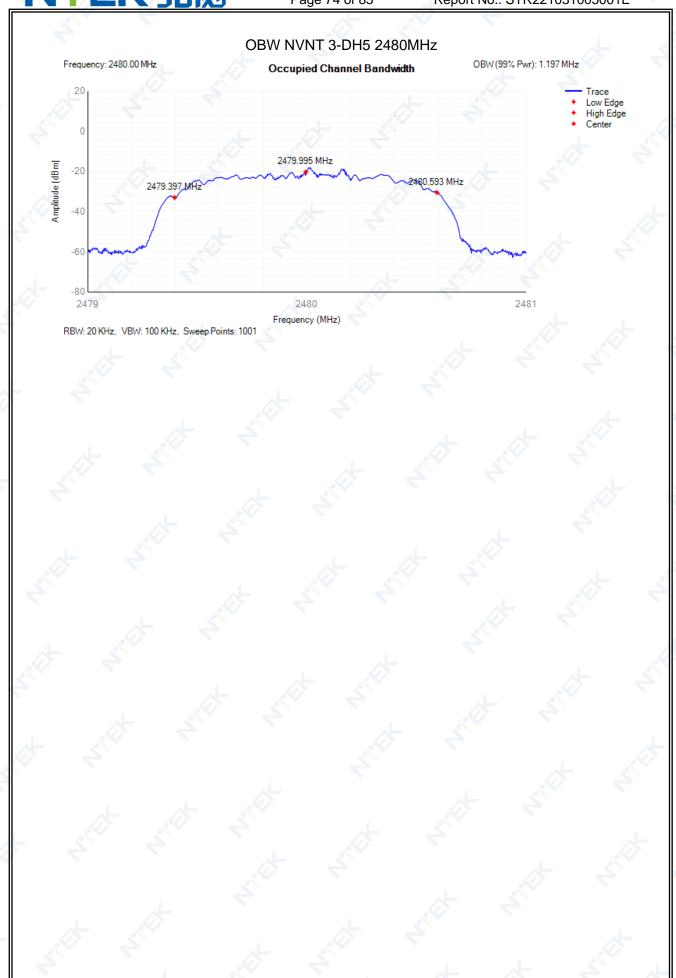
11.6 OCCUPIED CHANNEL BANDWIDTH


Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
NVNT	1-DH5	2402	2402.001	0.877	2401.562	2402.44	2400 - 2483.5MHz	Pass
NVNT	1-DH5	2480	2479.998	0.875	2479.56	2480.436	2400 - 2483.5MHz	Pass
NVNT	2-DH5	2402	2401.997	1.189	2401.403	2402.591	2400 - 2483.5MHz	Pass
NVNT	2-DH5	2480	2479.996	1.179	2479.407	2480.585	2400 - 2483.5MHz	Pass
NVNT	3-DH5	2402	2401.995	1.197	2401.397	2402.593	2400 - 2483.5MHz	Pass
NVNT	3-DH5	2480	2479.995	1.197	2479.397	2480.593	2400 - 2483.5MHz	Pass

