RADIO TEST REPORT EN 300 328 V2.2.2 (2019-07)

Product : Tablet Trade Mark : Blackview Model Name : Tab 5 Family Model : Tab 5 Kids Report No. : STR220921003001E

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

NTEK 北测

Page 2 of 90

Report No.: STR220921003001E

TEST RESULT CERTIFICATION

Applicant's name	DOKE COMMUNICATION (HK) LIMITED
Address	RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD
4	WANCHAI HK, CHINA
Manufacturer's Name:	Shenzhen DOKE Electronic Co.,Ltd
Address	801, Building3, 7th Industrial Zone, Yulv Community, Yutang
	Road, Guangming District, Shenzhen, China
Product description	

Product name:	Tablet
Trademark:	Blackview
Model Name:	Tab 5
Family Model:	Tab 5 Kids
Test Sample Number	T220921001R002
Standards:	EN 300 328 V2.2.2 (2019-07)

This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of performance of tests	Sep 21, 2022 ~ Oct 24, 2022
Date of Issue	Oct 25, 2022
Test Result	Pass

Testing Engineer

Men bin

(Allen Liu)

Authorized Signatory:

(Alex Li)

NTEK 北测 [®]			
	Page 3 of 90	Report No.: STR220	0921003001E
Table	of Contents		Page
			7
1. GENERAL INFORMATION 1.1 GENERAL DESCRIPTION O			
1.2 INFORMATION ABOUT THE			× 8
1.3 TEST CONDITIONS	EUT		ە 13
1.4 TEST CONFIGURATION OF			13
1.5 DESCRIPTION OF TEST CC			14
1.6 DESCRIPTION OF SUPPOR			15
1.7 EQUIPMENTS LIST FOR AL			16
2 . SUMMARY OF TEST RESUL			17
2.1 TEST FACILITY	13		18
3. RF OUTPUT POWER			19
3.1 LIMITS OF RF OUTPUT POV 3.2 TEST PROCEDURE	WER C		19
3.3 DEVIATION FROM TEST ST			19
3.4 TEST SETUP			19
3.5 TEST RESULTS			20
4 . ACCUMULATED TRANSMIT			
		I OCCOLATION A	
SEQUENCE			21
4.1 LIMITS OF ACCUMULATED	TRANSMIT TIME, FF		21 21
4.2 TEST PROCEDURE			21
4.3 DEVIATION FROM TEST ST			21
4.4 TEST SETUP			22
4.5 TEST RESULTS			22
5. OCCUPIED CHANNEL BAND			23
5.1 LIMITS OF OCCUPIED CHA			23
5.2 TEST PROCEDURE			23
5.3 DEVIATION FROM TEST ST			24
5.4 TEST SETUP			24
5.5 TEST RESULTS			24
6. TRANSMITTER UNWANTED			<
6.1 LIMITS OF TRANSMITTER U			

	Table of Contents	Page	
	DOMAIN	25	
	6.2 TEST PROCEDURE	25	
	6.3 DEVIATION FROM TEST STANDARD	26	
	6.4 TEST SETUP	26	
	6.5 TEST RESULTS	26	
7	. HOPPING FREQUENCY SEPARATION	27	
	7.1 LIMITS OF HOPPING FREQUENCY SEPARATION	27	
	7.2 TEST PROCEDURE	27	
	7.3 DEVIATION FROM TEST STANDARD	27	
	7.4 TEST SETUP	28	
	7.5 TEST RESULTS	28	
8	. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN		
	8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN		
	SPURIOUS DOMAIN	29	
	8.2 TEST PROCEDURE	29	
	8.3 DEVIATION FROM TEST STANDARD	29	
	8.4 TEST SETUP	30 31	
	8.5 TEST RESULTS (Radiated measurement)8.6 TEST RESULTS (Conducted measurement)	31	
0		-	
9	. RECEIVER SPURIOUS EMISSIONS	-33	
	9.1 LIMITS OF RECEIVER SPURIOUS RADIATION 9.2 TEST PROCEDURE	33	
. (9.2 TEST PROCEDURE 9.3 DEVIATION FROM TEST STANDARD	33 33	
	9.4 TEST SETUP	33 - 34	
	9.5 TEST RESULTS (Radiated measurement)	34	
	9.6 TEST RESULTS (Conducted measurement)	36	
). RECEIVER BLOCKING	37 🥖	
		37	
	10.2 LIMITS OF RECEIVER BLOCKING	37	
	10.3 TEST PROCEDURE	38	
L-	10.4 DEVIATION FROM TEST STANDARD	39	
	10.5 TEST SETUP	39	
	10.6 TEST RESULTS	40	
11	. TEST RESULTS	43	

Page 4 of 90

	Table of Contents F	Page	
	11.1 ACCUMULATED TRANSMIT TIME	43	
	11.2 FREQUENCY OCCUPATION	50	
	11.3 ONE PULSE DWELL TIME	57	
	11.4 RF OUTPUT POWER	67	
	11.5 HOPPING FREQUENCY SEPARATION	69	
	11.6 OCCUPIED CHANNEL BANDWIDTH	73	
	11.7 TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	N 76	
	11.8 TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	79	
	11.9 RECEIVER SPURIOUS EMISSIONS	84	
	11.10 HOPPING SEQUENCE	88	
12	2. EUT TEST PHOTO	90	
S	PURIOUS EMISSIONS MEASUREMENT PHOTOS	90	

Page 5 of 90

Page 6 of 90

Report No.: STR220921003001E

Report No.	Version	Description	Issued Date
STR220921003001E	Rev.01	Initial issue of report	Oct 25, 2022
4			4
			4
4		A 2 4	
.L	8 X	×	
A C		A 2	4
	<u>A</u>	- 5	At at
t de	~ ~	t.	Let Let
L'en e			
- J		4	, At
1			A A
			, t
*		~	
* *			
	×		A.

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

NTEK 北测[®]

Equipment	Tablet	2	
Trade Mark	Blackview	× ×	
Model Name.	Tab 5		
Family Model	Tab 5 Kids		
Model Difference	packaging, software, LO	circuit and RF module, Only GO is different	
	The EUT is Tablet Operation Frequency:	2402~2480 MHz	
	Modulatin Type:	GFSK,π/4-DQPSK,8-DPSK	
	Modulation Technology:		
	Adaptive/non-adaptive	Adaptive equipment	
	Receiver categories	2	
Product Description	Number Of Channel	79CH	
	Antenna Designation:	PIFA Antenna 📃	
	Antenna Gain(Peak)	1 dBi	
	in User's Manual, the EU	, features, or specification exhibited IT is considered as an ITE/Computing EUT technical specification, please al.	
Channel List	Refer to below Table		
Adapter	Model: QZ-00502EA00Z Input: 100-240V~50/60Hz 0.15A Output: 5.0V1.0A (5.0W)		
Battery	Battery 1: DC 3.8V, 5580mAh(21.204Wh) Battery 2: DC 3.8V, 5580mAh(21.204Wh)		
Rating	DC 3.8V from battery or DC 5V from Adapter.		
I/O Ports	Refer to users manual		
Hardware Version	R863T-DK-RK3326S-V1	.0	
Software Version	Tab_5_EEA_S863T_V1.0		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

NTEK 北测

Page 8 of 90

79 channels are provided to (GFSK, π/4-DQPSK, 8-DPSK)

Channel	Frequency (MHz
00	2402
01	2403
······	
77	2479
78	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

FHSS

other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment:
 The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment:

The maximum number of Hopping Frequencies: 79

- The minimum number of Hopping Frequencies: 79
- The (average) Dwell Time: 340.784ms Maximum

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- Adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The maximum Channel Occupancy Time implemented by the equipment:/..... ms

- The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment

The equipment can switch dynamically between Frame Based and Load Based equipment

The CCA time implemented by the equipment:/.. µs

- The equipment has implemented a non-LBT based DAA mechanism
- The equipment can operate in more than one adaptive mode

Page 9 of 90

Report No.: STR220921003001E

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.):

The maximum (corresponding) Duty Cycle:

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

RF Output Power

GFSK

• Power Spectral Density

N/A

• Duty cycle, Tx-Sequence, Tx-gap

N/A

- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
 8-DPSK
- Hopping Frequency Separation (only for FHSS equipment)
 8-DPSK
- Medium Utilization N/A
- Adaptivity

N/A

- Receiver Blocking
 GFSK
- Nominal Channel Bandwidth
- 8-DPSK
- Transmitter unwanted emissions in the OOB domain 8-DPSK
- Transmitter unwanted emissions in the spurious domain GFSK
- Receiver spurious emissions

GFSK

g) The different transmit operating modes (tick all that apply):

- Operating mode 1: Single Antenna Equipment
- Equipment with only one antenna
- Equipment with two diversity antennas but only one antenna active at any moment in time

Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only

- one antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
- Single spatial stream / Standard throughput / (e.g. IEEE 802.11[™] [i.3] legacy mode)
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2

Page 10 of 90

NOTE 1: Add more lines if more channel bandwidths are supported.
Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2 NOTE 2: Add more lines if more channel bandwidths are supported.
h) In case of Smart Antenna Systems:
The number of Receive chains:
The number of Transmit chains:
symmetrical power distribution
asymmetrical power distribution
In case of beam forming, the maximum (additional) beam forming gain: dB
NOTE: The additional beam forming gain does not include the basic gain of a single antenna.
i) Operating Frequency Range(s) of the equipment:
Operating Frequency Range 1: 2402 MHz to 2480 MHz
 Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported.
j) Nominal Channel Bandwidth(s):
Nominal Channel Bandwidth 1: 1.193MHz
Nominal Channel Bandwidth 2:/ MHz NOTE: Add more lines if more channel bandwidths are supported.
k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.):
Stand-alone
Combined Equipment (Equipment where the radio part is fully integrated within another type of
equipment)
 Plug-in radio device (Equipment intended for a variety of host systems) Other
I) The normal and the extreme operating conditions that apply to the equipment:
Normal operating conditions (if applicable):
Operating temperature: 15°C~35°C
Other (please specify if applicable):
Extreme operating conditions:
Operating temperature range: Minimum: -10°C Maximum 40°C
Other (please specify if applicable): Minimum: Maximum Details provided are for the:
Stand-alone equipment
combined (or host) equipment
☐ test jig

The intended comb	pination(s) of the radio	equipment power settin	gs and one or more antenna
assemblies and the	eir corresponding e.i.r.p	o. levels:	
Antenna Type: PIF	A Antenna		
Integral Antenna	a (information to be provi	ded in case of conducted	I measurements)
Antenna Gain:	1 dBi 💉 🧹		
If applicable, add	litional beamforming gain	n (excluding basic antenn	a gain):/ dB
Temporary	RF connector provided		
No tempor	ary RF connector provide	ed	
Dedicated	Antennas (equipment wit	th antenna connector)	
Single pow	ver level with correspondi	ing antenna(s)	
Multiple po	wer settings and corresp	oonding antenna(s)	
Number of dif	ferent Power Levels:	-	
Power Level	1: dBm 🔷		
Power Level 2	2: dBm		
Power Level 3	3: dBm		
NOTE 1: Add	more lines in case the e	quipment has more powe	er levels.
NOTE 2: The	se power levels are cond	lucted power levels (at ar	ntenna connector).
			es, their corresponding gains
		into account the beamfor	ming gain (Y) if applicable
	1: dBm		
	tenna assemblies provid	ied for this power level:	
A		~	<u> </u>
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	<u> </u>
1	Gain (dBi) 1	~	<u> </u>
1 2	Gain (dBi) 1	e.i.r.p. (dBm)	<u> </u>
1 2 3	1	e.i.r.p. (dBm) 4.82	Part number or model name
1 2 3	1	e.i.r.p. (dBm) 4.82	Part number or model name
1 2 3 NOTE 3: Add	1	e.i.r.p. (dBm) 4.82	Part number or model name
1 2 3 NOTE 3: Add Power Level	1 more rows in case more 2: dBm	e.i.r.p. (dBm) 4.82	Part number or model name supported for this power level.
1 2 3 NOTE 3: Add Power Level	1 more rows in case more 2: dBm	e.i.r.p. (dBm) 4.82	Part number or model name supported for this power level.
1 2 3 NOTE 3: Add Power Level Number of an	1 more rows in case more 2:	e.i.r.p. (dBm) 4.82	Part number or model name supported for this power level.
1 2 3 NOTE 3: Add Power Level Number of an Assembly #	1 more rows in case more 2:	e.i.r.p. (dBm) 4.82	Part number or model name supported for this power level.
1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1	1 more rows in case more 2:	e.i.r.p. (dBm) 4.82	Part number or model name supported for this power level.
1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3	1 more rows in case more 2: dBm itenna assemblies provid Gain (dBi)	e.i.r.p. (dBm) 4.82	Part number or model name supported for this power level.
1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add	1 more rows in case more 2: dBm itenna assemblies provid Gain (dBi)	e.i.r.p. (dBm) 4.82	Part number or model name supported for this power level.
1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add Power Level	1 more rows in case more 2:	e.i.r.p. (dBm) 4.82	Part number or model name supported for this power level.
1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add Power Level	1 more rows in case more 2:	e.i.r.p. (dBm) 4.82	Part number or model name supported for this power level.
1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add Power Level Number of an	1 more rows in case more 2:	e.i.r.p. (dBm) 4.82 e antenna assemblies are led for this power level: e.i.r.p. (dBm) e antenna assemblies are	Part number or model name supported for this power level.
1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add Power Level Number of an Assembly #	1 more rows in case more 2:	e.i.r.p. (dBm) 4.82 e antenna assemblies are led for this power level: e.i.r.p. (dBm) e antenna assemblies are	Part number or model name supported for this power level. Part number or model name Part number or model name supported for this power level.
1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add Power Level Number of an Assembly # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 more rows in case more 2:	e.i.r.p. (dBm) 4.82 e antenna assemblies are led for this power level: e.i.r.p. (dBm) e antenna assemblies are	Part number or model name supported for this power level.

Page 12 of 90

n) The nominal voltages of the stand-alone radio equipment or the	e nominal voltages of the
combined (host) equipment or test jig in case of plug-in device	es: 📈
Details provided are for the:	
Stand-alone equipment	
combined (or host) equipment	
🗌 🗌 test jig	
Supply Voltage 🔲 AC mains State AC voltage V	
DC State DC voltage: DC 3.8V	
In case of DC, indicate the type of power source	
Internal Power Supply	
External Power Supply or AC/DC adapter: DC 5V	
Battery: DC 3.8V	
Other:	
o) Describe the test modes available which can facilitate testing:	
See clause 1.4	
p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE	802.15.4™ [i.4], proprietary, etc.):
Bluetooth®	
q) If applicable, the statistical analysis referred to in clause 5.4.1 of	q) 🗕 🚽
(to be provided as separate attachment)	
r) If applicable, the statistical analysis referred to in clause 5.4.1 r)
(to be provided as separate attachment)	
s) Geo-location capability supported by the equipment:	
The geographical location determined by the equipment as det	fined in clause 4.3.1.13.2 or
clause 4.3.2.12.2 is not accessible to the user	
No 🔿	
t) Describe the minimum performance criteria that apply to the eq	uipment (see clause 4.3.1.12.3 or
clause 4.3.2.11.3):	
GFSK =0.91%	

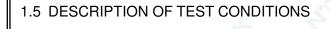
1.3 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions		
Temperature	15℃ - 35℃	-10°C ~ 40°C Note: (1)		
Relative Humidity	20% - 75%	N/A		
Supply Voltage	DC 3.8V			

Note:

(1) The HT 40 $^\circ\!C$ and LT -10 $^\circ\!C$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.


1.4 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing				
Bluetooth mode	Data rate	Modulation type		
BR	1Mbps	GFSK		
EDR	2Mbps	π/4-DQPSK		
EDR	3Mbps	8-DPSK		

Test Channel Frequencies Configuration				
Test Channel	EUT Channel	Test Frequency (MHz)		
Lowest	CH00	2402		
Middle	CH39	2441		
Highest	CH78	2480		

Page 14 of 90

E-1 EUT Report No.: STR220921003001E

Page 15 of 90

1.6 DESCRIPTION OF SUPPORT UNITS

NTEK 北测[®]

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Tablet	Tab 5	N/A	EUT
	4.	J.	K.	
		+ ~	~	
	×	Ke e		
ł	A.C.			<u> </u>
			5	
		× ×	-	

[14					NI-1-	
	Item	Shielded Type	Ferrite Core	Length		Note	
			X	S. I		<u>ــــــــــــــــــــــــــــــــــــ</u>	
							~
					1	7	

Note:

- (1)
- The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\[\]$ column. (2)

Page 16 of 90

Report No.: STR220921003001E

1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
Turn Table	EM 💉	SC100_1	60531	N/A	N/A	N/A
Antnna Mast 📈	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.06	2023.04.05	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.16	2023.06.15	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.06	2023.04.05	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2022.06.16	2023.06.15	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	🔨 3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.16	2023.06.15	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.04.06	2023.04.05	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.04.06	2023.04.05	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

N2017.06.06.0614.V.1.3

NTEK 北测®

Page 17 of 90

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
	TRANSMITTER PARAMETERS	
4.3.1.2	RF Output Power	Pass
4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2
4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
4.3.1.5	Hopping Frequency Separation	Pass
4.3.1.6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2
4.3.1.7	Adaptivity	Not Applicable (See Note 1)
4.3.1.8	Occupied Channel Bandwidth	Pass
4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	7
4.3.1.11	Receiver Spurious Emissions	Pass
4.3.1.12	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

Page 18 of 90

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

	Maximum measurement un	certainty
No.	Item	Uncertainty
1	Occupied Channel Bandwidth	± 5%
2	RF output Power, conducted	÷1.5dB
3	Power Spectral Density, conducted	± 3dB
4	Unwanted emissions, conducted	± 3dB
5	All emissions, radiated	± 6dB
6	Temperature	± 3°C
7	Humidity ± 3%	
9	Time	± 5%

TRANSMITTER PARAMETERS

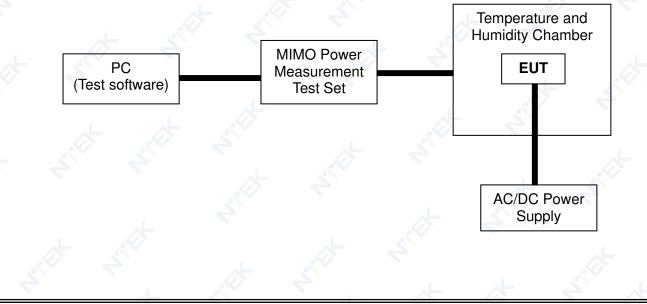
NTEK 北测[®]

3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER Refer to chapter 4.3.1.2.3 of EN 300 328 V2.2.2 (2019-07)

RF OUTPL	JT POWER
Condition	Limit
Non-adaptive frequency hopping system	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.
Adaptive frequency hopping systems	equal to or less than 20 dBm.

3.2 TEST PROCEDURE


Refer to chapter 5.4.2.2 of EN 300 328 V2.2.2 (2019-07)

Me Me	easurement
Conducted measurement	Radiated measurement

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

N2017.06.06.0614.V.1.3

Page 20 of 90

3.5 TEST RESULTS

-			
EUT :	Tablet	Model Name :	Tab 5
Temperature :	20°C	Relative Humidity :	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.8V (Normal)
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK	7	<u>×</u> ×

Test data reference attachment

Page 21 of 90

4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Refer to chapter 4.3.1.4.3 of EN 300 328 V2.2.2 (2019-07)

A	ccumulated Transmit Time		
Condition	Limit		
Non-adaptive frequency hopping systems	≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]		
Adaptive frequency hopping systems	≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]		
MINIMUM	FREQUENCY OCCUPATION TIME		
Condition	Limit		
Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not		
Adaptive frequency hopping systems	exceeding four times the product of the dwell time and the number of hopping frequencies in use.		
L L L	IOPPING SEQUENCE (S)		
Condition	Limit		
Non-adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum		
hopping systems	Operating over a minimum of 70% of the Operating in the band 2.4 GHz to 2.4835 GHz		
	≥15 hopping frequencies or 15/minimum		

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of EN 300 328 V2.2.2 (2019-07)

	Measurement				
Conducted measurement	Radiated measurement				
.3 DEVIATION FROM TEST STANDARD	A when we				
No deviation					

EUT

Report No.: STR220921003001E

4.4 TEST SETUP

Spectrum Analyzer

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 22 of 90

4.5 TEST RESULTS

EUT :	Tablet	Model Name	Tab 5	
Temperature :	26°C	Relative Humidity	60 %	
Pressure :	1012 hPa Test Voltage : DC 3.8V			
Test Mode : BT-GFSK/π/4-DQPSK /8-DPSK-Hopping Mode				

Test data reference attachment

NTEK 北测®

Page 23 of 90

Report No.: STR220921003001E

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH Refer to chapter 4.3.1.8.3 of EN 300 328 V2.2.2 (2019-07)

	OCCUPIED CHANNEL BA	NDWIDTH
	Condition	Limit
A	Il types of equipment	Shall fall completely within the band 2400 to 2483.5 MHz
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of EN 300 328 V2.2.2 (2019-07)

	Measurement	the state of the s
Conducted measurement		Radiated measurement

The setting of the Spectrum Analyzer

Center Frequency	The centre frequency of the channel under test	~	
Frequency Span	2 × Nominal Channel Bandwidth		
Detector	RMS		
RBW	~ 1 % of the span without going below 1 %		
VBW	3 × RBW	4	
Trace	Max hold		
Sweep time	1s		

NTEK 北测®

Page 24 of 90

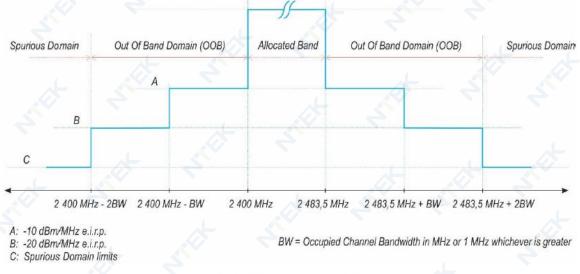
5.3 DEVIATION FROM TEST STANDARD

No deviation

5.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

5.5 TEST RESULTS


EUT :	Tablet	Model Name :	Tab 5
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.8V
Test Mode : BT-GFSK/π/4-DQPSK /8-DPSK-(CH00/CH78)			

Test data reference attachment

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition Limit		
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	

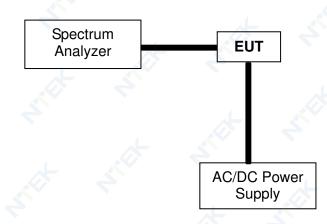
Figure 1: Transmit mask

6.2 TEST PROCEDURE

Refer to chapter 5.4.8.20f EN 300 328 V2.2.2 (2019-07)

	Measurement
Conducted measure	ment Radiated measurement
The setting of the Spectrum Ana	alyzer
Span	0Hz
Filter Mode	Channel Filter
Trace Mode	Clear/Write
Trigger Mode	Video Trigger
Detector	RMS
Sweep Point / Sweep Mode	5000 / Continuous
RBW / VBW	1MHz / 3MHz

N2017.06.06.0614.V.1.3


Page 26 of 90

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

6.5 TEST RESULTS

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

EUT :TabletModel Name :Tab 5Temperature :26°CRelative Humidity :60 %Pressure :1012 hPaTest Voltage :DC 3.8VTest Mode :BT-GFSK/π/4-DQPSK /8-DPSK-(CH78)

Test data reference attachment

N2017.06.06.0614.V.1.3

Page 27 of 90

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of EN 300 328 V2.2.2 (2019-07)

HOPPING FREQUENCY SEPARATION		
Condition	Limit	
Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.	
Adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be 100 kHz.	

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of EN 300 328 V2.2.2 (2019-07)

	Measurement	
Conducted measurement		Radiated measurement

The setting of the Spectrum Analyzer

Center Frequency	Centre of the two adjacent hopping frequencies		
	Sufficient to see the complete power envelope of both hopping		
Frequency Span	n frequencies		
Detector	Max Peak		
RBW	~ 1 % of the span		
VBW	3 × RBW		
Trace	Max hold	L M	
Sweep Time	Auto	2 4	

7.3 DEVIATION FROM TEST STANDARD

No deviation

NTEK 北测®

Page 28 of 90

7.4 TEST SETUP

EUT Spectrum Analyzer

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

7.5 TEST RESULTS

EUT :	Tablet	Model Name	Tab 5	
Temperature :	26°C	Relative Humidity :	60 %	
Pressure :	1012 hPa Test Voltage : DC 3.8V			
Test Mode : BT-GFSK/π/4-DQPSK /8-DPSK-(CH00/CH39/CH78)				

Test data reference attachment

Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz. 2.The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Refer to chapter 4.3.1.10.3 of EN 300 328 V2.2.2 (2019-07)

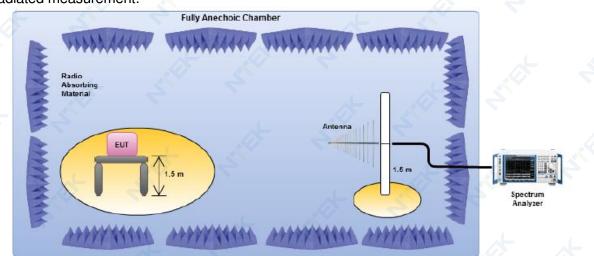
TRANSMITTER UNWANTED EN	ISSIONS IN THE SPURIOUS DO	
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

8.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of EN 300 328 V2.2.2 (2019-07)

Measurement									
Conducted m	neasurement		Radiated meas	urement					
The setting of the Spectr	rum Analyzer	· 5	1		4				
RBW	100K(<1GHz) / 1M	(>1GHz)		4					
VBW	300K(<1GHz) / 3M	(>1GHz)	F 4		4				

8.3 DEVIATION FROM TEST STANDARD


No deviation

NTEK 北测®

Report No.: STR220921003001E

8.4 TEST SETUP

Radiated measurement:

Page 30 of 90

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 31 of 90

8.5 TEST RESULTS (Radiated measurement)

BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)									
EUT :	Tablet	Model Name :	Tab 5						
Temperature :	24 ℃	Relative Humidity	54%						
Pressure :	1010 hPa	Test Power :	DC 3.8V						
Test Mode :	BT-GFSK (CH00)	4	x x						

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
`(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	37.641	-76.02	10.77	-65.25	-36	-29.25	peak
V	99.091	-74.07	11.26	-62.81	-54	-8.81	peak
V	193.021	-76.76	11.22	-65.54	-54	-11.54	peak
V	379.127	-67.67	11.19	-56.48	-36	-20.48	peak
V	558.119	-72.15	9.53	-62.62	-54	-8.62	peak
Н	39.695	-77.9	10.45	-67.45	-36	-31.45	peak
Н	106.985	-69.41	10.20	-59.21	-54	-5.21	peak
Н 🗸	202.969	-74.53	10.83	-63.70	-54	-9.70	peak
Н	287.967	-72.12	_ 11.11 📢	-61.01	-36	-25.01	peak
Н	680.145	-72.38	11.03	-61.35	-54	-7.35	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 32 of 90

			ABO	VE 1 GHz WOF	RST- CAS	E DATA (1GHz	~ 12.75G	Hz)		
Е	UT :		Tablet		*	Model Name	: Tab	5 🗳		
Te	emperati	ure:	24 ℃	7		Relative Humid	lity 54%	÷	-	
Ρ	ressure :	:	1010 hPa Test Power :				DC 3	DC 3.8V		
Te	est Mode	э:	GFSK (C	H00/CH39/CH7	78)	2			- 3	
	Polar	Fre	quency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
	(H/V)								Homan	

(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
		ор	eration freq	uency:2402	4		
V	2977.097	-52.15	10.22	-41.93	-30	-11.93	peak
V	3031.319	-56.14	9.68	-46.46	-30	-16.46	peak
V	2479.107	-53.3	10.95	-42.35	-30	-12.35	peak
V	3724.317	-55.87	9.85	-46.02	-30	-16.02	peak
Н	2293.645	-56.04	10.50	-45.54	-30	-15.54	peak
Н	3405.723	-57.96	11.22	-46.74	-30	-16.74	peak
Н	2125.985	-52.47	10.13	-42.34	-30	-12.34	peak
H	5364.806	-53.29	10.38	-42.91	-30	-12.91	peak
		ор	eration freq	uency:2441			
V	2783.101	57.61	10.17	-47.44	-30	-17.44	peak
V	4622.644	-57.03	10.22	-46.81	-30	-16.81	peak
V	2766.431	-52.21	10.42	-41.79	-30	-11.79	peak
V	4550.173	-55.7	10.79	-44.91	-30	-14.91	peak
Н	2615.231	-54.87	9.82	-45.05	-30	-15.05	peak
Н	4406.017	-56.84	9.57	-47.27	-30	-17.27	peak
Н	2921.288	-57.66	9.66	-48.00	-30	-18.00	peak
H	4102.245	-52.57	11.33	-41.24	-30	-11.24	peak
		ор	eration freq	uency:2480	3		
V	2323.5	-52.54	10.13	-42.41	-30	-12.41	peak
V	3500.365	-57.05	9.68	-47.37	-30	-17.37	peak
V	2250.507	-55.83	10.78	-45.05	-30	-15.05	peak
V	5651.757	-56.27	10.82	-45.45	-30	-15.45	peak
Н	2641.772	-56.22	11.38	-44.84	-30	-14.84	peak
Н	4794.801	-56.91	10.36	-46.55	-30	-16.55	peak
Н	2072.736	-54.97	10.60	-44.37	-30	-14.37	peak
Н	4596.144	-54.12	10.51	-43.61	-30	-13.61	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

B.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

Page 33 of 90

9. RECEIVER SPURIOUS EMISSIONS

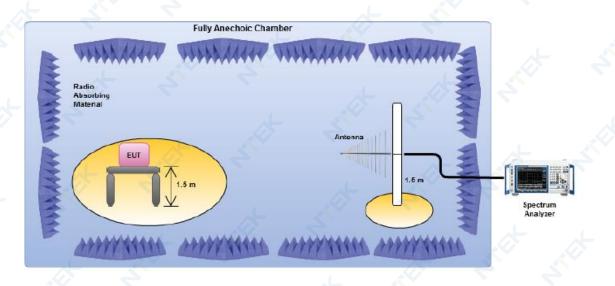
9.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.1.11.3 of EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS							
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth					
30 MHz ~ 1 GHz	-57dBm	100KHz					
1 GHz ~ 12.75 GHz	-47dBm	1MHz					

9.2 TEST PROCEDURE

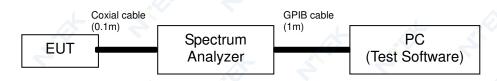
Refer to chapter 5.4.10.2 of EN 300 328 V2.2.2 (2019-07)

	Me	easurement		
Conducted me	easurement		Radiated measurement	
The setting of the Spectru	ım Analyzer	4	*	*
RBW	100K(<1GHz) / 1M	(>1GHz)		
VBW	300K(<1GHz) / 3M	(>1GHz)		


9.3 DEVIATION FROM TEST STANDARD

No deviation

Report No.: STR220921003001E


9.4 TEST SETUP

Radiated measurement:

Page 34 of 90

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 35 of 90

9.5 TEST RESULTS (Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)									
EUT :	Tablet	Model Name :	Tab 5						
Temperature :	24 ℃	Relative Humidity	54%						
Pressure :	1010 hPa	Test Power :	DC 3.8V						
Test Mode :	GFSK(CH00)								

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	4
V	45.525	-77.57	12.25	-65.32	-57	-8.32	peak
– V	88.577	-82.17	16.13	-66.04	-57	-9.04	peak
V	225.062	-79.43	14.05	-65.38	-57	-8.38	peak
V	267.41	-82.08	17.01	-65.07	-57	-8.07	peak
V	612.632	-83.16	15.51	-67.65	-57	-10.65	peak
Н	40.647	-84.26	14.62	-69.64	-57	-12.64	peak
Н	111.076	-78.79	17.87	-60.92	-57	-3.92	peak
H	193.67	-80.66	16.70	-63.96 🕥	-57	-6.96	peak
Н	375.022	-80.91 🟑	15.79	-65.12	-57	-8.12	peak
Н	582.938	-78.77	17.54	-61.23	-57	-4.23	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 36 of 90

RX ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

EUT :	Tablet	Model Name :	Tab 5
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.8V
Test Mode :	GFSK (CH00)		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
2510.538	-81.81	10.46	-71.35	-47	-24.35	peak
5300.743	-84.33	10.21	-74.12	-47	-27.12	peak
2978.244	-83.17	10.57	-72.60	-47	-25.60	peak
3151.731	-85	16.88	-68.12	-47	-21.12	peak
3000.397	-80.17	10.29	-69.88	-47	-22.88	peak
5505.097	-82.82	11.29	-71.53	-47	-24.53	peak
2818.917	-83.06	6.79	-76.27	-47	-29.27	peak
3245.971	-78.84	15.06	-63.78	-47	-16.78	peak
	(MHz) 2510.538 5300.743 2978.244 3151.731 3000.397 5505.097 2818.917	FrequencyReading(MHz)(dBm)2510.538-81.815300.743-84.332978.244-83.173151.731-853000.397-80.175505.097-82.822818.917-83.06	FrequencyReadingFactor(MHz)(dBm)(dB)2510.538-81.8110.465300.743-84.3310.212978.244-83.1710.573151.731-8516.883000.397-80.1710.295505.097-82.8211.292818.917-83.066.79	FrequencyReadingFactorLevel(MHz)(dBm)(dB)(dBm)2510.538-81.8110.46-71.355300.743-84.3310.21-74.122978.244-83.1710.57-72.603151.731-8516.88-68.123000.397-80.1710.29-69.885505.097-82.8211.29-71.532818.917-83.066.79-76.27	FrequencyReadingFactorLevelLimits(MHz)(dBm)(dB)(dBm)(dBm)(dBm)2510.538-81.8110.46-71.35-475300.743-84.3310.21-74.12-472978.244-83.1710.57-72.60-473151.731-8516.88-68.12-473000.397-80.1710.29-69.88-475505.097-82.8211.29-71.53-472818.917-83.066.79-76.27-47	FrequencyReadingFactorLevelLimitsMargin(MHz)(dBm)(dB)(dBm)(dBm)(dBm)(dB)2510.538-81.8110.46-71.35-47-24.355300.743-84.3310.21-74.12-47-27.122978.244-83.1710.57-72.60-47-25.603151.731-8516.88-68.12-47-21.123000.397-80.1710.29-69.88-47-22.885505.097-82.8211.29-71.53-47-24.532818.917-83.066.79-76.27-47-29.27

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

9.6 TEST RESULTS (Conducted measurement) Test data reference attachment

N2017.06.06.0614.V.1.3

NTEK 北测®

Page 37 of 90

10. RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504	-34	CW
(-139 dBm + 10 × log₁₀(OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524 2584 2674		45 TEL

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

NTEK 北测

Page 38 of 90

Report No.: STR220921003001E

Table 7: Receiver Blocking parameters receiver category 2 equipment							
Wanted signal mean power from companion device (dBm)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal				
(see notes 1 and 3)							
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB)	2 380	-34	cw				
or (-74 dBm + 10 dB) whichever is less	2 504		1 1 2				
(see note 2)	2 300						
	2 584						

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

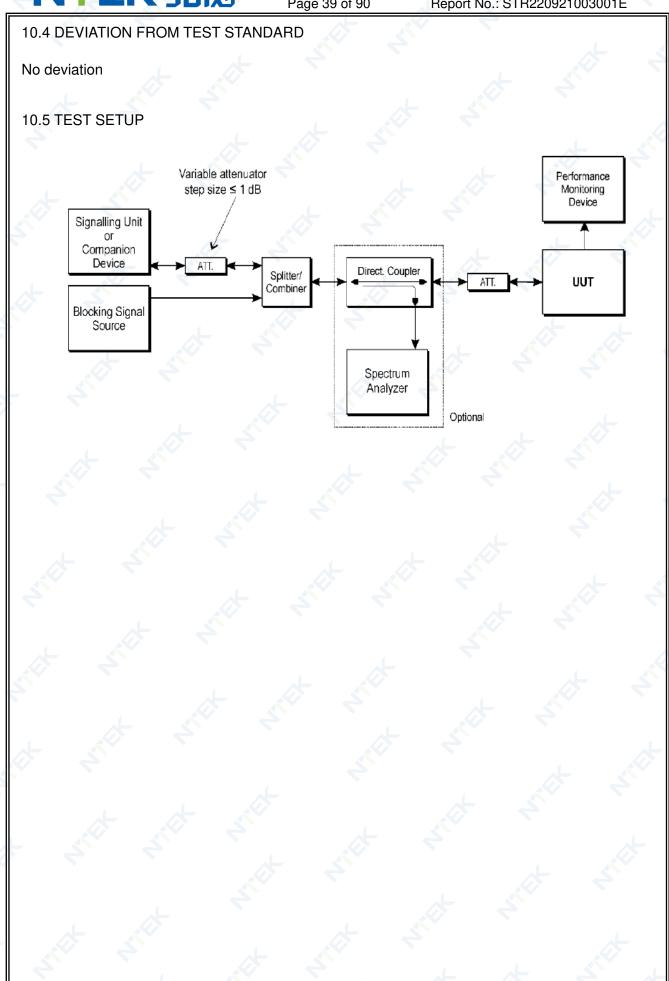
Table 8: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	×	
(see note 2)	2 300		
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.


10.3 TEST PROCEDURE

Refer to chapter 5.4.11.2 of EN 300 328 V2.2.2 (2019-07)

	Measurement		
Conducted measurement		Radiated measurement	*
5	2	4	

Page 39 of 90

Report No.: STR220921003001E

Page 40 of 90

10.6 TEST RESULTS

EUT :	Tablet	Model Name :	Tab 5	2	
Temperature :	24 ℃	Relative Humidity	54%		
Pressure :	1010 hPa	Test Power :	DC 3.8V		
Test Mode :	GFSK Hopping mode (RX)			*	5

CH(00)

Wanted signal mean power from companion device (dBm)	receiver cate Blocking signal Frequency (MHz)	Blocking signal	PER %	PER
(see notes 1 and 3)		power(ubiii) (see note 5)		%
4	2 380		0.91%	1100/
-69.61	2 504		0.85%	≤10%
	2 300	-34	0.43%	c100/
	2 584		0.66%	≤10%

CH(78)

	receiver cate	gory 2 🔨 🔨		
Wanted signal mean power	Blocking signal	Blocking signal		PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)		4		%
* 5	2 380		0.57%	-10
-69.63	2 504		0.64%	≤10
	2 300	-34	0.88%	<10
	2 584		0.51%	≤10

Page 41 of 90

Report No.: STR220921003001E

			•
EUT :	Tablet	Model Name :	Tab 5 🛛 🔶 🚽
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.8V
Test Mode :	π/4-DQPSK Hopping mode (RX)		

CH(00)

	receiver cate	egory 2		
Wanted signal mean power	Blocking signal	Blocking signal		PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)	5		X	%
× ×	2 380		0.13%	c1.00/
-68.32	2 504		0.89%	≤10%
	2 300	-34	0.63%	1100/
	2 584		0.77%	≤10%

CH(78)

4	receiver cate	gory 2		
Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)	Blocking signal power(dBm) (see note 3)	PER %	PER Limit %
	2 380		0.66%	
-68.44	2 504		0.44%	≤10
	2 300	-34	0.38%	<10
	2 584		0.52%	≤10

Page 42 of 90

Report No.: STR220921003001E

			•
EUT :	Tablet	Model Name :	Tab 5
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.8V
Test Mode :	8-DPSK Hopping mode (RX)		<u> </u>

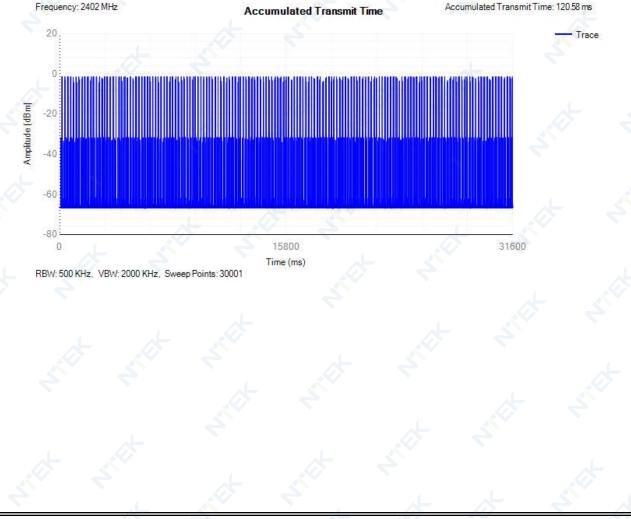
CH(00)

	<u> </u>	receiver cate	gory 2		
	Wanted signal mean power	Blocking signal	Blocking signal		PER
	from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
	(see notes 1 and 3)	<u> </u>	·	X	%
ľ	1	2 380		0.66%	c1.00/
	-68.23	2 504		0.78%	≤10%
		2 300	-34	0.89%	<100/
		2 584		0.52%	≤10%

CH(78)

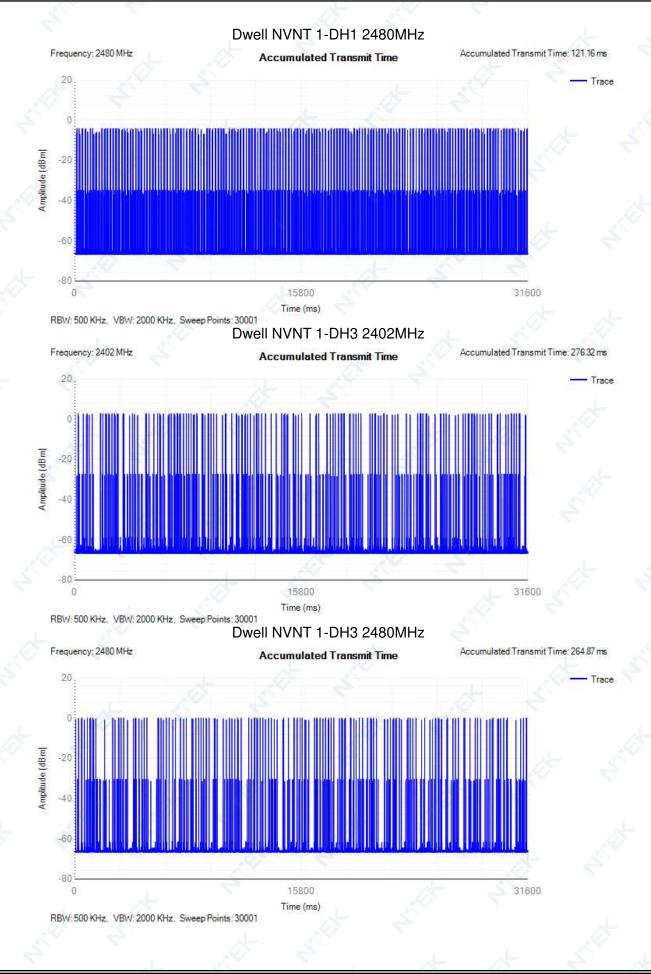
4	receiver cate	gory 2		
Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)	Blocking signal power(dBm) (see note 3)	PER %	PER Limit %
	2 380		0.67%	
	2 504	the second second	0.54%	≤10
-68.24	2 300	-34	0.38%	<10
	2 584		0.59%	≤10

Note: (1) The above results were obtained from laboratory tests.

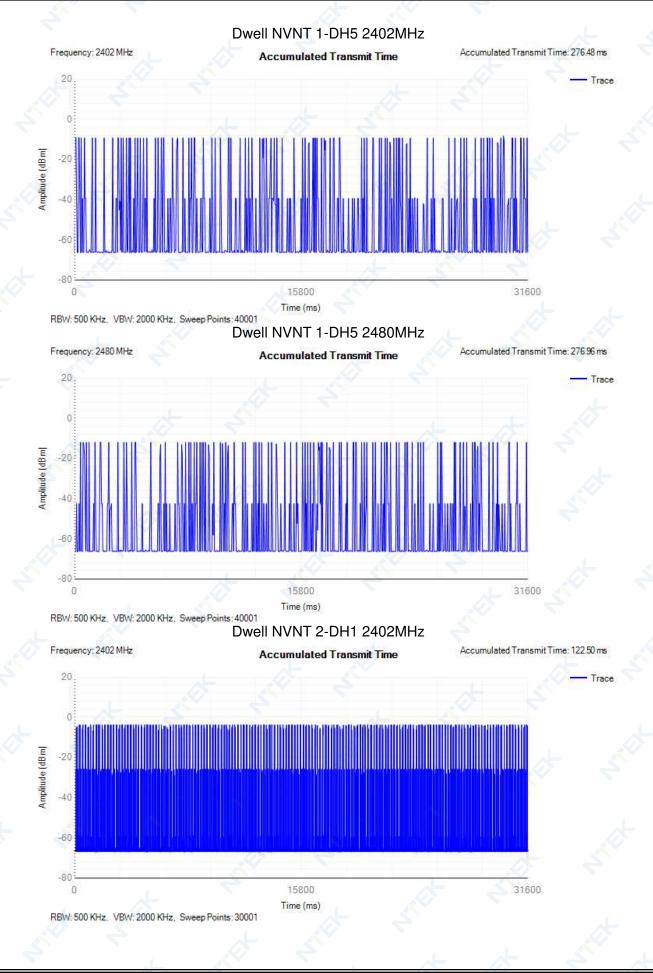

Page 43 of 90

11. TEST RESULTS

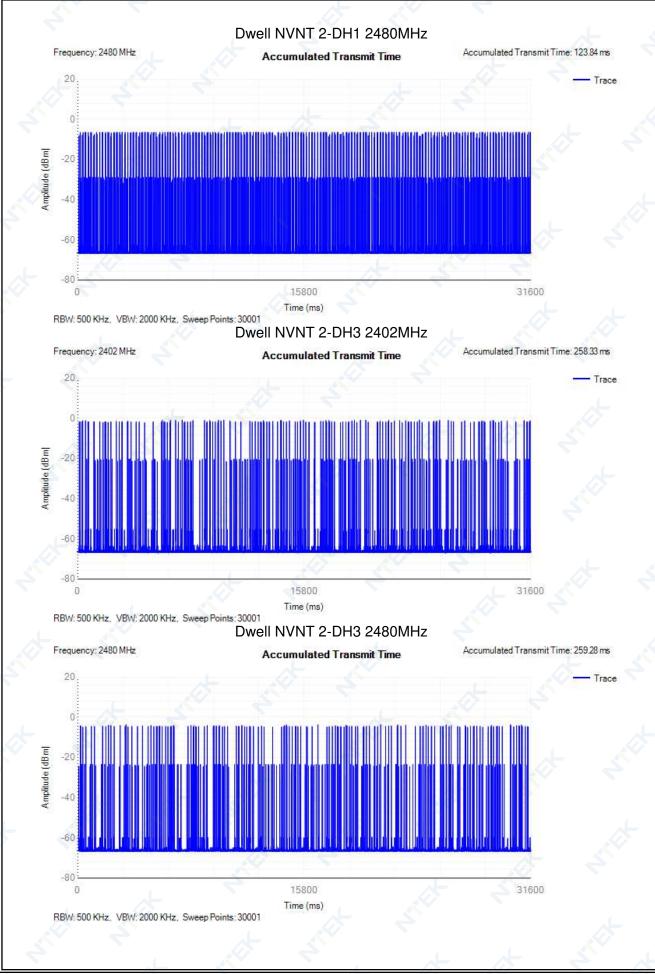
11.1 ACCUMULATED TRANSMIT TIME


			-				
Condition	Mode	Frequency	Accumulated	Limit	Sweep	Burst	Verdict
		(MHz)	Transmit Time (ms)	(ms)	Time (ms)	Number	
NVNT	1-DH1	2402	120.582	400	31600	319	Pass
NVNT	1-DH1	2480	121.158	400	31600	318	Pass
NVNT	1-DH3	2402	276.315	400	31600	169	Pass
NVNT	1-DH3	2480	264.87	400	31600	162	Pass
NVNT	1-DH5	2402	276.48	400	31600	96	Pass
NVNT	1-DH5	2480	276.96	400	31600	96	Pass
NVNT	2-DH1	2402	122.496	400	31600	319	Pass
NVNT	2-DH1	2480	123.84	400	31600	320	Pass
NVNT	2-DH3	2402	258.33	400	31600	158	Pass
NVNT	2-DH3	2480	259.278	400	31600	158	Pass
NVNT	2-DH5	2402	316.8	400	31600	110	Pass
NVNT	2-DH5	2480	259.2	400	31600	90	Pass
NVNT	3-DH1	2402	123.84	400	31600	320	Pass
NVNT	3-DH1	2480	123.84	400	31600	320 <	Pass
NVNT	3-DH3	2402	273.546	400	31600	167 🔨	Pass
NVNT	3-DH3	2480	253.89	400	31600	155	Pass
NVNT	3-DH5	2402	308.16	400	31600	107	Pass
NVNT	3-DH5	2480	340.784	400	31600	118	Pass

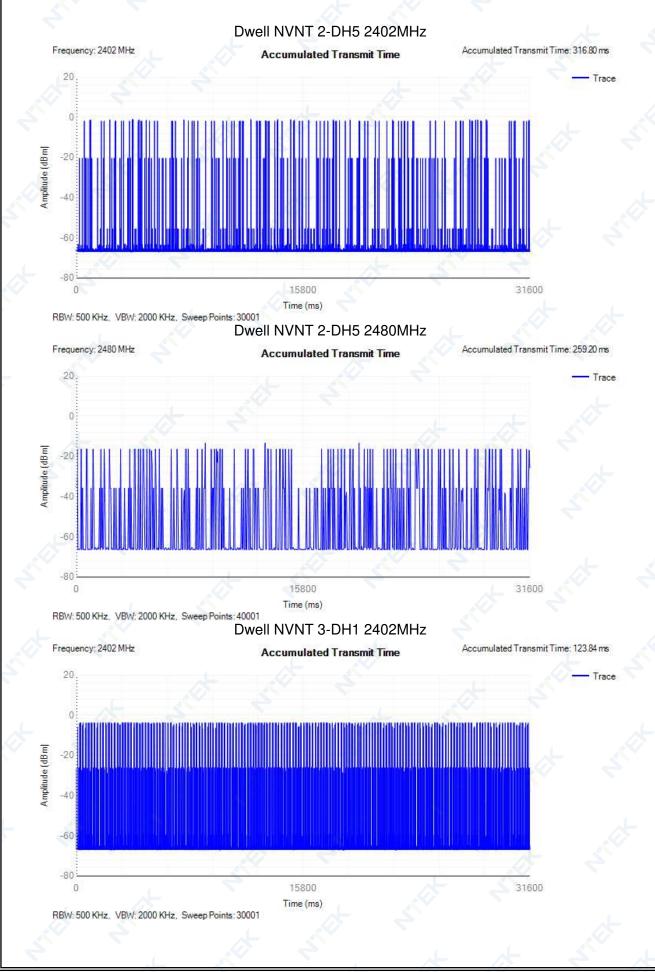
Dwell NVNT 1-DH1 2402MHz


Page 44 of 90

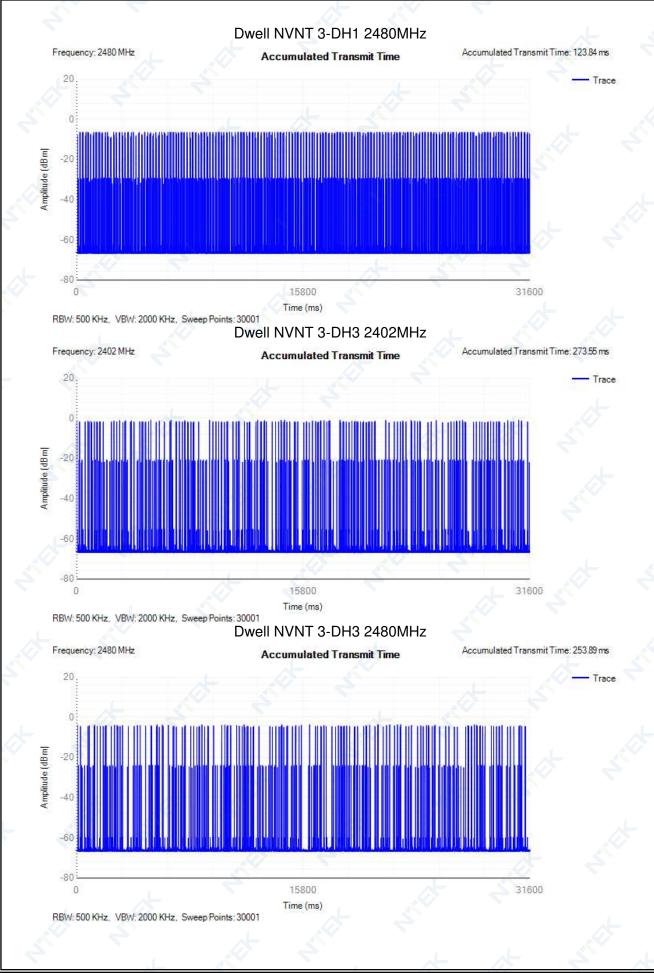
Report No.: STR220921003001E


Page 45 of 90

Report No.: STR220921003001E


Page 46 of 90

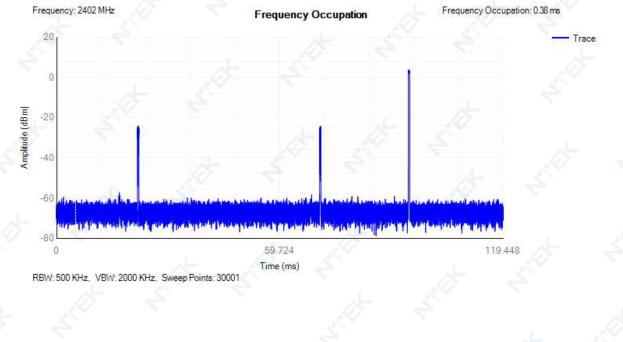
Report No.: STR220921003001E


Page 47 of 90

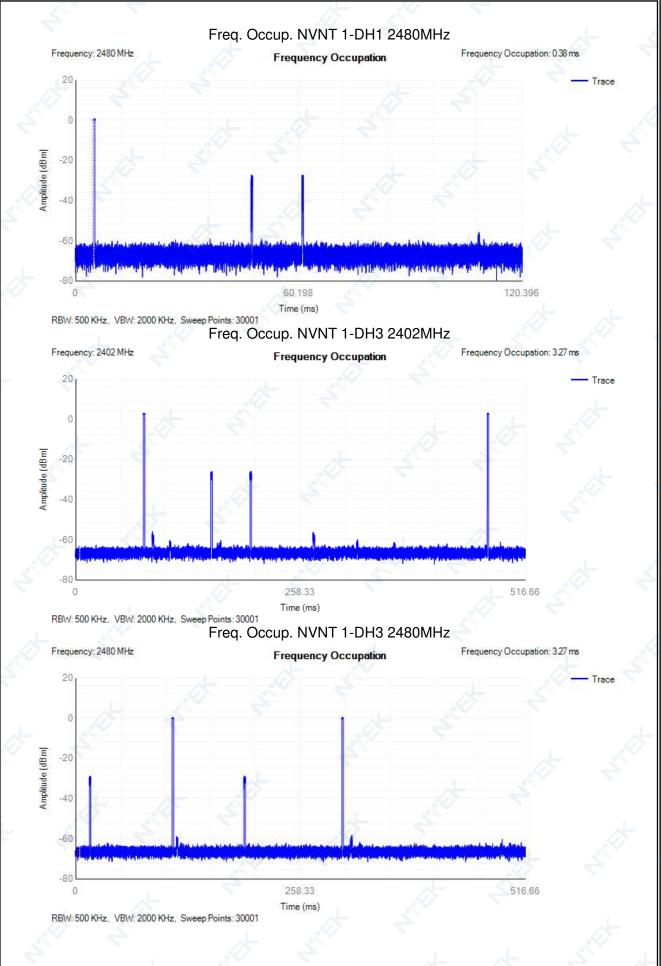
Report No.: STR220921003001E

Page 48 of 90

Report No.: STR220921003001E

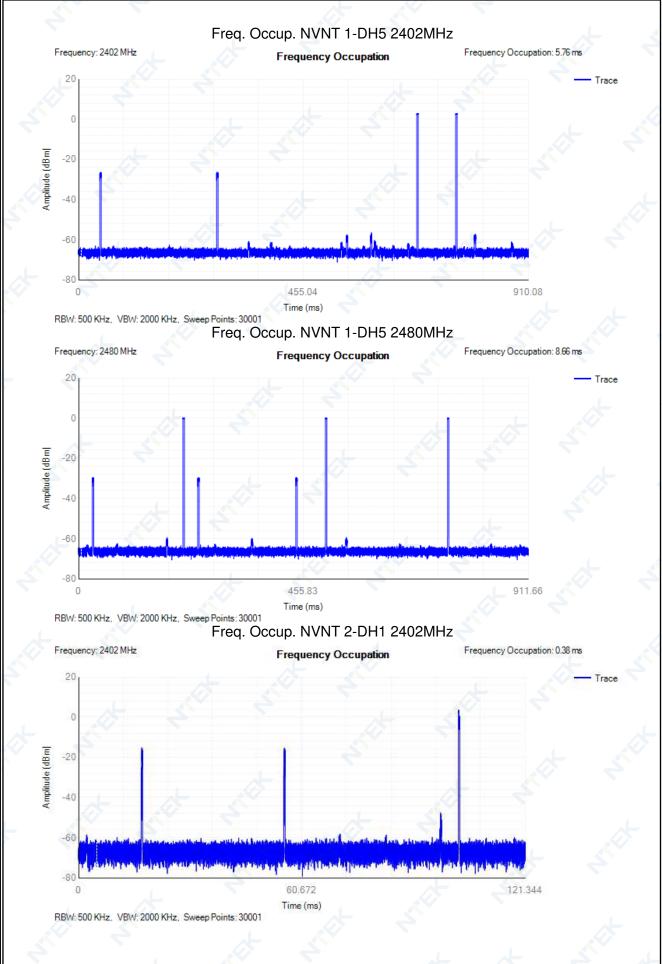

Page 49 of 90 Report No.: STR220921003001E Dwell NVNT 3-DH5 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 308.16 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -60 -80 15800 31600 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH5 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 340.78 ms Accumulated Transmit Time 20. race 0 Amplitude (dBm) -60 -80 15800 31600 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

Page 50 of 90

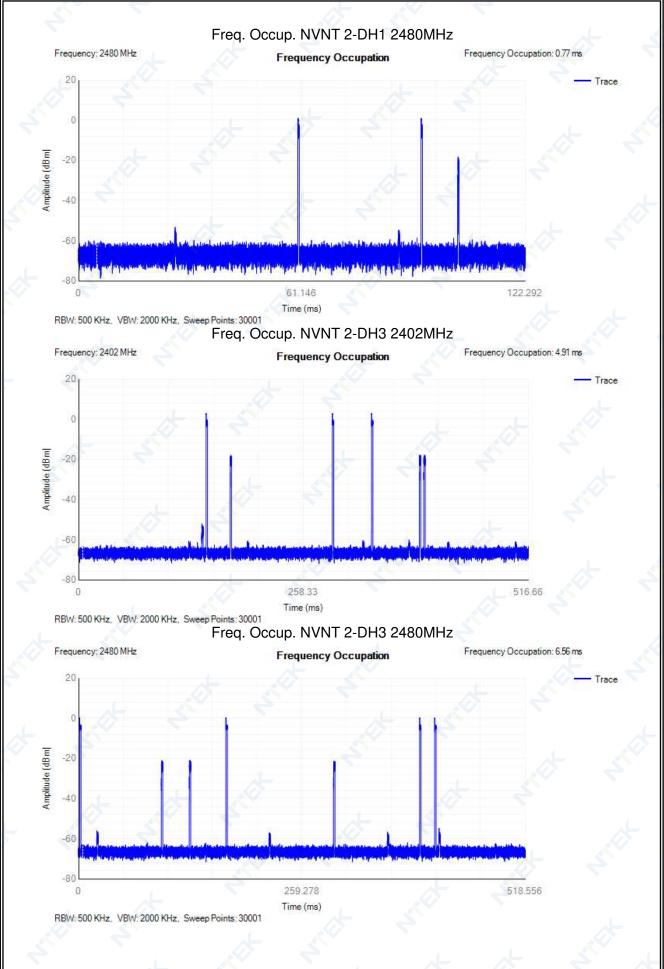

11.2 FREQUENCY OCCUPATION

Mode	Frequency	Frequency	Limit	Sweep	Burst	Verdict
	(MHz)	Occupation (ms)	(ms)	Time (ms)	Number	
1-DH1	2402	0.378	0	119.448	1	Pass
1-DH1	2480	0.381	0	120.396	1	Pass
1-DH3	2402	3.27	0	516.66	2	Pass
1-DH3	2480	3.27	0	516.66	2	Pass
1-DH5	2402	5.76	0	910.08	2	Pass
1-DH5	2480	8.655	0	911.66	3	Pass
2-DH1	2402	0.384	0	121.344	1	Pass
2-DH1	2480	0.774	0	122.292	2	Pass
2-DH3	2402	4.905	0	516.66	3	Pass
2-DH3	2480	6.564	0	518.556	4	Pass
2-DH5	2402	11.52	0	910.08	4	Pass
2-DH5	2480	14.4	0	910.08	5	Pass
3-DH1	2402	0.774 🔨	0	122.292	2	Pass
3-DH1	2480	0.387	0	122.292	1	Pass
3-DH3	2402	3.276	0	517.608	2	Pass
3-DH3	2480	4.914	0	517.608	3 🗸	Pass
3-DH5	2402	14.4	0	910.08	5 🥄	Pass
3-DH5	2480	5.776	0	912.608	2	Pass
	Mode 1-DH1 1-DH3 1-DH3 1-DH3 1-DH5 2-DH1 2-DH1 2-DH3 2-DH3 2-DH5 3-DH1 3-DH1 3-DH3 3-DH3 3-DH3	(MHz)1-DH124021-DH124801-DH324021-DH324801-DH524021-DH524022-DH124022-DH124802-DH324022-DH324802-DH524022-DH524803-DH124023-DH124803-DH324023-DH324023-DH52402	Mode Frequency (MHz) Frequency Occupation (ms) 1-DH1 2402 0.378 1-DH1 2480 0.381 1-DH3 2402 3.27 1-DH3 2402 5.76 1-DH5 2402 0.384 2-DH3 2480 8.655 2-DH1 2402 0.384 2-DH1 2402 0.384 2-DH1 2402 0.376 2-DH3 2402 1.52 2-DH3 2480 6.564 2-DH5 2480 14.4 3-DH1 2480 0.387 3-DH3 2480 4.914 3-DH3 2480 4.914	Mode Frequency (MHz) Frequency Occupation (ms) Limit (ms) 1-DH1 2402 0.378 0 1-DH1 2480 0.381 0 1-DH3 2402 3.27 0 1-DH3 2480 3.27 0 1-DH3 2402 5.76 0 1-DH5 2402 0.384 0 2-DH5 2480 8.655 0 2-DH1 2402 0.384 0 2-DH1 2480 0.774 0 2-DH3 2480 6.564 0 2-DH3 2480 11.52 0 2-DH5 2480 14.4 0 3-DH1 2402 0.774 0 3-DH1 2480 0.387 0 3-DH1 2480 0.387 0 3-DH3 2480 4.914 0 3-DH3 2480 4.914 0	ModeFrequency (MHz)Frequency Occupation (ms)Limit (ms)Sweep Time (ms)1-DH124020.3780119.4481-DH124800.3810120.3961-DH324023.270516.661-DH324803.270516.661-DH524025.760910.081-DH524020.3840121.3442-DH124800.7740122.2922-DH124806.5640518.5562-DH3240211.520910.082-DH5240211.520910.082-DH524020.7740122.2923-DH324023.2760517.6083-DH324023.2760517.6083-DH5240214.40910.08	Mode (MHz)Frequency Occupation (ms)Limit (ms)Sweep Time (ms)Burst Number1-DH124020.3780119.44811-DH124800.3810120.39611-DH324023.270516.6621-DH324803.270516.6621-DH524025.760910.0821-DH524808.6550911.6632-DH124800.7740122.29222-DH124800.7740122.29222-DH324024.9050516.6632-DH324024.9050518.55642-DH3240211.520910.0853-DH324800.3870122.29223-DH324023.2760517.60823-DH3240214.40910.0853-DH3240214.40517.60833-DH5240214.40910.085

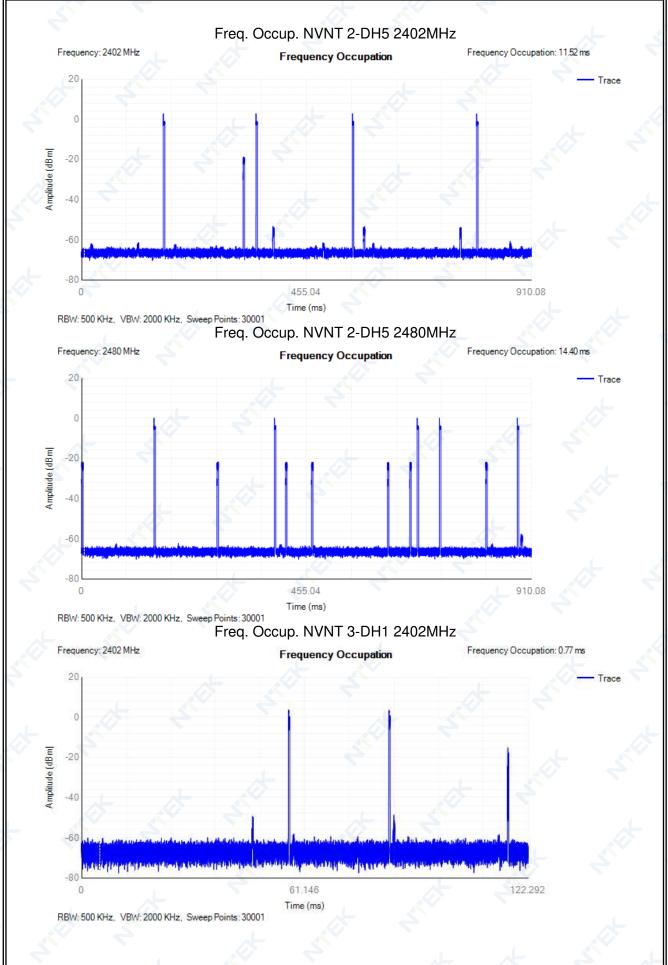
Freq. Occup. NVNT 1-DH1 2402MHz



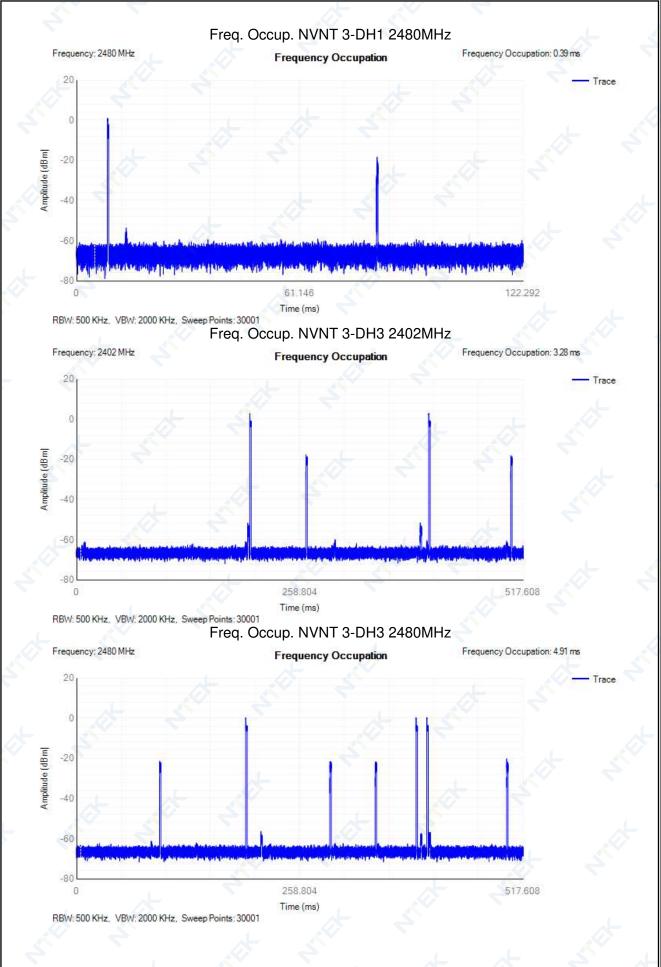
Page 51 of 90


Page 52 of 90

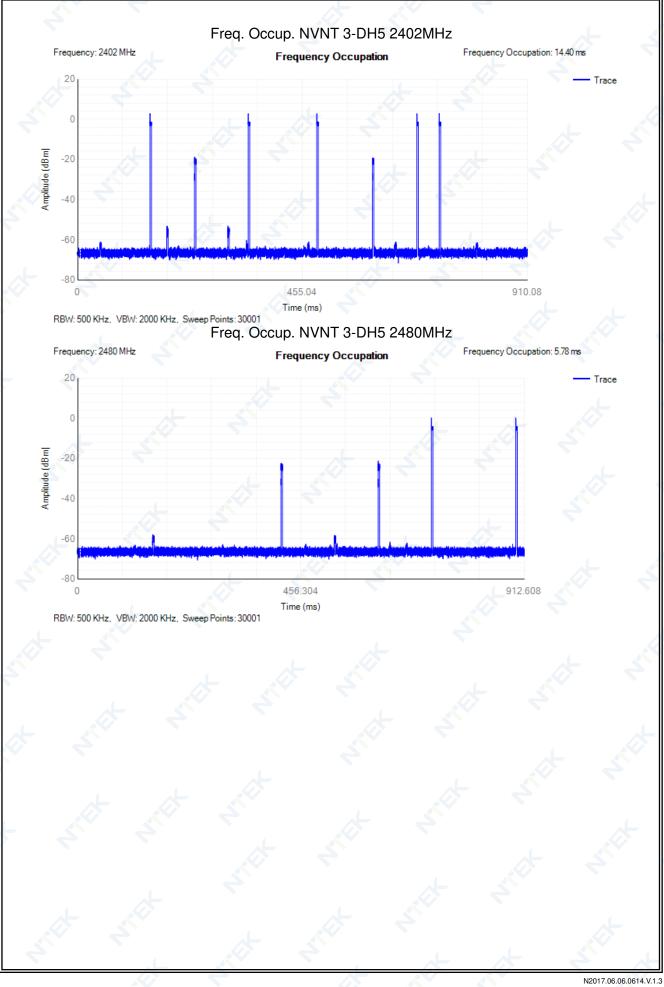
Report No.: STR220921003001E


Page 53 of 90

Report No.: STR220921003001E


Page 54 of 90

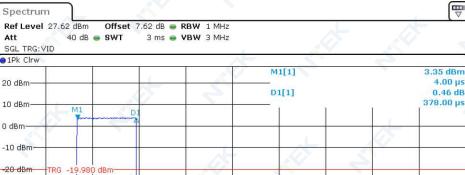
Report No.: STR220921003001E


Page 55 of 90

Report No.: STR220921003001E

Page 56 of 90

Report No.: STR220921003001E

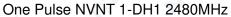

Page 57 of 90

11.3 ONE PULSE DWELL TIME

Att

0 dBm

Condition	Mode	Frequency (MHz)	Pulse Time (ms)
NVNT	1-DH1	2402	0.378
NVNT	1-DH1	2480	0.381
NVNT	1-DH3	2402	1.635
NVNT	1-DH3	2480	1.635
NVNT	1-DH5	2402	2.88
NVNT	1-DH5	2480	2.885
NVNT	2-DH1	2402	0.384
NVNT	2-DH1	2480	0.387
NVNT	2-DH3	2402	1.635
NVNT	2-DH3	2480	1.641
NVNT	2-DH5	2402	2.88
NVNT	2-DH5	2480	2.88
NVNT 🖉	3-DH1	2402	0.387
NVNT	3-DH1	2480	0.387
NVNT	3-DH3	2402	1.638
NVNT	3-DH3	2480	1.638
NVNT	3-DH5	2402	2.88
NVNT	3-DH5	2480	2.888



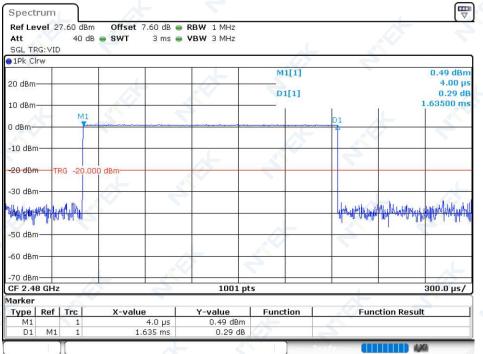
One Pulse NVNT 1-DH1 2402MHz

	Ret	Irc	X-valu	ie	Y-value 3.35 dBm	Func	tion	Func	tion Result	· · · · ·
1arker Type		Trc	N	-	V	I Euro	Non I		tion Result	
CF 2.4	02 GH	lz			1001 μ	ots				300.0 µs/
-70 dBm	n									
-60 dBm	n						>			
-50 dBm	n									
14elilikan	Helphy H	httlyn -		PHUMP/INDU	In the part of the second		Hilled Hold President	anthen and the	mprody hourse	
30 dBm	n						dell'Area della			a shi a sh
20 dBrr	T	RG -19.980	dBm							11
10 dBn										

Page 58 of 90

Report No.: STR220921003001E

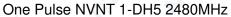
SGL TR										
IFK CI	1.00					M	1[1]			-10.01 dBm
0 dBm·	_									1.00 µs
						D	1[1]			-0.07 dB
0 dBm·							ì	1	1	381.00 µs
dBm—										
abili		M1								
LO dBm	n		- Marinary Car							8
		pu u	101 * 1 0 0 0 1							
20 dBm	TR	G -20.00	0 dBm							
30 dBm										
Jo don		and is		iter an	and the second	ALC: NOT STREET	1000-000	and the reader	in a shi	L. KIND
植物	HALLAND			hall a start a	A HAR BARRING	A A A A A A A A A A A A A A A A A A A			Maharan Carles and Carles	
1.1.1	III III			1.10	and the					
50 dBm										
	V2									
	V2			Ŕ		÷.				L
50 dBm 70 dBm) <u> </u>			Ŕ		$\overline{\mathbf{A}}$				x
60 dBm 70 dBm 3F 2.48) <u> </u>	<u>í</u>		Å	1001 p	ts				300.0 µs/
60 dBm 70 dBm F 2.48 arker	B GHz	Teo I		Å			tion 1		tion Board	
50 dBm 60 dBm 70 dBm CF 2.49 Iarker Type M1) <u> </u>	Trc 1	X-value	и 1.0 µs	1001 p Y-value -10.01 dBm	ts Func	tion	Func	ction Resu	


One Pulse NVNT 1-DH3 2402MHz

Att SGL TR			n Offset / B 👄 SWT	CALCO CALLS OF	RBW 1 MHz VBW 3 MHz					
1Pk Clr				1						
	1					M	1[1]			3.25 dBm
20 dBm-		<u> </u>		-	+ +	D	1011			4.00 µs 0.27 dB
10 dBm-	50			0			1[1]			1.63500 ms
		M1						D1		
0 dBm—										
		1								
-10 dBm										2
-20 dBm	T	RG -19.9	and dam							4
LO GDIII										
-30 dBm					+					
and	Links	an est						lli on relati	HILL AND LAND	L. LANG MANNER
AN HER	Idual L	ualle de						d another a	Anter and the loss of	Weld Mitself
-50 dBm	_									1
-60 dBm										
-70 dBm										
CF 2.40		Iz			1001 p	ts				300.0 µs/
1arker					•					
Туре	Ref	Trc	X-value	6	Y-value	Func	tion	Fu	nction Resu	lt
M1 D1	M1	1		4.0 µs 535 ms	3.25 dBm 0.27 dB					

Page 59 of 90

Report No.: STR220921003001E

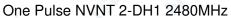


One Pulse NVNT 1-DH5 2402MHz

Ref Le Att SGL TR		7.62 dBm 40 dB		7.62 dB 👄 8 ms 👄		VIMHz VIMHz					
1Pk Clr	w						1.00				
20 dBm-						~	м	1[1]			-4.86 dBm 4.00 µs
							D	1[1]			-0.23 dB
LO dBm-					+						2.88000 ms
) dBm					D						
	porton	almarka h									
10 dBm	U						- C				1
20 dBm	T	RG -19.9	BO dBm								-
30 dBm											
						dama du tra	الم معانية ا	aldation () at	Allerikandada		noth and the second
Hereem					+	Housenhalteret	Phillip -	White Internet	n A nor na hUndra al	loon o hall sider	Aller house at some of
50 dBm					_						
					\mathbf{A}						
60 dBm											
70 dBm											
CF 2.40 larker	02 GH	z	×			1001 pt:	5				800.0 µs/
	Ref	Trc	X-value	. 1	Y	-value	Func	tion	Fun	ction Resu	lt
M1 D1	M1	1		4.0 µs .88 ms		-4.86 dBm -0.23 dB					

Page 60 of 90

Report No.: STR220921003001E

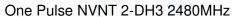

SGL TRG: VID 1Pk Clrw							
				M	1[1]		-13.66 dBm
20 dBm		r.			1[1]		5.00 µs 2.66 dB
LO dBm					*[*]		2.88500 ms
0 dBm							
-10 dBm	Une-version and	maynor	mapan	ليعدروهما للمه	-	ni l	
TO UDIN	10 10 11						1
-20 dBm TRG -2	0.000 dBm			\rightarrow			
00 10-							
-30 dBm						la la conte	Anne distant
Idolean Mar						had had a stand the	
-50 dBm							
-60 dBm							
oo abiii							
-70 dBm							
CF 2.48 GHz			1001 pt	s			500.0 μs/
1arker Type Ref Trc	X-value		Y-value	Func	·· 1		on Result
Type Ref Trc M1 1		3 5.0 μs	-13.66 dBm	Func	uon	Functi	on Result
D1 M1 1		885 ms	2.66 dB				

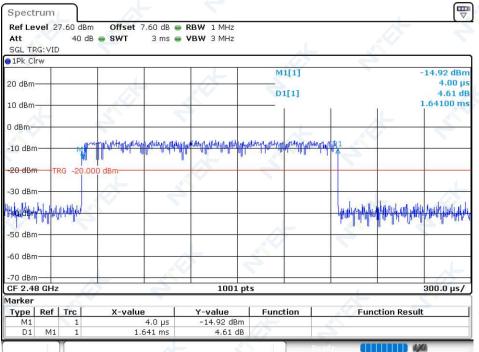
One Pulse NVNT 2-DH1 2402MHz

	1 27.62 c			.62 dB 🖷 R						
Att		dB	IWT 😔	3 ms 💩 V	BW 3 MHz					
SGL TRG				-					· ·	
1Pk Clrw	2					0.4	1[1]			-4.52 dBm
20 dBm—	4						TTT			4.00 µs
to abin						D	1[1]			-3.74 dB
.0 dBm—								a		384.00 µs
) dBm—		11								
10 10		with	MANY M							
10 dBm-										14
20 dBm	TRG -19	3 980	dBm							
LU UDIII	1100 11.		, ubm							
30 dBm-	-							-		
IL. N.	to Manufa			dik and	keth calle in th	and the Albert	dias the	Handwith well, beauty	dana kuta	in a with a
州如柏林林州州	n hiller have	-		and the state of t	a the shift of the state of the		Malchin V	W HALL Has Make	WAR WORK	APARTING AND
50 dBm-				Sector Contraction	Carl Charles See S		-			a da
SU UBIII-										
60 dBm-								_		
-70 dBm-	-									
CF 2.402	GHz				1001	pts				300.0 µs/
larker							<u> </u>			
Type F M1	ef Trc		X-value	4.0 μs	Y-value -4.52 dB	Func	tion	Tunc Func	ction Resul	t
D1	1 M1 1			4.0 μs 14.0 μs	-4.52 dB -3.74 d					

Page 61 of 90

Report No.: STR220921003001E

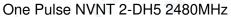

Att SGL TR			• SWT	5 ms 🖝 .	BW 3 MHz					
1Pk Cl	rw									D C A JD
20 dBm·			1			IVI	1[1]			0.64 dBm 4.00 µs
.0 ubiii						D	1[1]			-1.85 dB
.0 dBm·	-						1	9	1	387.00 µs
		M1								
dBm-			Jesthershippend							
10 dBm										
to ubii	1									
20 dBm	T	RG -20.00	0 dBm							11
		0.000								
30 dBm	1-+-						Taka I			
- Hull	IN MIL	Martin		Harden Alven		Added Lawrold	Middlan	AT A AMBIAN	Middleham	reader the material
7814491	wyw	I III with		nadilional Af	a al alla da . A al	a dat fin als 1.	Illin to Audition	Jan Al ala Ab	A h alan.	
50 dBm	י י י.			-						-
50 dBm	1									
70 dBm										
F 2.4	1. A.	: 0			1001 p	ots		-		300.0 µs/
arker					•					
Гуре	Ref	Trc	X-value		Y-value	Func	tion	Func	tion Result	
		1		4.0 µs	0.64 dBm					
M1 D1	M1	1		17.0 µs	-1.85 dB					


One Pulse NVNT 2-DH3 2402MHz

	vel 2	7.62 dB		and which the second	RBW 1 MHz				
Att			db 👄 SWT	3 ms 👄	VBW 3 MHz				
SGL TR									
IPK CI						M1[1]			-4.80 dBm
20 dBm·									4.00 µs
						D1[1]			-1.59 dB
10 dBm·				-	_				1.63500 ms
0 dBm—		MI							
		1	~~~~	Apply which	wayny an area and	may try have been also	My has		
-10 dBm	1								
-20 dBm	22 2 4		980 dBm						
-20 0011		KG -19.	980 dBm						
-30 dBm									
in the second							and a second	i Caracia	a sociality
t d ten		Holad H		-	-		- WUMPAN	Charlettel A date	
1.00 .		0. 00						Lab. ad at .	and do in
-50 dBm			-	-					
-60 dBm									
-70 dBm									
CF 2.4		z			1001 pt	s			300.0 µs/
1arker									
Type	Ref	Trc	X-value	e	Y-value	Function	Fur	iction Resu	ilt [
M1		1		4.0 µs	-4.80 dBm	~			
D1	M1	1	1.	635 ms	-1.59 dB				

Page 62 of 90

Report No.: STR220921003001E

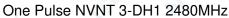


One Pulse NVNT 2-DH5 2402MHz

ef Lev .tt	el 27	7.62 dBm		Course - A					
GL TRO	S: VID	40 08	see switt a	s ms 📟 🖌	BW 3 MHz				
LPk Clr			A						
						M1[1]			-4.89 dBm
dBm-					· · · · ·	Defen]			4.00 µs
dBm-						D1[1]			0.54 dB 2.88000 ms
UDIII-						1	(]		1
dBm /11					D1				
F		nthey traitings	ngayaryahanganga hadan	protochativa	ma				
0 dBm-									14
3 dBm	TO	G -19.9							
o ubin	IR	0 -19.9	BU UBIII						
0 dBm-	_						_		
dBm-						Manhambara	In the Republic And And Ander	Call role that ale	una bulldente Liderten
dBm-	-				different to man	-hiter also have a design	wheth the Johnship of the	all Marin Mala	and the nation in
0 dBm-									
o abiii									
0 dBm-	-								
0 dBm-		,		~	1001 pt	·c /		1	800.0 µs/
rker	2 011				1001 pt				000.0 µ3/
	Ref	Trc	X-value		Y-value	Function	Fun	ction Resul	t
M1		1		Dμs	-4.89 dBm				

Page 63 of 90

Report No.: STR220921003001E

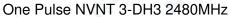

SGL TF	a service a service of the									
	1100					M1[[1]		1	15.14 dBm
20 dBm						D1[11			4.00 µs 5.31 dB
LO dBm							.+1		2	2.88000 ms
) dBm—				· · · ·				6		
	and the state of the	HUNGHAMMANA	nerwand have been been been been been been been be	phonewania	w61					
-10 ab					4					14
20 dBr	TR	G -20.0	00 dBm							
-30 dBm							100.0		S. 11	
40 den					Upland of March 100	Hillergaggious	and the light	144 Jon Weller Mark	he was here a stand of the stan	ryand the phil
-50 dBm	1	· · ·	-							>
60 dpm										
-60 dBm										
-70 dBm					1001 pt	s		-		800.0 µs/
-70 dBm CF 2.4										
-70 dBm CF 2.44 1arker	B GHz		¥	1						
-60 dBm -70 dBm CF 2.44 Marker Type M1		Trc	X-value	.0 µs	Y-value -15.14 dBm	Function	on	Fund	tion Result	

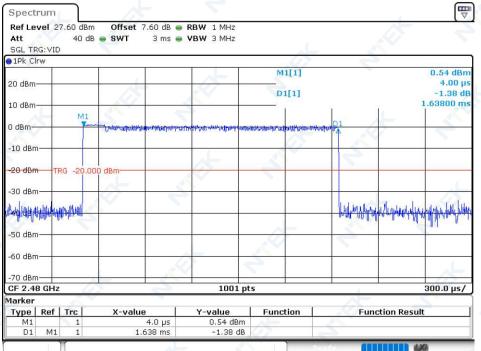
One Pulse NVNT 3-DH1 2402MHz

Ref Level 2	27.62 dBm	Offset 7	7.62 dB 🥌 R	BW 1 MHz					
Att		🛛 👄 SWT	3 ms 👄 🖌	BW 3 MHz					
SGL TRG: VI	D							· ·	
IPK CITW					M	1[1]			3.45 dBm
20 dBm									4.00 µs
					D	1[1]			-1.38 dB
LO dBm	M1					Ì.	1		387.00 µs
) dBm		mannan	L						
JUDIN	4								
10 dBm									
			-						
20 dBm 1	RG -19.98	BO dBm							
-30 dBm									
Liller Dr. Killer			als nus	<u>มไปไม่คนแ</u> ปน.	and the set t	Al care la	In a state of	antikara.	a labber
AD ARHING A	appart -		Hally Marilla	M. M. M. Marker	Brindle Hille	Kelly fighter	BALLANDONA	AL HARAGE	And the state of t
-50 dBm	. 4						CH MAR THE	- • - 16 - 10 -	
SO GDIN									
60 dBm									
70 40									
-70 dBm	-17			1001	nts				300.0 µs/
larker				1001	<u>pus</u>				00010 [057
Type Ref	Trc	X-value		Y-value	Func	tion	Fund	ction Resul	t
M1	1		4.0 µs	3.45 dBr					
D1 M1	. 1	38	17.0 µs	-1.38 d	в				
	I					Ren			0

Page 64 of 90

Report No.: STR220921003001E

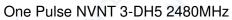

Att BGL TF			● SWT	3 ms 🖮	VBW 3 MHz					
1Pk Cl	rw									0.75.10
20 dBm						M	1[1]			0.76 dBm 4.00 µs
.0 ubm				<i>v</i>		D	1[1]			-1.66 dB
.0 dBm	_						1000	i 6	0	387.00 µs
		M1								
) dBm—			annan an an an							
10 dBm		1								
LO UDII	1									
20 dBrr	т	RG -20.00	0 dBm							4.
		6								
30 dBm	ר						101	1	<u>111</u>	
and shall be	adauh	ut Lu		HA LILLILLAND	d de hals tiller and the	Ladar Allan	Landela A. 14	La Debel landitadita	And have been	adath have the da
ah trau	a Had	M Alai		d . Nahlin Ilina	n dill na hand with	Ald a bla a	hinner hi MI	and alle its alle the	a a a a a a a a a a a a a a a a a a a	and all have
50 dBm	1—			(194) 	· · · · · · · · · · · · · · · · · · ·					
	100									
	8		-							
50 dBrr	J — – L				1 1					
70 dBm	η <u> </u>				1001 n	ts		8 A 8		300.0 us/
70 dBm F 2.4	η <u> </u>				1001 p	ts				300.0 µs/
70 dBm CF 2.44 larker	n B GHz	Trc	X-value		1001 p Y-value	ts Func	tion	Fund	tion Result	
-60 dBm -70 dBm CF 2.44 larker Type M1 D1	n B GHz			4.0 µs			tion	Func		


One Pulse NVNT 3-DH3 2402MHz

Att SGL TR			ib 🐵 SWT	CANCE STORES	RBW 1 MHz VBW 3 MHz					
1Pk Cl										
un una				6		м	1[1]			3.24 dBm
0 dBm·						D	1[1]			4.00 µs -1.55 dB
) dBm·	1			0		U.	1[1]			1.63800 ms
5 GDIII		M1						01		
dBm—			"UNTW-MPM-M	ended allowing	all and the second states of the second s	press had in a high set	land the second second	HURDA -		
		- 1								
0 dBm										
0 dBm	т	00 100	980 dBm							
o ubn		0 -19.3	JOD UDIII							
0 dBm	_				-					
Aller		Industry						. h I Marco	WHILE WILLING	. a. dudu
Pa den	HANG	ullered -						10 100 10 10 10	HANDARD OF	When the second
50 dBm				-						1
	2									
0 dBm									-	
					I I					
70 dBm		17			1001	nte	1			300.0 µs/
arker		12			1001	pts				300.0 µ37
ype	Ref	Trc	X-value	6 I.	Y-value	Func	tion	Fun	ction Resu	lt
M1		1		4.0 µs	3.24 dBn	n 🔨		0.700		
D1	M1	1	1.6	638 ms	-1.55 dB	3				

Page 65 of 90

Report No.: STR220921003001E



One Pulse NVNT 3-DH5 2402MHz

VID	IB 🥌 SWT 8 ms	VBW 3 MHz			
10					
S. C.			M1[1]		-4.92 dBm
			Dalial		4.00 µs -1.15 dB
			DILI		-1.15 dB 2.88000 ms
monupering	water water and a strate and a st	phyphony off 1			
TPG 10.0	nen dem				
110 -193					
					_
		an Doute a finder of	Haddenste danshe i Dostabila in	In Arti Linik ter alla has they at	denthe descended
		Los bodiniti	unds as includes and a small re	A to All the bootstation of	ta of darft. Alla strudle.
	-				
					_
CH7		1001 nt	<u>د</u>		800.0 µs/
GIL		1001 pt			000.0 µ37
ef Trc	X-value	Y-value	Function	Function Res	ult
1	4.0 µs	-4.92 dBm			4
	GHz	липири-мири-липири-липири-липири-липири-липири-липири-липири-липири-липири-липири-липири-липири-липири-липири- ТRG -19.980 dBm 	GHz 1001 pt 1 4.0 µs -4.92 dBm	MI[1] DI[1] ланини и преридания и преридания и преридания и преридания и преридания и преридения	M1[1] μ μ <t< td=""></t<>

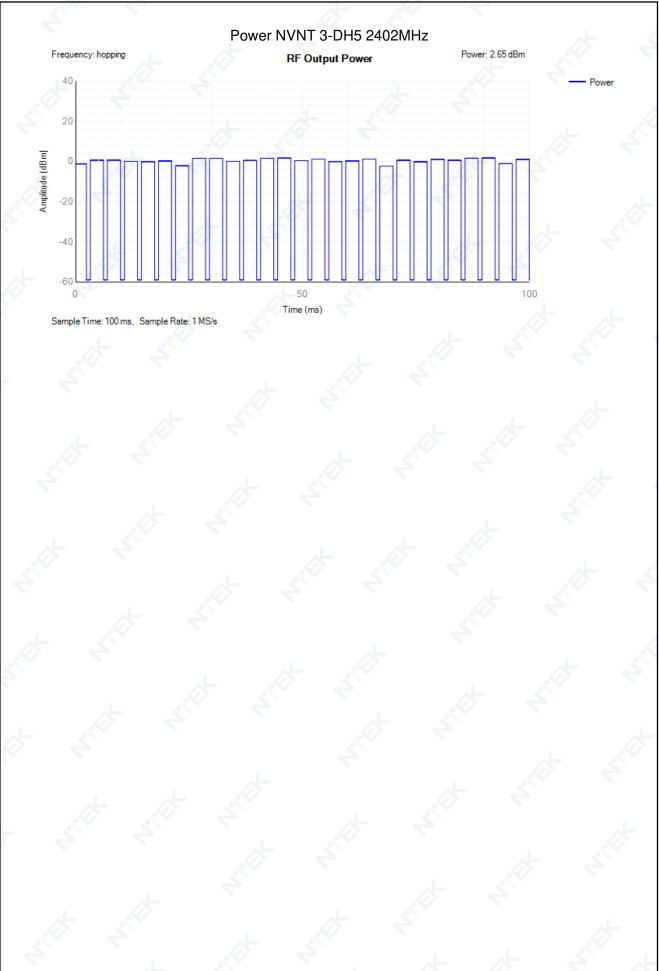
Page 66 of 90

Report No.: STR220921003001E

SGL TRG: VID 1Pk Clrw					0		
				M	1[1]		0.50 dBm
20 dBm				D1	L[1]		4.00 µs -1.47 dB
.0 dBm						12 01	2.88800 ms
MI							
) dBm	hu d ly 114 Bly 210 Bly d'ly 24 and goodford los	بش <u>ه</u> هم <u>م</u> لم _{اه} هم	the state of the s				
10 dBm							
20 dBm TRG	-20.000 dBm						
-30 dBm					-		
12120033300			يريد والمريد وال	un institut		ada a hi hile ta da la la la	non and the second second
40 Wem			H. A. A. Manageran A.	ANVILLAND AND	Patricka Hallothar	al hannar ana minak falia	adaren da de la dela de la dela dela dela dela
-50 dBm							
-60 dBm		- Ô					
-70 dBm							
CF 2.48 GHz		2	1001 pt	s			800.0 µs/
larker			Y-value	Funct	tion	Function	Result
larker Type Ref Ti M1		.0 µs	0.50 dBm	- and			

Page 67 of 90

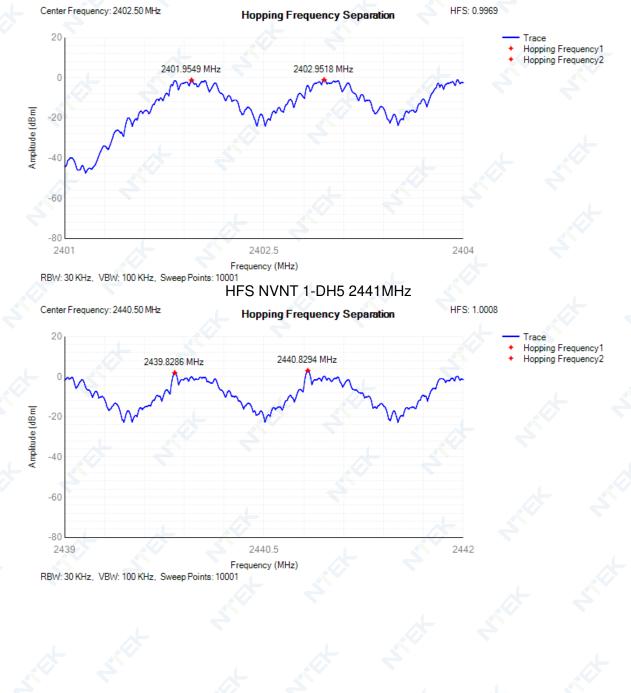
Report No.: STR220921003001E


11.4 RF OUTPUT POWER

	01101	E 11					
Condition	Mode	Frequency	Max Burst RMS	Burst	Max EIRP	Limit	Verdict
		(MHz)	Power (dBm)	Number	(dBm)	(dBm)	
NVNT	1-DH5	hopping	3.82	28	4.82	20	Pass
NVNT	2-DH5	hopping	1.96	27	2.96	20	Pass
NVNT	3-DH5	hopping	1.65	27	2.65	20	Pass
NVLT	1-DH5	hopping	3.14	28	4.14	20	Pass
NVLT	2-DH5	hopping	1.37	27	2.37	20	Pass
NVLT	3-DH5	hopping	1.08	27	2.08	20	Pass
NVHT	1-DH5	hopping	3.11	28	4.11	20	Pass
NVHT	2-DH5	hopping	1.27	27	2.27	20	Pass
NVHT	3-DH5	hopping	0.88	27	1.88	20	Pass

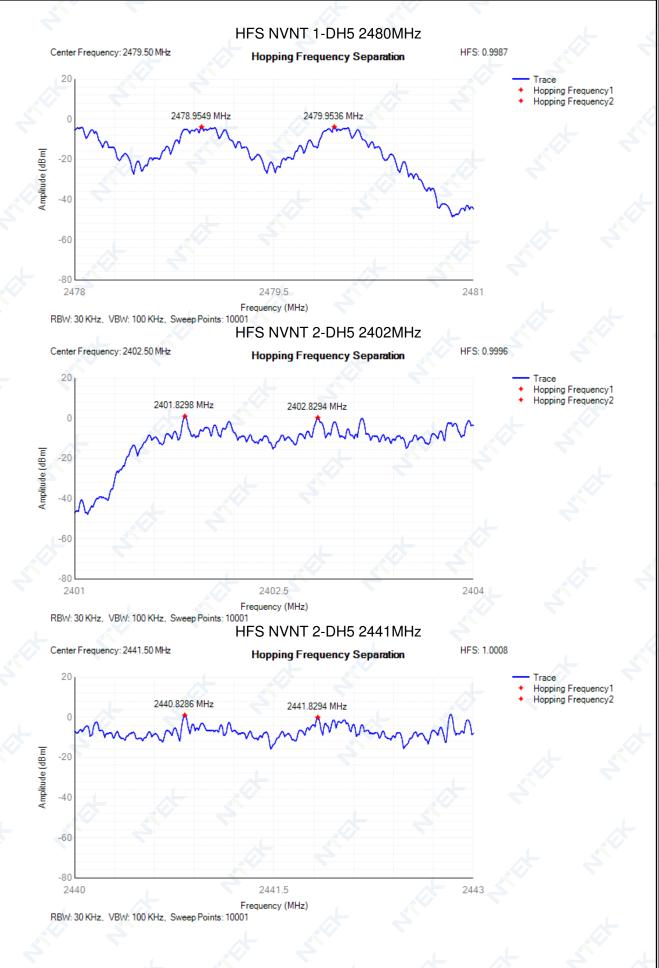
Page 68 of 90

Report No.: STR220921003001E

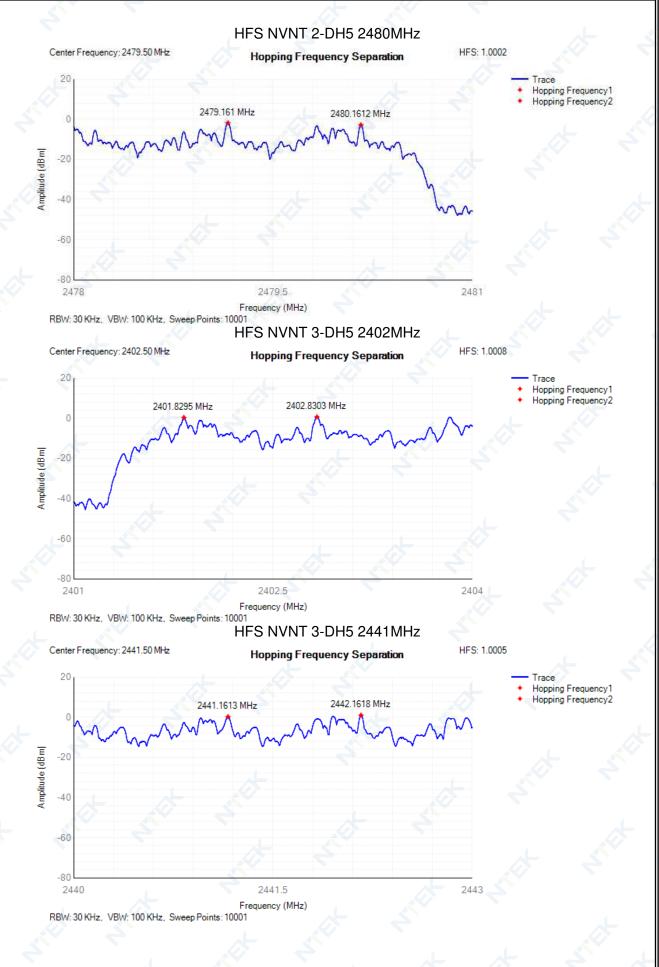

Page 69 of 90

Report No.: STR220921003001E

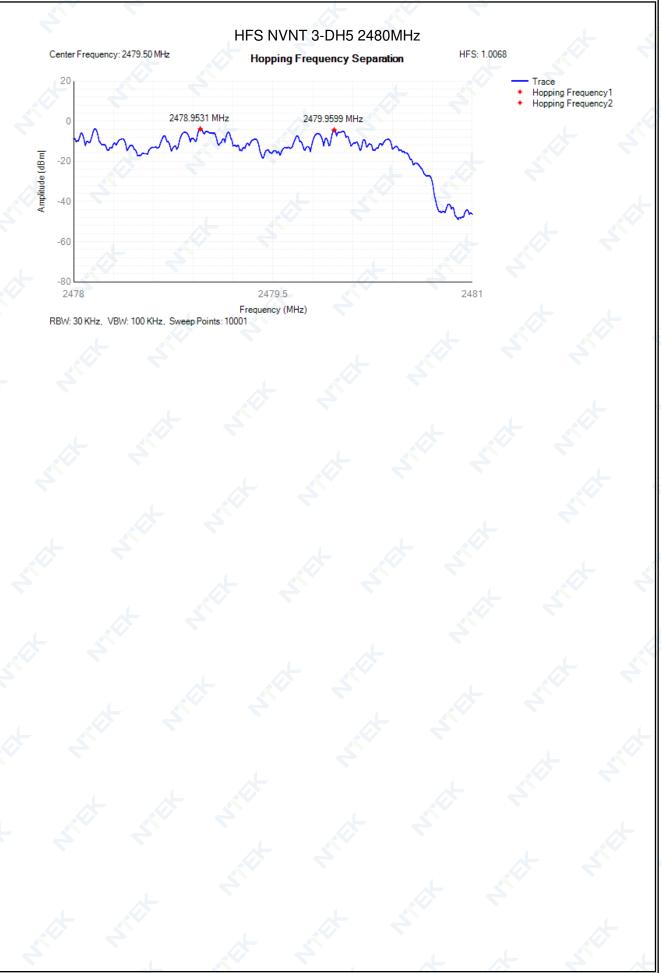
11.5 HOPPING FREQUENCY SEPARATION


Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
	(MHz)	(MHz)	(MHz)	(MHz)	
1-DH5	2401.9549	2402.9518	0.9969	0.1	Pass
1-DH5	2439.8286	2440.8294	1.0008	0.1	Pass
1-DH5	2478.9549	2479.9536	0.9987	0.1	Pass
2-DH5	2401.8298	2402.8294	0.9996	0.1	Pass
2-DH5	2440.8286	2441.8294	1.0008	0.1	Pass
2-DH5	2479.161	2480.1612	1.0002	0.1	Pass
3-DH5	2401.8295	2402.8303	1.0008	0.1	Pass
3-DH5	2441.1613	2442.1618	1.0005	0.1	Pass
3-DH5	2478.9531	2479.9599	1.0068	0.1	Pass
	Mode 1-DH5 1-DH5 2-DH5 2-DH5 2-DH5 3-DH5 3-DH5	(MHz)1-DH52401.95491-DH52439.82861-DH52478.95492-DH52401.82982-DH52440.82862-DH52479.1613-DH52401.82953-DH52441.1613	Mode Hopping Freq1 (MHz) Hopping Freq2 (MHz) 1-DH5 2401.9549 2402.9518 1-DH5 2439.8286 2440.8294 1-DH5 2478.9549 2479.9536 2-DH5 2401.8298 2402.8294 2-DH5 2440.8286 2441.8294 2-DH5 2479.161 2480.1612 3-DH5 2401.8295 2402.8303 3-DH5 2441.1613 2442.1618	Mode Hopping Freq1 (MHz) Hopping Freq2 (MHz) HFS (MHz) 1-DH5 2401.9549 2402.9518 0.9969 1-DH5 2439.8286 2440.8294 1.0008 1-DH5 2478.9549 2479.9536 0.9987 2-DH5 2440.8298 2402.8294 0.9996 2-DH5 2440.8286 2441.8294 1.0008 2-DH5 2479.161 2480.1612 1.0002 3-DH5 2401.8295 2402.8303 1.0008 3-DH5 2441.1613 2442.1618 1.0005	Mode Hopping Freq1 (MHz) Hopping Freq2 (MHz) HFS (MHz) Limit (MHz) 1-DH5 2401.9549 2402.9518 0.9969 0.1 1-DH5 2439.8286 2440.8294 1.0008 0.1 1-DH5 2478.9549 2479.9536 0.9987 0.1 2-DH5 2401.8298 2402.8294 0.9996 0.1 2-DH5 2440.8286 2441.8294 1.0008 0.1 2-DH5 2479.161 2480.1612 1.0002 0.1 3-DH5 2401.8295 2402.8303 1.0008 0.1

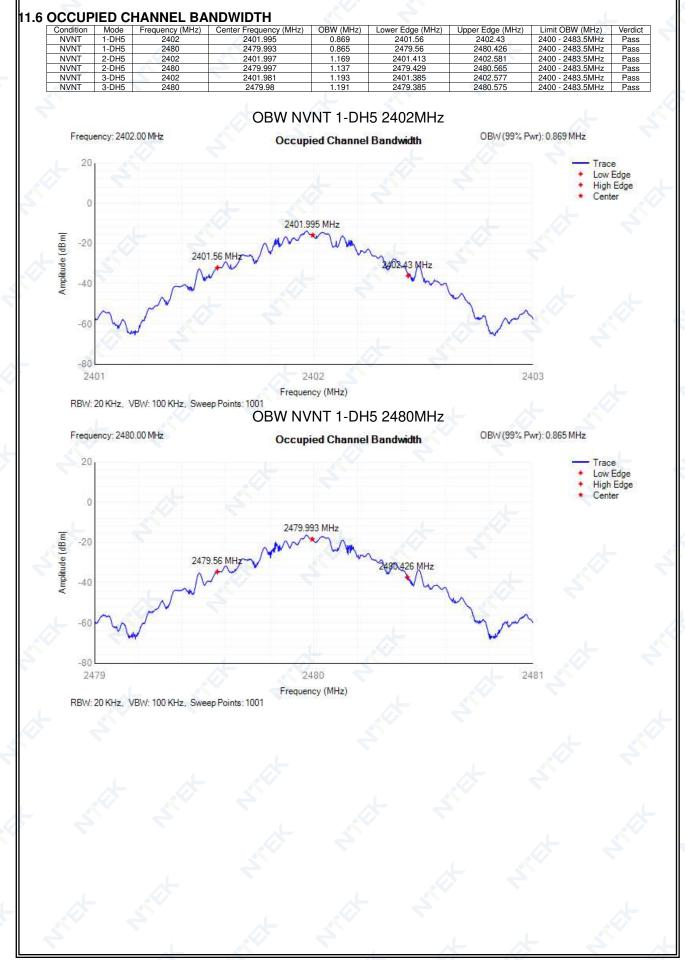
HFS NVNT 1-DH5 2402MHz


Page 70 of 90

Report No.: STR220921003001E

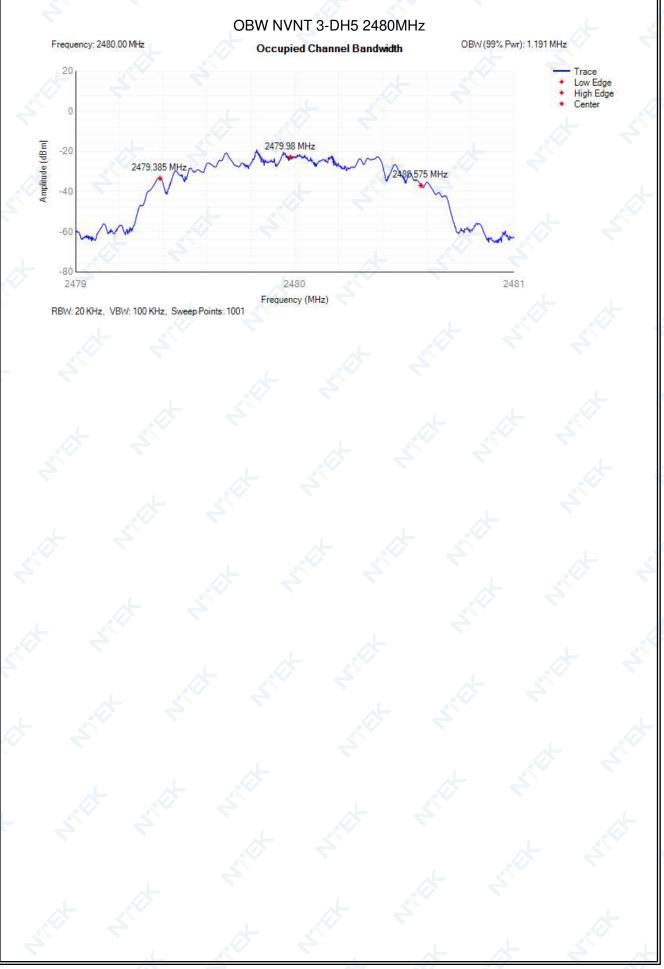

Page 71 of 90

Report No.: STR220921003001E



Page 72 of 90

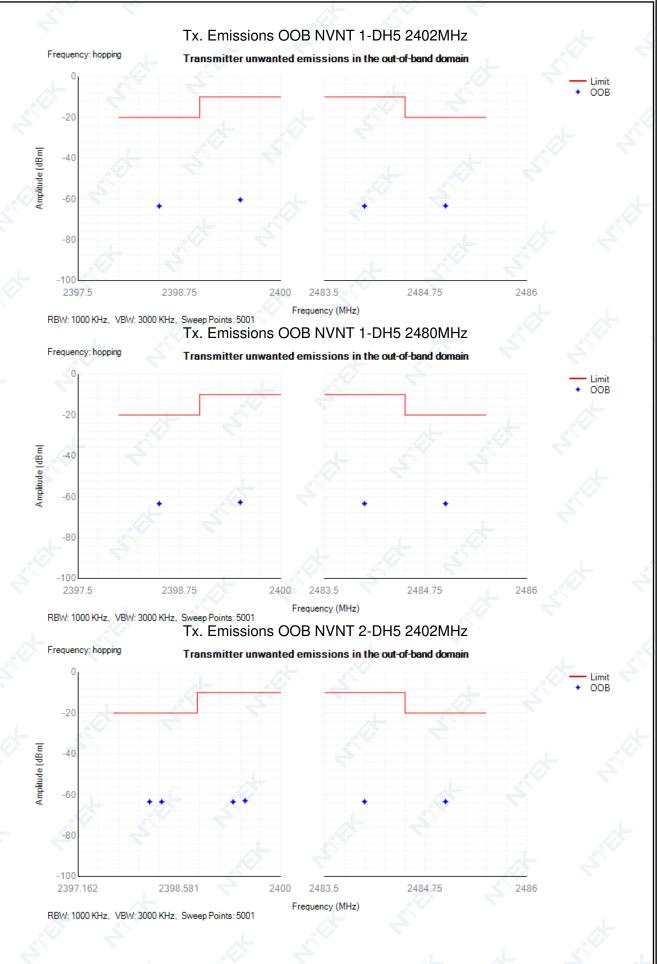
Report No.: STR220921003001E


Page 73 of 90

Page 74 of 90 Report No.: STR220921003001E

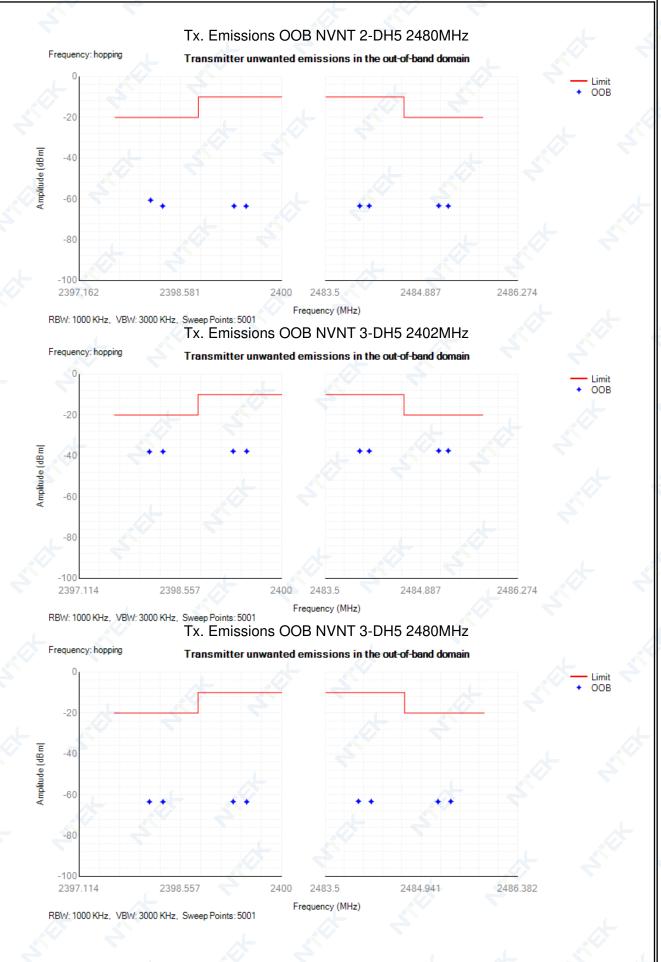
OBW NVNT 2-DH5 2402MHz Frequency: 2402.00 MHz OBW (99% Pwr): 1.169 MHz **Occupied Channel Bandwidth** 20 Trace Low Edge High Edge Center 2401.997 MHz Amplitude (dBm) -20 Mar 2401.413 MHz 402.581 MHz -40 -60 -80 2403 2401 2402 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001 OBW NVNT 2-DH5 2480MHz Frequency: 2480.00 MHz OBW (99% Pwr): 1.137 MHz Occupied Channel Bandwidth 20 Trace Low Edge High Edge Center 0 Amplitude (dBm) -20 2479.429 MHz 80.565 MHz -40 -60 -80 2480 2481 2479 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001 OBW NVNT 3-DH5 2402MHz Frequency: 2402.00 MHz OBW (99% Pwr): 1.193 MHz Occupied Channel Bandwidth 20 Trace Low Edge High Edge Center 2401.981 MHz Amplitude (dBm) -20 2401.385 MH MHz 402 577 -40 -60 -80 2402 2403 2401 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

Page 75 of 90



Page 76 of 90

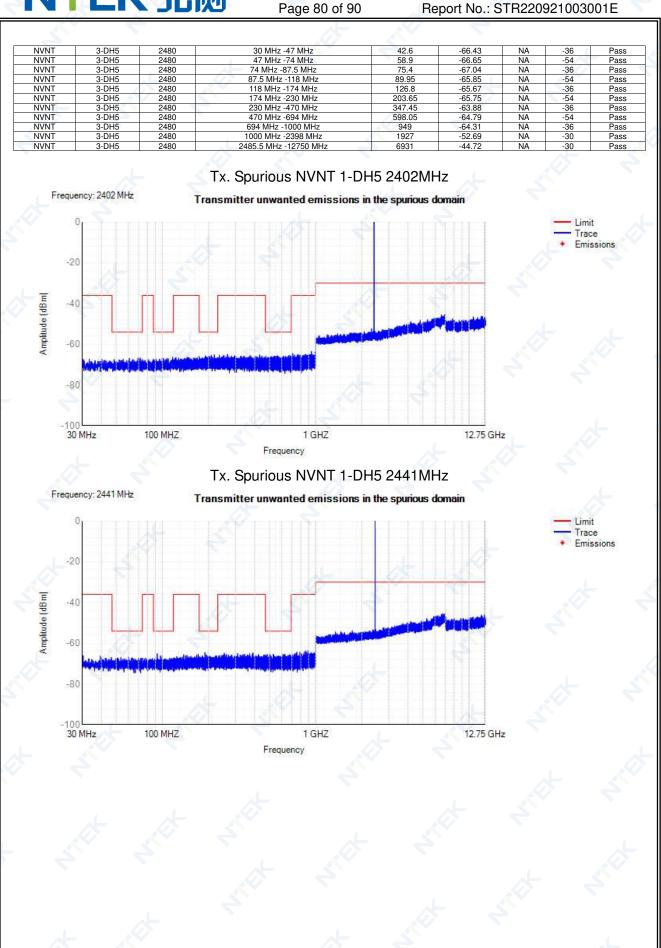
Condition	Mode	Frequency (MHz)	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	1-DH5	hopping	2399.5	-60.41	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.5	-20	Pass
NVNT	1-DH5	hopping	2398.5	-63.47	-10	Pass
NVNT	1-DH5	hopping	2485	-63.37	-20	Pass
NVNT	1-DH5	hopping	2399.5	-62.73	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.39	-20	Pass
NVNT	1-DH5	hopping	2484	-63.37	-10	Pass
NVNT	1-DH5	hopping	2485	-63.38	-20	Pass
NVNT	2-DH5	hopping	2399.5	-62.92	-10	Pass
NVNT	2-DH5	hopping	2399.331	-63.48	-10	Pass
NVNT	2-DH5	hopping	2398.331	-63.45	-20	Pass
NVNT	2-DH5	hopping	2398.162	-63.44	-20	Pass
NVNT	2-DH5	hopping	2484	-63.37	-10	Pass
NVNT	2-DH5	hopping	2485	-63.35	-20	Pass
NVNT	2-DH5	hopping	2399.5	-63.52	-10	Pass
NVNT	2-DH5	hopping	2399.331	-63.46	-10	Pass
NVNT	2-DH5	hopping	2398.331	-63.47	-20	Pass
	2-DH5	hopping	2398.162	-60.6	-20	Pass
NVNT	2-DH5	hopping	2484	-63.42	-10	Pass
NVNT	2-DH5	hopping	2484.137	-63.4	-10	Pass
NVNT	2-DH5	hopping	2485.137	-63.33	-20	Pass
NVNT	2-DH5	hopping	2485.274	-63.47	-20	Pass
NVNT	3-DH5	hopping	2399.5	-37.74	-10	Pass
NVNT	3-DH5	hopping	2399.307	-37.75	-10	Pass
NVNT	3-DH5	hopping 📈	2398.307	-37.91	-20 🔨	Pass
NVNT	3-DH5	hopping	2398.114	-37.98	-20 🤿	Pass
NVNT	3-DH5	hopping	2484	-37.63	-10	Pass
NVNT	3-DH5	hopping	2484.137	-37.64	-10	Pass
NVNT	3-DH5	hopping	2485.137	-37.51	-20 人	Pass
NVNT	3-DH5	hopping	2485.274	-37.49	-20	Pass
NVNT	3-DH5	hopping	2399.5	-63.46	-10	Pass
NVNT	3-DH5	hopping	2399.307	-63.37 🔨	-10	Pass
NVNT	3-DH5	hopping	2398.307	-63.46	-20	Pass
NVNT	3-DH5	hopping	2398.114	-63.44	-20	Pass
NVNT	3-DH5	hopping	2484	-63.19	-10	Pass
NVNT	3-DH5	hopping	2484.191	-63.32	-10	Pass
NVNT	3-DH5	hopping	2485.191	-63.37	-20	Pass
NVNT	3-DH5	hopping	2485.382	-63.28	-20	Pass


Page 77 of 90

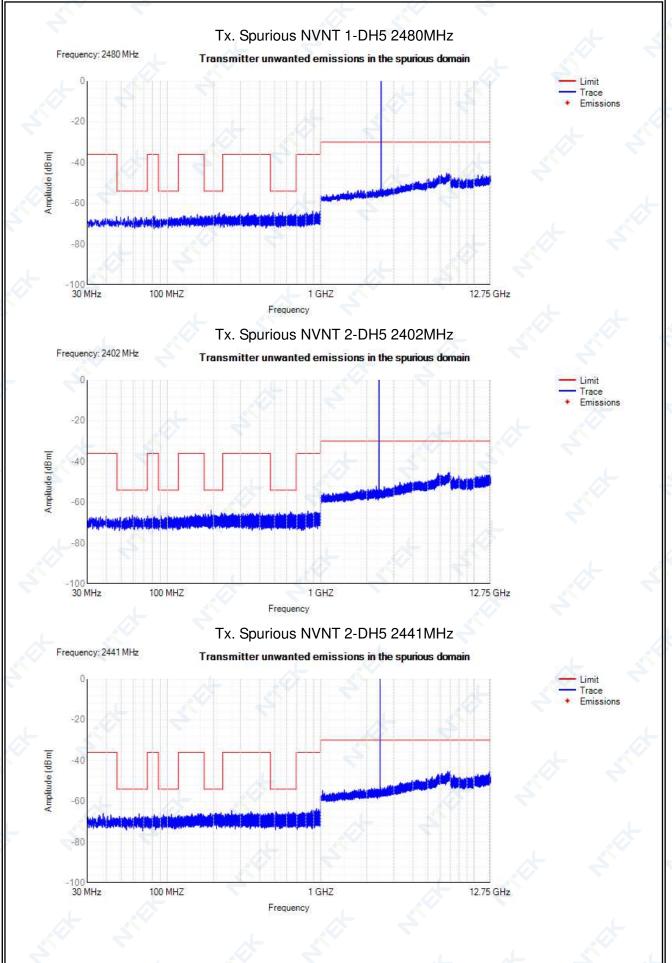
Report No.: STR220921003001E

Page 78 of 90

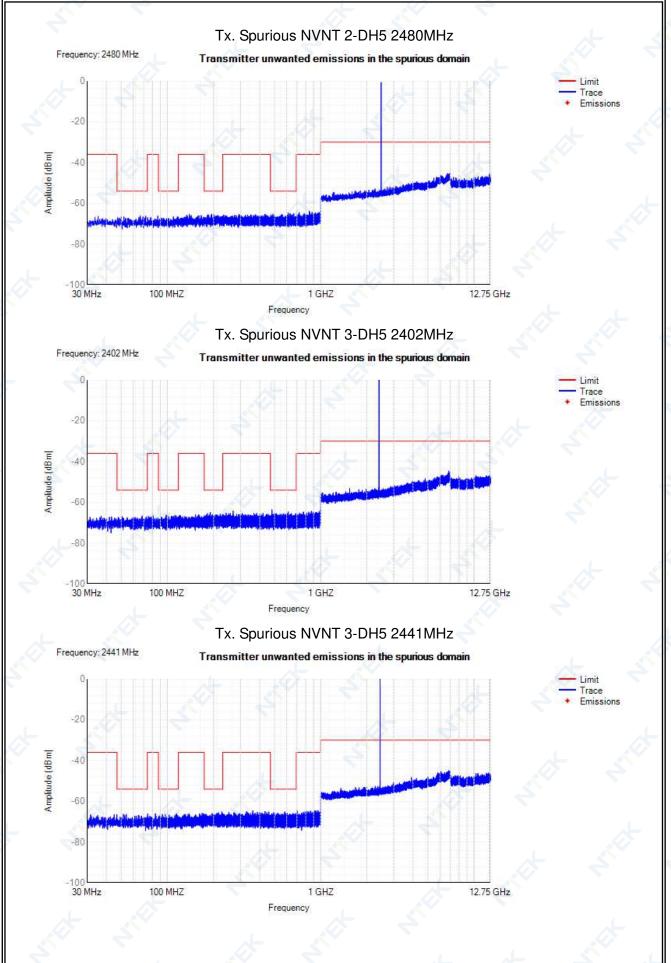
Report No.: STR220921003001E

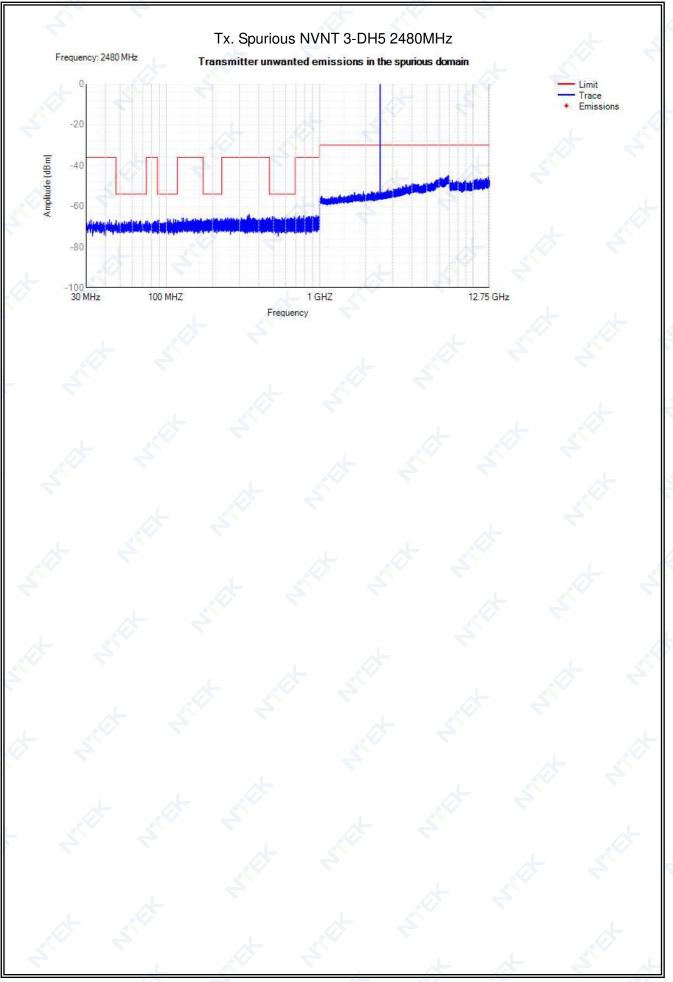


Page 79 of 90


11.8 TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

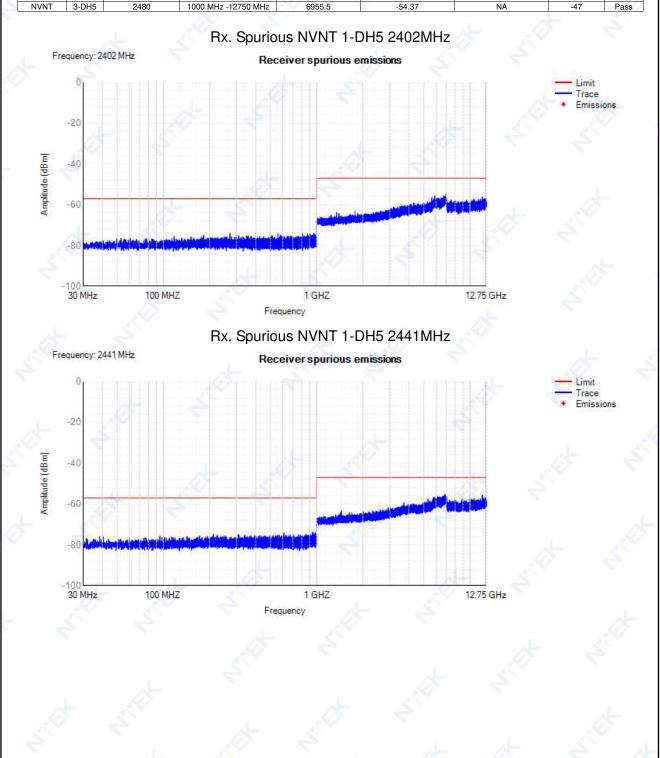
Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdi
NVNT NVNT	1-DH5 1-DH5	2402 2402	30 MHz -47 MHz 47 MHz -74 MHz	40.3 71.75	-67.2 -66.7	NA	-36 -54	Pase Pase
NVNT	1-DH5	2402	74 MHz -87.5 MHz	87.2	-67.38	NA	-36	Pase
NVNT	1-DH5	2402	87.5 MHz -118 MHz	116.7	-66.33	NA	-54	Pass
NVNT	1-DH5	2402	118 MHz -174 MHz	173.75	-65.84	NA NA	-36	Pas
NVNT	1-DH5	2402	174 MHz -230 MHz	218.5	-65.06	NA	-54	Pas
NVNT	1-DH5	2402	230 MHz -470 MHz	266.15	-64.86	NA	-36	Pas
NVNT NVNT	1-DH5 1-DH5	2402 2402	470 MHz -694 MHz 694 MHz -1000 MHz	678.15 937.3	-65.49 -63.42	NA NA	-54	Pas Pas
NVNT	1-DH5	2402	1000 MHz -2398 MHz	2319	-52.35	NA	-30	Pas
NVNT	1-DH5	2402	2485.5 MHz -12750 MHz	6970.5	-45.4	NA 🧢	-30	Pas
NVNT	1-DH5	2441	30 MHz -47 MHz	30.4	-66.06	NA	-36	Pas
NVNT	1-DH5	2441	47 MHz -74 MHz	53.6	-66.92	NA	-54	Pas
NVNT	1-DH5	2441	74 MHz -87.5 MHz	77.9	-67.23	NA	-36	Pas
NVNT	1-DH5	2441	87.5 MHz -118 MHz	92.55	-65.14	NA	-54	Pas
NVNT	1-DH5	2441	118 MHz -174 MHz	171.2	-65.27	NA	-36	Pas
NVNT NVNT	1-DH5 1-DH5	2441 2441	174 MHz -230 MHz 230 MHz -470 MHz	189.45 390.4	-64.5 -64.72	NA NA	-54 -36	Pas Pas
NVNT	1-DH5	2441	470 MHz -694 MHz	528	-65.32	NA	-54	Pas
NVNT	1-DH5	2441	694 MHz -1000 MHz	890.45	-63.61	NA	-36	Pas
NVNT	1-DH5	2441	1000 MHz -2398 MHz	2356	-53.42	NA	-30	Pas
NVNT	1-DH5	2441	2485.5 MHz -12750 MHz	6726	-45.49	NA	-30	Pas
NVNT	1-DH5	2480	30 MHz -47 MHz	46.6119760479042	-66.44	NA	-36	Pas
NVNT	1-DH5	2480	47 MHz -74 MHz	55.5568862275449	-66.44	NA	-54	Pas
NVNT NVNT	1-DH5 1-DH5	2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz	80.6491017964072 106.205988023952	-66.1 -66.78	NA NA	-36 -54	Pas Pas
NVNT	1-DH5	2480	118 MHz -174 MHz	156.738922155689	-65.43	NA	-36	Pas
NVNT	1-DH5	2480	174 MHz -230 MHz	218.423952095808	-64.56	NA	-54	Pas
NVNT	1-DH5	2480	230 MHz -470 MHz	336.450299401198	-64.67	NA	-36	Pas
NVNT	1-DH5	2480	470 MHz -694 MHz	564.138922155689	-64.42	NA	-54	Pas
NVNT	1-DH5	2480	694 MHz -1000 MHz	886.852694610778	-63.82	NA	-36	Pas
NVNT	1-DH5	2480	1000 MHz -2398 MHz	2184.8502994012	-53.23	NA	-30	Pas
NVNT NVNT	1-DH5 2-DH5	2480 2402	2485.5 MHz -12750 MHz 30 MHz -47 MHz	6631.55688622754 39.9	-45.21 -66.88	NA NA	-30 -36	Pas Pas
NVNT	2-DH5	2402	47 MHz -74 MHz	59.3	-66.29	NA	-54	Pas
NVNT	2-DH5	2402	74 MHz -87.5 MHz	74.4	-66.69	NA	-36	Pas
NVNT	2-DH5	2402	87.5 MHz -118 MHz	90.95	-66.72	NA	-54	Pas
NVNT	2-DH5	2402	118 MHz -174 MHz	152.15	-65.64	NA	-36	Pas
NVNT	2-DH5	2402	174 MHz -230 MHz	192.55	-63.84	NA	-54	Pas
NVNT	2-DH5	2402	230 MHz -470 MHz	400.4	-64.75	NA	-36	Pas
NVNT NVNT	2-DH5 2-DH5	2402 2402	470 MHz -694 MHz 694 MHz -1000 MHz	636.15 826.2	-64.55 -64.22	NA	-54 -36	Pas Pas
NVNT	2-DH5	2402	1000 MHz -2398 MHz	2303.5	-52.01	NA	-30	Pas
NVNT	2-DH5	2402	2485.5 MHz -12750 MHz	6834	-45.36	NA	-30	Pas
NVNT	2-DH5	2441	30 MHz -47 MHz	38.15	-65.96	NA	-36	Pas
NVNT	2-DH5	2441	47 MHz -74 MHz	65.45	-66.12	NA	-54	Pas
NVNT	2-DH5	2441	74 MHz -87.5 MHz	82.1	-66.51	NA	-36	Pas
NVNT	2-DH5	2441	87.5 MHz -118 MHz	106.3	-66.31	NA	-54	Pas
NVNT NVNT	2-DH5 2-DH5	2441 2441	118 MHz -174 MHz 174 MHz -230 MHz	163.95 223.75	-65.98 -65.48	NA NA	-36 -54	Pas
NVNT	2-DH5	2441	230 MHz -470 MHz	262.45	-64.57	NA	-36	Pas Pas
NVNT	2-DH5	2441	470 MHz -694 MHz	511.55	-65.08	NA	-54	Pas
NVNT	2-DH5	2441	694 MHz -1000 MHz	939.35	-63.62	NA	-36	Pas
NVNT	2-DH5	2441	1000 MHz -2398 MHz	2149	-53.63	NA	-30	Pas
NVNT	2-DH5	2441	2485.5 MHz -12750 MHz	6730	-45.3	NA	-30	Pas
NVNT	2-DH5	2480	30 MHz -47 MHz	35.3437125748503	-66.36	NA	-36	Pas
NVNT	2-DH5	2480	47 MHz -74 MHz	66.4766467065868	-66.08	NA	-54	Pas
NVNT NVNT	2-DH5 2-DH5	2480 2480	74 MHz -87.5 MHz 87.5 MHz -118 MHz	86.5736526946108 109.458682634731	-66.18 -66.54	NA NA	-36 -54	Pas Pas
NVNT	2-DH5	2480	118 MHz -174 MHz	138.732934131736	-65.33	NA	-36	Pas
NVNT	2-DH5	2480	174 MHz -230 MHz	194.609580838323	-65.39	NA	-54	Pas
NVNT	2-DH5	2480	230 MHz -470 MHz	434.147305389222	-65.31	NA	-36	Pas
NVNT	2-DH5	2480	470 MHz -694 MHz	613.974850299401	-64.83	NA	-54	Pas
NVNT	2-DH5	2480	694 MHz -1000 MHz	843.986826347305	-63.8	NA	-36	Pas
NVNT NVNT	2-DH5 2-DH5	2480 2480	1000 MHz -2398 MHz 2485.5 MHz -12750 MHz	2265.05988023952 6976.31736526946	-52.92 -45.21	NA NA	-30 -30	Pas Pas
NVNT	3-DH5	2400	30 MHz -47 MHz	36.95	-45.21	NA NA	-36	Pas
NVNT	3-DH5	2402	47 MHz -74 MHz	68.5	-66.68	NA	-54	Pas
NVNT	3-DH5	2402	74 MHz -87.5 MHz	80.65	-66.65	NA	-36	Pas
NVNT	3-DH5	2402	87.5 MHz -118 MHz	99.6	-66.2	NA	-54	Pas
NVNT	3-DH5	2402	118 MHz -174 MHz	160.3	-66.02	NA	-36	Pas
NVNT	3-DH5	2402	174 MHz -230 MHz	190.55	-64.94	NA	-54	Pas
NVNT NVNT	3-DH5 3-DH5	2402 2402	230 MHz -470 MHz 470 MHz -694 MHz	268.55 481.05	-64.26 -63.64	NA NA	-36 -54	Pas Pas
NVNT	3-DH5	2402	694 MHz -1000 MHz	999.65	-63.18	NA NA	-36	Pas
NVNT	3-DH5	2402	1000 MHz -2398 MHz	2395.5	-52.69	NA	-30	Pas
NVNT	3-DH5	2402	2485.5 MHz -12750 MHz	6856	-44.63	NA	-30	Pas
NVNT	3-DH5	2441	30 MHz -47 MHz	45.05	-66.45	NA	-36	Pas
NVNT	3-DH5	2441	47 MHz -74 MHz	51.6	-66.33	NA	-54	Pas
NVNT	3-DH5	2441	74 MHz -87.5 MHz	83.5	-66.04	NA	-36	Pas
NVNT NVNT	3-DH5	2441	87.5 MHz -118 MHz	114.85	-66.06	NA NA	-54	Pas
NVNT	3-DH5 3-DH5	2441 2441	118 MHz -174 MHz 174 MHz -230 MHz	168.55 226.45	-65.78 -65.07	NA	-36 -54	Pas Pas
NVNT	3-DH5	2441	230 MHz -470 MHz	360.7	-64.59	NA	-36	Pas
NVNT	3-DH5	2441	470 MHz -694 MHz	583	-65.11	NA	-54	Pas
NVNT	3-DH5	2441	694 MHz -1000 MHz	961.3	-64.48	NA	-36	Pas
NVNT	3-DH5	2441	1000 MHz -2398 MHz	2267.5	-52.59	NA	-30	Pas
NVNT	3-DH5	2441	2485.5 MHz -12750 MHz	6841.5	-44.91	NA	-30	Pas


Report No.: STR220921003001E


Page 81 of 90

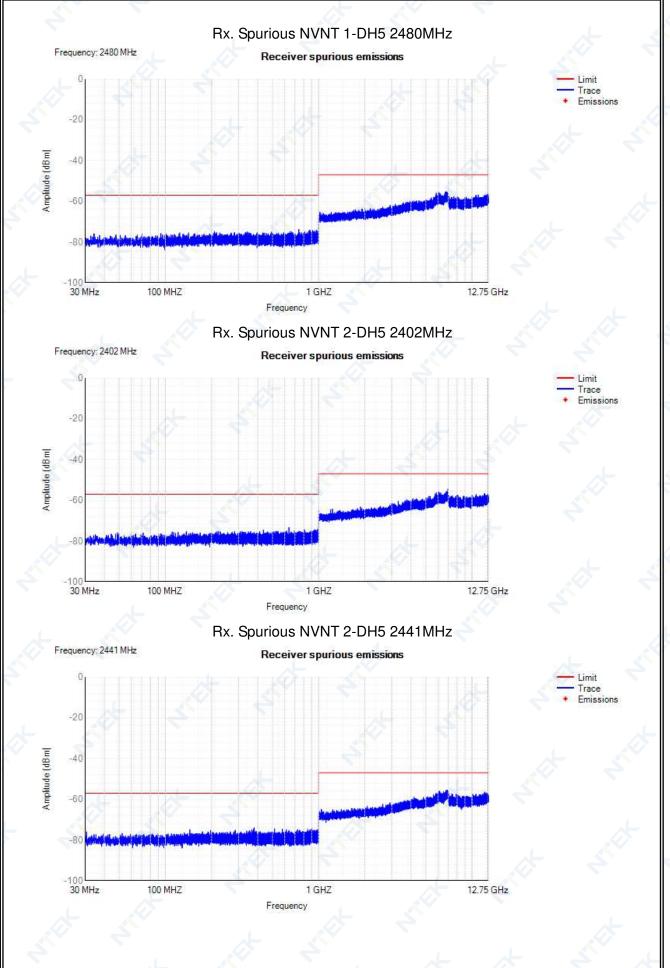
Page 82 of 90

Page 83 of 90



Page 84 of 90

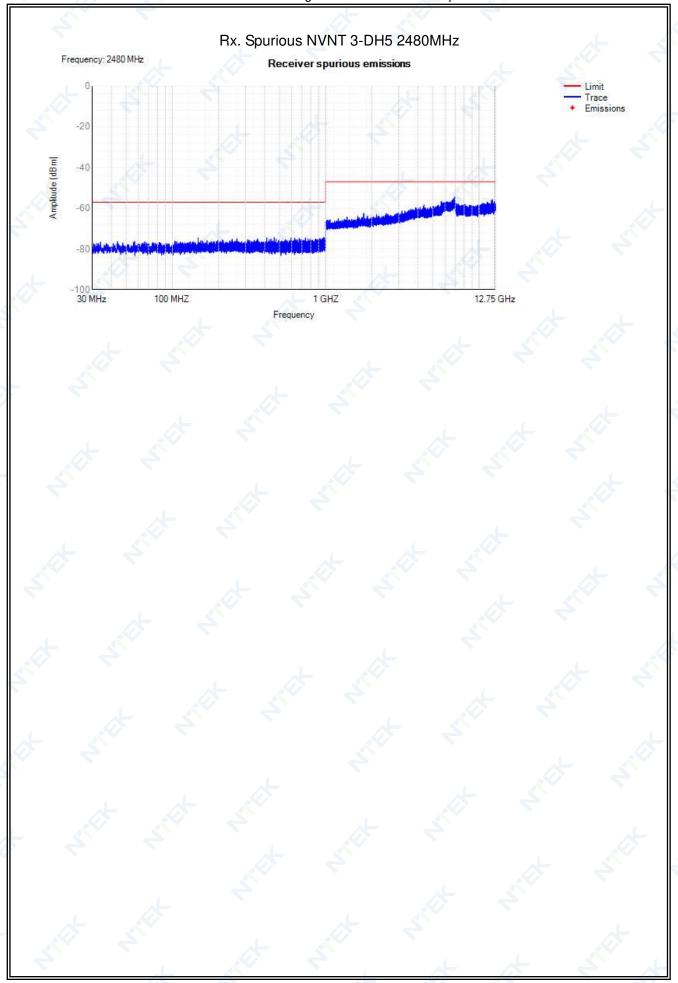
Report No.: STR220921003001E


11.9 RECEIVER SPURIOUS EMISSIONS

Condition	Mode	Frequency (MHz)	Range	Spur Freg (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
NVNT	1-DH5	2402	30 MHz -1000 MHz	958.206462918105	-73.99	NA	-57	Pass
NVNT	1-DH5	2402	1000 MHz -12750 MHz	6982.73624643663	-54.58	NA	-47	Pass
NVNT	1-DH5	2441	30 MHz -1000 MHz	949.15	-73.66	NA	-57	Pass
NVNT	1-DH5	2441	1000 MHz -12750 MHz	6858	-55.16	NA	-47	Pass
NVNT	1-DH5	2480	30 MHz -1000 MHz	742.05	-73.73	NA NA	-57	Pass
NVNT	1-DH5	2480	1000 MHz -12750 MHz	6804	-55.22	NA	-47	Pass
NVNT	2-DH5	2402	30 MHz -1000 MHz	640	-73.28	NA	-57	Pass
NVNT	2-DH5	2402	1000 MHz -12750 MHz	6972	-54.22	NA	-47	Pass
NVNT	2-DH5	2441	30 MHz -1000 MHz	379	-73.93	NA	-57	Pass
NVNT	2-DH5	2441	1000 MHz -12750 MHz	6901	-55.4	NA	-47	Pass
NVNT	2-DH5	2480	30 MHz -1000 MHz	957.2	-73.85	NA	-57	Pass
NVNT	2-DH5	2480	1000 MHz -12750 MHz	6949.5	-55.27	NA	-47	Pass
NVNT	3-DH5	2402	30 MHz -1000 MHz	830.7	-74.27	NA —	-57	Pass
NVNT	3-DH5	2402	1000 MHz -12750 MHz	6834.5	-55.16	NA	-47	Pass
NVNT	3-DH5	2441	30 MHz -1000 MHz	944.9	-73.39	NA	-57	Pass
NVNT	3-DH5	2441	1000 MHz -12750 MHz	6957	-54.91	NA	-47	Pass
NVNT	3-DH5	2480	30 MHz -1000 MHz	969.75	-74.29	NA	-57	Pass
		0.400						-

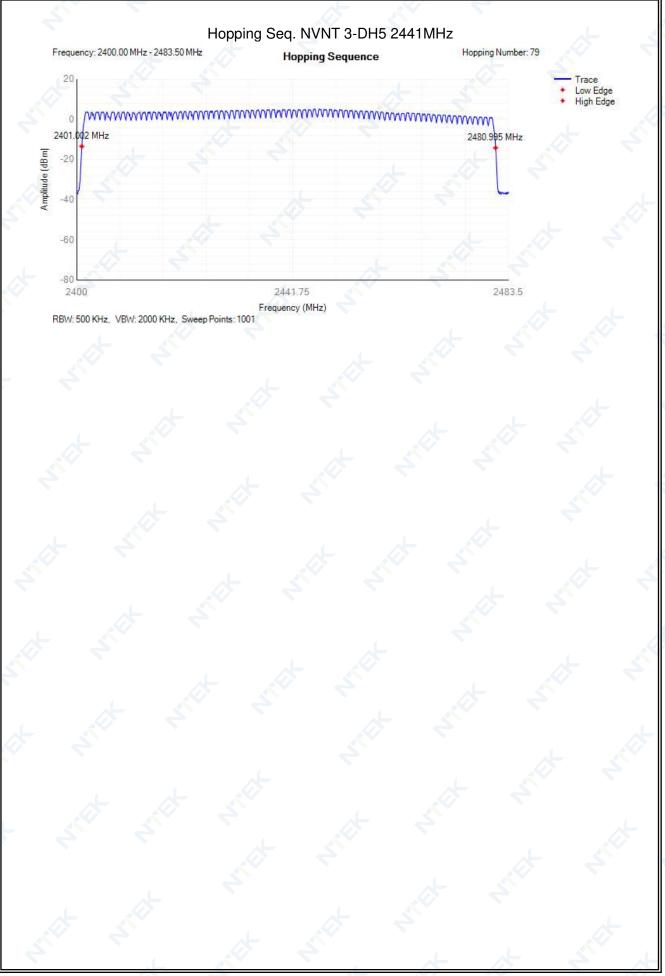
Page 85 of 90

Report No.: STR220921003001E



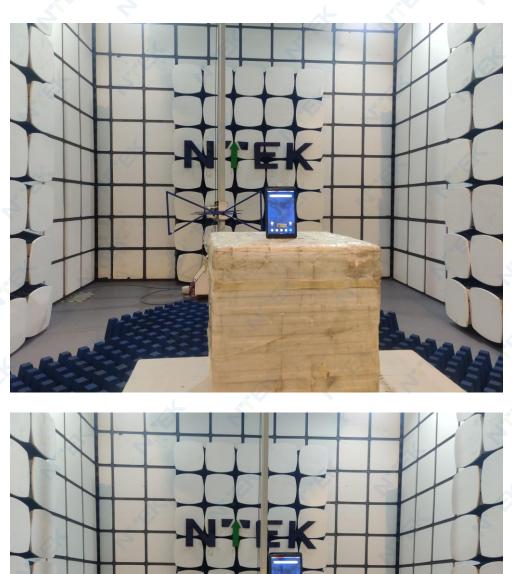
Page 86 of 90

Report No.: STR220921003001E


Page 87 of 90

Page 88 of 90

11.10 HOPPING SEQUENCE **Band Allocation** Limit Band Allocation Condition Mode Hopping Limit Verdict Number (%) (%) 95.4 NVNT 1-DH5 79 15 70 Pass NVNT 2-DH5 79 15 95.8 70 Pass NVNT 79 95.8 3-DH5 15 70 Pass Hopping Seq. NVNT 1-DH5 2441MHz Frequency: 2400.00 MHz - 2483.50 MHz Hopping Number: 79 Hopping Sequence 20 Trace Low Edge High Edge 0 mm 2480.828 MHz 2401.169 MHz Amplitude (dBm -20 -40 -60 -80 2441.75 2483.5 2400 Frequency (MHz) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 1001 Hopping Seq. NVNT 2-DH5 2441MHz Frequency: 2400.00 MHz - 2483.50 MHz Hopping Number: 79 Hopping Sequence 20 Trace Low Edge High Edge 0 2401.002 MHz 2480.995 MHz Amplitude (dBm) -20 -40 -60 -80 2400 2441.75 2483.5 Frequency (MHz) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 1001


Page 89 of 90

Page 90 of 90

Report No.: STR220921003001E

12. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT