

EMC Test Report

Report No.: AIT23070314CE1

Client Information:

Applicant:

DOKE COMMUNICATION (HK) LIMITED

Applicant add .:

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK

CHINA

Product Information:

Product Name:

Tablet PC

Model No .:

Tab 50 WiFi

Serial Model:

Tab 50 Kids

Brand Name:

Blackview

Report No .:

AIT23070314CE1

Standards:

ETSI EN 301 489-1 V2.2.3 (2019-11)

Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09)

EN 55032:2015+A11:2020; EN 55035:2017+A11:2020 EN IEC 61000-3-2:2019; EN 61000-3-3:2013+A1: 2019

Prepared By:

Dongguan Yaxu (AiT) Technology Limited

No.22, Jinqianling Third Street, Jitigang, Huangjiang,

Dongguan, Guangdong, China

Date of Receipt:

July 13, 2023

Date of Test: July 13, 2023~July 26, 2023

Date of Issue:

July 27, 2023

Test Result:

Pass

This device has been tested and found to comply with the stated standard(s), which is (are) required by the council directive of 2014/53/EU and indicated in the test report and are applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Dongguan Yaxu (AiT) Technology Limited, this document may be altered or revised by Dongguan Yaxu (AiT) Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Reviewed by: Jimba Huah

Approved by: Seal-Chen

Dongguan Yaxu (AiT) Technology Limited No.22, Jinqianling Third Street, Jitigang, Huangjiang, Dongguan, Guangdong, China

1 Contents

(COVE	ER PAGE		Page
1				
2			/	
	2.1		E CRITERIA	
,	2.2		EUT IN IMMUNITY TEST	
	2.2	2.1 2.2	Monitoring for Continuous Phenomena Applied to the EUT	
	ے. 2.3		Monitoring for Transient Phenomena Applied to the EUT	
3			TONGERTAINTY	
	3.1		OM STANDARD	
;	3.2	ABNORMALITIE	ES FROM STANDARD CONDITIONS	10
4	GI	ENERAL INFO	RMATION	11
	4.1	GENERAL DES	SCRIPTION OF EUT	1 ²
	4.2	EUT TEST MO	DDE	12
	4.3	DESCRIPTION	OF TEST SETUP	13
	4.4	TEST PERIPHE	ERAL LIST	14
	4.5	EUT PERIPHE	RAL LIST	14
5	EC	QUIPMENTS LI	IST FOR ALL TEST ITEMS	15
6	EN	MISSION TEST	RESULTS	18
	6.1	CONDUCTED E	EMISSION(AC MAINS) MEASUREMENT	18
	6.	1.1	E.U.T. Operation	18
	6.	1.2	Test Specification	18
	6.	1.3	Measurement Data	19
(6.2	RADIATED EM	ISSION MEASUREMENT	22
	6.2	2.1	E.U.T. Operation	22
	6.2	2.2	Test Specification	23
	6.2	2.3	Measurement Data	24
(6.3	HARMONICS		28
	6.3	3.1	E.U.T. Operation	28
	6.3	3.2	Test specification	28
	6.3	3.3	Measurement Data	29
(6.4	VOLTAGE CHA	NGES, VOLTAGE FLUCTUATIONS AND FLICKER	30
	6.4	4.1	E.U.T. Operation	30
	6.4	4.2	Test specification	30
	6.4	4.3	Measurement Data	31
7	IM	MUNITY TEST	RESULTS	33

A	Page 3 of 50	Report No.: AIT23070314CE1
7.1	ELECTROSTATIC DISCHARGE IMMUNITY TEST	
7.	1.1 E.U.T. Operation	
7.	1.2 Test Specification	32
7.	1.3 Measurement Data	33
7.2	RF FIELD STRENGTH IMMUNITY TEST	34
7.2	2.1 E.U.T. Operation	
7.2	2.2 TEST PROCEDURE	34
7.2	2.3 Test Specification	35
7.2	2.4 Measurement Data	35
7.3	ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	37
7.3	3.1 E.U.T. Operation	
7.3	3.2 Test specification	37
7.3	3.3 Measurement Data	38
7.4	SURGE IMMUNITY TEST	39
7.4	4.1 E.U.T. Operation	39
7.4	4.2 Test specification	39
7.4	4.3 Measurement Data	40
7.5	CONDUCTED DISTURBANCE IMMUNITY TEST	41
7.	5.1 E.U.T. Operation	41
7.	5.2 Test specification	41
7.		42
7.6	VOLTAGE DIPS AND INTERRUPTIONS IMMUNITY TEST	44
7.6	·	44
7.6	6.2 Test specification	44
7.6	6.3 Measurement Data	45
8 TE	EST SETUP PHOTOS OF THE EUT	46
9 EX	KTERNAL AND INTERNAL PHOTOS OF THE EUT	50

Revision Record					
Version Date		Modifier	Remark		
00	July 27, 2023		Original		

50

Page 4 of

2 Test Summary

Emission Measurement		
Radiated Emission	ETSI EN 301 489-1 V2.2.3 (2019-11) Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09) EN 55032:2015+A11:2020	PASS
Conducted Emission(AC Mains)	ETSI EN 301 489-1 V2.2.3 (2019-11) Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09) EN 55032:2015+A11:2020	PASS
Conducted Emission(Wired network ports)	ETSI EN 301 489-1 V2.2.3 (2019-11) Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09) EN 55032:2015+A11:2020	N/A
Harmonic Current Emissions	ETSI EN 301 489-1 V2.2.3 (2019-11) Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09) EN IEC 61000-3-2:2019	N/A
Voltage Fluctuations and Flicker	ETSI EN 301 489-1 V2.2.3 (2019-11) Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09) EN 61000-3-3:2013+A1: 2019	PASS
Immunity Measurement		
Electrostatic Discharge	ETSI EN 301 489-1 V2.2.3 (2019-11) Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09) EN 55035:2017+A11:2020	PASS
RF Electromagnetic Field	ETSI EN 301 489-1 V2.2.3 (2019-11) Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09) EN 55035:2017+A11:2020	PASS
Fast Transients Common Mode	ETSI EN 301 489-1 V2.2.3 (2019-11) Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09) EN 55035:2017+A11:2020	PASS
RF Common Mode 0,15 MHz to 80 MHz	ETSI EN 301 489-1 V2.2.3 (2019-11) Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09) EN 55035:2017+A11:2020	PASS
Voltage Dips and Interruptions	ETSI EN 301 489-1 V2.2.3 (2019-11) Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09) EN 55035:2017+A11:2020	PASS
Surges	ETSI EN 301 489-1 V2.2.3 (2019-11) Draft ETSI EN 301 489-3 V2.3.0 (2022-07) ETSI EN 301 489-17 V3.2.4 (2020-09) EN 55035:2017+A11:2020	PASS

Remark: The measurement uncertainty is not included in the test result.

2.1 Performance criteria

■ ETSI EN301489-3

General performance criteria

- performance criterion A applies for immunity tests with phenomena of a continuous nature;
- performance criterion B applies for immunity tests with phenomena of a transient nature.
- •The equipment shall meet the minimum performance criteria as specified in the following.

Criteria	During test	After test		
Α	Operate as intended	Operate as intended		
	No loss of function	No loss of function		
	No unintentional responses	No degradation of performance		
		No loss of stored data or user programmable		
		functions		
В	May show loss of function	Operate as intended		
	No unintentional responses	Lost function(s) shall be self-recoverable		
		No degradation of performance		
		No loss of stored data or user programmable		
		functions		

NOTE: Where "operate as intended" or "no loss of function" is specified, the EUT shall demonstrate correct functioning as described in clause 5.

■ ETSI EN301489-17

General performance criteria

- Performance criteria A for immunity tests with phenomena of a continuous nature;
- Performance criteria B for immunity tests with phenomena of a transient nature;
- Performance criteria C for immunity tests with power interruptions exceeding a certain time.

The equipment shall meet the minimum performance criteria as specified in the following.

Criteria	During test	After test	
А	Shall operate as intended. (See note).	Shall operate as intended.	
	Shall be no loss of function.	Shall be no degradation of performance.	
	Shall be no unintentional transmissions.	Shall be no loss of function.	
		Shall be no loss of critical stored data.	
В	May be loss of function.	Functions shall be self-recoverable.	

		Page 7 of	50 Report No.: AIT23070314CE1
			Shall operate as intended after recovering.
			Shall be no loss of critical stored data.
С	May be loss of function.		Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no loss of critical stored data.

Performance criteria for Continuous phenomena

For equipment that supports a PER or FER, the minimum performance level shall be a PER or FER less than or equal to 10 %.

For equipment that does not support a PER or a FER, the minimum performance level shall be no loss of the wireless transmission function needed for the intended use of the equipment.

Performance criteria for Continuous phenomena

The performance criteria A shall apply.

Where the EUT is a transmitter in standby mode, unintentional transmission shall not occur during the test.

Where the EUT is a transceiver in receive mode, unintentional transmission shall not occur during the test.

Performance criteria for Transient phenomena

The performance criteria B shall apply, except for voltage dips greater than or equal to 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply.

Where the EUT is a transmitter in standby mode, unintentional transmission shall not occur as a result of the application of the test.

Where the EUT is a transceiver in receive mode, unintentional transmission shall not occur as a result of the application of the test.

Performance Criterion of EN55035

Criterion A: The equipment shall continue to operate as intended without operator intervention. No degradation of performance of loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended.

Criterion B: After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended.

Criterion C: Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions.

2.2 Monitoring EUT in Immunity Test

2.2.1 Monitoring for Continuous Phenomena Applied to the EUT

■ BT Mode

At the start of the test, establish a wireless link between the EUT and CMW500(integrate BT protocol Analyzer);

During the test, observe whether the EUT operate as intended, no loss of function and no unintentional transmissions. Monitoring PER and shall exeed 10%

After the test, Check the function and critical stored date of the EUT with no degration.

In addition, when EUT working in Idle /Receiver mode, monitor whether the transmitter unintentionally operates.

■ 2.4G/5G WIFI Mode

At the start of the test, establish a wireless link between the EUT and CMW500(integrate WIFI protocol Analyzer);

During the test, observe whether the EUT operate as intended, no loss of function and no unintentional transmissions. Monitoring PER and shall exeed 10%

After the test, Check the function and critical stored data of the EUT with no degration.

In addition, when EUT working in Idle /Receiver mode, monitor whether the transmitter unintentionally operates.

other Mode

During and after the test, observe the Screen status by eyes or monitor to see whether there is degration of performance

2.2.2 Monitoring for Transient Phenomena Applied to the EUT

■ BT Mode

At the start of the test, establish a wireless link between the EUT and CMW500(integrate BT protocol Analyzer); After the test, Check the function and critical stored date of the EUT with no degration.

In addition, when EUT working in Idle /Receiver mode, monitor whether the transmitter unintentionally operates.

2.4G/5G WIFI Mode

At the start of the test, establish a wireless link between the EUT and CMW500(integrate WIFI protocol Analyzer);

After the test, Check the function and critical stored data of the EUT with no degration.

In addition, when EUT working in Idle /Receiver mode, monitor whether the transmitter unintentionally operates.

other Mode

After the test, observe the Screen status by eyes or monitor to see whether there is degration of performance

2.3 Measurement Uncertainty

The report uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty Multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95%.

No.	ltem	Frequency Range	U , Value	
1	Power Line Conducted Emission 150KHz~30MHz		1.20 dB	
2	Disturbance Power Emission	30MHz~300MHz	2.96 dB	
3	Radiated Emission Test	30MHz~1GHz	3.75 dB	
4	Radiated Emission Test	1GHz~18GHz	3.88 dB	

3 Test Facility

The test facility is recognized, certified or accredited by the following organizations:

.CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2017 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on April 18, 2022

FCC-Registration No.: 703111 Designation Number: CN1313

Dongguan Yaxu (AiT) technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 6819A CAB identifier: CN0122

The 3m Semi-anechoic chamber of Dongguan Yaxu (AiT) technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 6819A

A2LA-Lab Cert. No.: 6317.01

Dongguan Yaxu (AiT) technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

3.1 Deviation from Standard

None

3.2 Abnormalities from Standard Conditions

None

4 General Information

4.1 General Description of EUT

Manufacturer:	Shenzhen DOKE Electronic Co.,Ltd
Manufacturer Address:	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China.
EUT Name:	Tablet PC
Model No:	Tab 50 WiFi
Serial Model:	Tab 50 Kids
Brand Name:	Blackview
Model difference:	 In terms of hardware, the Tab 50 WiFi has 4+128GB of memory, and the Tab 50 Kids has 3+64GB of memory. On the software side, Tab 50Kids adds a kids APP.
Frequency Range:	 ☑ BT: 2402~2480 MHz ☑ 2.4G WIFI: 802.11b/g/n(20MHz)/ax(HE20): 2412~2472MHz 802.11n(40MHz)/ ax(HE40): 2422~2462MHz ☑ 5G WIFI: 802.11a/n/ac/ax-20: 5180-5250MHz, 5745MHz -5825MHz 802.11n/ac/ax-40: 5190-5230MHz, 5755MHz -5795MHz 802.11ac/ax-80: 5210MHz, 5775MHz
Modulation Mode:	 ☑ BT(1Mbps)/BLE(1/2Mbps): GFSK ☑ BT EDR(2Mbps): ∏/4-DQPSK ☑ BT EDR(3Mbps): 8-DPSK ☑ IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) ☑ IEEE 802.11g/n: OFDM(64QAM, 16QAM, QPSK, BPSK) ☑ IEEE 802.11a/n/ac/ax: OFDM, BPSK, QPSK, 16QAM, 64QAM, 256QAM
H/W No.:	R863T-RK3562-DK-V1.0
S/W No.:	Tab_50_WiFi_EEA_R863T_V1.0
Adapter:	Model:HJ-0501000N2-EU Input:AC 100-240V~50/60Hz 0.15A Output: DC 5.0V 1.0A 5.0W
Battery:	3.8V, 5580mAh, 21.204Wh

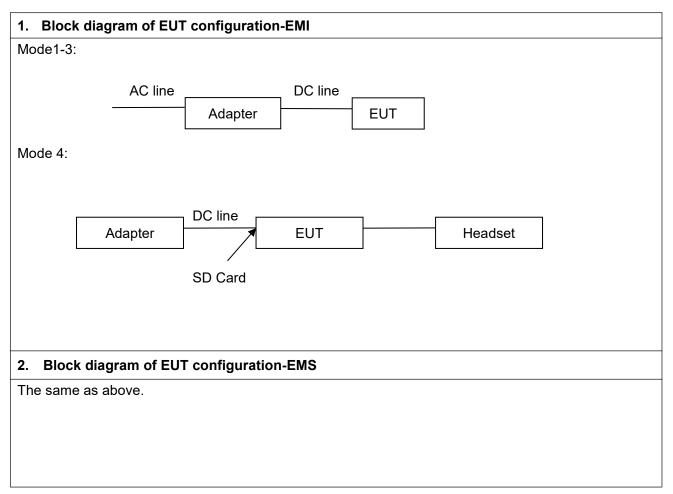
4.2 EUT Test Mode

Test mode	ВТ	2.4G WIFI	5G WIFI	Charge+ Work		-
1						
2		•				
3			•			
4				•		

Note:

- 1) is operation mode.
- 2) Pre-scan above all test mode, found below test mode which it was worse case mode. Test results reported represents the worst case simultaneous transmission condition.

Pre-test conducted emission and radiated emission at both voltage AC 120V/60Hz and AC 230V/50Hz, recorded worst case.


Pre-test radiated emission with the EUT position at X-axis, Y-axis and Z-axis, recorded worst case.

Test item	Test mode (Worse case mode)	
Conducted emission	Mode 4	
Radiated emission	Mode 4	
EMS	All Mode	

4.3 Description of Test Setup

EUT was tested in normal configuration (Please See following Block diagrams)

4.4 Test Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	Remark
1	SD Card	Sony	CE	32GB	N/A	N/A	N/A
2	Headset	HUAWEI	CE	AM115	N/A	N/A	N/A

4.5 EUT Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	signal cable	Remark
1	Adapter	Shenzhen Huajin Electronics Co.,Ltd	CE	HJ-0501000N2-EU	N/A	N/A	N/A

5 Equipments List for All Test Items

		\boxtimes	Radiation Test Equip	oment		
No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	EMI Measuring Receiver	R&S	ESR	101160	2022.09.02	2023.09.01
2	Low Noise Pre Amplifier	Tsj	MLA-10K01-B01-27	1205323	2022.09.02	2023.09.01
3	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3207	2021.08.29	2024.08.28
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2022.09.02	2023.09.01
5	Spectrum Analyzer	R&S	FSV40	101470	2022.09.02	2023.09.01
6	Low Noise Pre Amplifier	Tsj	MLA-0120-A02-34	2648A04738	2022.09.02	2023.09.01
7	Broadband Horn Antenna	Schwarzbeck	BBHA 9120D	452	2021.08.29	2024.08.28
8	Filter	MICRO-TRONICS	BRM50702-02	16	2022.09.02	2023.09.01
9	Filter	MICRO-TRONICS	BRC50703-02	17	2022.09.02	2023.09.01
10	Filter	MICRO-TRONICS	BRC50705-02	18	2022.09.02	2023.09.01

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date					
1	EMI Test Receiver	R&S	ESCI	100124	2022.09.02	2023.09.01					
2	LISN	Kyoritsu	KNW-242	8-837-4	2022.09.02	2023.09.01					
3	LISN	R&S	ESH3-Z2	0357.8810.54- 101161-S2	2022.09.02	2023.09.01					
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2022.09.02	2023.09.01					

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date				
1	Signal Conditioning Unit	Schaffner	CCN1000-1	72472	2022.09.02	2023.09.01				
2	5KV AC Power Source	Schaffner	NSG1007-5-208-413	57227	2022.09.02	2023.09.01				

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date			
1	ESD Simulator	Schaffner	NSG435	5866	2022.09.02	2023.09.01			

				ent		
No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	MXG analog signal generator	Agilent	N5181A	MY46240859	2022.09.02	2023.09.01
2	Power Amplifier	Schaffner	CBA9433	T43574	2022.09.02	2023.09.01
3	Power Amplifier	Schaffner	CBA9409	T43605	2022.09.02	2023.09.01
4	Power Amplifier	Micotop	MPA-3000-6000-50	MPA03724	2022.09.02	2023.09.01
5	Logarithmic-perio dic Antenna	Schwarzbeck	VULP9118E	820	2022.09.02	2023.09.01
6	Broadband Horn Antenna	Schwarzbeck	BBHA 9120LF	255	2022.09.02	2023.09.01
7	Power meter	Agilent	E4419B	MY45102079	2022.09.02	2023.09.01
8	Power sensor	Agilent	8481A	MY41097696	2022.09.02	2023.09.01
9	Power sensor	Agilent	8481A	MY41097697	2022.09.02	2023.09.01
10	RF Relay matrix	tsj	RFM-S621	04261	2022.09.02	2023.09.01

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date				
1	INS6501 Step-transformer	Schaffner	INA 6501	136	2022.09.02	2023.09.01				
2	MODULA GENERATOR	Schaffner	MODULA 6150	34475	2022.09.02	2023.09.01				
3	Capacitive Coupling Clamp	Schaffner	CDN8014	22519	2022.09.02	2023.09.01				

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date			
1	INS6501 step-transformer	Schaffner	INA 6501	136	2022.09.02	2023.09.01			
2	MODULA GENERATOR	Schaffner	MODULA 6150	34475	2022.09.02	2023.09.01			

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date				
1	SML01 Signal Generator	R&S	SML01	104531	2022.09.02	2023.09.01				
2	Power Amplifier	Schaffner	CBA9437	T43660	2022.09.02	2023.09.01				
3	Attenuator	Aeroflex / Weinschel	40-6-33	PA130	2022.09.02	2023.09.01				
4	Power Line CDN	tsj	TSCDN-M1-16A	07010	2022.09.02	2023.09.01				
5	Power Line CDN	tsj	TSCDN-M2-16A	07024	2022.09.02	2023.09.01				
6	Power Line CDN	tsj	TSCDN-M3-16A	07032	2022.09.02	2023.09.01				

	☐ PFMF Test Equipment								
No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date			
1	Magnetic field generator	Schaffner	MFO6501	34299	2022.09.02	2023.09.01			
2	Magnetic Field Loop Antenna	Schaffner	INA 702	148	2022.09.02	2023.09.01			

	□ Dips Test Equipment									
No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date				
1	INS6501 Step-transformer	Schaffner	INA 6501	136	2022.09.02	2023.09.01				
2	MODULA GENERATOR	Schaffner	MODULA 6150	34475	2022.09.02	2023.09.01				

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date			
1	Wideband communication tester	R&S	CMW500	1201.0002K5 0	2022.09.02	2023.09.01			

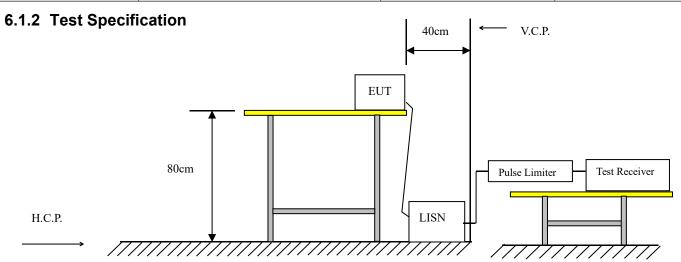
Note:

1. \square is not applicable in this Test Report. \boxtimes is applicable in this Test Report.

6 Emission Test Results

6.1 Conducted Emission(AC Mains) Measurement

Fraguency (MHz)	☐ Class /	A (dBμV)	⊠ Class B (dBμV)		
Frequency (MHz)	Q.P. (Quasi-Peak)	A.V. (Average)	Q.P. (Quasi-Peak)	A.V. (Average)	
0.15 ~ 0.50	79	66	66 to 56	56 to 46	
0.50 ~ 5.0	73	60	56	46	
5.0 ~ 30	73	60	60	50	


Detector:

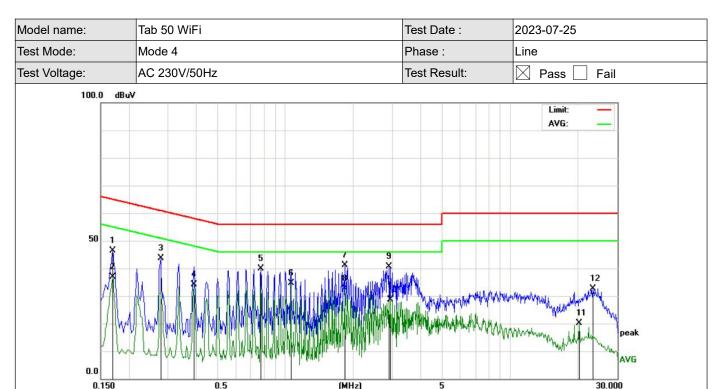
Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak & Average if maximized peak within 6dB of Average Limit

6.1.1 E.U.T. Operation

Temperature:	°°C Humidity: 51% RH		Atmospheric Pressure:	101	Кра	
Test Mode:		All Modes		The Worst Mode reported:	Mo	ode 4

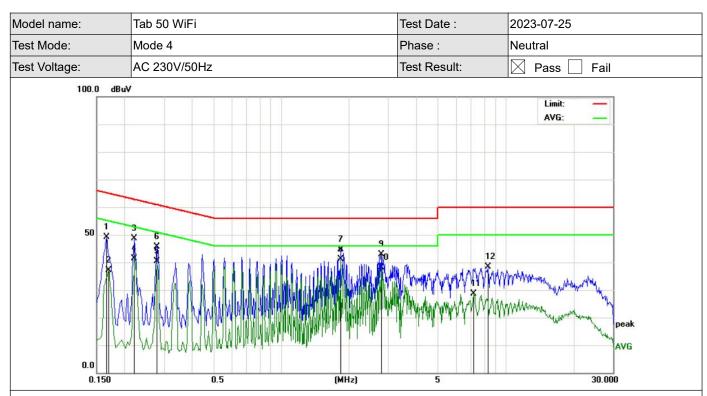
EUT was placed upon a wooden test table 0.8m above the horizontal metal reference plane and 0.4m from the vertical ground plane, and it was connected to an AMN. The closest distance between the boundary of the EUT and the surface of the AMN is 0.8m. All peripherals were connected to another AMN, and placed at a distance of 10cm from each other. A spectrum and receiver was connected to the RF output port of the AMN. Both average and quasi-peak value were detected.


6.1.3 Measurement Data

An initial pre-scan was performed on the live and neutral lines.

Quasi-peak or average measurements were performed at the frequency which maximum peak emissions were detected.

Please refer to the attached quasi-peak & average measurement data.


Remark: Correct Factor = LISN factor + Cable Loss + Pulse limiter factor.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No. I	Μk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1700	34.77	11.55	46.32	64.96	-18.64	QP
2		0.1700	25.26	11.55	36.81	54.96	-18.15	AVG
3		0.2779	32.78	10.80	43.58	60.88	-17.30	QP
4		0.3899	23.96	10.09	34.05	48.06	-14.01	AVG
5		0.7780	29.85	9.93	39.78	56.00	-16.22	QP
6	*	1.0580	24.64	9.90	34.54	46.00	-11.46	AVG
7		1.8340	31.14	9.95	41.09	56.00	-14.91	QP
8		1.8340	22.58	9.95	32.53	46.00	-13.47	AVG
9		2.8860	30.75	9.99	40.74	56.00	-15.26	QP
10		2.9420	18.72	9.98	28.70	46.00	-17.30	AVG
11	į,	20.3060	9.31	10.76	20.07	50.00	-29.93	AVG
12	· ·	23.3460	21.58	11.13	32.71	60.00	-27.29	QP

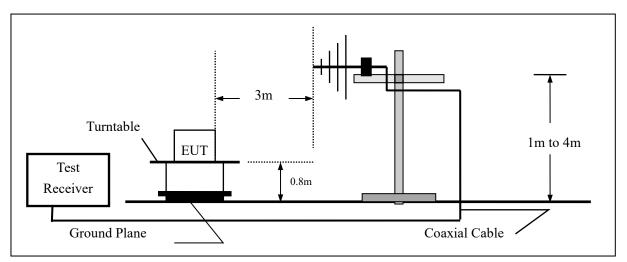
Report No.: AIT23070314CE1

Remark: Correct Factor = LISN factor + Cable Loss + Pulse limiter factor.

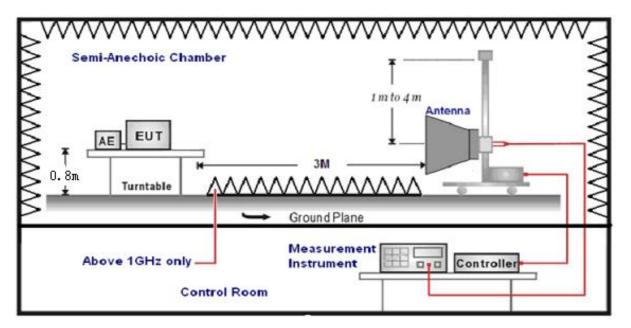
Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1660	37.45	11.61	49.06	65.15	-16.09	QP
2		0.1700	25.63	11.55	37.18	54.96	-17.78	AVG
3		0.2220	37.59	10.98	48.57	62.74	-14.17	QP
4		0.2220	30.40	10.98	41.38	52.74	-11.36	AVG
5		0.2779	29.60	10.80	40.40	50.88	-10.48	AVG
6		0.2788	34.85	10.79	45.64	60.85	-15.21	QP
7		1.8380	34.58	9.95	44.53	56.00	-11.47	QP
8	*	1.8380	31.15	9.95	41.10	46.00	-4.90	AVG
9		2.7820	32.79	9.99	42.78	56.00	-13.22	QP
10		2.7820	28.04	9.99	38.03	46.00	-7.97	AVG
11		7.2100	18.62	10.11	28.73	50.00	-21.27	AVG
12		8.3460	28.15	10.12	38.27	60.00	-21.73	QP


6.2 Radiated Emission Measurement								
Limits of Radiated Emission Measurement (Below 1GHz)								
_	☐ Class	s A (10m)	⊠ Class	B (3m)				
Frequency (MHz)	Quasi-Peak	$dB(\mu V/m)$	Quasi-Peak dB(μV/m)					
30 ~ 230	40	.0	40.0					
230 ~ 1000	47	.0	47.0					
Limits of Radiated Em	ission Measurement (Above 1GHz)						
	☐ Clas	s A (3m)	⊠ Class B (3m)					
Frequency (MHz)	Quasi-Peak	Average	Quasi-Peak	Average				
	dB(μV/m)	dB(μV/m)	dB(μV/m)	dB(μV/m)				
1000~3000	76.0	56.0	70.0	50.0				
3000 ~ 6000	3000 ~ 6000 80.0		74.0	54.0				

6.2.1 E.U.T. Operation


Temperature:	°°C Humidity: 519		51% RH	Atmospheric Pressure:	101	Кра
Test Mode:		All Modes	3	The Worst Mode reported:	Mode 4	

6.2.2 Test Specification

Radiated emission test set-up, frequency below 1000MHz:

Radiated emission test set-up, frequency above 1000MHz

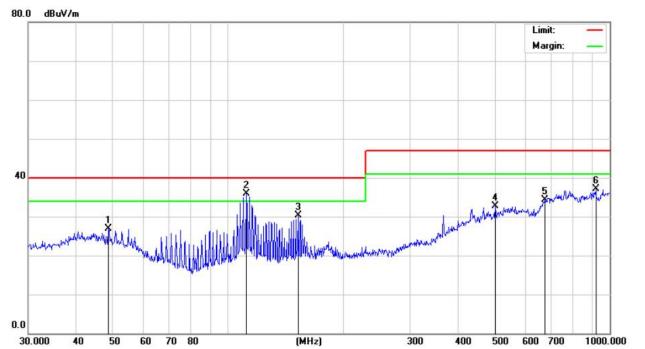
EUT was placed upon a wooden test table which was placed on the turn table 0.8m above the horizontal metal ground plane, and operating in the mode as mentioned above. A receiving antenna was placed 3m away from the EUT. During testing, turn around the turn table and move the antenna from 1m to 4m to find the maximum field-strength reading. All peripherals were placed at a distance of 10cm between each other. Both horizontal and vertical antenna polarities were tested.

6.2.3 Measurement Data

odel name:	Tab 50 WiFi	Test Date :	202	23-07-25		
est Mode:	Mode 4	Phase :	Ver	rtical		
est Voltage:	AC 230V/50Hz	Test Result:		Pass Fail		
80.0 dBuV/m			vii.		-550 -50 -50	
				Lim	269	
				Ma	rgin: —	
40	3	Many Many Many Many Many Many Many Many			6	
	1 2	3	5		A TOMAN	
			Ť ,	A salate M	MANY PALLAMENT	
Many of the same o		NI, AMAJIJAMA	when the way the good to	What have		
Marylander		Markey and a supplementary	Mat.			
	" sawhill noth , shhos.	Albin White				
0.0						
30.000 40	50 60 70 80	(MHz) 30	0 400	500 600	700 1000.0	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

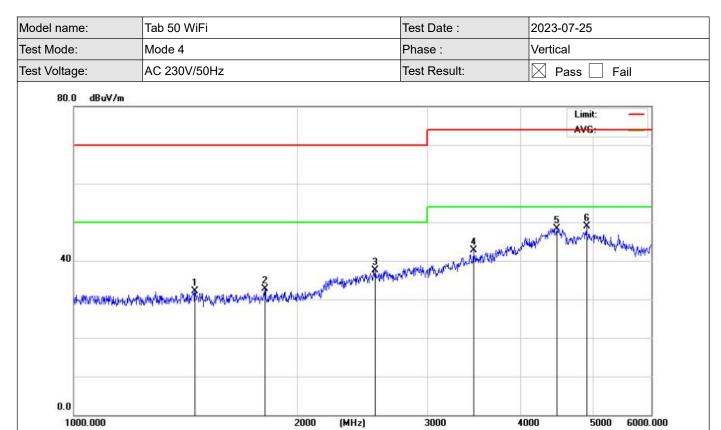
Measurement Result=Reading Level +Correct Factor;


Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	İ	48.8169	34.25	0.13	34.38	40.00	-5.62	QP
2	Ţ	75.1822	39.39	-4.39	35.00	40.00	-5.00	QP
3	*	111.8520	38.34	-1.99	36.35	40.00	-3.65	QP
4		136.4598	36.29	-2.45	33.84	40.00	-6.16	QP
5		366.8231	26.97	5.44	32.41	47.00	-14.59	QP
6		801.7863	23.85	12.87	36.72	47.00	-10.28	QP

Note: While performing the testing, the notch filter is used for avoiding test instrument overload.

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.


Measurement Result=Reading Level +Correct Factor;

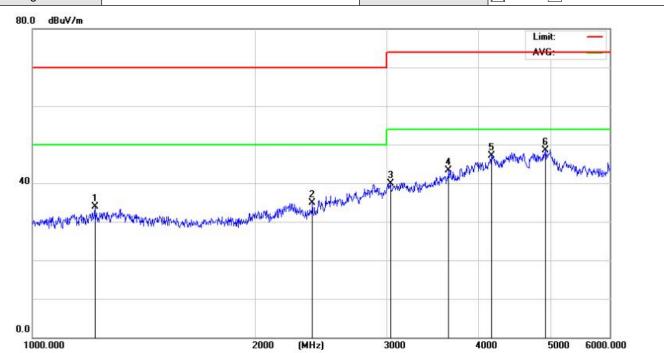
Over Limit= Measurement Result- Limit;

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		48.6719	24.13	2.75	26.88	40.00	-13.12	QP
2	*	111.7380	37.11	-1.23	35.88	40.00	-4.12	QP
3		152.6641	31.08	-0.74	30.34	40.00	-9.66	QP
4	8	501.1790	24.27	8.44	32.71	47.00	-14.29	QP
5	11/	677.5798	22.91	11.38	34.29	47.00	-12.71	QP
6	- 1	919.2866	24.50	12.64	37.14	47.00	-9.86	QP

Note: While performing the testing, the notch filter is used for avoiding test instrument overload.

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;


Over Limit= Measurement Result- Limit;

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		1456.840	42.15	-10.05	32.10	70.00	-37.90	peak
2	- 1	1809.540	42.05	-9.35	32.70	70.00	-37.30	peak
3		2547.974	42.12	-4.52	37.60	70.00	-32.40	peak
4		3455.260	43.49	-0.69	42.80	74.00	-31.20	peak
5		4472.336	43.64	4.76	48.40	74.00	-25.60	peak
6	*	4909.060	43.73	5.17	48.90	74.00	-25.10	peak

Note: While performing the testing, the notch filter is used for avoiding test instrument overload.

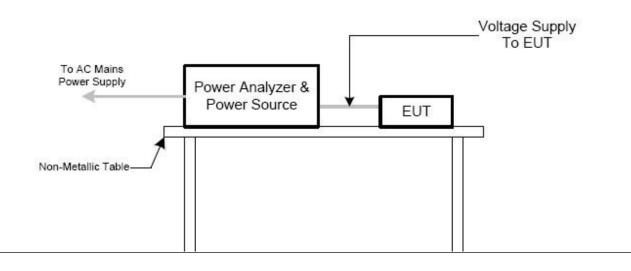
Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		1213.502	44.58	-10.58	34.00	70.00	-36.00	peak
2		2384.533	40.82	-5.82	35.00	70.00	-35.00	peak
3		3037.063	41.59	-1.59	40.00	74.00	-34.00	peak
4		3639.545	42.44	0.86	43.30	74.00	-30.70	peak
5		4155.567	43.12	4.08	47.20	74.00	-26.80	peak
6	*	4917.863	43.42	5.18	48.60	74.00	-25.40	peak

Note: While performing the testing, the notch filter is used for avoiding test instrument overload.



6.3 Harmonics	
Frequency Range:	100Hz to 2kHz
Test Requirement:	EN IEC 61000-3-2

6.3.1 E.U.T. Operation

Temperature:	25°C	Humidity:	51% RH	Atmospheric Pressure:	101	Кра
Test Mode:		All Modes		The Worst Mode reported:	Мо	ode 4

6.3.2 Test specification

EUT operated in the mode as mentioned above, and connected to Harmonic/Flicker measuring equipment which was connected to an AC power source. Measurement was performed after EUT operating in static state for 10 seconds. Each order harmonics found to meet the relevant limits.

6.3.3 Measurement Data

Test Requirement: EN IEC 61000-3-2 Frequency range: 100Hz to 2kHz

Measurement Time: 3 min

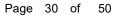
Test result: N/A (See Remark Below)

Remark:

Since the EUT (rated power is less than 75W) was belong to exception of clause 7 and Annex C, according to EN 61000-3-2 figure 1, it was deemed to conform to the requirements of this standard without further testing.

"The procedure for applying the limits and assessing the results is shown in Figure 1. For the following categories of equipment limits are not specified in this edition of the standard.

Note 1: Equipment with a rated power of 75W or less, other than lighting equipment. NOTE 2 This value may be reduced from 75 W to 50 W in the future, subject to approval by National Committees at that time.

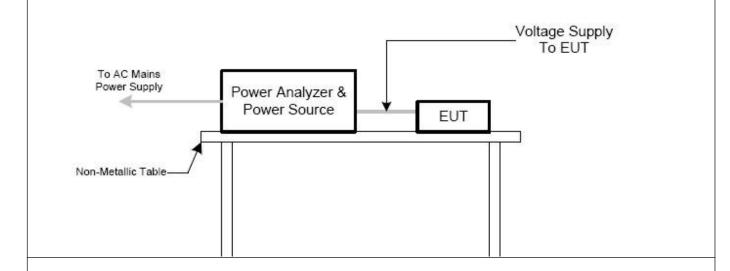

- professional equipment with a total rated power greater than 1 kW;
- symmetrically controlled heating elements with a rated power less than or equal to 200 W;
- independent dimmers for incandescent lamps with a rated power less than or equal to 1 kW.

NOTE 3 See also C.5.3."

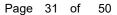
And

No limit applies for all lighting equipments with active input power ≤25 W except Discharge lighting equipment (refer to 7.3 b)

For further details, please refer to Clause 7 & Annex C of EN 61000-3-2 for reference.


6.4 Voltage changes, voltage fluctuations and flicker

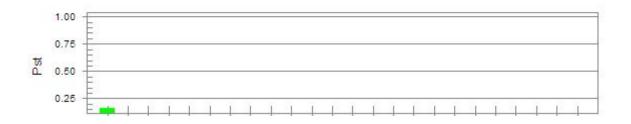
Test Requirement: EN 61000-3-3


6.4.1 E.U.T. Operation

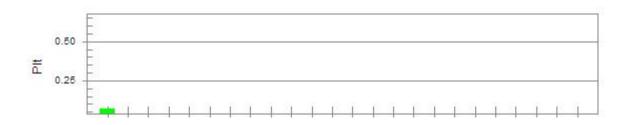
Temperature:	25°C	Humidity:	51% RH	Atmospheric Pressure:	101	Кра
Test Mode:		All Modes		The Worst Mode:	Mod	de 4

6.4.2 Test specification

EUT was operated in the mode as mentioned above, and connected to Harmonic/Flicker measuring equipment which was connected to an AC power source.


6.4.3 Measurement Data

M/N:	Tab 50 WiFi	Test Result: ⊠ Pass □ Fail
Test Voltage:	AC 230V/50Hz	Test date: 2023-07-25


Test category: All parameters (European limits) Test Margin: 100

Test Result: Pass Status: Test Completed

Pst_i and limit line European Limits

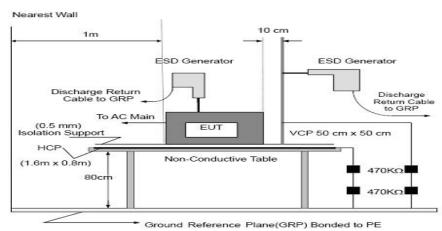
Plt and limit line

Parameter values recorded during the test:

Vrms at the end of test (Volt): 230.35

Highest dt (%):	0.24	Test limit (%):	3.30	Pass
Time(mS) > dt:	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.17	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.062	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.027	Test limit:	0.650	Pass

7 Immunity Test Results


7.1 Electrostatic discharge immunity test

Acceptable Performance Criterion:	В	
Discharge Impedance:	330 Ω / 150 pF	
	Air Discharge:	±4 KV, ±8 kV
Discharge Voltage:	Contact Discharge:	±2 kV, ±4 kV
	VCP, HCP:	±2 kV, ±4 kV
Polarity:	Positive & Negative	
Minimum discharge Interval:	1 second	

7.1.1 E.U.T. Operation

Temperature:	25°C	Humidity:	51% RH	Atmospheric Pressure:	101	Кра			
Test Mode:		All Modes							

7.1.2 Test Specification

EUT was operated in the mode as mentioned above. Both contact and air discharge was executed. Contact discharge to the conductive surfaces and to coupling planes; air discharge at insulating surfaces. Each test point shall be subjected to 10 discharges at least (For each voltage and polarity).

7.1.3 Measurement Data

Test Record

Electrostatic Discharge Test Results																		
M/N:	Tab 50 WiFi					Т	Test Result: ⊠ Pass □ Fail											
Test Voltage:	AC	AC 230V/50Hz					Т	Test date: 2023-07-25										
Discharge times		Contact discharge: minimum 10 times (+/-respectively) at each point, Air discharge: minimum 10 times (+/- respectively) at each point.																
Discharge Mode	Air Discharge					Contact Discharge Performance						D 14						
Test level (kV)	4	1	8	3	1	0	1	5	2	2	4		(6	,	3	Criterion	Result
Test Location	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-		
HCP	/	/	/	/	/	/	/	/	Α	Α	Α	Α	/	1	1	/		Pass
VCP	/	/	/	/	/	1	/	1	Α	Α	Α	Α	/	1	1	/		Pass
A1	В	В	В	В	/	1	1	1	1	/	/	1	1	1	1	1		Pass
A2	В	В	В	В	/	/	1	1	1	/	/	/	/	/	1	1	В	Pass
A3	В	В	В	В	/	1	1	1	1	1	/	/	1	1	1	1		Pass
A4	В	В	В	В	/	/	1	1	1	/	/	1	1	/	1	1		Pass
A5	В	В	В	В	/	1	1	1	1	/	/	1	1	1	1	1		Pass

Note 1): Horizontal Coupling Plane (HCP) and Vertical Coupling plane (VCP).

Note 2): "Cx" means Contact Point ,x=1 \sim N, "Ax" means Air Point, x=1 \sim N.

Note 3): "A" stand for, No degradation in performance of the EUT was observed.

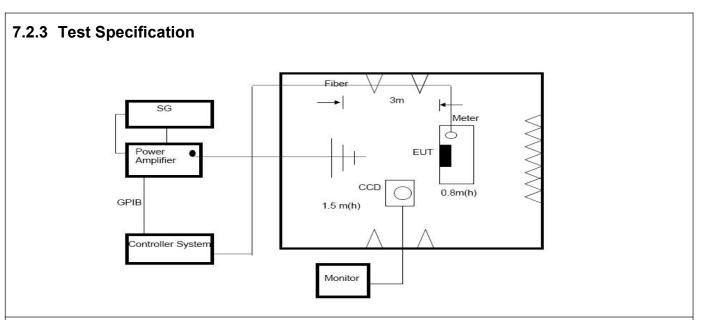
[&]quot;B" stand for, Degradation in performance of the EUT occurred during the application of the disturbance, after the test, EUT can self-recovered and operate as intended.

7.2 RF Field Strength Immunity Test											
Acceptable Performance Crite	erion:	А	A								
Test Level		3 V/m	3 V/m								
Test Distance		3 m	3 m								
Frequency Range		80MHz~	80MHz~6000MHz								
Polarity:	Horizont	Horizontal & Vertical									
7.2.1 E.U.T. Operation											
Temperature:	°°C	Humidity:	Humidity: 51% RH Atmospheric Pressure: 101								

7.2.2 TEST PROCEDURE

Test Mode:

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber.


All Modes

The testing distance from antenna to the EUT was 3 meters.

The other condition as following manner:

- a. The field strength level was 3V/m.
- b. The frequency range is swept from 80 MHz to 1000 MHz, & 1000MHz 6000MHz with the signal 80%amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. Sweep Frequency 900 MHz, with the Duty Cycle:1/8 and Modulation: Pulse 217 Hz(if applicable)
- d. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

7.2.4 Measurement Data

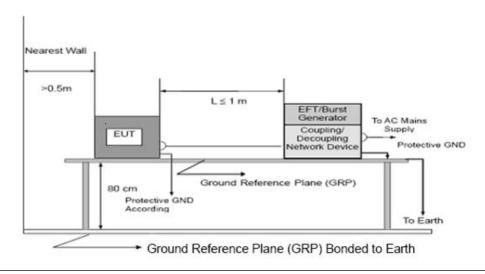
Radiated Frequency Field Strength Susceptibility Results								
M/N:	Tab 50 WiFi Test Result: ⊠ Pass ☐ Fail							
Test Voltage:	AC 230V/50Hz	Test date: 2023-07-25						
Test Port	Enclosure							

Frequency	Level	Modulation	Antenna Polarization	EUT Face	Observations (Performance Criterion)	Result
			V	t	Α	Pass
			Н	Front	Α	Pass
			V	Door	Α	Pass
		4 1.11-	Н	Rear	А	Pass
		1 kHz,	V	Left	Α	Pass
80 MHz-	3	80 % Amp. Mod, 1 % increment,	Н	Leit	Α	Pass
6 GHz	V/m	,	V	Dight	Α	Pass
		dwell time=3seconds	Н	Right	Α	Pass
		unie-oseconas	V	Ton	Α	Pass
			Н	Тор	Α	Pass
			V	Bottom	А	Pass
			Н	DOLLOITI	А	Pass

Note: "A" stand for, during test, operate as intended no loss of function, no degradation of performance, no unintentional transmissions and after test, no degradation of performance, no loss of function, no loss of stored data or user programmable functions.

Special conditions for EMC immunity tests

EUT operating Mode	PER during test(Worst)	PER Limit	Result
ВТ	4.5%	10%	Pass
WIFI 2.4G	4.3%	10%	Pass
WIFI 5G	4.5%	10%	Pass



7.3 Electrical fast transient/burst immunity test					
Acceptable Performance Criterion:	В				
Test Level:	0.5, 1.0, kV on AC Line 0.5 kV on DC line or signal or wired network Line				
Repetition Frequency:	5 kHz and 100KHz				
Burst Duration:	300 ms				
Test Duration:	1 minutes for each level & polarity				

7.3.1 E.U.T. Operation

Temperature:	25∘C	Humidity:	51% RH	Atmospheric Pressure:	101	Кра
Test Mode:		All Modes				

7.3.2 Test specification

EUT was placed on a metal ground reference plane and was insulated from it by a wooden support which is 0.1m thick. The ground reference plane is connected to the protective earth. The test generator and the coupling/decoupling network were placed directly on, and bonded to the ground reference plane.

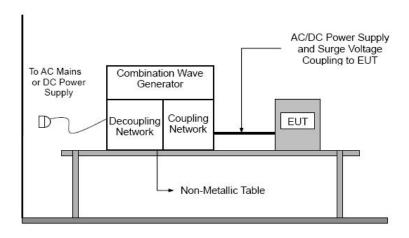
7.3.3 Measurement Data

Test Record

	Electrical Fast Transient/Burst Result										
M/N:		Tab 50 W	Tab 50 WiFi				Test Result: ⊠ Pass □ Fail				
Test Volta	age:	AC 230V/50Hz				Test date: 2023-07-25					
Test S	Signal	Ri	se time:	5ns, Du	uration: 5	i0ns, r	epetitio	n rate :	∑5KHz	z 🗌 100Kŀ	Нz
0 1				Test	level (kV)				rmance terion	Result
Coupli	ng Line	0.5	5 -	+	-	+	2 -	+	1 -		
	L	Α	Α	А	А	/	/	/	/		Pass
	N	Α	А	Α	А	/	/	/	1		Pass
AC	L+N	Α	А	Α	А	/	/	/	/		Pass
line	L+PE	1	1	1	1	1	1	/	/		N/A
	N+PE	1	1	1	1	1	1	/	/		N/A
	L+N+P E	/	/	1	1	/	/	/	1	В	N/A
Wired network Line	RJ45	I	/	1	1	/	/	/	1		N/A
Wired network	xDSL	/	/	1	1	/	/	/	1		N/A
Signal Line	/	1	/	1	1	/	/	/	/		N/A
DC Line	/	/	/	1	1	/	/	/	/		N/A

Note: "A" stand for, No degradation in performance of the EUT was observed.

"B" stand for, Degradation in performance of the EUT occurred during the application of the disturbance, after the test, EUT can self-recovered and operate as intended.



7.4 Surge immunity test						
Acceptable Performance Criterion:	В					
Test Level:	0.5, 1kV Line to Neutral; 0.5, 1kV , 2kV Line to earth; 0.5, 1kV Wired network Line					
Polarity:	Positive & Negative					
Generator source impedance:	2 Ω;					
Trigger Mode:	Internal					
No. of surges:	5 positive & 5 negative at 0°, 90°, 180°, 270°.					

7.4.1 E.U.T. Operation

Temperature:	25∘C	Humidity:	51% RH	Atmospheric Pressure:	101	Кра		
Test Mode:		All Modes						

7.4.2 Test specification

EUT was placed on a wooden table which is 0.8m above the ground and operated in the mode as mentioned above. The power cord between the EUT and the coupling/decoupling network was bundled so as to make it less than 2 m in length.

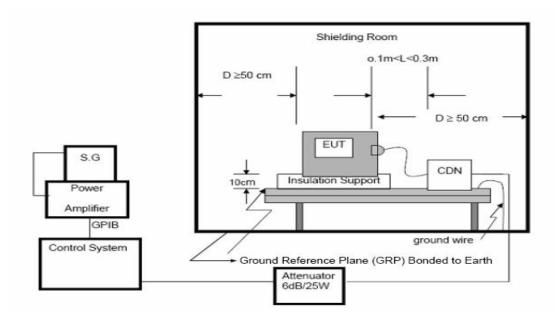
7.4.3 Measurement Data

Test Record

	Surge Immunity Test Result											
M/N:			Tab 5	Tab 50 WiFi				Test F	Test Result: ⊠ Pass ☐ Fail			
Test Voltaç	ge:		AC 230V/50Hz				Test date: 2023-07-25					
- .	0.						× 1.2/	50 µs	10/	700µs		
lest	Signa	I				Inte	rval: <u>60</u>	secon	ds	Pluse:1	0 times	
						Tes	st level				Performance	
Coupl	ling Lir	ne	0.5	5 kV	1	kV	2	κV	4	kV	Criterion	Result
			+	-	+	-	+	-	+	-		
		0°	Α	Α	Α	Α	1	/	/	/	/ Pa	Pass
	L-N	90°	Α	Α	Α	Α	/	/	/	/		Pass
	L-IN	180°	Α	Α	Α	Α	/	/	/	/		Pass
		270°	Α	Α	Α	Α	1	/	1	1		Pass
		0°	/	1	1	1	1	1	1	1		N/A
AC	L-P	90°	/	1	/	1	1	/	/	/		N/A
line	E	180°	/	1	/	1	1	/	/	/		N/A
		270°	/	1	/	1	1	/	/	/	В	N/A
		0°	/	1	1	1	1	/	1	1		N/A
	N-	90°	/	1	1	1	1	1	1	/		N/A
	PE	180°	/	1	1	1	1	/	/	/		N/A
		270°	/	1	1	1	1	1	1	1		N/A
Wired network Line	RJ 45	/	1	/	1	/	1	/	1	/		N/A

Note: "A" stand for, No degradation in performance of the EUT was observed.

"B" stand for, Degradation in performance of the EUT occurred during the application of the disturbance, after the test, EUT can self-recovered and operate as intended.


7.5 Conducted disturbance immunity Test

Acceptable Performance Criterion:	A
Test Level	3 V
Frequency Range	0.15MHz~80MHz

7.5.1 E.U.T. Operation

Temperature:	°°C	Humidity:	51% RH	Atmospheric Pressure:	101	Кра
Test Mode:			,	All Modes		

7.5.2 Test specification

The equipment to be tested was placed on an insulating support of 0,1m height above a ground reference Plane. The minimum distance between the EUT and all other conductive structures, except the ground reference plane is more than 0.5m. All relevant cables were provided with the appropriate coupling and decoupling devices at a distance between 0.1m and 0.3m from the projected geometry of the EUT.

Page 42 of 50

7.5.3 Measurement Data

Test Record

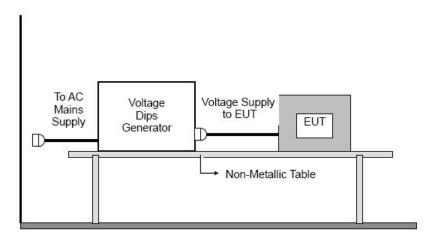
	Injected Currents Susceptibility Measurement Result							
M/N:	Tab 50 WiFi	Test Result: X	Pass	l				
Test Voltage:	AC 230V/50Hz	Test date: 2023-07	7-25					
Test Port	⊠AC Port ☐ Wired network	☑ AC Port ☐ Wired network ☐ Signal Line ☐ DC Port						
Operating Mode	All Mod	All Modes						
Test Level (V)	3V(r.m.f) (unmodulated	d)	Criterion	Α				

Test Ports (Mode)	Freq. Range MHz)	Field Strength	Observation	Observations (Performance Criterion)	Results
Input/ Output AC. Power Port	0.1580		CT, CR	A	Р
Wired network ports	0.1580	3V(rms)	CT, CR	A	Р
Input/ Output DC. Power Port	0.15 80	AM Modulated 1000Hz, 80%	N/A	N/A	N/A
Signal Line	0.15 80		N/A	N/A	N/A

Note: "A" stand for, during test, operate as intended no loss of function, no degradation of performance, no unintentional transmissions and after test, no degradation of performance, no loss of function, no loss of stored data or user programmable functions.

Special conditions for EMC immunity tests

EUT operating Mode	PER during test(Worst)	PER Limit	Results
ВТ	4.6%	10%	Pass
WIFI 2.4G	4.5%	10%	Pass
WIFI 5G	4.4%	10%	Pass



7.6 Voltage dips and interruptions immunity test					
Acceptable	B & C				
Performance Criterion:	B & C				
Test Level:	<5% of U⊤ (Supply Voltage) for 0.5 and 250 Periods				
	70 % of U _T (Supply Voltage) for 25 Periods				
No. of Dips / Interruptions: 3 per Level					

7.6.1 E.U.T. Operation

Temperature:	25°C	Humidity:	51% RH	Atmospheric Pressure:	101	Кра				
Test Mode:	All Modes									

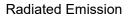
7.6.2 Test specification

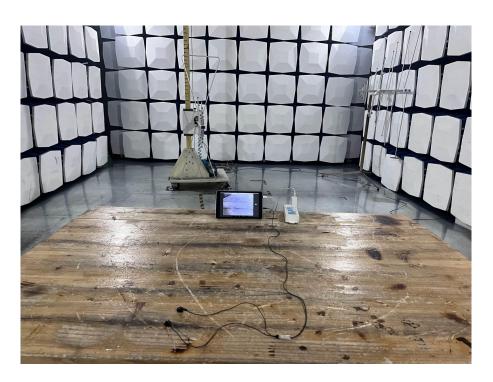
EUT connected to the test generator with the shortest power supply cable as specified by the EUT manufacturer. The rated voltage of the EUT was used as the basis for voltage test level specification. After each group of tests, a full functional check was performed.

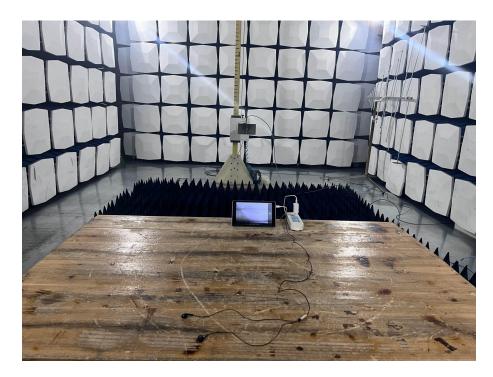
7.6.3 Measurement Data

Test Record

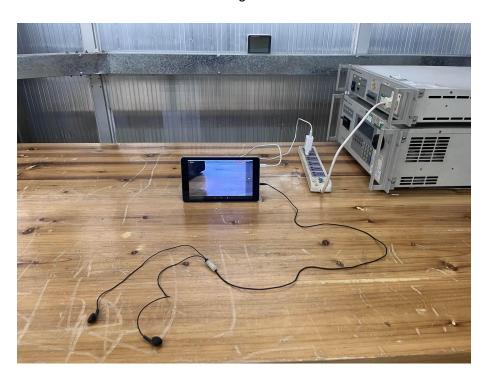
Voltage Dips And Interruptions Test Result											
M/N:	Tab 50 WiFi				Test Result: ⊠ Pass ☐ Fail						
Test Voltage:	AC 230V/50Hz				Test date: 2023-07-25						
Test Port	⊠ AC Port										
Level	Interruption & Dips(%U _T)	Duration (Cyc)	Phase	e	Test result	Criterion	Result				
70	30	25	0		В	С	Pass				
0	100	0.5	0		А	В	Pass				
0	100	1.0	0		А	В	Pass				
0	100	250	0		В	С	Pass				

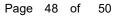

Note: "A" stands for, No degradation in performance of the EUT was observed.


"B" stands for, Degradation in performance of the EUT occurred during the application of the disturbance, after the test, EUT can self-recovered and operate as intended.


"C" stands for, Loss of function of the EUT occurred during the application of the disturbance, after the test, EUT can self-recovered or restored by manually and operate as intended.

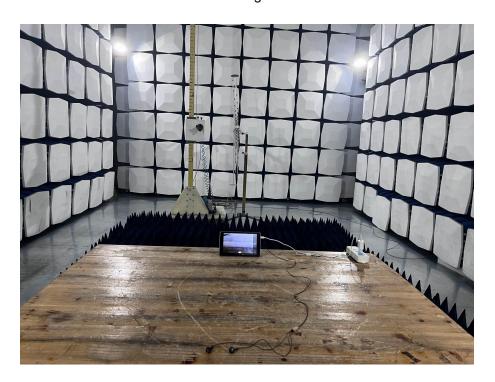
8 Test Setup Photos of The EUT

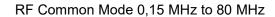


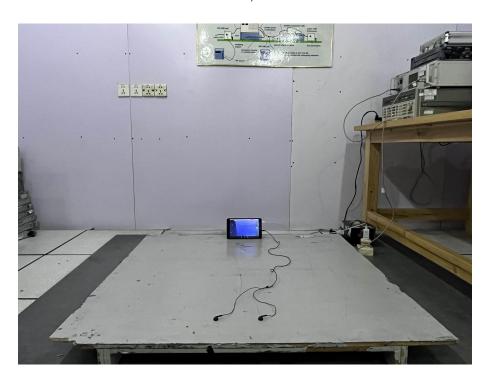


Conducted Emission(AC Mains)

Harmonic Current/ Voltage Fluctuation and Flicker




Electrostatic Discharge



RF Electromagnetic Field

Fast Transients Common Mode & Surge & DIPS

9 External And Internal Photos of The EUT

Please refer to the appendix for details

End of the report