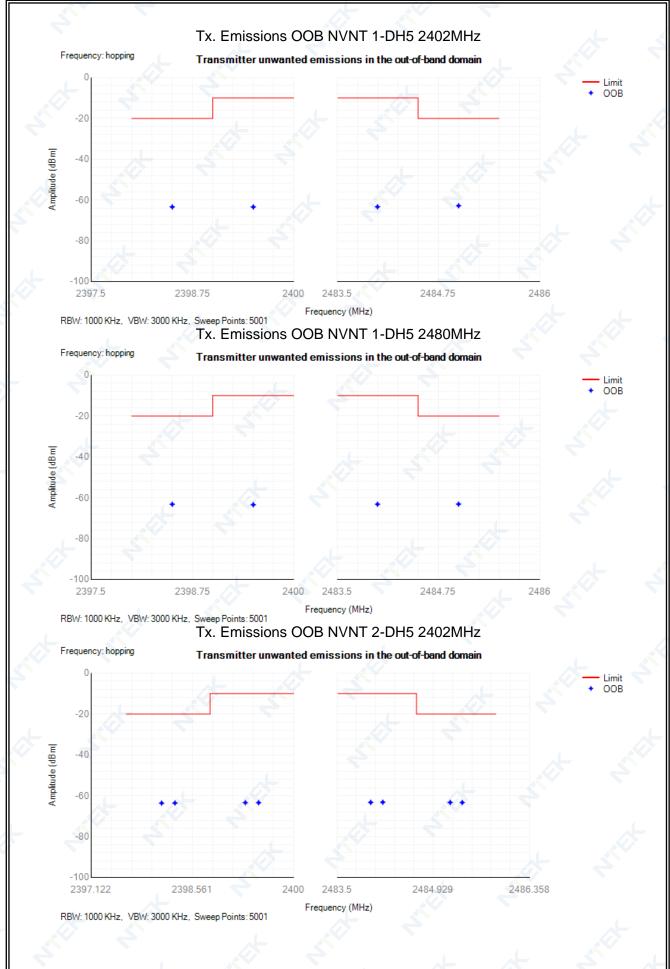
OBW NVNT 1-DH5 2402MHz

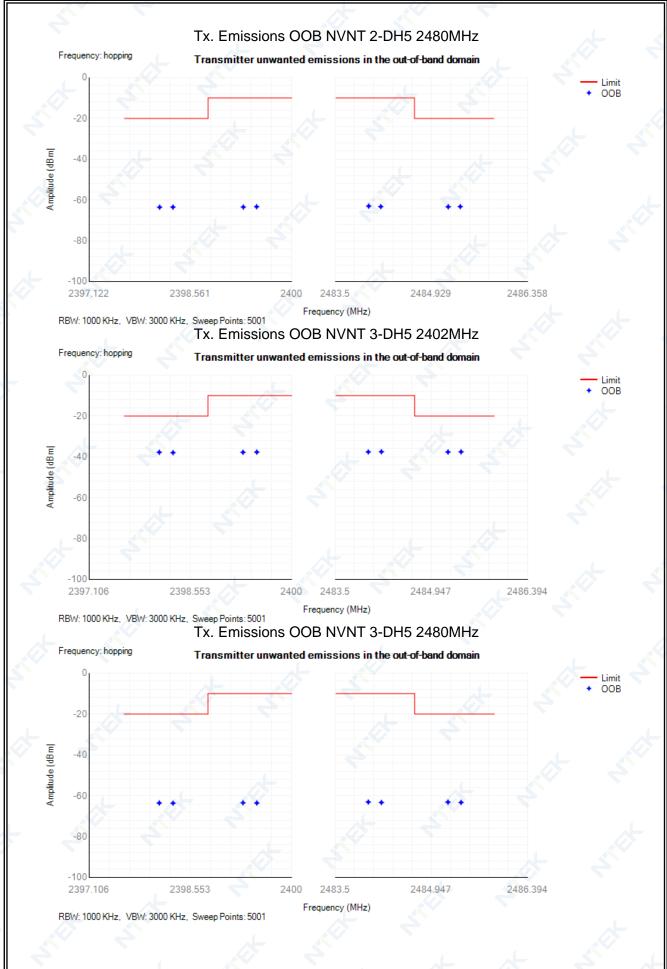


RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

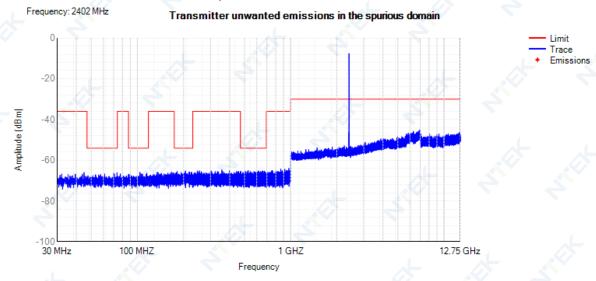

OBW NVNT 1-DH5 2480MHz

RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

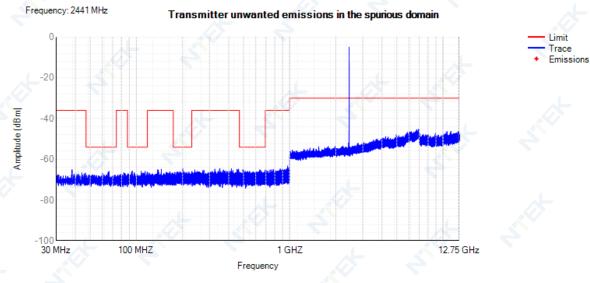


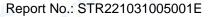


Condition Mode Frequency (MHz)		OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict	
NVNT	1-DH5	hopping	2399.5	-63.43	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.41	-20	Pass
NVNT	1-DH5	hopping	2484	-63.34	-10	Pass
NVNT	1-DH5	hopping	2485	-62.83	-20	Pass
NVNT	1-DH5	hopping	2399.5	-63.42	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.19	-20	Pass
NVNT	1-DH5	hopping	2484	-63.18	-10	Pass
NVNT	1-DH5	hopping	2485	-63.11	-20	Pass
NVNT	2-DH5	hopping	2399.5	-63.4	-10	Pass
NVNT	2-DH5	hopping	2399.311	-63.38	-10	Pass
NVNT	2-DH5	hopping	2398.311	-63.54	-20	Pass
NVNT	2-DH5	hopping	2398.122	-63.59	-20	Pass
NVNT	2-DH5	hopping	2484	-63.24	-10	Pass
NVNT	2-DH5	hopping	2484.179	-63.17	-10	Pass
NVNT	2-DH5	hopping	2485.179	-63.28	-20	Pass
NVNT	2-DH5	hopping	2485.358	-63.3	-20	Pass
NVNT	2-DH5	hopping	2399.5	-63.3	-10	Pass
NVNT	2-DH5	hopping	2399.311	-63.47	-10	Pass
NVNT	2-DH5	hopping	2398.311	-63.5	-20	Pass
NVNT	2-DH5	hopping	2398.122	-63.54	-20	Pass
NVNT	2-DH5	hopping	2484	-63.02	-10	Pass
NVNT	2-DH5	hopping	2484.179	-63.27	-10	Pass
NVNT	2-DH5	hopping	2485.179	-63.36	-20	Pass
NVNT	2-DH5	hopping	2485.358	-63.26	-20	Pass
NVNT	3-DH5	hopping	2399.5	-37.65	-10	Pass
NVNT	3-DH5	hopping	2399.303	-37.75	-10	Pass
NVNT	3-DH5	hopping	2398.303	-37.93	-20	Pass
NVNT	3-DH5	hopping	2398.106	-37.74	-20	Pass
NVNT	3-DH5	hopping	2484	-37.57	-10	Pass
NVNT	3-DH5	hopping	2484.197	-37.49	-10	Pass
NVNT	3-DH5	hopping	2485.197	-37.61	-20	Pass
NVNT	3-DH5	hopping	2485.394	-37.53	-20	Pass
NVNT	3-DH5	hopping	2399.5	-63.54	-10	Pass
NVNT	3-DH5	hopping	2399.303	-63.44	-10	Pass
NVNT	3-DH5	hopping	2398.303	-63.62	-20	Pass
NVNT	3-DH5	hopping	2398.106	-63.54	-20	Pass
NVNT	3-DH5	hopping	2484	-63.07	-10	Pass
NVNT	3-DH5	hopping	2484.197	-63.3	-10	Pass
NVNT	3-DH5	hopping	2485.197	-63.11	-20	Pass
NVNT	3-DH5	hopping	2485.394	-63.27	-20	Pass

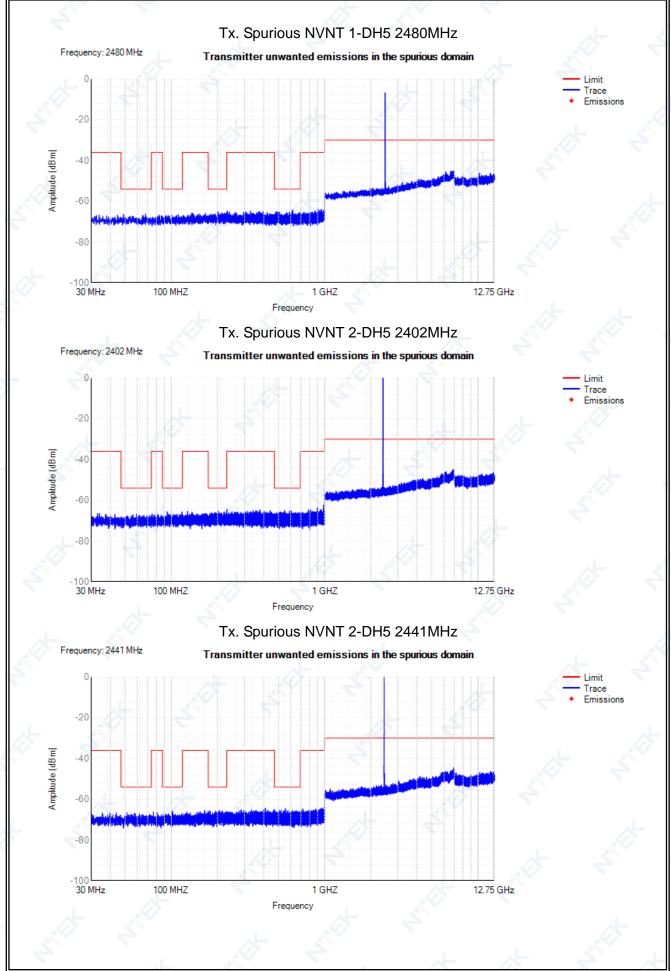

11.8 TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

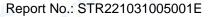
	Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
	NVNT NVNT	1-DH5 1-DH5	2402 2402	30 MHz -47 MHz 47 MHz -74 MHz	44.9 73.65	-65.96 -66.01	NA NA	-36 -54	Pass Pass
	NVNT	1-DH5	2402	74 MHz -87.5 MHz	77.45	-66.68	NA NA	-36	Pass
	NVNT	1-DH5	2402	87.5 MHz -118 MHz	103.9	-65.88	NA NA	-54	Pass
	NVNT NVNT	1-DH5 1-DH5	2402 2402	118 MHz -174 MHz 174 MHz -230 MHz	166.65 205.65	-65.73 -65.2	NA NA	-36 -54	Pass Pass
	NVNT	1-DH5	2402	230 MHz -470 MHz	355.45	-64.74	NA NA	-36	Pass
	NVNT	1-DH5	2402	470 MHz -694 MHz	528.65	-64.95	NA	-54	Pass
	NVNT NVNT	1-DH5 1-DH5	2402 2402	694 MHz -1000 MHz 1000 MHz -2398 MHz	972.1 2397	-63.94 -46.37	NA NA	-36 -30	Pass Pass
	NVNT	1-DH5	2402	2485.5 MHz -12750 MHz	6984.5	-44.73	NA NA	-30	Pass
	NVNT	1-DH5	2441	30 MHz -47 MHz	38.05	-65.12	NA NA	-36	Pass
	NVNT NVNT	1-DH5 1-DH5	2441 2441	47 MHz -74 MHz 74 MHz -87.5 MHz	66.35 82.8	-65.91 -66.58	NA NA	-54 -36	Pass Pass
	NVNT	1-DH5	2441	87.5 MHz -118 MHz	93.9	-65.71	NA NA	-54	Pass
	NVNT	1-DH5	2441	118 MHz -174 MHz	145.45	-64.87	NA	-36	Pass
	NVNT	1-DH5	2441	174 MHz -230 MHz	200.4	-64.5	NA NA	-54	Pass
	NVNT NVNT	1-DH5 1-DH5	2441 2441	230 MHz -470 MHz 470 MHz -694 MHz	416.8 495.35	-64.57 -64.97	NA NA	-36 -54	Pass Pass
	NVNT	1-DH5	2441	694 MHz -1000 MHz	969.25	-63.3	NA	-36	Pass
	NVNT	1-DH5	2441	1000 MHz -2398 MHz	2218.5	-53.48	NA NA	-30	Pass
	NVNT	1-DH5 1-DH5	2441 2480	2485.5 MHz -12750 MHz 30 MHz -47 MHz	6977.5 33.8335329341317	-45.12 -66.7	NA NA	-30 -36	Pass Pass
	NVNT	1-DH5	2480	47 MHz -74 MHz	67.8706586826347	-66.2	NA	-54	Pass
	NVNT	1-DH5	2480	74 MHz -87.5 MHz	83.2047904191617	-66.72	NA	-36	Pass
	NVNT NVNT	1-DH5 1-DH5	2480 2480	87.5 MHz -118 MHz 118 MHz -174 MHz	110.852694610778 137.57125748503	-66.45 -65.86	NA NA	-54 -36	Pass Pass
	NVNT	1-DH5	2480	174 MHz -230 MHz	200.766467065868	-64.97	NA NA	-54	Pass
	NVNT	1-DH5	2480	230 MHz -470 MHz	327.505389221557	-64.77	NA	-36	Pass
	NVNT NVNT	1-DH5 1-DH5	2480 2480	470 MHz -694 MHz 694 MHz -1000 MHz	619.550898203593 907.298203592814	-64.21 -63.91	NA NA	-54 -36	Pass Pass
	NVNT	1-DH5	2480	1000 MHz -2398 MHz	2061.01796407186	-53.44	NA NA	-30	Pass
	NVNT	1-DH5	2480	2485.5 MHz -12750 MHz	6894.70059880239	-44.96	NA	-30	Pass
	NVNT NVNT	2-DH5 2-DH5	2402 2402	30 MHz -47 MHz 47 MHz -74 MHz	33 59.1	-66.41 -66.74	NA NA	-36 -54	Pass Pass
	NVNT	2-DH5	2402	74 MHz -87.5 MHz	74.95	-66.76	NA NA	-36	Pass
	NVNT	2-DH5	2402	87.5 MHz -118 MHz	94.05	-65.6	NA	-54	Pass
	NVNT NVNT	2-DH5 2-DH5	2402 2402	118 MHz -174 MHz 174 MHz -230 MHz	127.5 202.35	-65.38 -65.34	NA NA	-36 -54	Pass Pass
	NVNT	2-DH5	2402	230 MHz -470 MHz	230.35	-64.53	NA NA	-36	Pass
	NVNT	2-DH5	2402	470 MHz -694 MHz	549.15	-65.01	NA	-54	Pass
	NVNT NVNT	2-DH5 2-DH5	2402 2402	694 MHz -1000 MHz 1000 MHz -2398 MHz	980.5 2361.5	-62.34 -53.45	NA NA	-36 -30	Pass
	NVNT	2-DH5	2402	2485.5 MHz -12750 MHz	6886.5	-44.88	NA NA	-30	Pass Pass
	NVNT	2-DH5	2441	30 MHz -47 MHz	43.7	-66.62	NA	-36	Pass
	NVNT NVNT	2-DH5	2441 2441	47 MHz -74 MHz	51.3	-66.42	NA NA	-54 -36	Pass
	NVNT	2-DH5 2-DH5	2441	74 MHz -87.5 MHz 87.5 MHz -118 MHz	76.3 100.6	-66.16 -65.68	NA NA	-54	Pass Pass
	NVNT	2-DH5	2441	118 MHz -174 MHz	164.95	-65.31	NA	-36	Pass
	NVNT	2-DH5	2441	174 MHz -230 MHz	205.35	-65.48	NA NA	-54	Pass
	NVNT NVNT	2-DH5 2-DH5	2441 2441	230 MHz -470 MHz 470 MHz -694 MHz	411.05 554.35	-64.34 -64.61	NA NA	-36 -54	Pass Pass
	NVNT	2-DH5	2441	694 MHz -1000 MHz	966.05	-64.32	NA	-36	Pass
	NVNT	2-DH5	2441	1000 MHz -2398 MHz	2345.5	-52.97	NA NA	-30	Pass
	NVNT NVNT	2-DH5 2-DH5	2441 2480	2485.5 MHz -12750 MHz 30 MHz -47 MHz	6940.5 45.1017964071856	-44.47 -67.22	NA NA	-30 -36	Pass Pass
	NVNT	2-DH5	2480	47 MHz -74 MHz	67.1736526946108	-66.86	NA NA	-54	Pass
	NVNT	2-DH5	2480	74 MHz -87.5 MHz	80.0682634730539	-66.32	NA	-36	Pass
	NVNT NVNT	2-DH5 2-DH5	2480 2480	87.5 MHz -118 MHz 118 MHz -174 MHz	112.711377245509 153.37005988024	-66.36 -64.83	NA NA	-54 -36	Pass Pass
	NVNT	2-DH5	2480	174 MHz -230 MHz	219.004790419162	-65.22	NA NA	-54	Pass
	NVNT	2-DH5	2480	230 MHz -470 MHz	442.162874251497	-65.1	NA	-36	Pass
	NVNT NVNT	2-DH5 2-DH5	2480 2480	470 MHz -694 MHz 694 MHz -1000 MHz	656.376047904192 897.307784431138	-65.01 -63.99	NA NA	-54 -36	Pass Pass
	NVNT	2-DH5	2480	1000 MHz -2398 MHz	2211.58682634731	-52.75	NA NA	-30	Pass
	NVNT	2-DH5	2480	2485.5 MHz -12750 MHz	2487.39520958084	-44.16	NA	-30	Pass
	NVNT NVNT	3-DH5 3-DH5	2402 2402	30 MHz -47 MHz 47 MHz -74 MHz	32.55 71.35	-67.02 -65.76	NA NA	-36 -54	Pass Pass
	NVNT	3-DH5	2402	74 MHz -87.5 MHz	81.65	-67.37	NA NA	-36	Pass
	NVNT	3-DH5	2402	87.5 MHz -118 MHz	104.9	-65.85	NA	-54	Pass
	NVNT NVNT	3-DH5 3-DH5	2402 2402	118 MHz -174 MHz 174 MHz -230 MHz	155.15 182.05	-65.39 -65.51	NA NA	-36 -54	Pass
	NVNT	3-DH5	2402	230 MHz -470 MHz	295.6	-65.09	NA NA	-36	Pass Pass
X	NVNT	3-DH5	2402	470 MHz -694 MHz	677.9	-64.96	NA	-54	Pass
	NVNT NVNT	3-DH5 3-DH5	2402 2402	694 MHz -1000 MHz	931.1 2190.5	-64.12 -52.95	NA NA	-36 -30	Pass
	NVNT	3-DH5 3-DH5	2402	1000 MHz -2398 MHz 2485.5 MHz -12750 MHz	6994	-52.95 -45.03	NA NA	-30	Pass Pass
	NVNT	3-DH5	2441	30 MHz -47 MHz	34.05	-66.73	NA NA	-36	Pass
	NVNT	3-DH5	2441	47 MHz -74 MHz	59.7	-66.01	NA NA	-54 36	Pass
	NVNT NVNT	3-DH5 3-DH5	2441 2441	74 MHz -87.5 MHz 87.5 MHz -118 MHz	86.85 113.05	-66.63 -66.45	NA NA	-36 -54	Pass Pass
	NVNT	3-DH5	2441	118 MHz -174 MHz	157.95	-65.43	NA	-36	Pass
	NVNT	3-DH5	2441	174 MHz -230 MHz	217.35	-64.31	NA NA	-54	Pass
	NVNT NVNT	3-DH5 3-DH5	2441 2441	230 MHz -470 MHz 470 MHz -694 MHz	275.95 657.35	-64.27 -65.19	NA NA	-36 -54	Pass Pass
	NVNT	3-DH5	2441	694 MHz -1000 MHz	898.65	-64.34	NA	-36	Pass
	NVNT	3-DH5	2441	1000 MHz -2398 MHz	2324	-52.76	NA NA	-30	Pass
	NVNT	3-DH5	2441	2485.5 MHz -12750 MHz	6973.5	-44.73	NA	-30	Pass

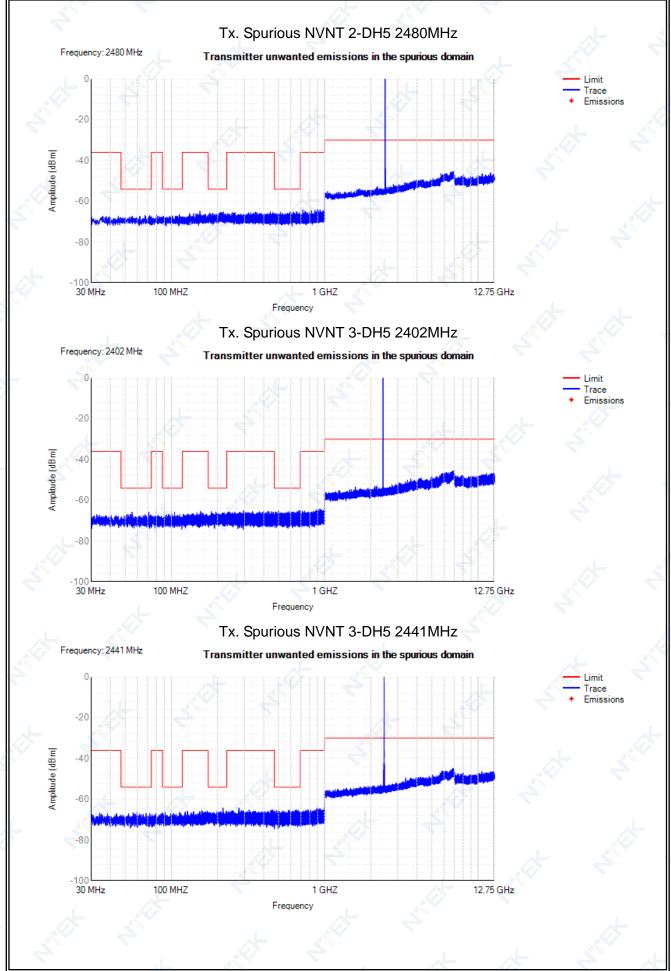


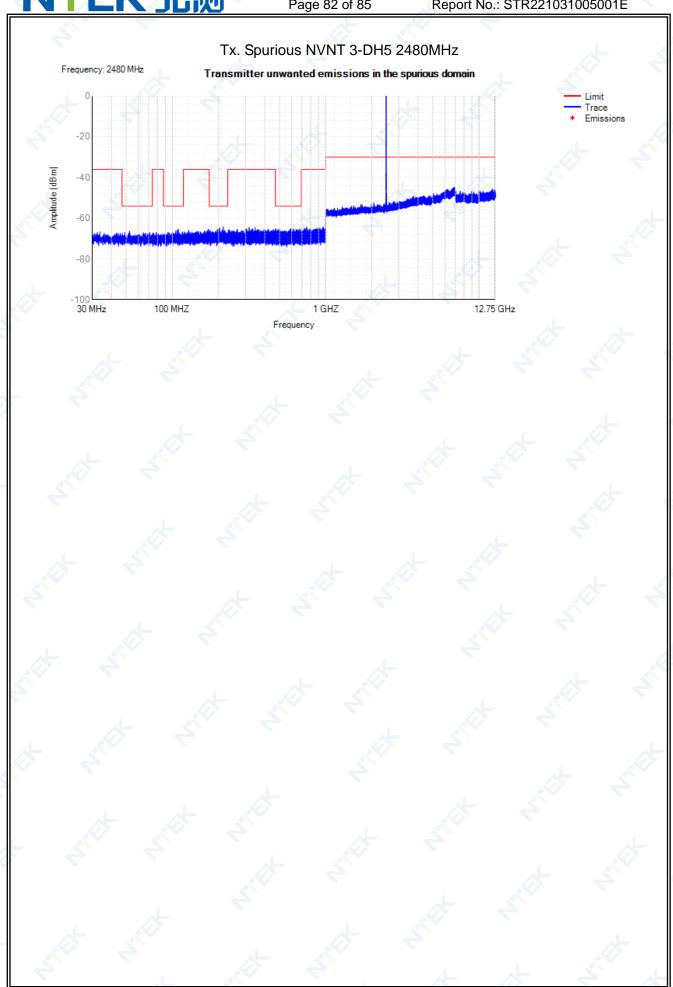

NVNT	3-DH5	2480	30 MHz -47 MHz	33.7	-66.64	NA	-36	Pass
NVNT	3-DH5	2480	47 MHz -74 MHz	52.5	-66.22	NA	-54	Pass
NVNT	3-DH5	2480	74 MHz -87.5 MHz	78.5	-66.92	NA	-36	Pass
NVNT	3-DH5	2480	87.5 MHz -118 MHz	109.35	-65.38	NA	-54	Pass
NVNT	3-DH5	2480	118 MHz -174 MHz	171.35	-65.3	NA	-36	Pass
NVNT	3-DH5	2480	174 MHz -230 MHz	214.4	-64.1	NA	-54	Pass
NVNT	3-DH5	2480	230 MHz -470 MHz	316.55	-64.54	NA	-36	Pass
NVNT	3-DH5	2480	470 MHz -694 MHz	472.4	-65.03	NA	-54	Pass
NVNT	3-DH5	2480	694 MHz -1000 MHz	751.7	-64.36	NA	-36	Pass
NVNT	3-DH5	2480	1000 MHz -2398 MHz	2063	-52.55	NA	-30	Pass
NVNT	3-DH5	2480	2485.5 MHz -12750 MHz	6912.5	-44.85	NA	-30	Pass

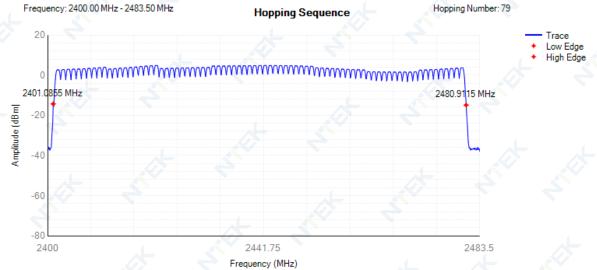
Tx. Spurious NVNT 1-DH5 2402MHz



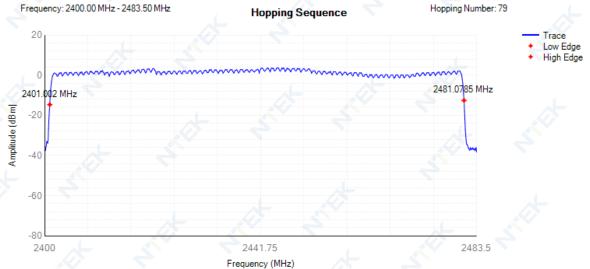

Tx. Spurious NVNT 1-DH5 2441MHz



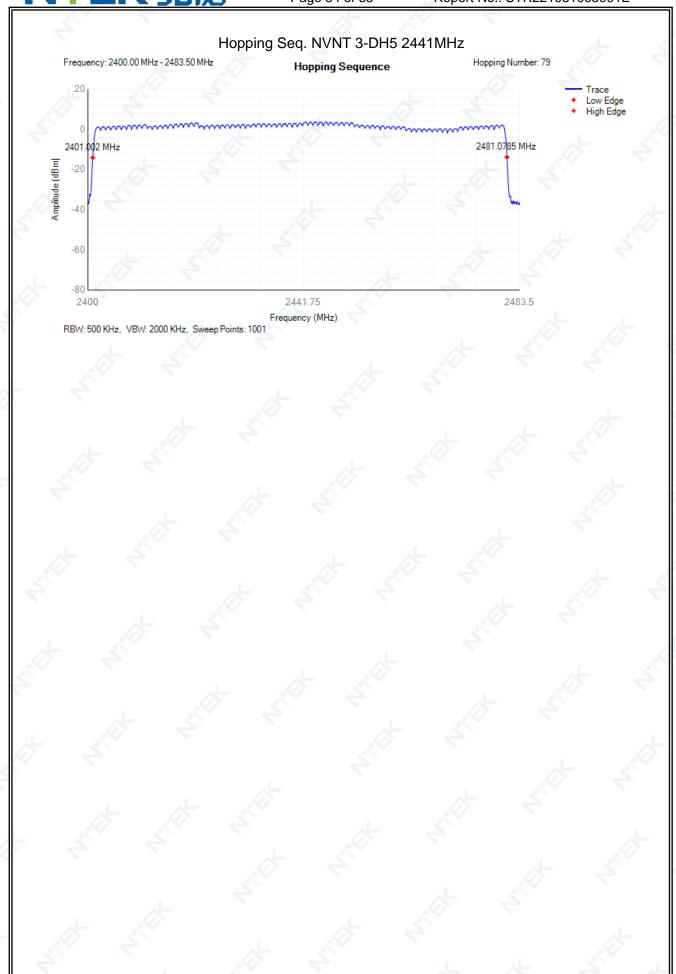


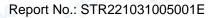


11.9 HOPPING SEQUENCE


I I I I I I I I I I I I I I I I I I I											
Condition	Mode	Hopping	Limit	Band Allocation	Limit Band Allocation	Verdict					
		Number		(%)	(%)						
NVNT	1-DH5	79	15	95.6	70	Pass					
NVNT	2-DH5	79	15	95.9	70	Pass					
NVNT	3-DH5	79	15	95.9	70	Pass					

Hopping Seq. NVNT 1-DH5 2441MHz


RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 1001


Hopping Seq. NVNT 2-DH5 2441MHz

RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 1001

12. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT