RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product : 4G Tablet Trade Mark : Blackview Model Name : Tab 6 Family Model : N/A Report No. : STR210908002001E

Prepared for

DOKE COMMUNICATION (HK) LIMITED. RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HONG KONG CHINA.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community,Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

Page 2 of 88

Report No.: STR210908002001E

TEST RESULT CERTIFICATION

15 X	2
Applicant's name:	DOKE COMMUNICATION (HK) LIMITED.
Address:	RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD
A A	WANCHAI HONG KONG CHINA.
	Shenzhen DOKE Electronic Co.,Ltd.
Address	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China.
Product description	t & A + A
Product name:	4G Tablet
Trademark:	Blackview
Model Name:	Tab 6 🖉 🗧 🍌
Family Model:	N/A
Standards	ETSI EN 300 328 V2.2.2 (2019-07)
equipment under test (EUT) is requirements. And it is applicab This report shall not be reprodu	as been tested by NTEK, and the test results show that the in compliance with the of article 3.2 of the Directive 2014/53/EU ale only to the tested sample identified in the report. Inced except in full, without the written approval of NTEK, this vised by NTEK, personnel only, and shall be noted in the revision of
Date of Test	2 5 2 2
Date (s) of performance of tests	08 Sep. 2021 ~ 08 Oct. 2021
Date of Issue	
Test Result	Pass 🛵 🎸 🖉
Testing Engin	eer : Mary Hu

Authorized Signatory :

(Alex Li)

2	A A A A A A A A	E S
	Table of Contents	Page
1	1. GENERAL INFORMATION	+ 75
	1.1 GENERAL DESCRIPTION OF EUT	
	1.2 INFORMATION ABOUT THE EUT	8
	1.3 TEST CONDITIONS	13 🖉
	1.4 TEST CONFIGURATION OF EUT	13
4	1.5 DESCRIPTION OF TEST CONDITIONS	14
	1.6 DESCRIPTION OF SUPPORT UNITS	15
	1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS	16
2	2 . SUMMARY OF TEST RESULTS	17
	2.1 TEST FACILITY	18
	3 . RF OUTPUT POWER	19
-	3.1 LIMITS OF RF OUTPUT POWER	\$ 19
	3.2 TEST PROCEDURE	19
	3.3 DEVIATION FROM TEST STANDARD	19
	3.4 TEST SETUP 3.5 TEST RESULTS	19 20
		A
	4 . ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND	HUPPING
		21
	4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATI HOPPING SEQUENCE	21 /*
	4.2 TEST PROCEDURE	21
	4.3 DEVIATION FROM TEST STANDARD	21
4	4.4 TEST SETUP	22
	4.5 TEST RESULTS	22
	5 . OCCUPIED CHANNEL BANDWIDTH	23
4	5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	23
	5.2 TEST PROCEDURE	23
	5.3 DEVIATION FROM TEST STANDARD	24
	5.4 TEST SETUP	24
	5.5 TEST RESULTS	24
	6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOI	5
	6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-B.	AND
		A

Page 3 of 88

		A
	Table of Contents	Page
	A A S	
	DOMAIN	25
	6.2 TEST PROCEDURE	25
ł	6.3 DEVIATION FROM TEST STANDARD 6.4 TEST SETUP	26
I	6.5 TEST RESULTS	26 26
		- 5
	7 . HOPPING FREQUENCY SEPARATION	27
3	7.1 LIMITS OF HOPPING FREQUENCY SEPARATION 7.2 TEST PROCEDURE	27 27 🛏
	7.3 DEVIATION FROM TEST STANDARD	27
	7.4 TEST SETUP	28
6	7.5 TEST RESULTS	28
	8 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	1
	8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN	24
	SPURIOUS DOMAIN	29
	8.2 TEST PROCEDURE	29
	8.3 DEVIATION FROM TEST STANDARD	29
	8.4 TEST SETUP	30
	8.5 TEST RESULTS (Radiated measurement)	31 📈
	8.6 TEST RESULTS (Conducted measurement)	32
	9 . RECEIVER SPURIOUS EMISSIONS	33
ľ	9.1 LIMITS OF RECEIVER SPURIOUS RADIATION	33
	9.2 TEST PROCEDURE	33
	9.3 DEVIATION FROM TEST STANDARD	33
1	9.4 TEST SETUP	34
	9.5 TEST RESULTS (Radiated measurement)	35
	9.6 TEST RESULTS (Conducted measurement)	36
9	10. RECEIVER BLOCKING	37
	10.1 PERFORMANCE CRITERIA	37
	10.2 LIMITS OF RECEIVER BLOCKING	37
	10.3 TEST PROCEDURE	38
	10.4 DEVIATION FROM TEST STANDARD	39
	10.5 TEST SETUP	39
	10.6 TEST RESULTS	\$ 40
	11. TEST RESULTS	41
	the the the	A S

Page 4 of 88

Report No.: STR210908002001E

×	A R & A A A S A	A A
J	Table of Contents Page	ge 🍣
Æ	The second secon	
	11.1 ACCUMULATED TRANSMIT TIME	41 🙏
×	11.2 FREQUENCY OCCUPATION	48
41	11.3 ONE PULSE DWELL TIME	55
	11.4 RF OUTPUT POWER	65 🔔
	11.5 HOPPING FREQUENCY SEPARATION	67 🆉
A	11.6 OCCUPIED CHANNEL BANDWIDTH	71
× .	11.7 TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	74
	11.8 TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	77
	11.9 RECEIVER SPURIOUS EMISSIONS	82
	11.10 HOPPING SEQUENCE	86
	12. EUT TEST PHOTO	88
:	SPURIOUS EMISSIONS MEASUREMENT PHOTOS	88

Page 5 of 88

Page 6 of 88

Report No.: STR210908002001E

S E	Re	vision History	2 2 2 2 2
Report No.	Version	Description	Issued Date
STR210908002001E	Rev.01	Initial issue of report	08 Oct. 2021
E St it	5	A A A	A S X
A S	10		Ser 1
	4 2	A. A	to to
The second secon	1	AT S	t t
the the	- 5	N AN	the state
\$ 1	5	A F	AT S
+ At -	4	S A	2
AL X	+ 5	the r	1ª
+ 5		AT &	AT N
+ A	t	X L	* th
E t	N	AL X	4 4
AT S	at the	The second secon	A. A.
* *	ALA V	L A	to a
the second secon	1	- H	to a
the the t	to a	THE A	the state
	AL AND		+ THE N
L AN	A	E AT T	the st
45	to an	マートへ	LA
A A		to the second	AT &
AT S	A	S. P	T T
AN AN	5 5	+ A ×	t the
t stit &		E C A	e E
AT &	A.	t a	E A
S It	5	+ 5	At AN
to the second	At	A A	A LA
5 2	K	the state	4 2

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

E	
Equipment	4G Tablet
Trade Mark	Blackview
Model Name.	Tab 6 🖉 🧹 🗧
Family Model	N/A
Model Difference	N/A 🖉 🎢 🍝
	The EUT is 4G Tablet
	Operation Frequency: 2402~2480 MHz
	Modulatin Type: GFSK,∏/4-DQPSK,8-DPSK
	Modulation Technology: FHSS
	Adaptive/non-adaptive Adaptive equipment
	Receiver categories 2
Product Description	Number Of Channel 79CH
	Antenna Designation: PIFA Antenna
	Antenna Gain(Peak) 0.92 dBi
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.
Channel List	Refer to below Table
Adapter	Model: HJ-0501000N2-EU Input: 100-240V~50/60Hz 0.15A Output: 5.0V1.0A 5.0W
Battery	DC 3.8V, 5580mAh
Rating	DC 3.8V from battery or DC 5V from Adapter.
I/O Ports	Refer to users manual
Hardware Version	S866T-T310-V1.0
Software Version	Tab6_EEA_S886T_V1.0
No.	5 % 5

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page 8 of 88

Report No.: STR210908002001E

79 channels are provided to (GFSK, ∏/4-DQPSK, 8-DPSK)

79 chann	iels ale provided ic	(Gron, //	HUQPSK, O-	DPSK)	5	2
~	Channel	<	A	Frequency		5 2
	Channel		5	(MHz		
	00	45		2402		
	🤜 01 🖉	4 5		2403	5	
5	📈	A A	L.	19. 1		1
5	2		A	2	A	K
	J	1	5		41	1
		2			S	
65	77	5		2479	-	
E	78 🖉			2480		65

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

FHSS

other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment:
 - The maximum number of Hopping Frequencies: 79
 - The minimum number of Hopping Frequencies: 79
- The (average) Dwell Time: 343.672s Maximum

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- Adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The maximum Channel Occupancy Time implemented by the equipment:/..... ms

- The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - The equipment can switch dynamically between Frame Based and Load Based equipment

The CCA time implemented by the equipment:/.. µs

] The equipment has implemented a non-LBT based DAA mechanism

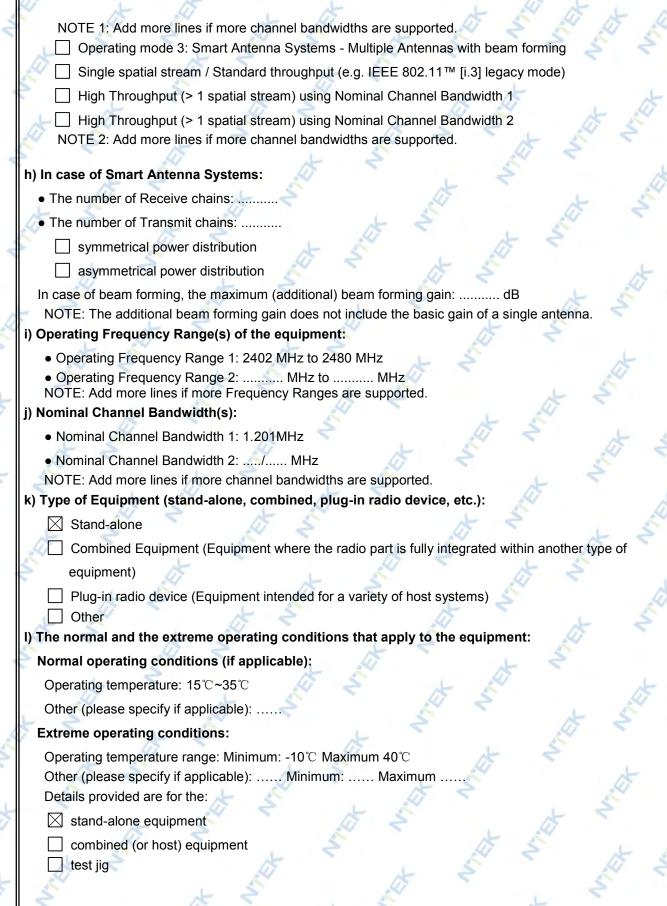
The equipment can operate in more than one adaptive mode

Page 9 of 88

Report No.: STR210908002001E

e) In case of non-adaptive Equipment:

- The maximum RF Output Power (e.i.r.p.):
- The maximum (corresponding) Duty Cycle:


Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

- RF Output Power
 - GFSK
- Power Spectral Density
- N/A
- Duty cycle, Tx-Sequence, Tx-gap N/A
- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
- Hopping Frequency Separation (only for FHSS equipment)
 GFSK
- Medium Utilization
- N/A
- Adaptivity
 N/A
- Receiver Blocking
 GFSK
- Nominal Channel Bandwidth
- 8-DPSK
- Transmitter unwanted emissions in the OOB domain
 8-DPSK
- Transmitter unwanted emissions in the spurious domain
- ∏/4-DQPSK
- Receiver spurious emissions
 8-DPSK
- g) The different transmit operating modes (tick all that apply):
 - Operating mode 1: Single Antenna Equipment
 - Equipment with only one antenna
 - Equipment with two diversity antennas but only one antenna active at any moment in time
 - Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only
 - one antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
 - Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
 - Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)
 - High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
 - High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2

Page 10 of 88

Report No.: STR210908002001E

Report No.: STR210908002001E

LE .	E t	<u> </u>	$\mathcal{H} \geq \mathcal{K} \mathcal{H}$
The intended comb	ination(s) of the radio e	equipment power setting	gs and one or more antenna
assemblies and the	ir corresponding e.i.r.p	o. levels:	
Antenna Type: PIFA	Antenna	H	L At
Integral Antenna	a (information to be provi	ded in case of conducted	measurements)
Antenna Gain:	0.92 dBi	15 2	5 × 5 5
If applicable, add	itional beamforming gain	n (excluding basic antenna	a gain):/ dB
Temporary	RF connector provided	t	~
No tempora	ary RF connector provide	ed 🖉	5 2
Dedicated .	Antennas (equipment wit	th antenna connector)	+ 5
Single pow	er level with correspondi	ing antenna(s)	19
Multiple po	wer settings and corresp	oonding antenna(s)	2
Number of dif	ferent Power Levels:		1 5
Power Level 1	l:dBm	L'	1 5
Power Level 2	2: dBm 🦙	2	St it
	3: dBm	45	A A
		quipment has more power	
	se power levels are cond	lucted power levels (at an	ienna connecion
		tended antenna assemblig	
For each of the Pow	er Levels, provide the int		es, their corresponding gains
For each of the Pow G) and the resulting e	er Levels, provide the int e.i.r.p. levels also taking		
For each of the Pow G) and the resulting e Power Level	er Levels, provide the int e.i.r.p. levels also taking 1:dBm		es, their corresponding gains ming gain (Y) if applicable
For each of the Pow G) and the resulting e Power Level	er Levels, provide the int e.i.r.p. levels also taking 1:dBm	into account the beamforr	es, their corresponding gains ming gain (Y) if applicable
For each of the Pow G) and the resulting e Power Level Number of an	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid	into account the beamforr	es, their corresponding gains ming gain (Y) if applicable
For each of the Pow G) and the resulting e Power Level Number of an	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi)	into account the beamforr led for this power level: e.i.r.p. (dBm)	es, their corresponding gains ming gain (Y) if applicable
For each of the Pow G) and the resulting e Power Level Number of an	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi)	into account the beamforr led for this power level: e.i.r.p. (dBm)	es, their corresponding gains ming gain (Y) if applicable
For each of the Pow G) and the resulting e Power Level Number of an Assembly # 1 2 3	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92	into account the beamforr led for this power level: e.i.r.p. (dBm) 4.34	es, their corresponding gains ming gain (Y) if applicable
For each of the Pow G) and the resulting e Power Level Number of an Assembly # 1 2 3 NOTE 3: Add	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92	into account the beamforr led for this power level: e.i.r.p. (dBm) 4.34	es, their corresponding gains ming gain (Y) if applicable Part number or model name
For each of the Pow G) and the resulting e Power Level Number of an Assembly # 1 2 3 NOTE 3: Add Power Level	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92 more rows in case more 2:	into account the beamforr led for this power level: e.i.r.p. (dBm) 4.34	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
For each of the Pow G) and the resulting e Power Level Number of an Assembly # 1 2 3 NOTE 3: Add Power Level	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92 more rows in case more 2:	into account the beamform led for this power level: e.i.r.p. (dBm) 4.34	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
For each of the Pow G) and the resulting e Power Level Number of an Assembly# 1 2 3 NOTE 3: Add Power Level Number of an	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92 more rows in case more 2: dBm tenna assemblies provid	into account the beamforr led for this power level: e.i.r.p. (dBm) 4.34 e antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
For each of the Pow G) and the resulting e Power Level Number of an Assembly # 1 2 3 NOTE 3: Add Power Level Number of an Assembly #	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92 more rows in case more 2: dBm tenna assemblies provid	into account the beamforr led for this power level: e.i.r.p. (dBm) 4.34 e antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
For each of the Pow G) and the resulting e <u>Power Level</u> <u>Number of an</u> Assembly# 1 2 3 NOTE 3: Add Power Level Number of an Assembly# 1	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92 more rows in case more 2: dBm tenna assemblies provid	into account the beamforr led for this power level: e.i.r.p. (dBm) 4.34 e antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
For each of the Pow G) and the resulting e <u>Power Level</u> <u>Number of an</u> Assembly# 1 2 3 NOTE 3: Add <u>Power Level</u> <u>Number of an</u> Assembly# 1 2 3	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92 0.92 more rows in case more 2:	into account the beamforr led for this power level: e.i.r.p. (dBm) 4.34 e antenna assemblies are led for this power level: e.i.r.p. (dBm)	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
For each of the Pow G) and the resulting e Power Level Number of an Assembly # 1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add Power Level	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92 more rows in case more 2:	into account the beamform led for this power level: e.i.r.p. (dBm) 4.34 e antenna assemblies are led for this power level: e.i.r.p. (dBm) e antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
For each of the Pow G) and the resulting e Power Level Number of an Assembly # 1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add Power Level NUMBER OF AND	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92 more rows in case more 2:	into account the beamforr led for this power level: e.i.r.p. (dBm) 4.34 e antenna assemblies are led for this power level: e.i.r.p. (dBm) a antenna assemblies are led for this power level:	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.
For each of the Pow G) and the resulting e Power Level Number of an Assembly # 1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add Power Level	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92 more rows in case more 2:	into account the beamform led for this power level: e.i.r.p. (dBm) 4.34 e antenna assemblies are led for this power level: e.i.r.p. (dBm) e antenna assemblies are	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level.
For each of the Pow G) and the resulting e Power Level Number of an Assembly # 1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add Power Level NUMBER OF AND	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92 more rows in case more 2:	into account the beamforr led for this power level: e.i.r.p. (dBm) 4.34 e antenna assemblies are led for this power level: e.i.r.p. (dBm) a antenna assemblies are led for this power level:	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.
For each of the Pow G) and the resulting e Power Level Number of an Assembly # 1 2 3 NOTE 3: Add Power Level Number of an Assembly # 1 2 3 NOTE 4: Add Power Level NUMBER OF AND	er Levels, provide the int e.i.r.p. levels also taking 1: dBm tenna assemblies provid Gain (dBi) 0.92 more rows in case more 2:	into account the beamforr led for this power level: e.i.r.p. (dBm) 4.34 e antenna assemblies are led for this power level: e.i.r.p. (dBm) a antenna assemblies are led for this power level:	es, their corresponding gains ming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.

Page 12 of 88

n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined (host) equipment or test jig in case of plug-in devices: Details provided are for the: stand-alone equipment combined (or host) equipment test jig Supply Voltage AC mains State AC voltage V DC State DC voltage: DC 3.8V In case of DC, indicate the type of power source Internal Power Supply External Power Supply or AC/DC adapter: DC 12V Battery: DC 3.8V Other: o) Describe the test modes available which can facilitate testing: See clause 1.4 p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802.15.4™ [i.4], proprietary, etc.): Bluetooth® q) If applicable, the statistical analysis referred to in clause 5.4.1 q) (to be provided as separate attachment) r) If applicable, the statistical analysis referred to in clause 5.4.1 r) (to be provided as separate attachment) s) Geo-location capability supported by the equipment: Yes The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user No No t) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or clause 4.3.2.11.3): GFSK=0.85%

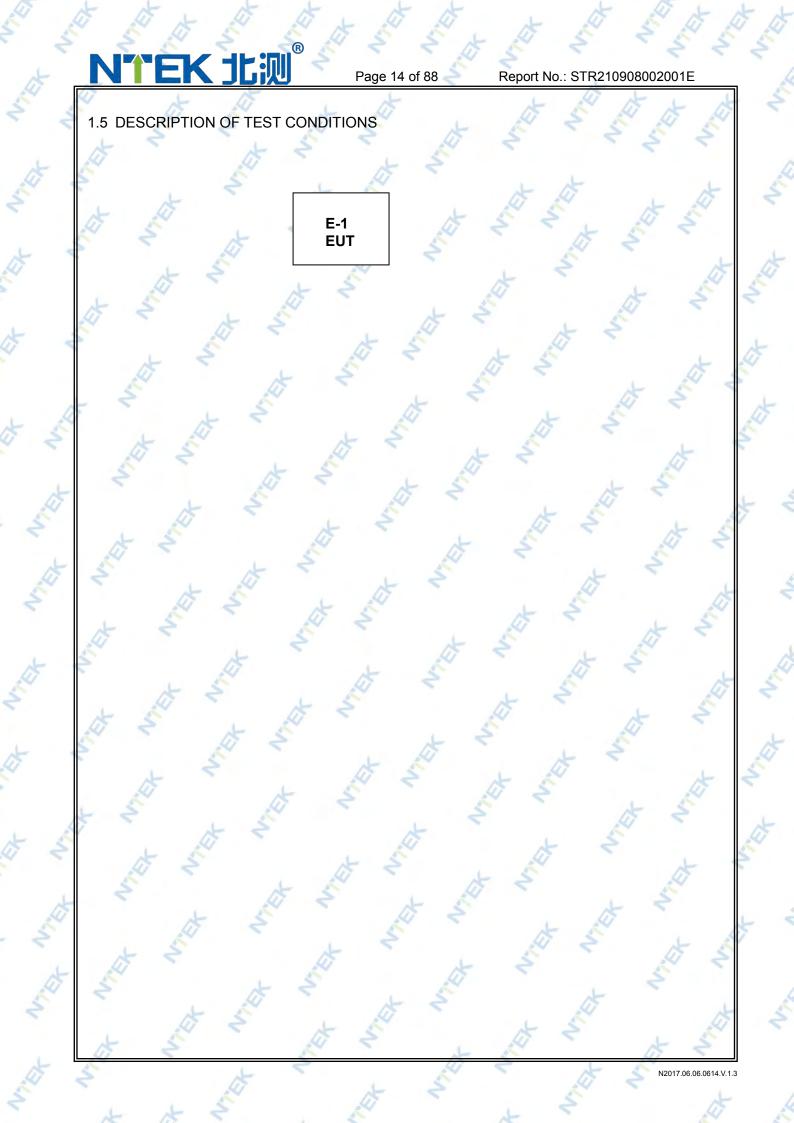
Report No.: STR210908002001E

1.3 TEST CONDITIONS

17	AS S	0
	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	-10°C ~ 40°C Note: (1)
Relative Humidity	20% - 75%	- <u>N/A</u>
Supply Voltage	DC 3.8V	R T K S

Page 13 of 88

Note:


(1) The HT 40 $^\circ\!C$ and LT -10 $^\circ\!C$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

1.4 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing				
Bluetooth mode Data rate Modulation type				
BR	1Mbps	GFSK 🔬 🍝		
EDR 2Mbps		∏/4-DQPSK		
EDR	3Mbps	8-DPSK		

AC good						
Test Channel Frequencies Configuration						
Test Channe	el	EUT Channel	Test Frequency (MHz)			
Lowest	5	CH00	2402			
Middle		CH39	2441			
Highest		🔶 CH78 🔬	2480			

Page 15 of 88

Report No.: STR210908002001E

1.6 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	47				15 1	A
Item	Equipment	Brand	Model/Type No.	Series No.	Note	h
E-1	4G Tablet	Blackview	Tab 6	N/A <	EUT	
	A V	4	5	t.	1	R
to the	1	1. All	+		A	2
	A.	2	t t	the second secon	2	
	* *		Y	5 5		t
	2	A.			x s	4
	× .	S.	4T	t.	E T	
	4		1 5	and the second s		
Item	Shielded Type Ferri	te Core	Length	Not	e	

Item	Shielded Type	Ferrite Core	Length	Note
A.	•	AT .	t t	1 5
	×	5	19	+
	E E		t t	
A			S A	2 4
2	4	A	+ +	d'
	1.5	2		

Note:

- (1)
- The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in ^C Length ^J column. (2)

Page 16 of 88

Report No.: STR210908002001E

1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS

LZ	5		LE.	5	23	2
EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra ion period
EMI Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
Bilog Antenna	TESEQ 🔬	CBL6111D	31216	2021.03.29	2022.03.28	1 year
Turn Table	EM	SC100 1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM EM	EM-AH-10180	2011071402	2021.03.29	2022.03.28	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2021.04.27	2022.04.26	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
Test Cable (1-18GHz)	<u>→</u> N/A <u></u>	R-02	N/A	2020.05.11	2023.05.10	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05. <mark>1</mark> 1	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835S E	980246	2021.07.01	2022.06.30	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator 🔷	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2021.04.27	2022.04.26	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2021.07.01	2022.06.30	1 year
Power Splitter	Mini-Circuits/U SA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2021.07.01	2022.06.30	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2021.04.27	2022.04.26	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2021.07.01	2022.06.30	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
Temperature & Humitidy Chamber	GIANT FORCE	GTH-056P	GF-94454-1	2021.04.27	2022.04.26	1 year

Page 17 of 88 🤶

Report No.: STR210908002001E

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

		ETSI EN 300 328 V2.2.2 (2019-07)	
4	Clause	Test Item	Results
		TRANSMITTER PARAMETERS	1
	4.3.1.2	RF Output Power	Pass
4	4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
	4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
	4.3.1.5	Hopping Frequency Separation	Pass
	4.3.1.6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
	4.3.1.7	Adaptivity	Not Applicable (See Note 1)
	4.3.1.8	Occupied Channel Bandwidth	Pass
	4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
	4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
	4		. 8
1	4.3.1.11	Receiver Spurious Emissions	Pass
	4.3.1.12	Receiver Blocking	Pass
			113

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

Page 18 of 88

Report No.: STR210908002001E

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.: 9270A-1

CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

	Maximum measurement une	certainty
No.	ltem 🖉	Uncertainty
1	Occupied Channel Bandwidth	± 5%
2	RF output Power, conducted	±1.5dB
3	Power Spectral Density, conducted	± 3dB 🦯
4	Unwanted emissions, conducted	± 3dB
5	All emissions, radiated	± 6dB
6	Temperature	± 3℃
7	Humidity 🤝	± 3%
<u> </u>	Time	± 5%

Page 19 of 88

Report No.: STR210908002001E

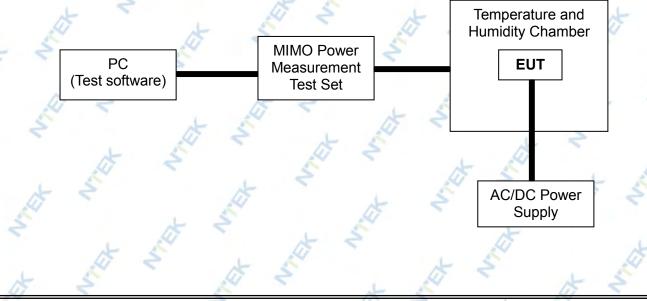
TRANSMITTER PARAMETERS

3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER Refer to chapter 4.3.1.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT	POWER
Condition	Limit
Non-adaptive frequency hopping systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.
Adaptive frequency hopping systems	equal to or less than 20 dBm.

3.2 TEST PROCEDURE


Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement		
Conducted measurement	X	Radiated measurement	
	SU .		

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

N2017.06.06.0614.V.1.3

Page 20 of 88 🔶

Report No.: STR210908002001E

3.5 TEST RESULTS

	S		AI Z	7 5 1
	EUT :	4G Tablet	Model Name :	Tab 6
Ś	Temperature :	20°C	Relative Humidity :	55 %
	Pressure :	1012 hPa 🛛 🖉 🍣	Test Voltage :	DC 3.8V (Normal)
	Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK	AS	2 4 5

Test data reference attachment

Page 21 of 88

4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Refer to chapter 4.3.1.4.3 of ETSI EN 300 328 V2.2.2 (2019-07)

AU K	
A	ccumulated Transmit Time
Condition	Limit
Non-adaptive frequency hopping systems	≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]
Adaptive frequency hopping systems	≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]
MINIMUM	FREQUENCY OCCUPATION TIME
Condition	Limit
Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence
Adaptive frequency hopping systems	shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.
Н	IOPPING SEQUENCE (S)
Condition	Limit
Non-adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum
Adaptive frequency	Operating over a minimum of 70% of the Operating in the band 2.4 GHz to 2.4835 GHz
hopping systems	≥15 hopping frequencies or 15/minimum

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of ETSI EN 300 328 V2.2.2 (2019-07)

Me	asurement
Conducted measurement	Radiated measurement
4.3 DEVIATION FROM TEST STANDARD No deviation	whet what what what what whet whet whet what what whet whet whet whet whet whet whet whe

EUT

Page 22 of 88 Repo

Report No.: STR210908002001E

4.4 TEST SETUP

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Spectrum

Analyzer

4.5 TEST RESULTS

	47	4	7 5
EUT :	4G Tablet 🛛 💦 🤝	Model Name :	Tab 6
Temperature :	26°C 🔔 💉	Relative Humidity	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.8V
Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK-ŀ	Hopping Mode	L

Test data reference attachment

N2017.06.06.0614.V.1.3

Page 23 of 88

Report No.: STR210908002001E

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH Refer to chapter 4.3.1.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

45	4 5	
	OCCUPIED CHANNEL BA	NDWIDTH
	Condition	Limit
A	I types of equipment	Shall fall completely within the band 2400 to 2483.5 MHz
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement
Conducted m	neasurement Radiated measurement
The setting of the Spectr	um Analyzer
Center Frequency	The centre frequency of the channel under test
Frequency Span	2 × Nominal Channel Bandwidth
Detector	RMS <
RBW	~ 1 % of the span without going below 1 %
VBW 🦽 🍝	3 × RBW
Trace	Max hold
Sweep time	1s <

Page 24 of 88

5.3 DEVIATION FROM TEST STANDARD

No deviation

5.4 TEST SETUP

EUT Spectrum Analyzer

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

5.5 TEST RESULTS

EUT :	4G Tablet	Model Name :	Tab 6
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.8V
Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK-(CH00/CH78)	AT I

Test data reference attachment

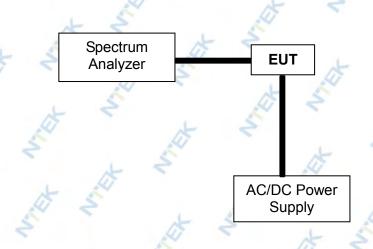
N2017.06.06.0614.V.1.3

Page 25 of 88

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSM	ITTER UNWA					
Cond	lition			Limit		
Under all tes	domain	n but outside	the allocate		e out-of-band all not exceed ow figure.	
	t S		15	5	- (- · · ·	5
		-	15-			
			11			
Spurious Domain	Out Of Band Doma	in (OOB)	Allocated Band	Out Of Band	Domain (OOB)	Spurious Domair
	A	_				
			-			
В						
C						
) MHz 2 483.5			
A: -10 dBm/MHz e.i.r. B: -20 dBm/MHz e.i.r. C: Spurious Domain I	p.	Figure				łz whichever is greater
B: -20 dBm/MHz e.i.r.	p. imits URE	1 300 328	BW = Occupi 1: Transmit 3 V2.2.2 (201	ed Channel Bandy mask 9-07)		Iz whichever is greater
B: -20 dBm/MHz e.i.r. C: Spurious Domain I 2 TEST PROCED efer to chapter 5.4.	p. imits URE .8.2of ETSI EN	1 300 328 M	BW = Occupi	ed Channel Bandy mask 9-07)	width in MHz or 1 MH	dz whichever is greater
B: -20 dBm/MHz e.i.r. C: Spurious Domain I 2 TEST PROCED efer to chapter 5.4.	p. imits URE	1 300 328 M	BW = Occupi 1: Transmit 3 V2.2.2 (201	ed Channel Bandy mask 9-07)		A.
B: -20 dBm/MHz e.i.r. C: Spurious Domain I 2 TEST PROCED efer to chapter 5.4. Conducte e setting of the Spo	p. imits URE .8.2of ETSI EN ed measureme ectrum Analyz	N 300 328 M nt er	BW = Occupi 1: Transmit 3 V2.2.2 (201	ed Channel Bandy mask 9-07)	width in MHz or 1 MH	A.
B: -20 dBm/MHz e.i.r. C: Spurious Domain I 2 TEST PROCED efer to chapter 5.4. ⊠Conducte e setting of the Spo Span	p. imits URE 8.2of ETSI EN ed measureme ectrum Analyz	N 300 328 M nt er Iz	BW = Occupi e 1: Transmit B V2.2.2 (201 leasurement	ed Channel Bandy mask 9-07)	width in MHz or 1 MH	A.
B: -20 dBm/MHz e.i.r. C: Spurious Domain I 2 TEST PROCED efer to chapter 5.4. ⊠Conducte e setting of the Spo Span Filter Mode	p. imits URE 8.2of ETSI EN ed measureme ectrum Analyz 0F Ch	N 300 328 M nt er Iz nannel Filt	BW = Occupi e 1: Transmit B V2.2.2 (201 leasurement	ed Channel Bandy mask 9-07)	width in MHz or 1 MH	A.
B: -20 dBm/MHz e.i.r. C: Spurious Domain I 2 TEST PROCED efer to chapter 5.4. ⊠Conducte e setting of the Spo Span	p. imits URE 8.2of ETSI EN ed measureme ectrum Analyz 0F Ch	N 300 328 M nt er Iz	BW = Occupi e 1: Transmit B V2.2.2 (201 leasurement	ed Channel Bandy mask 9-07)	width in MHz or 1 MH	A.
B: -20 dBm/MHz e.i.r. C: Spurious Domain I 2 TEST PROCED efer to chapter 5.4. ⊠Conducte e setting of the Spo Span Filter Mode	p. imits URE 8.2of ETSI EN ed measureme ectrum Analyz 0F Cr Cr	N 300 328 M nt er Iz nannel Filt	BW = Occupi e 1: Transmit B V2.2.2 (201 leasurement	ed Channel Bandy mask 9-07)	width in MHz or 1 MH	A.
B: -20 dBm/MHz e.i.r. C: Spurious Domain I 2 TEST PROCED efer to chapter 5.4. ⊠Conducte e setting of the Spo Span Filter Mode Trace Mode	p. imits URE .8.2of ETSI EN ed measureme ectrum Analyz OF CP CP	N 300 328 M nt er Iz nannel Filt ear/Write	BW = Occupi e 1: Transmit B V2.2.2 (201 leasurement	ed Channel Bandy mask 9-07)	width in MHz or 1 MH	A.
B: -20 dBm/MHz e.i.r. C: Spurious Domain I 2 TEST PROCED efer to chapter 5.4. ⊠Conducte e setting of the Spu Span Filter Mode Trace Mode Trigger Mode	p. imits URE .8.2of ETSI EN ed measureme ectrum Analyz 0H CH CH CI CI RI	N 300 328 M nt er Iz nannel Filt ear/Write deo Trigge	BW = Occupi	ed Channel Bandy mask 9-07)	width in MHz or 1 MH	A.


<u>NTEK 北测[®]</u>

Page 26 of 88

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

	e K	5	47	
EUT :	4G Tablet	Model Name :	Tab 6	5
Temperature :	26°C	Relative Humidity :	60 %	
Pressure :	1012 hPa	Test Voltage :	DC 3.8V 💉 🚿	
Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK-(CH78)	+ +	

6.5 TEST RESULTS

Test data reference attachment

N2017.06.06.0614.V.1.3

Page 27 of 88

Report No.: STR210908002001E

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of ETSI EN 300 328 V2.2.2 (2019-07)

HOPPING FREQUEN	CY SEPARATION
Condition	Limit
Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.
Adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be 100 kHz.

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of ETSI EN 300 328 V2.2.2 (2019-07)

		117				
	М	easurement				
Conducted I	measurement	4	Radiate	d measureme	nt 🏑	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
N. Contraction	1 5	14			5	
The setting of the Speci	trum Analyzer	1 2		A		
Center Frequency	Centre of the two a	djacent hoppir	ng frequenc	cies		4
Frequency Span	Sufficient to see the frequencies	e complete pov	wer envelo	pe of both ho	oping	13
Detector	Max Peak	- 5		AT.	2	
RBW 🍌 🍣	~ 1 % of the span		-	5		A
VBW 💉	3 × RBW		AT I		A	1
Trace	Max hold	A	2		5	
Sweep Time	Auto	T E		A		
	2 V		~	5		1.0

7.3 DEVIATION FROM TEST STANDARD

No deviation

EUT

Page 28 of 88 🧼

Report No.: STR210908002001E

7.4 TEST SETUP

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Spectrum

Analyzer

7.5 TEST RESULTS

4C Tablat	Model Name	Tob 6	
26℃	Relative Humidity :	60 %	A
1012 hPa 🙏 了	Test Voltage :	DC 3.8V	H
BT-GFSK/ /4-DQPSK /8-DPSK-(CH00/CH39/CH78)	A	2
	26C 1012 hPa	26°C Relative Humidity :	26C Relative Humidity : 60 % 1012 hPa Test Voltage : DC 3.8V

Test data reference attachment

Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz. 2.The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

Page 29 of 88

8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Refer to chapter 4.3.1.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EM	ISSIONS IN THE SPURIOUS DO	OMAIN
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	🧹 🗧 -54dBm 🔔 🔏	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	36dBm 🖉	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz 📈
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz 💉
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

8.2 TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	2 Y					54
	Mea	asurement				
Conducted m	easurement	-	Radia	ated measur	rement	
The setting of the Spectro	um Analyzer	N.F.		A	2	
RBW 🖉	100K(<1GHz)/1M(2	>1GHz)	AT .	2		A

300K(<1GHz) / 3M(>1GHz)

8.3 DEVIATION FROM TEST STANDARD

No deviation

VBW

Page 30 of 88

Report No.: STR210908002001E

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 31 of 88

Report No.: STR210908002001E

	8.5 TEST RES	ULTS (Radiated measurement) BELOW 1 GHz WORST- CA	SE DATA (30 MHz ~	1GHz)
	EUT :	4G Tablet	Model Name :	Tab 6
	Temperature :	24 °C	Relative Humidity	54%
ľ	Pressure :	1010 hPa 🛛 🧹 🔶	Test Power :	DC 3.8V
	Test Mode :	BT-GFSK (CH00)	A S	2 + 4 5
Ľ			5	

						· · ·	
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	43.049	-73.92	10.77	-63.15	-36	-27.15	peak
V	90.033	-70.29	11.26	-59.03 🔔	-54	-5.03	peak
V 🎊	194.363	-70.73	11.22	-59.51	-36	-23.51	peak
V	391.865	-69.24	11.19	-58.05	-54	-4.05	peak
V	589.845	~74.39	9.53	-64.86	-36	-28.86	peak
V	806.421	-72.26	11.03	-61.23	-36	-25.23	peak
H	44.28	-76.02	10.45	-65.57	-54	-11.57	peak
H	104.182	-67.31 🔍	10.20	-57.11	-54	-3.11	peak
Υ.	178.106	-71.53	10.83	-60.70	-36	-24.70	peak
Н	433.686	-67.7	11.11	-56.59	-54	-2.59	peak
Н	291.136	-68.2	11.11	-57.09	-36	-21.09	peak
Н	819.418	-72.34	11.03	-61.31	-36	-25.31	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

EK 北测

Page 32 of 88

L 5	ABOVE 1 GHz WORST- CAS	SE DATA (1GHz ~ 12	.75GHz)
EUT :	4G Tablet	Model Name :	Tab 6
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa 🛛 🧹 🔶	Test Power :	DC 3.8V
Test Mode :	GFSK (CH00/CH39/CH78)	45	2 4 2 2

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
	65	ope	ration freq	uency:2402	t	5	
V	4804.70	-35.75	1.47	-37.22	-30	-7.22	peak
V	7206.26	-49.20	10.87	-38.33	-30	-8.33	peak
H	4804.70	-38.20	-1.47	-39.67	-30	-9.67	peak
đ,	7206.26	51.88	10.87	-41.01	-30	-11.01	peak
	d-	ope	ration freq	uency:2441	A	5	
V	4882.65	-42.61	-1.91	-44.52	-30	-14.52	peak
V	7323.16	-48.49 📈	5.95	-42.54	-30	-12.54	peak
Đ	4882.65	_44.16	-1.91	-46.07	-30	-16.07	peak
Н	7323.16	-49.44	5.95	-43.49	-30	-13.49	peak
	t	e ope	ration freq	uency:2480	1	K	
V	4960.38	-42.81	-1.28	-44.09	-30	-14.09	peak
V	7440.03	-51.77	8.79	-42.98	30	-12.98	peak
L.	4960.38	-40.96	-1.28	-42.24	-30	-12.24	Speak
Н	7440.03	-52.18	8.79	-43.39	-30	-13.39	peak
Remark	c 🥕 🚿		65			24	-

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report

B.6 TEST RESULTS (Conducted measurement) Test data reference attachment

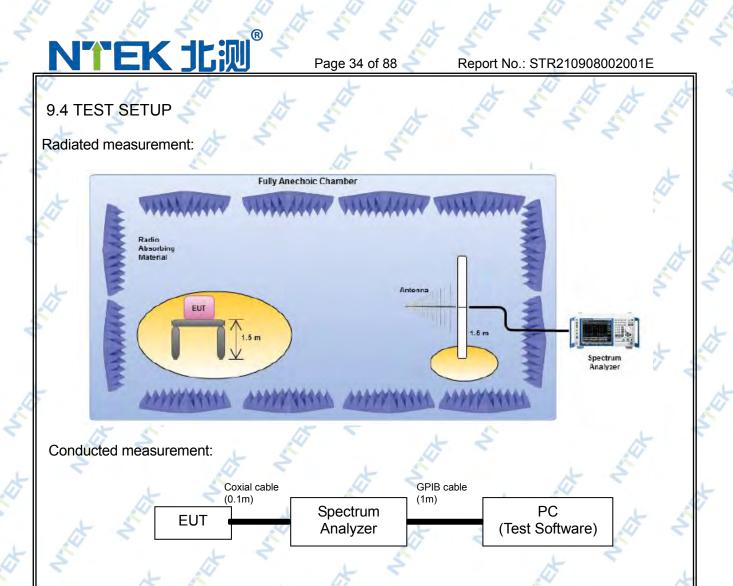
Page 33 of 88

Report No.: STR210908002001E

9. RECEIVER SPURIOUS EMISSIONS

9.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.1.11.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIV	ER SPURIOUS EMISSIONS	
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth
30 MHz ~ 1 GHz	-57dBm	100KHz
1 GHz ~ 12.75 GHz	-47dBm	1MHz


9.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	2	67		2		
	Me	easurement				
	I measurement		Radiated me	asurement	15	
The setting of the Spe	ctrum Analyzer	to the		t	5	
RBW 📈	100K(<1GHz) / 1M((>1GHz)	t.	5		
VBW	300K(<1GHz) / 3M((>1GHz) 🔶	5		AT	10

9.3 DEVIATION FROM TEST STANDARD

No deviation

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

<mark>TEK 北测</mark>®

Page 35 of 88

Report No.: STR210908002001E

AT .	RX BELOW 1 GHz WORST- (CASE DATA (30 MHz	z ~ 1GHz)	7	
EUT :	4G Tablet	Model Name :	Tab 6		
Temperature :	24 °C	Relative Humidity	54%	L	A.
Pressure :	1010 hPa	Test Power :	DC 3.8V	A	5
Test Mode :	GFSK(CH00)	E C	5 -	5	

				417				
Ī	Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
0	(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
	V	40.906	-83.73	12.98	-70.75	-57	-13.75	peak
	$^{\vee}$	93.881	-80.33	< <u>11.67</u>	-68.66	-57	-11.66	peak
	V	209.688	-79.16	18.94	-60.22	-57	-3.22	peak
	V	421.997	~79.54	11.65	-67.89	-57	-10.89	peak
	V	482.57	-83.56	11.45 🏑	-72.11	-57	-15.11	peak
	V	726.281	-77.93	11.45	-66.48	-57	-9.48	peak
	E	36.551	-83.88 📈	18.60	-65.28	-57	-8.28	peak
	Ē.	103.335	-81.15	18.11	-63.04	-57	-6.04	peak
	Н	202.889	-82.5	10.30	-72.20	-57	-15.20	peak
	Н	347.765	-82.02	15.00	-67.02	-57	-10.02	peak
	Н	<mark>6</mark> 36.831	-82.05	14.63	-67.42	-57	-10.42	peak
	H	734.099	-78.07	14.63	-63.44	<u></u> -57	-6.44	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 36 of 88

Report No.: STR210908002001E

- 1	UT :	4G Tab			CASE DATA (1G	: Tab	2 8	2	
Temperature : 24 ℃ Pressure : 1010 hPa					,	54%			
				Test Power : DC 3.8V			3.8V		
Ie	est Mode	e : GFSK	(CH00)	5	T LAK A				
0	. 2		2		47 2	2 6	L K	5	
	Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
	(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)		
4	- V ~	1646.56	-77.96	9.94	-68.02	-47	-21.02	peak	
	V	2337.13	-83.03	9.82	-73.21	-47 🤳	-26.21	peak	
I	V	3357.14	-80.90	10.02	-70.88	-47	-23.88	peak	
	V 📈	4724.90	-79.39	16 .13	-63.26 🧷	-47	-16.26	peak	
ľ	V	4330.43	-84.18	16.13	-68.05 🍼	-47	-21.05	peak	
ľ	V	4665.37	-78.32	16.13	-62.19	-47	-15.19	peak	
	Н	2421.49	-79.89	10.11	-69.78	-47	-22.78	peak	
	H	2872.67	-84.33	10.68	-73.65	-47	-26.65	peak	
ľ	HO	3232.10	-82.62	10.21	-72.41	 47	-25.41	peak	
ľ	<u> </u>	3868.23	-79.19	11.23	-67.96	-47	-20.96	peak	
	Н	4024.91	-83.59	8.6	-74.99	-47	-27.99	peak	
ľ	Н	5794.56	-80.22	14.56	-65.66	-47	-18.66	peak	

H5794.56-80.2214.56-65.66-47-18.661. Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level2. All the modes had been tested, but only the worst data recorded in the report.

9.6 TEST RESULTS (Conducted measurement) Test data reference attachment

Page 37 of 88 ج

10. RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504	-34	CW
(-139 dBm + 10 × log₁₀(OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524 2584 2674	to a state	the the

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

<u>NTEK 北测[®]</u>

Page 38 of 88

Report No.: STR210908002001E

N2017 06 06 0614 V 1 3

Table 7: Receiver B	locking parameters	receiver category 2 equip	ment
Wanted signal mean power from companion device (dBm)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(see notes 1 and 3)	AT	the state	
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB)	2 380	-34	Lcw 🖉
or (-74 dBm + 10 dB) whichever is less	2 504	F S F L	A S
(see note 2)	2 300	41	2
15	2 584	1 2	1

NOTE 1: OCBW is in Hz.

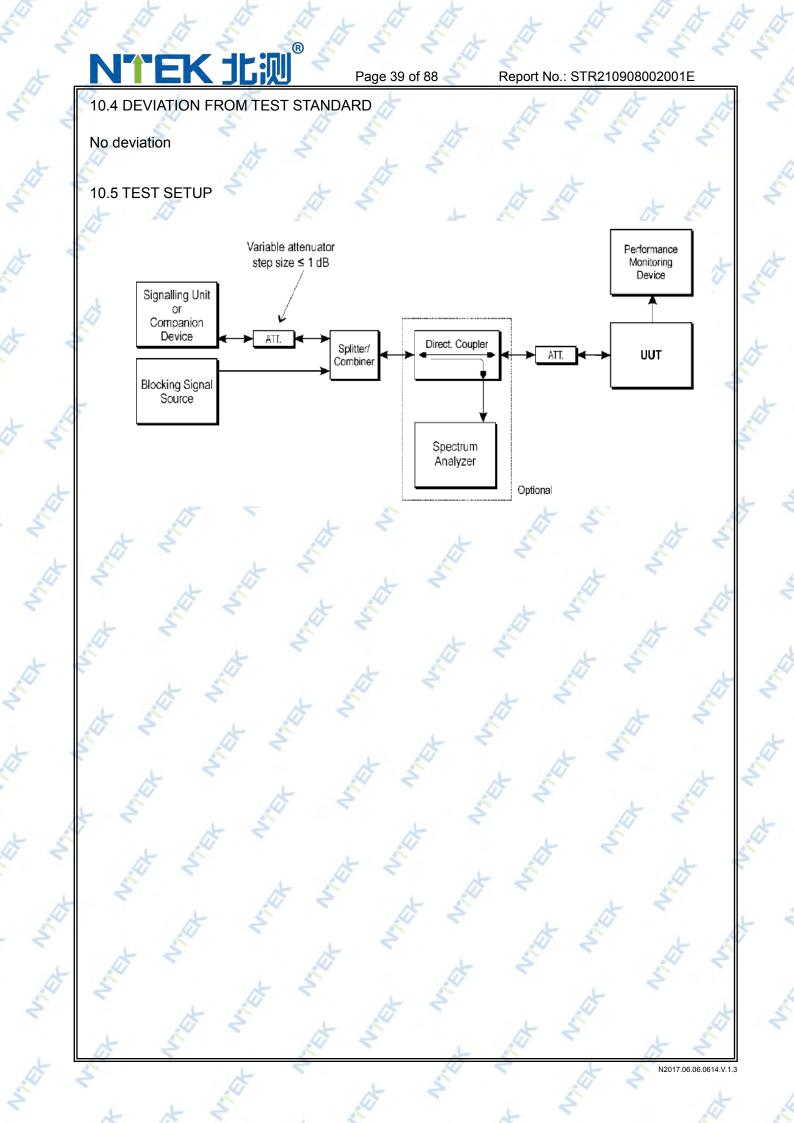
NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz) 📣	(dBm) (see note 2)	signal
(-139 dBm + 10 × log₁₀(OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	A S	10
(see note 2)	2 300		4 2
	2 584	× × 1	N. Contraction

NOTE 1: OCBW is in Hz.


NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

10.3 TEST PROCEDURE

Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)

		Measurement	
	Conducted measurement	Radiated measurement	0
t	S I	E + A + A	-

Page 40 of 88

Report No.: STR210908002001E

10.6 TEST RESULTS

A T	1 S S	AI Z		2 8
EUT :	4G Tablet	Model Name :	Tab 6	
Temperature :	24 °C	Relative Humidity	54%	at-
Pressure :	1010 hPa 🛛 🔗 <	Test Power :	DC 3.8V	XA
Test Mode :	GFSK Hopping mode (RX)	A S	4	2 2
2 2	15	2	G	2

	E.	receiver cate	gory 2		
	Wanted signal mean power	Blocking signal	Blocking signal		PER 🔬
	from companion device (dBm)	npanion device (dBm) Frequency (MHz) power(dBm) (see note 3)		PER %	Limit
	(see notes 1 and 3)		E t	5	%
I	1 8	2 380	XX	0.03%	<10
4	69.67	2 504	× 04 ×	0.08%	≤10
	-68.67	2 300 📈	-34	0.85%	-10
	The second secon	2 584 💉	L.	0.42%	≤10

47 2				A	
EUT :	4G Tablet 🔔 🛛 🔊	Model Name :	Tab 6	29	
Temperature :	24 °C	Relative Humidity	54%	2	
Pressure :	1010 hPa	Test Power :	DC 3.8V		
Test Mode :	∏/4-DQPSK Hopping mode (RX)	A.	1 7	×	4

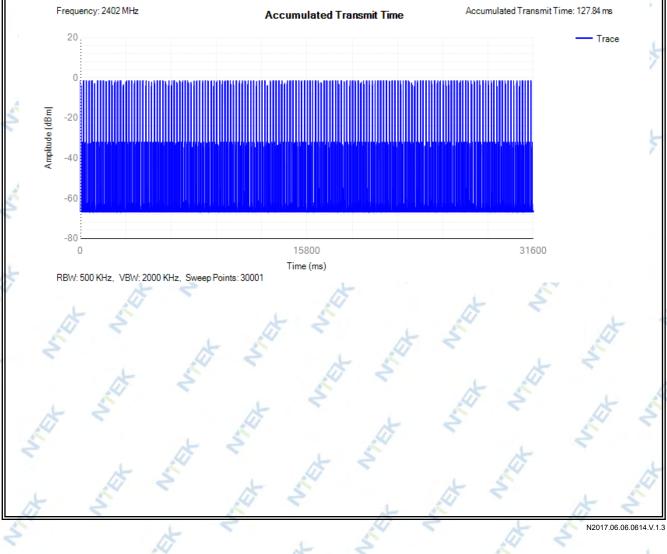
Li V	receiver category 2			Nº N
Wanted signal mean power	Blocking signal	Blocking signal	+	PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)	15 5	4 2		%
	2 380	* 5	0.43%	≤10
67.07	2 504	24	0.37%	≤10
-67.37	2 300	-34	0.79%	-10
A S A	2 584	4	0.23%	≤10

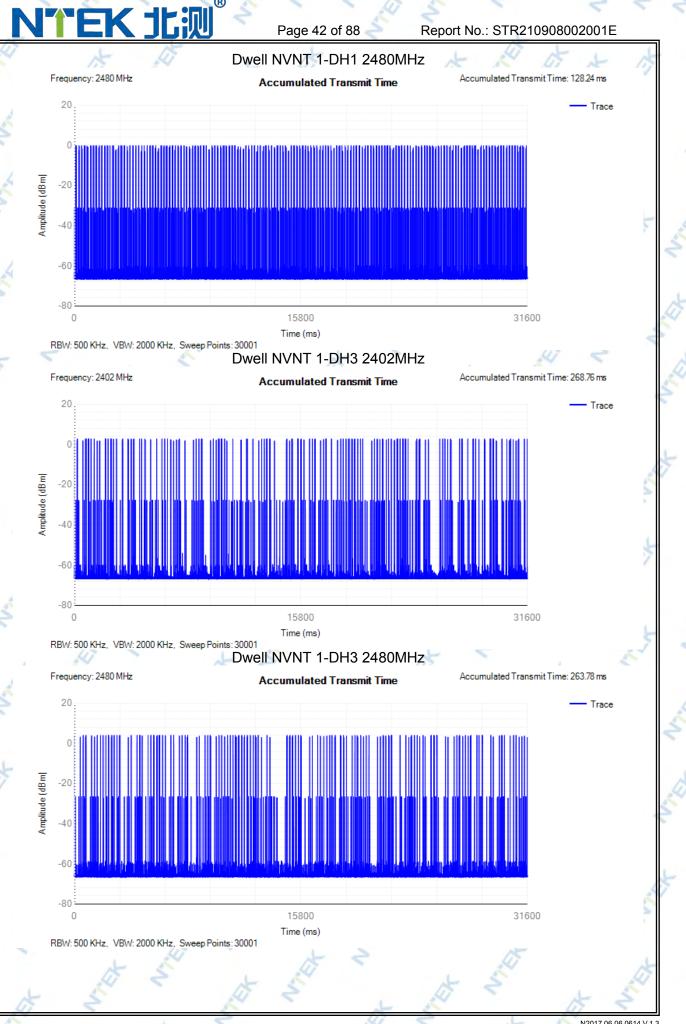
	$u_i \in$		
EUT :	4G Tablet	Model Name :	Tab 6
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa 🥂 🔷 🍣	Test Power :	DC 3.8V
Test Mode :	8-DPSK Hopping mode (RX)	2	A B

	Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal	gory 2 Blocking signal power(dBm) (see note 3)	PER %	PER Limit %	
	4 4	2 380	t.	0.59%	≤10	
	-67.29	2 504	-34	0.42%	510	Ş
-	-07.29	2 300	-34	0.41%	≤10	
	1 A	2 584	2 4	0.43%	510	A

Note: (1) The above results were obtained from laboratory tests.

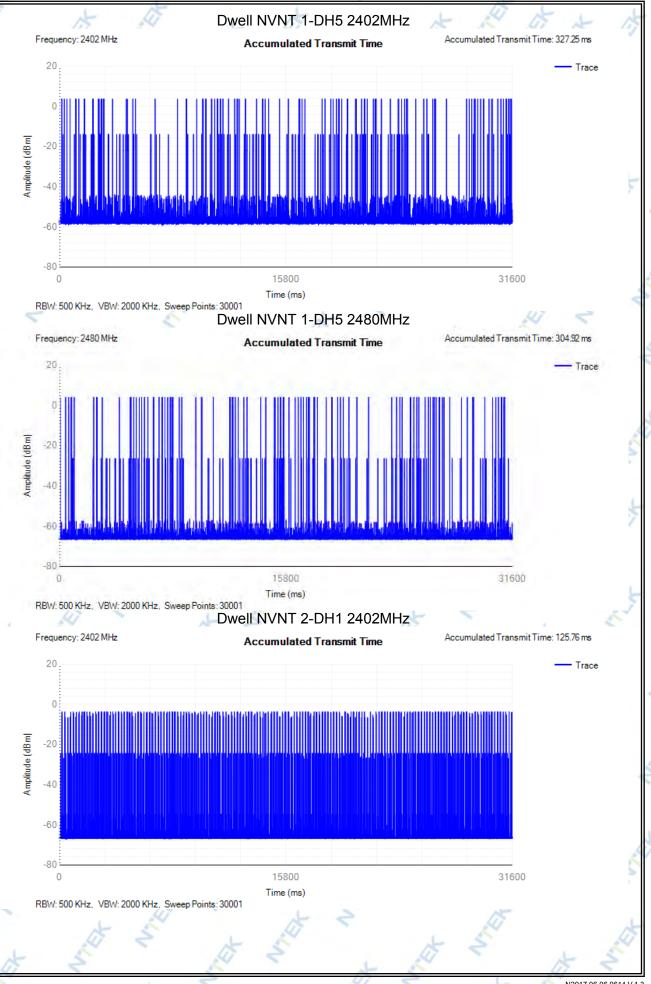
NTEK 北测®

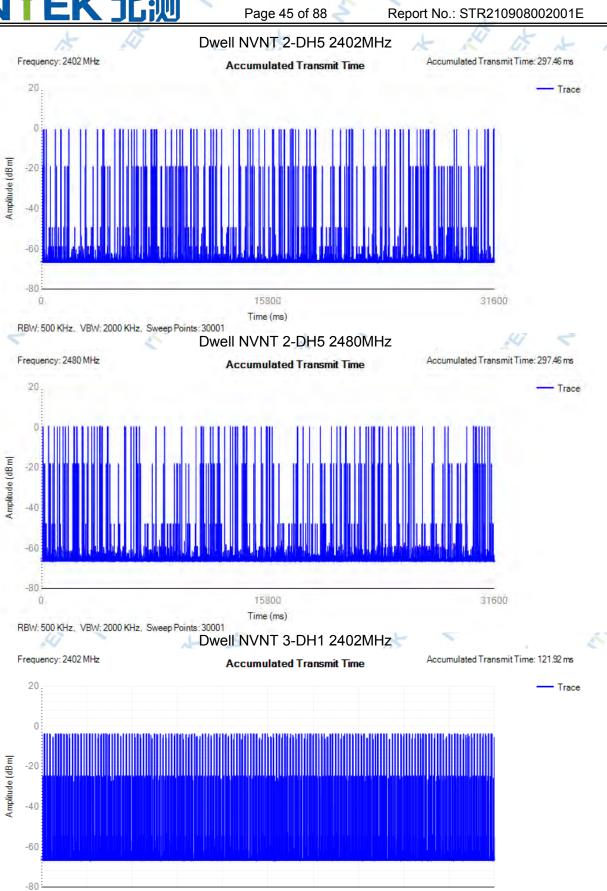

Page 41 of 88 Report No


Report No.: STR210908002001E

11. TEST RESULTS

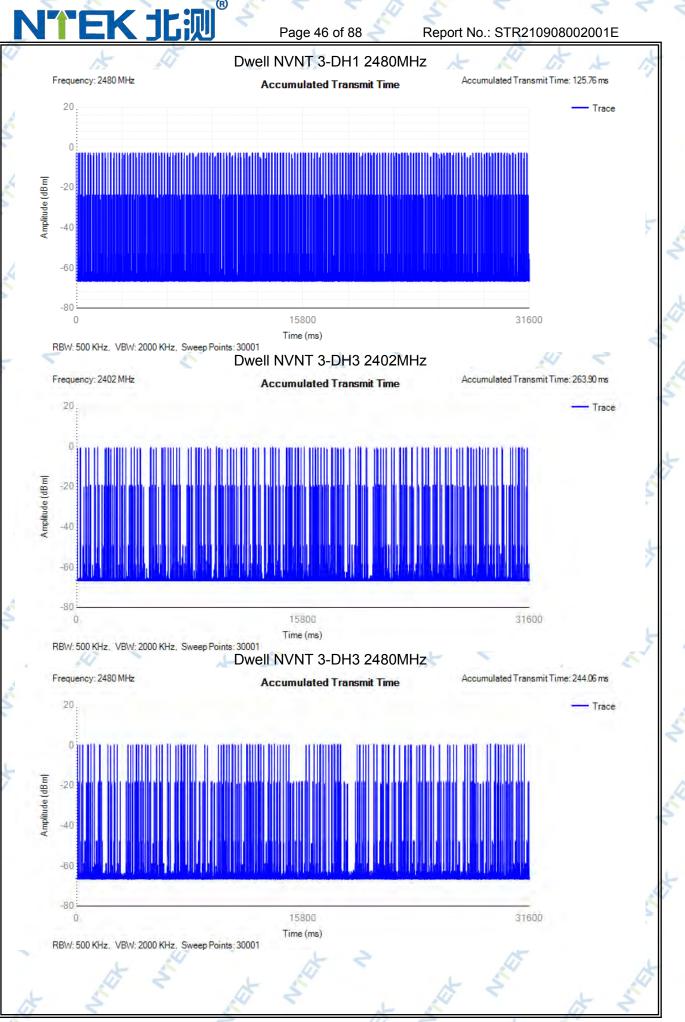
		کے بارین	- 4	<pre></pre>	~	2	
	1	FRANSMIT TIME				_	
Condition	Mode	Frequency	Accumulated	Limit	Sweep	Burst	Verdict
		(MHz)	Transmit Time (ms)	(ms)	Time (ms)	Number	A
NVNT	1-DH1	2402 🔬	127.836	400 🧹	31600	318	Pass
🖉 NVNT 🍼	1-DH1	2480 🥭	128.238 🧳	400	31600	319	Pass
NVNT 💎	1-DH3	2402	268.758 🔊	400	31600	162	Pass
NVNT	1-DH3	2480	263.781	400	31600	159	Pass
NVNT	1-DH5	2402	327.248	400	31600	113	Pass
NVNT 🔏	1-DH5	2480 🦟	304.92	400	31600	105	Pass
NVNT	2-DH1	2402	125.76	400	31600	320	Pass
NVNT	2-DH1	2480	123.84 📈	400	31600	320	Pass
NVNT	2-DH3	2402	281.124	400	31600	171	Pass
NVNT	2-DH3	2480	278.343	400	31600	169	Pass
NVNT	2-DH5	2402	297.464	400	31600	103	Pass
NVNT	2-DH5	2480	297.464	400	31600	103	Pass
NVNT	3-DH1	2402	121.92	400	31600	320	Pass
NVNT	3-DH1	2480	125.76	400	31600	320	Pass
NVNT	3-DH3	2402	263.898	400	31600	162	Pass
NVNT	3-DH3	2480	244.062	400	31600	149 🧹	Pass
NVNT	3-DH5	2402	343.672	400	31600		Pass
NVNT	3-DH5	2480	306.976	400	31600	106	Pass
	15				A		


Dwell NVNT 1-DH1 2402MHz


NTEK 150 Page 43 of 88

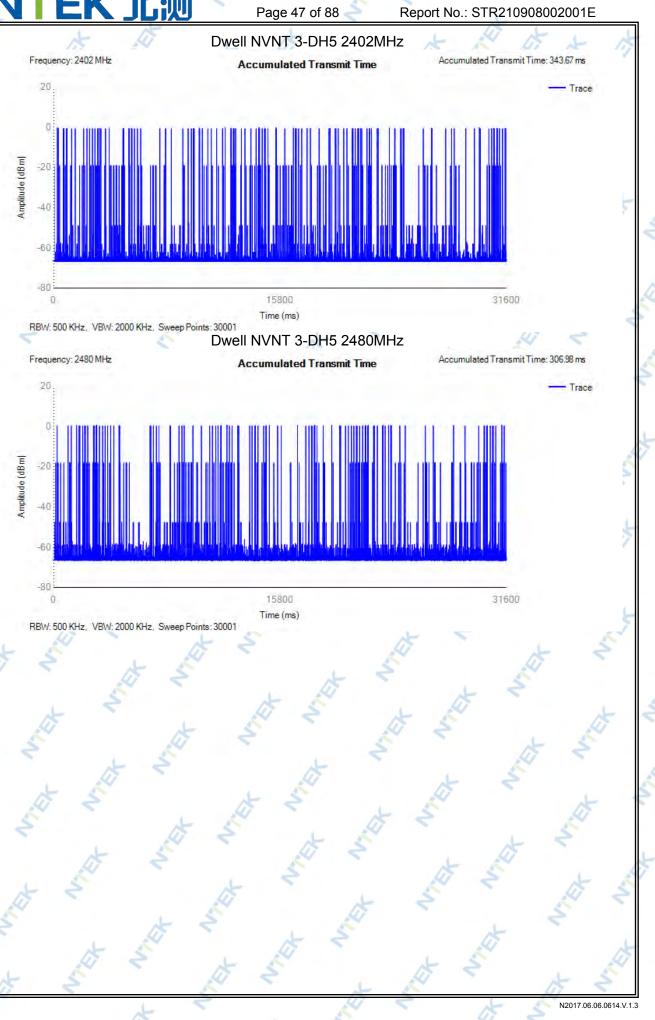
Report No.: STR210908002001E

K 北测

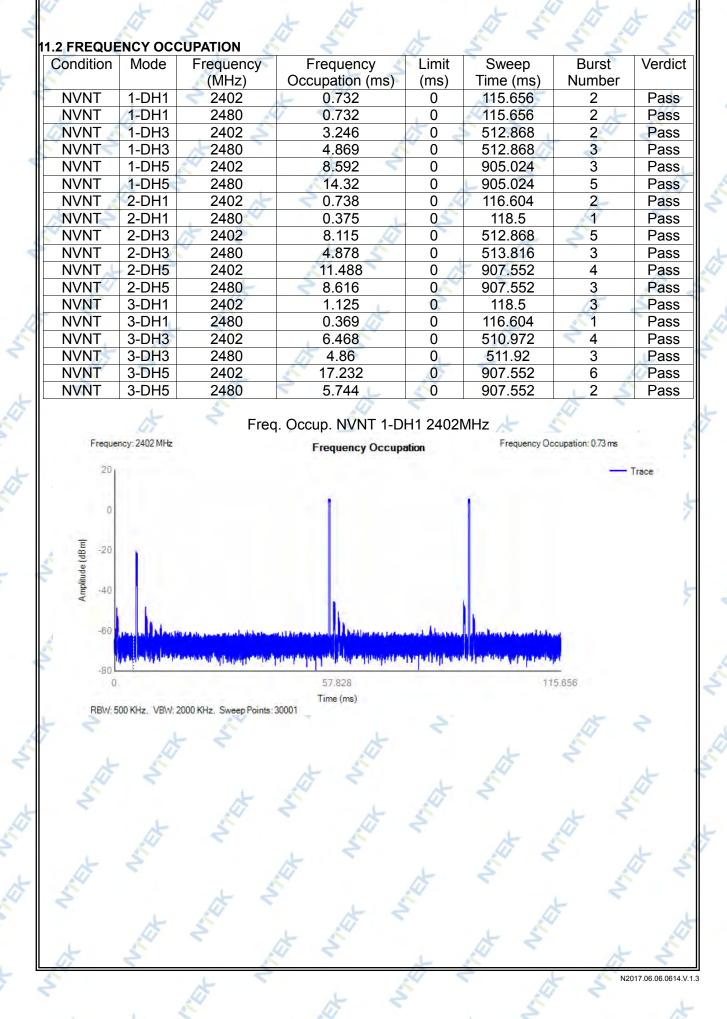


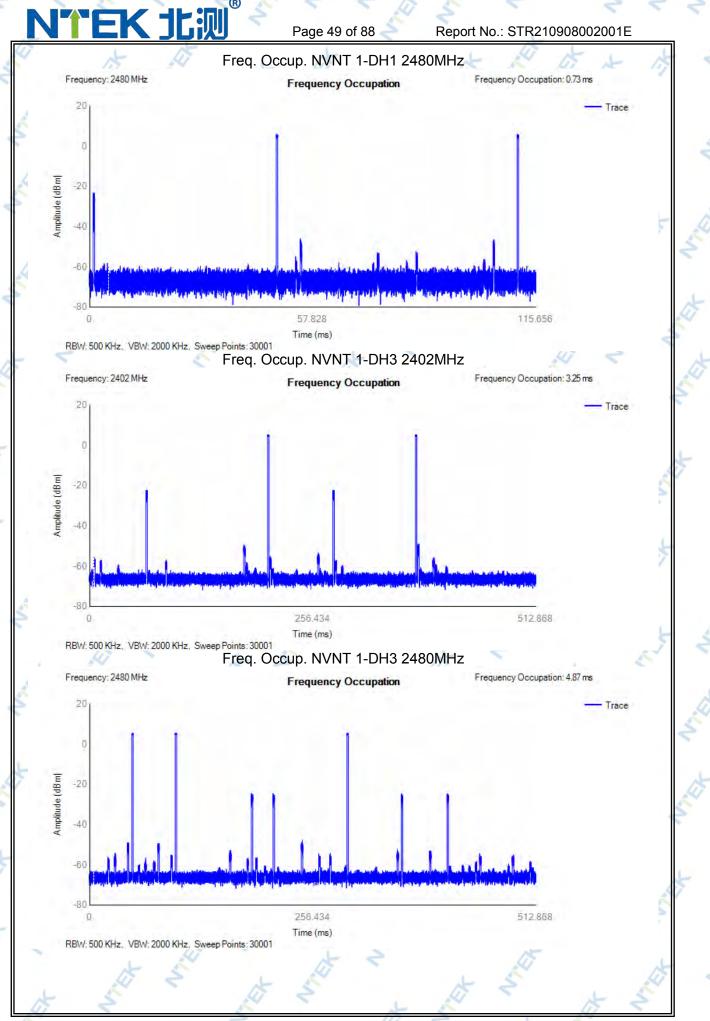
15800

Time (ms)

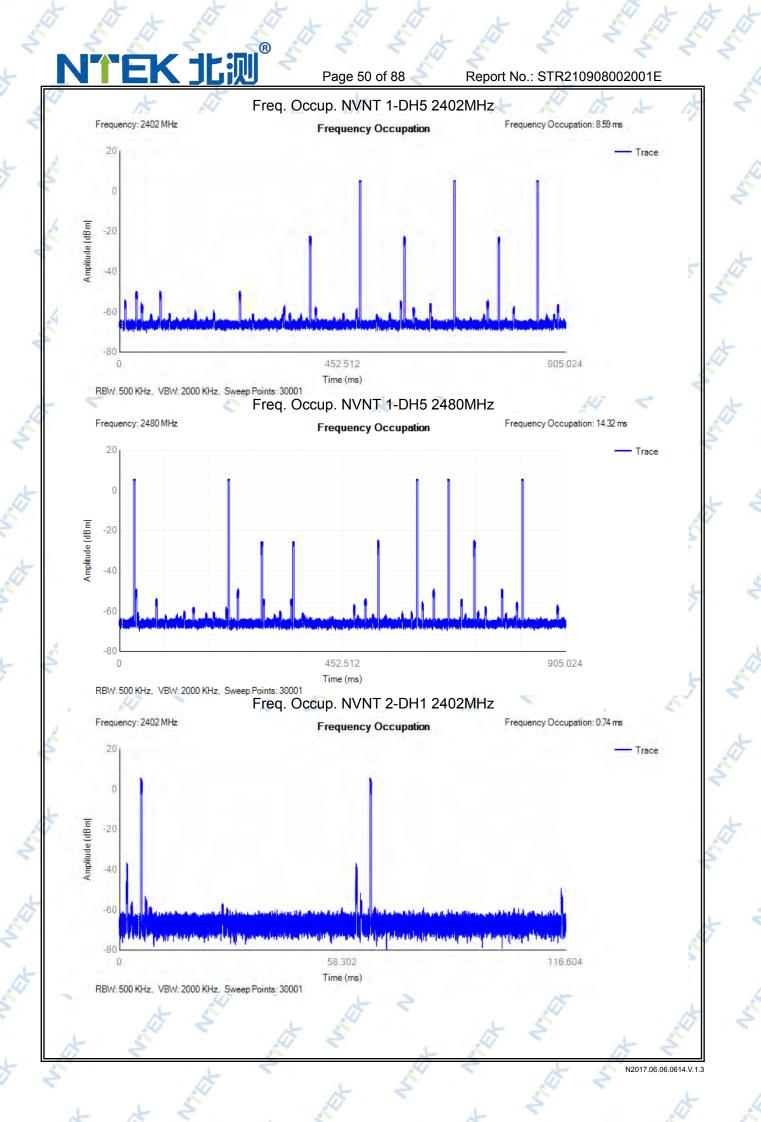

0

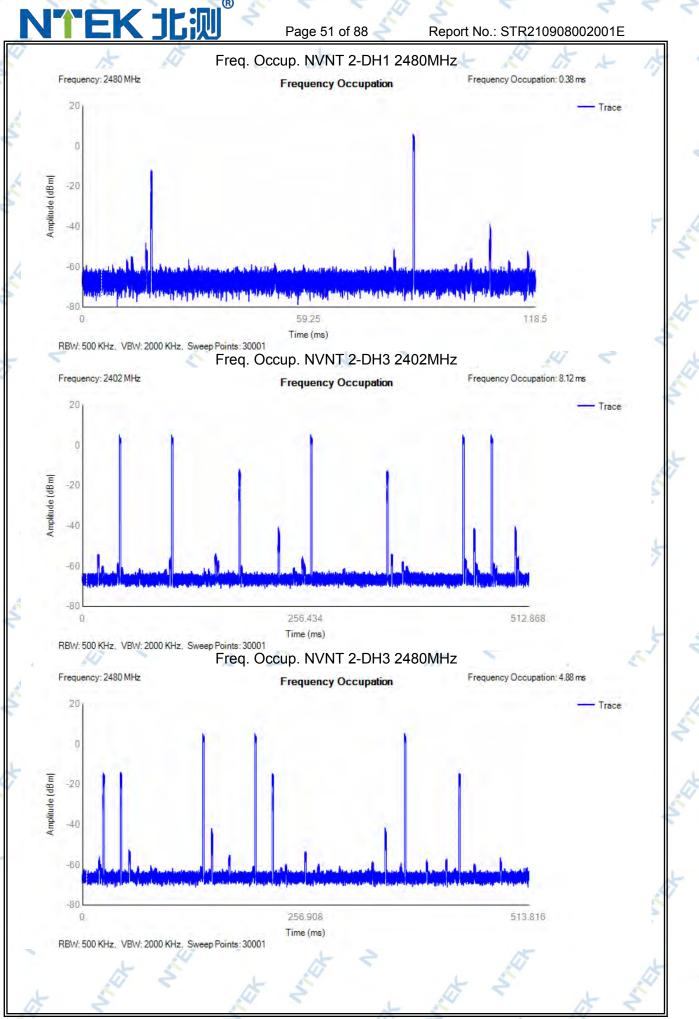
31600

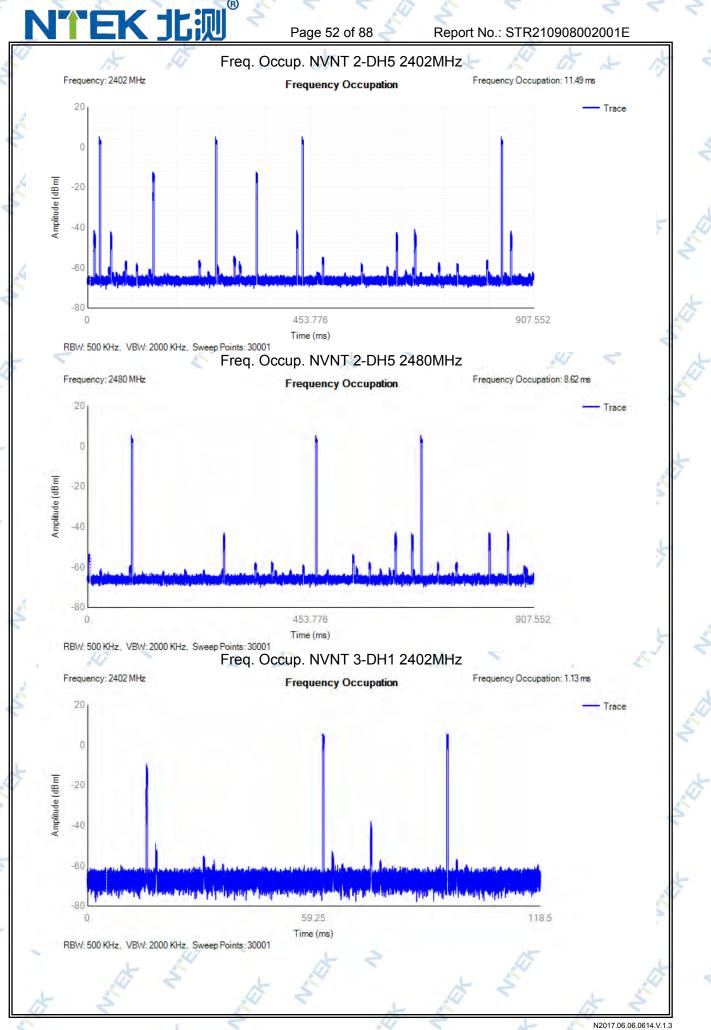


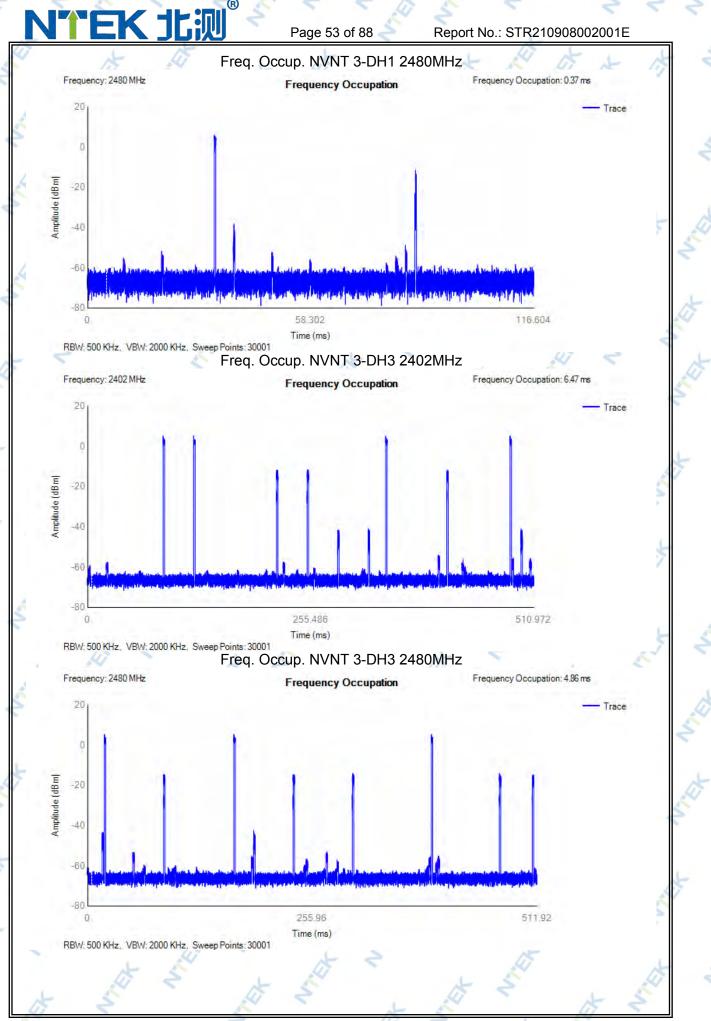

N2017.06.06.0614.V.1.3

EK 北测

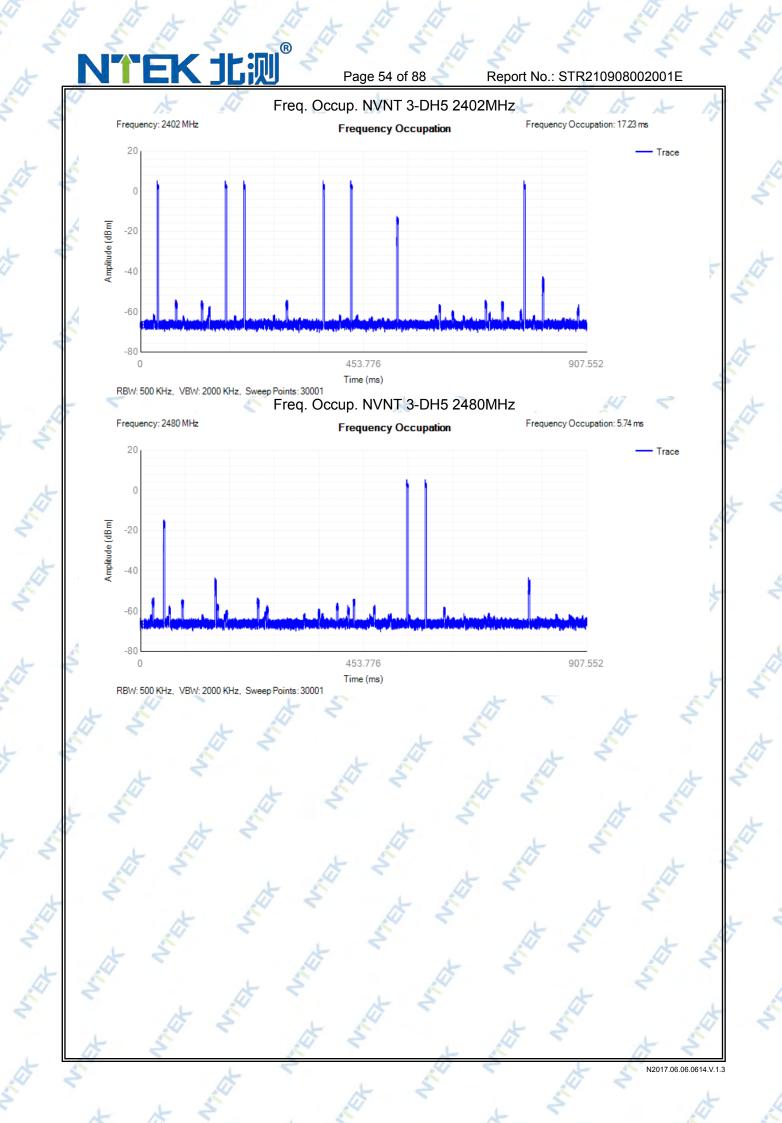



Page 48 of 88 🧼

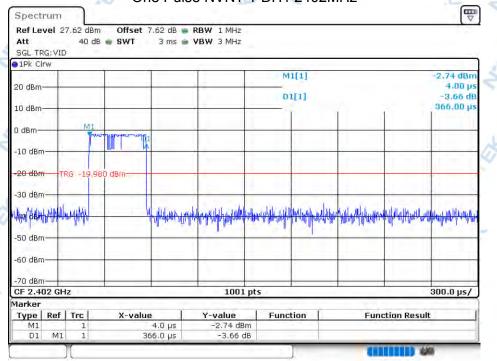




N2017.06.06.0614.V.1.3



N2017.06.06.0614.V.1.3

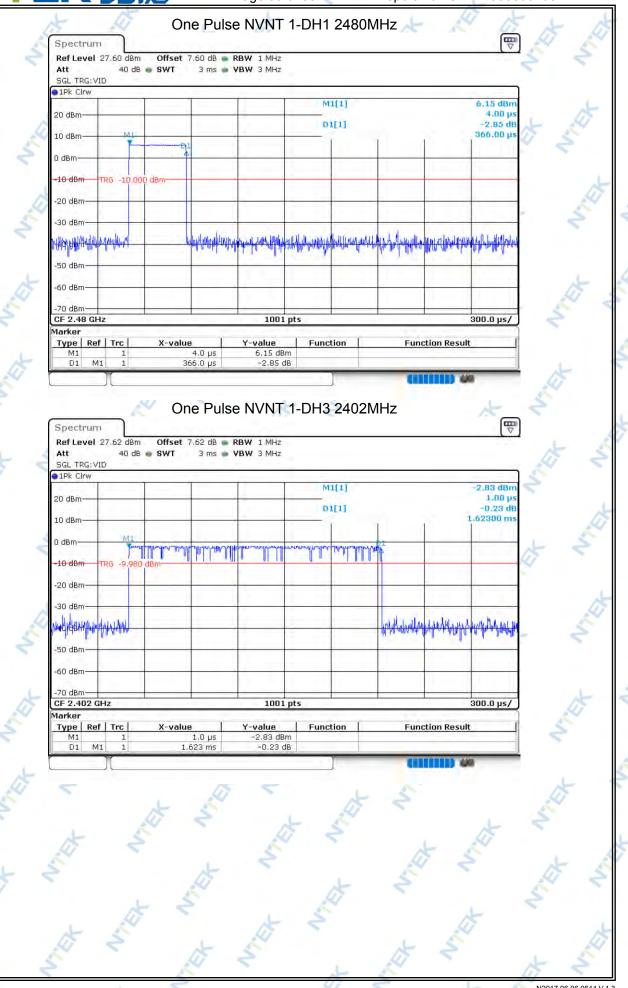


Page 55 of 88

Report No.: STR210908002001E

11.3 ONE PULSE DWELL TIME

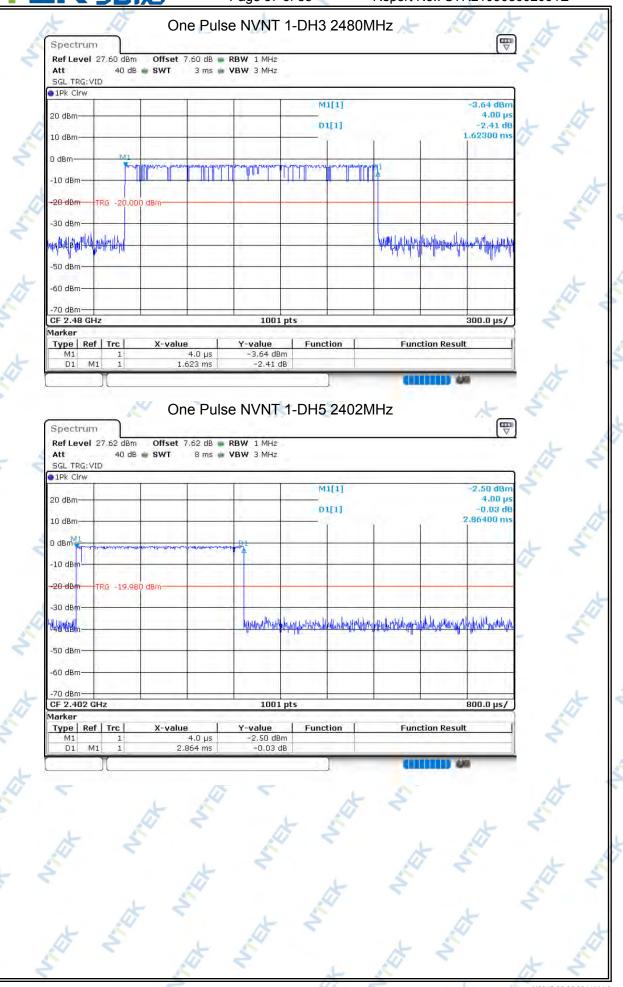
Ι.	3 ONE PULS			
	Condition	Mode	Frequency (MHz)	Pulse Time (ms)
1	> NVNT	1-DH1	2402	0.366
6	NVNT	1-DH1	2480	0.366
	NVNT	1-DH3	2402	1.623
	👝 NVNT 🏑	1-DH3	2480	1.623
	NVNT 🔨	1-DH5	2402	2.864 🏑
	NVNT	1-DH5	2480	2.864
	NVNT	2-DH1	2402	0.369
	NVNT 📈	2-DH1	2480	0.375
	NVNT	2-DH3	2402	1.623
1	NVNT	2-DH3	2480	1.626
ç	NVNT	2-DH5	2402	2.872
	NVNT	2-DH5	2480	2.872
	NVNT	3-DH1	2402 💉	0.375
	NVNT	3-DH1	2480	0.369
	NVNT	3-DH3	2402	1.617
	NVNT	3-DH3	2480	1.62
	NVNT	3-DH5	2402	2.872
	NVNT	3-DH5	2480 🧷	2.872

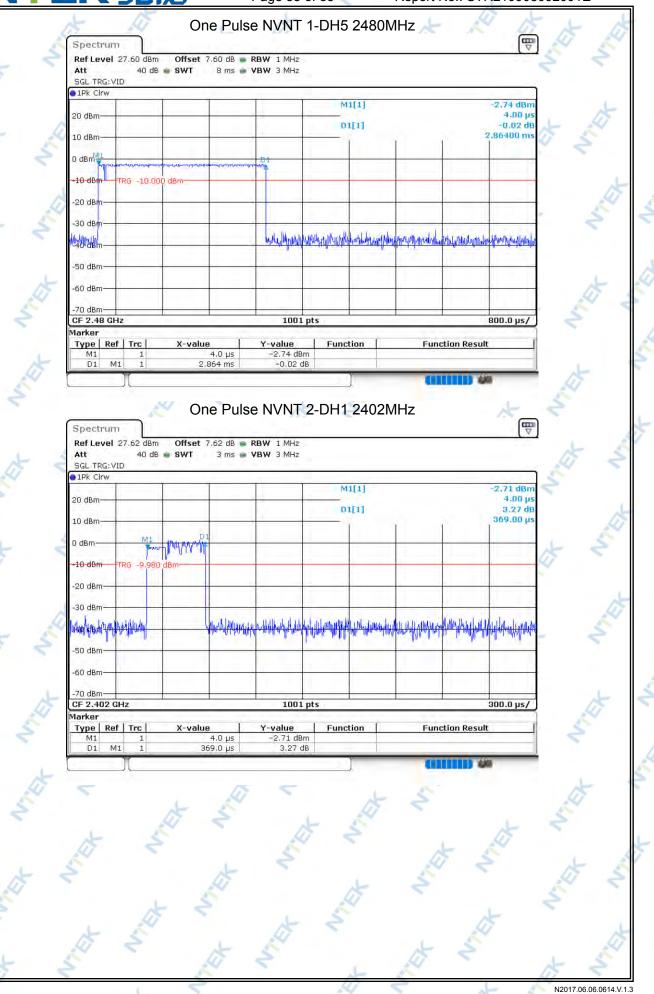


One Pulse NVNT 1-DH1 2402MHz

NTEK 北测

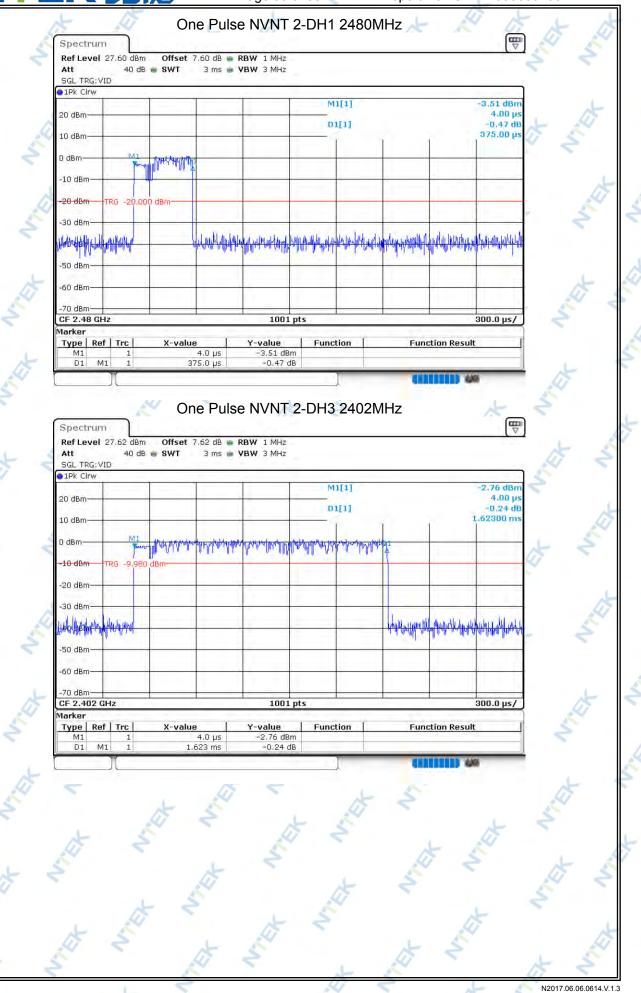
Page 56 of 88


Report No.: STR210908002001E


NTEK 北测®

Page 57 of 88

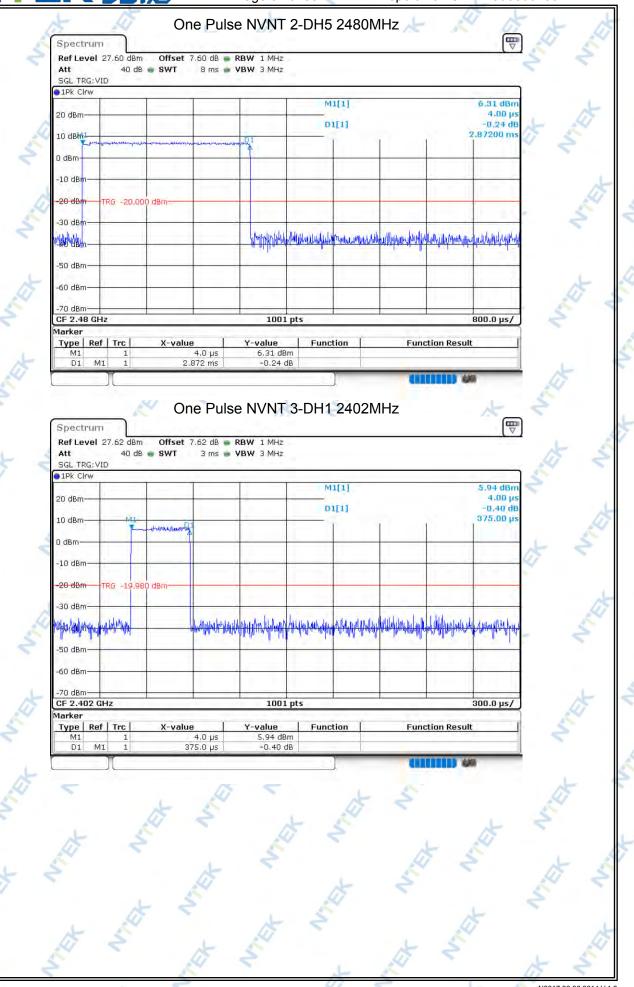
Report No.: STR210908002001E



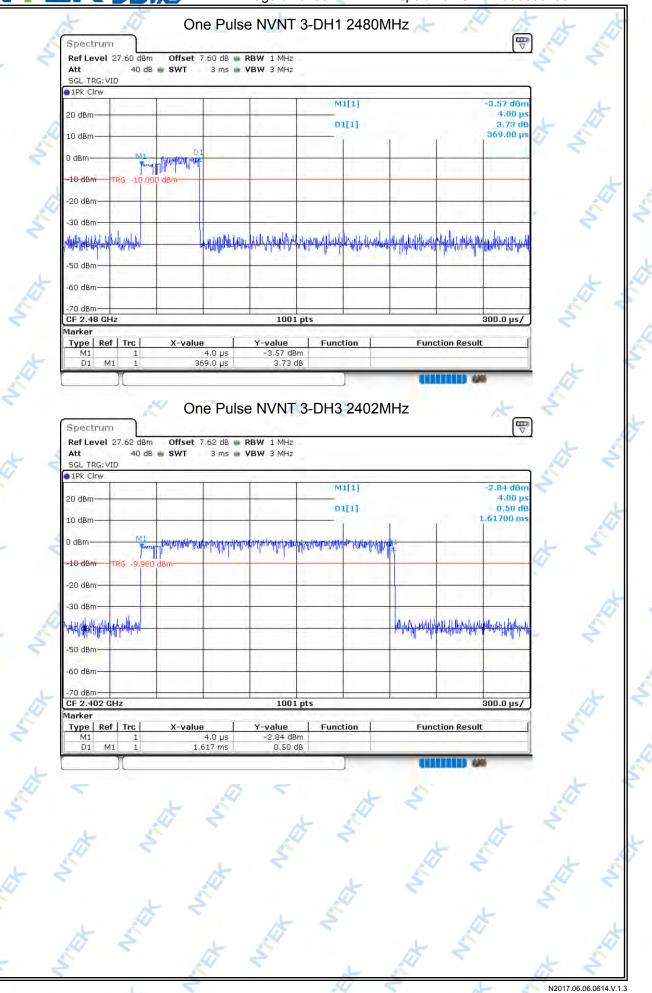
Page 58 of 88



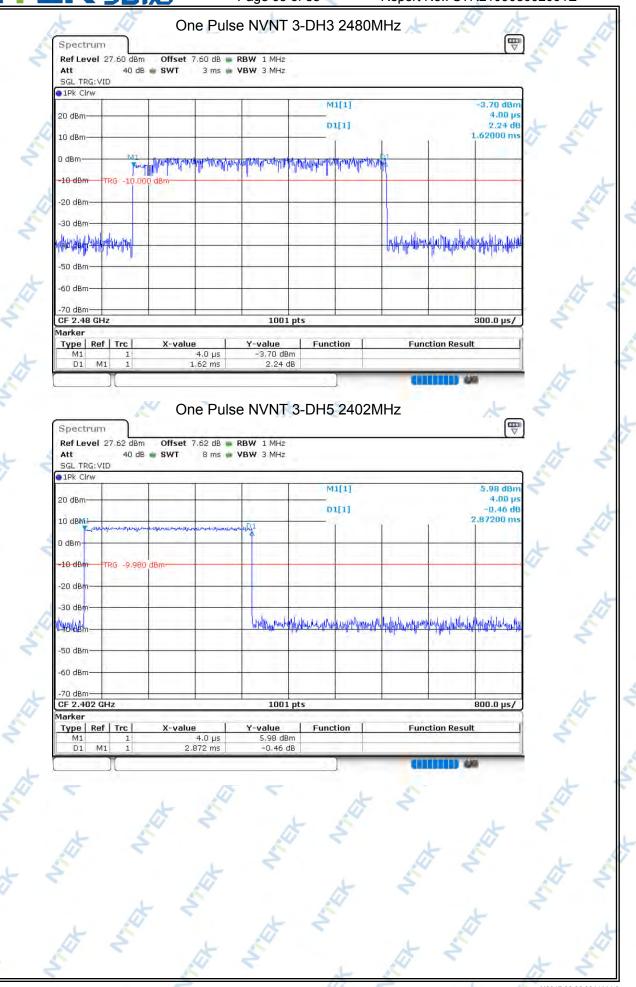
NTEK 北测


Page 59 of 88 🚽

Page 60 of 88 🛁



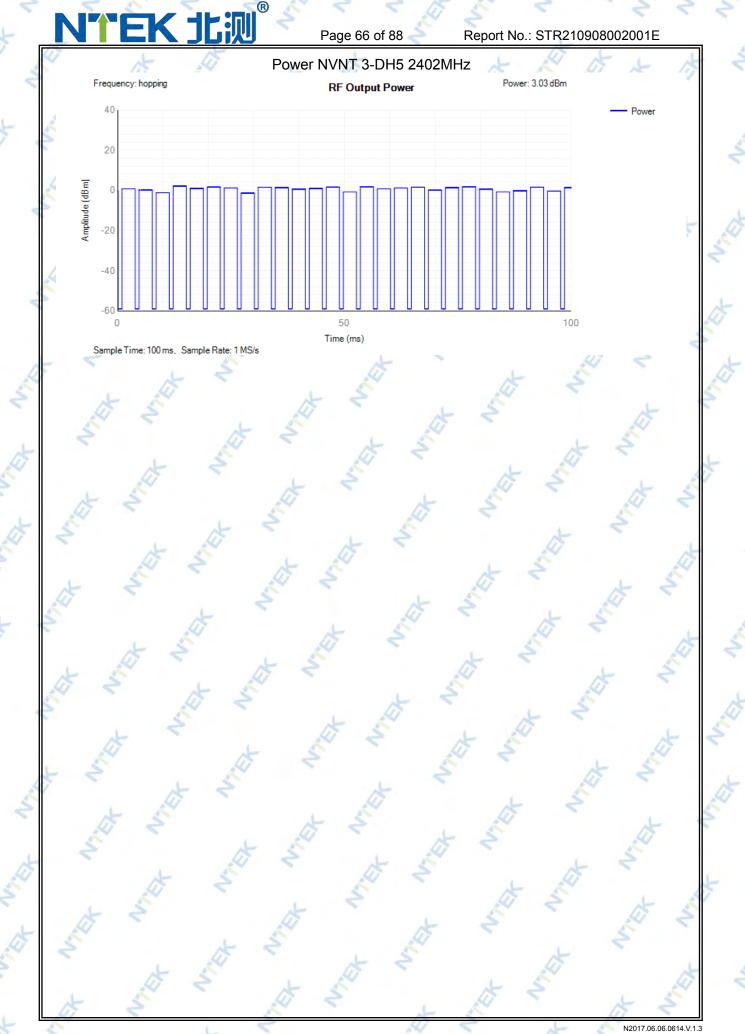
Page 61 of 88 🧹



ITEK 北测

Page 62 of 88

Page 63 of 88 🚽


Page 64 of 88

Report No.: STR210908002001E

Page 65 of 88 🥏

NTEK 北测

-40

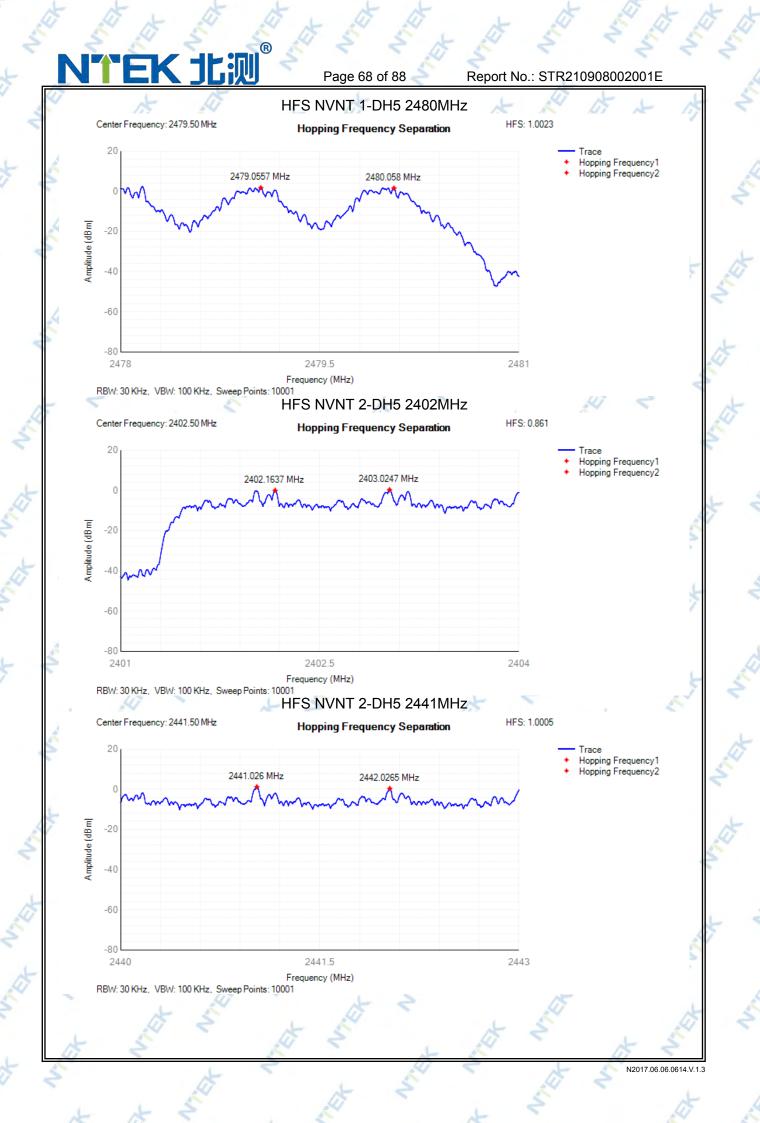
-60

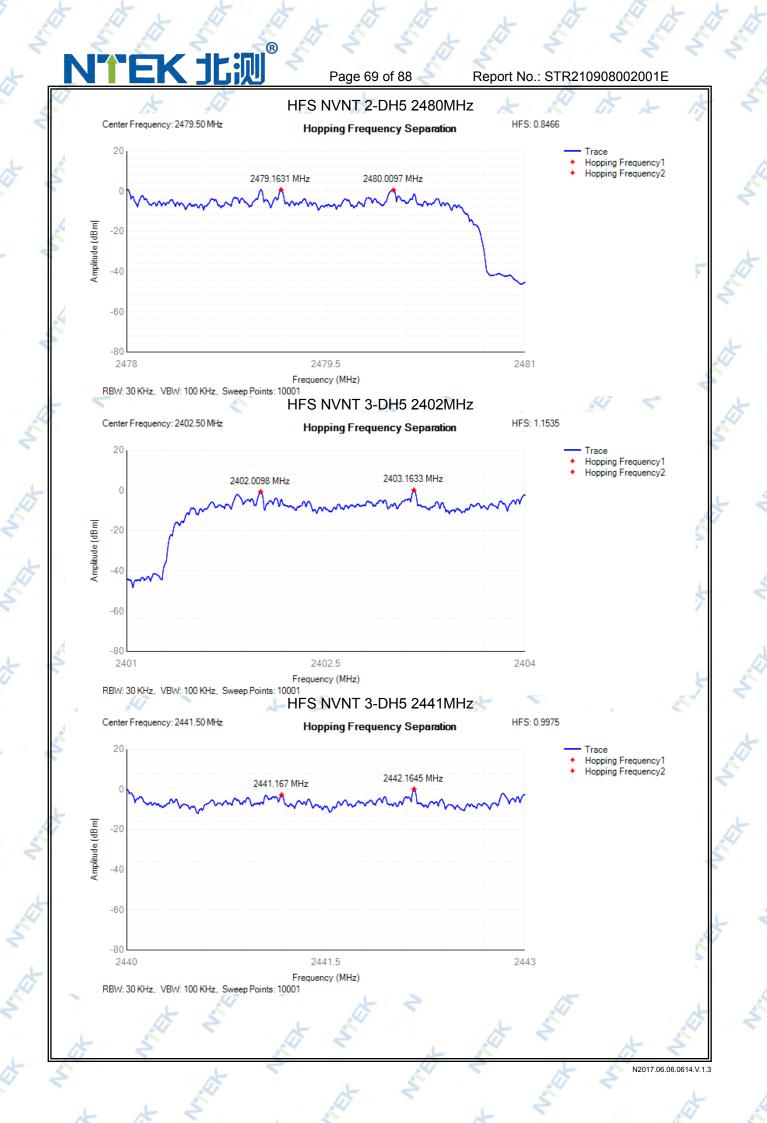
-80

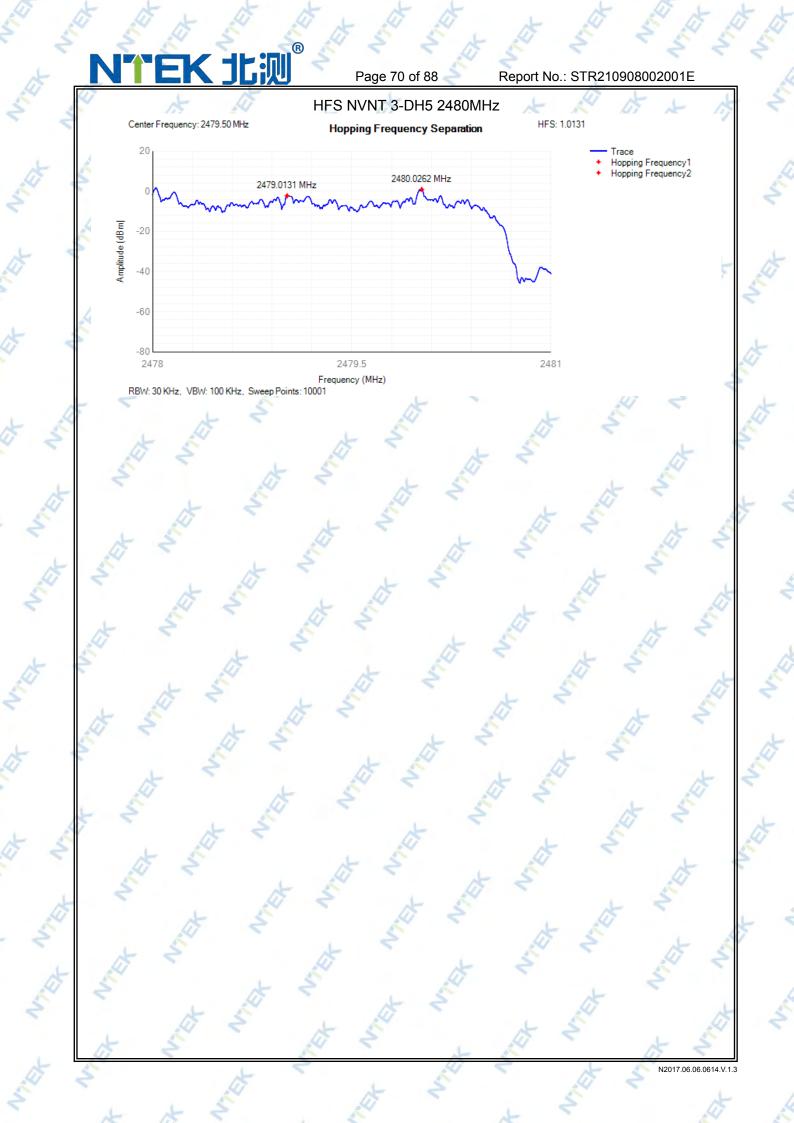
2440

RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001

Report No.: STR210908002001E

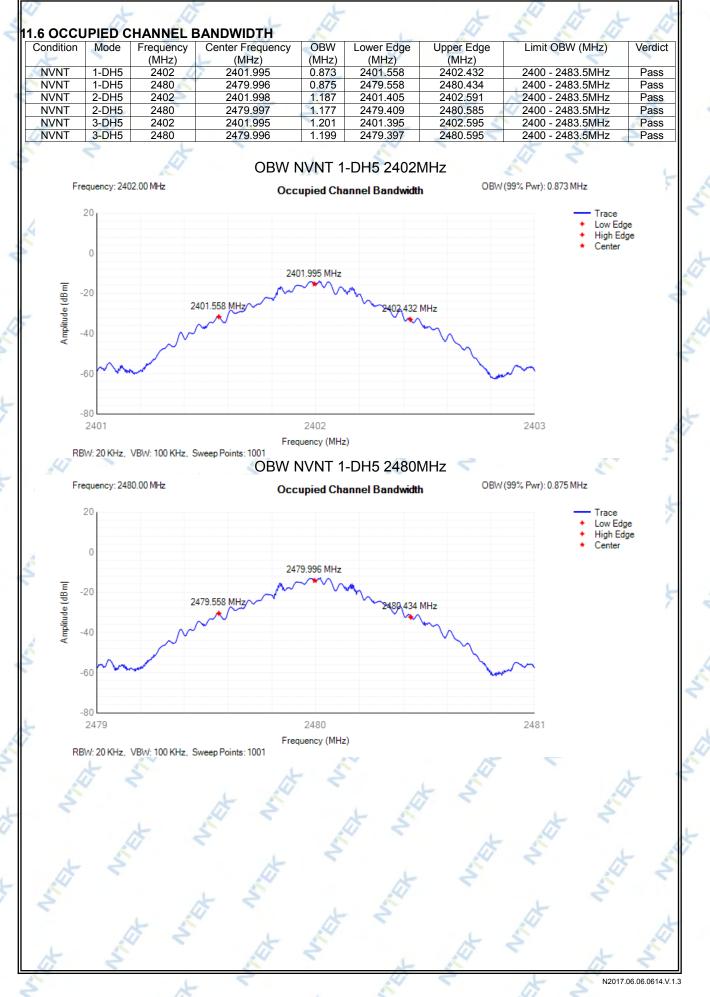

Page 67 of 88 11.5 HOPPING FREQUENCY SEPARATION Condition Mode Hopping Freq1 Hopping Freq2 HFS Limit Verdict (MHz) (MHz) (MHz) (MHz) NVNT 1-DH5 2402.164 2403.0175 Pass 0.8535 0.1 **NVNT** 1-DH5 2440.8349 2442.0571 1.2222 0.1 Pass NVNT 1-DH5 2479.0557 2480.058 1.0023 0.1 Pass NVNT 2-DH5 2402.1637 2403.0247 0.1 Pass 0.861 **NVNT** 2-DH5 2441.026 2442.0265 1.0005 0.1 Pass **NVNT** 2-DH5 2479.1631 0.8466 0.1 Pass 2480.0097 **NVNT** 3-DH5 2402.0098 2403.1633 1.1535 0.1 Pass NVNT 3-DH5 2441.167 2442.1645 0.9975 0.1 Pass NVNT 3-DH5 2479.0131 2480.0262 1.0131 0.1 Pass HFS NVNT 1-DH5 2402MHz Center Frequency: 2402.50 MHz HFS: 0.8535 Hopping Frequency Separation 20 Trace Hopping Frequency1 Hopping Frequency2 2402.164 MHz 2403.0175 MHz 0 Amplitude (dBm) -20 -40 -60 -80 2401 2402.5 2404 Frequency (MHz) RBW: 30 KHz, VBW: 100 KHz, Sweep Points: 10001 HFS NVNT 1-DH5 2441MHz Center Frequency: 2441.50 MHz HFS: 1.2222 Hopping Frequency Separation 20 Trace Hopping Frequency1 2440.8349 MHz Hopping Frequency2 2442.0571 MHz Amplitude (dBm) -20

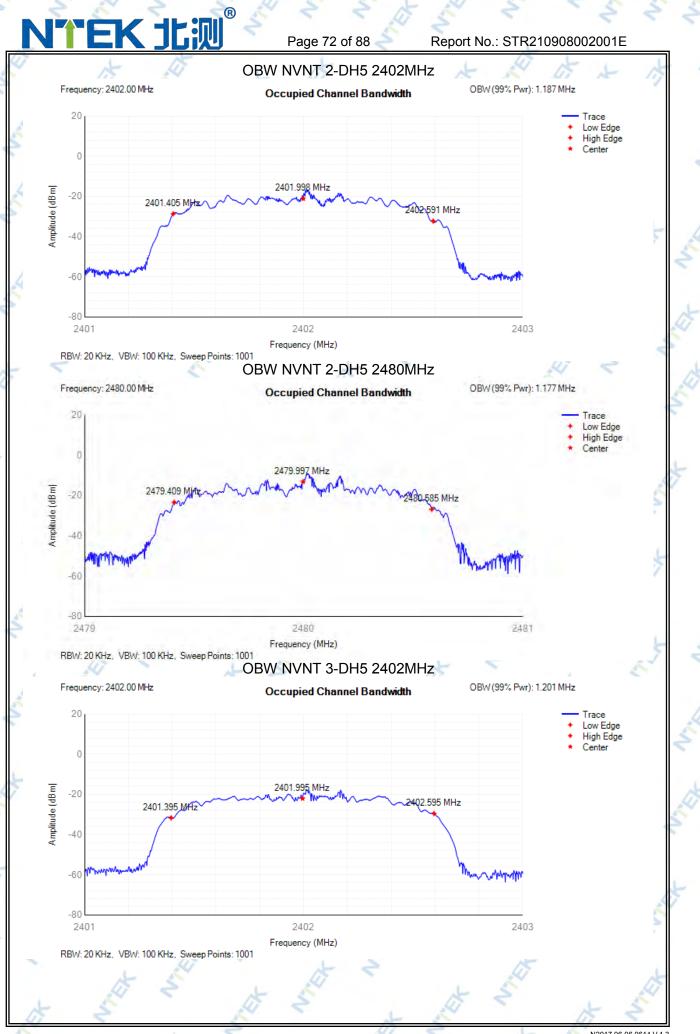

2441.5


Frequency (MHz)

N2017.06.06.0614.V.1.3

2443

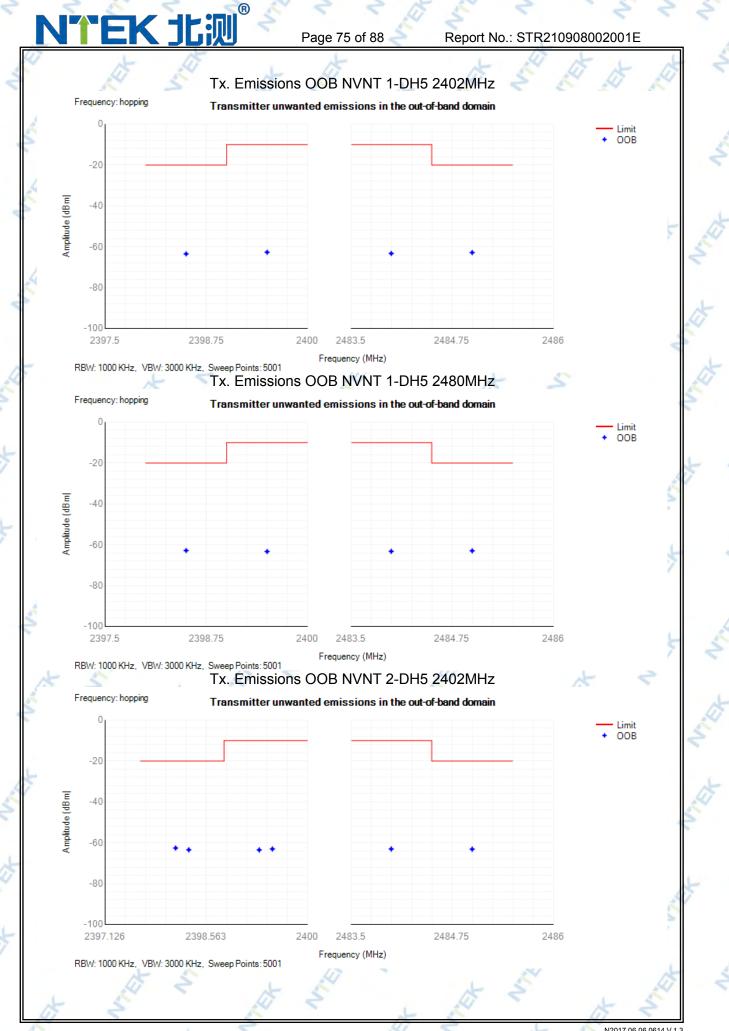




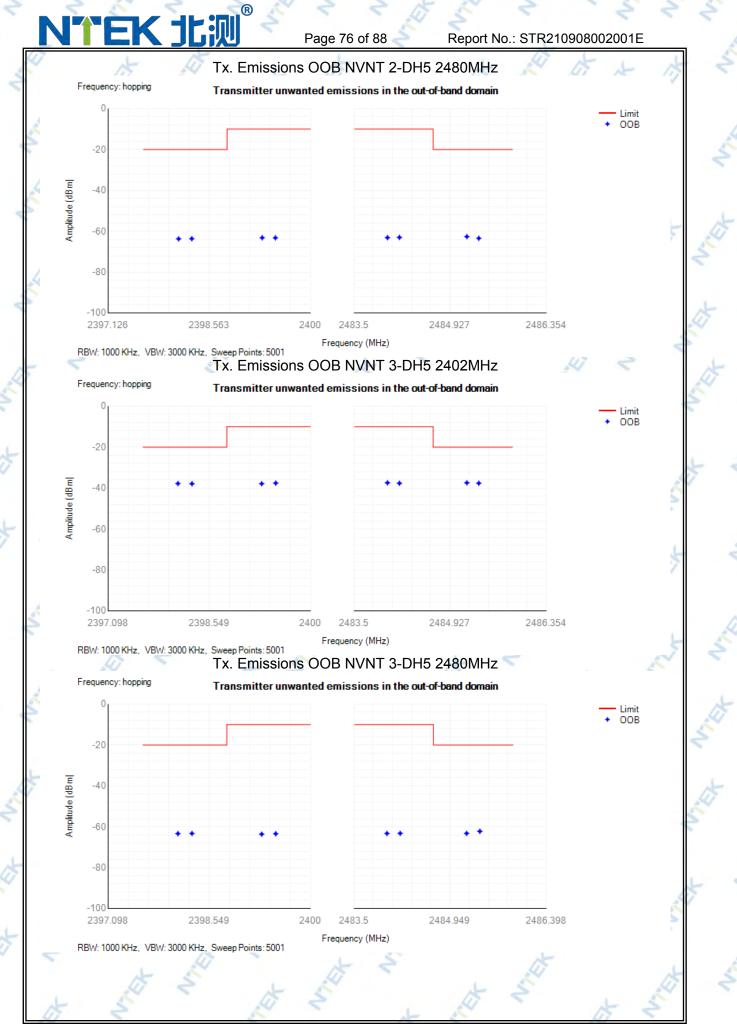
NTEK 北测

Page 71 of 88

ITEK 北测[®] Page 73 of 88 Report No.: STR210908002001E OBW NVNT 3-DH5 2480MHz Frequency: 2480.00 MHz OBW (99% Pwr): 1.199 MHz **Occupied Channel Bandwidth** Trace Low Edge High Edge Center 20 0 2479.996 MHz Amplitude (dBm| -20 2480.595 MHz 2479.397 MHz -40 -60 -80 2479 2480 2481 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001


NTEK 北测®

Page 74 of 88


Report No.: STR210908002001E

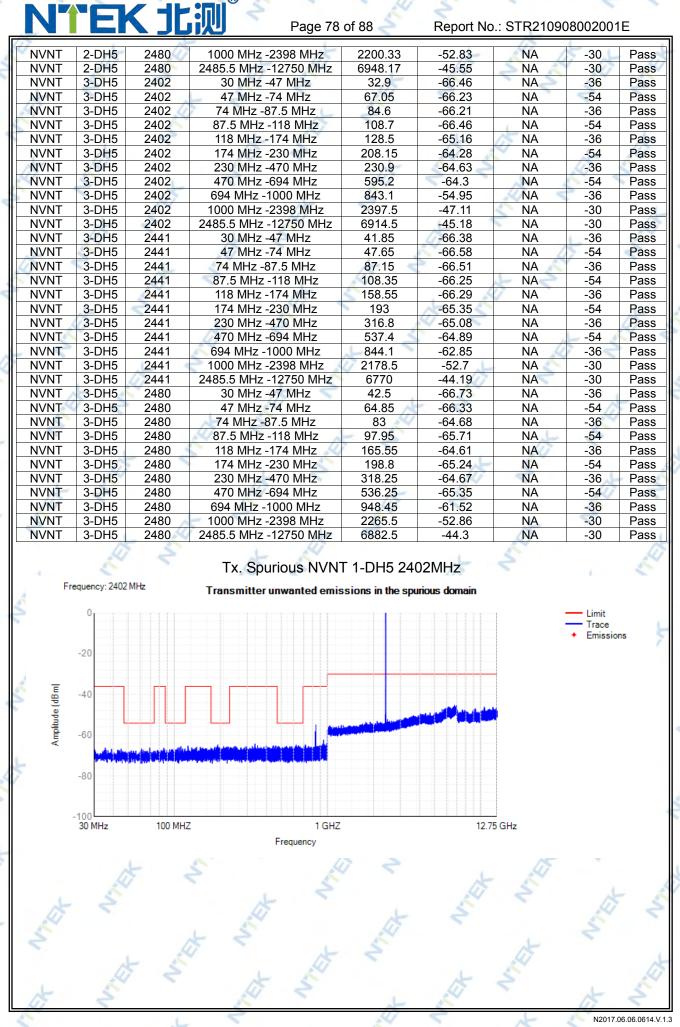
~	15	41	L 15	1 A	K G I	+ 1
	IITTER U	NWANTED EMISS	SIONS IN THE OUT-O	F-BAND DOMAIN	2 8 4	1 6
Condition	Mode	Frequency	OOB Frequency	Level	Limit ≤	Verdict
AT .		(MHz)	(MHz) 🔷	(dBm/MHz)	(dBm/MHz)	
NVNT	1-DH5	hopping	2399.5	-62.69	-10	Pass
NVNT	1-DH5	hopping	2398.5	-63.49	-20	Pass
NVNT	1-DH5	hopping 📈	2484	-63.29	-10 🦯	Pass
🖉 NVNT 🍼	1-DH5	hopping	2485 🥖	-62.84	-20	Pass
NVNT	1-DH5	hopping	2399.5 🔊	-63.3	-10	Pass
NVNT	1-DH5	arr hopping	2398.5	-62.82	-20	Pass
NVNT	1-DH5	hopping	2484	-63.22	-10	Pass
NVNT 🔀	1-DH5	hopping	2485	-62.97	-20	Pass
NVNT	2-DH5	hopping	2399.5	-63.05	-10	Pass
NVNT	2-DH5	// hopping	2399.313	-63.5	-10	Pass
NVNT	2-DH5	hopping	2398.313	-63.46 📈	-20	Pass
NVNT	2-DH5	hopping	2398.126	-62.59 🥏	-20	Pass
NVNT	2-DH5	hopping	2484	-63.06	-10	Pass
NVNT	2-DH5	hopping	2485	-63.15	-20	Pass
NVNT	2-DH5	hopping	2399.5	-63.21 🔔	-10	Pass
NVNT	2-DH5	hopping	2399.313	-63.18	-10	Pass
NVNT	2-DH5	hopping	2398.313	-63.65	-20	Pass
NVNT	2-DH5	hopping	2398.126	-63.72	-20	Pass
NVNT	2-DH5	hopping	2484	-63.13	-10 🛛	Pass
NVNT	2-DH5	hopping	2484.177	-63.01	-10	Pass
NVNT	2-DH5	hopping	2485.177	-62.63 🦟	-20	Pass
NVNT	2-DH5	hopping	2485.354	-63.45	-20	Pass
NVNT	3-DH5	hopping 💉	2399.5	-37.58	-10 🕺	Pass
NVNT	3-DH5	hopping	2399.299 💉	-37.86	-10 🦿	Pass
NVNT	3-DH5	hopping	2398.299	-37.87	-20	Pass
NVNT	3-DH5	hopping	2398.098	-37.78	-20	Pass
NVNT	3-DH5	hopping 📈	2484	-37.42	-10	Pass
NVNT	3-DH5	hopping	2484.177	-37.65	-10 🥢	Pass
NVNT	3-DH5	hopping	2485.177 🏑	-37.43	-20	Pass
NVNT	3-DH5	hopping	2485.354 🔷	-37.64	-20	Pass
NVNT	3-DH5	hopping	2399.5	-63.42	-10	Pass
NVNT	3-DH5	hopping	2399.299	-63.62	-10	Pass
NVNT	3-DH5	hopping	2398.299	-63.28	-20	Pass
NVNT	3-DH5	hopping	2398.098 🔎	-63.36	-20	Pass
NVNT	3-DH5	hopping	2484	-63.28	-10	Pass
NVNT 🙏	3-DH5	hopping	2484.199	-63.22	-10	Pass
NVNT	3-DH5	hopping	2485.199	-63.25	-20	Pass
NVNT	3-DH5	hopping	2485.398	-62.24	-20	Pass

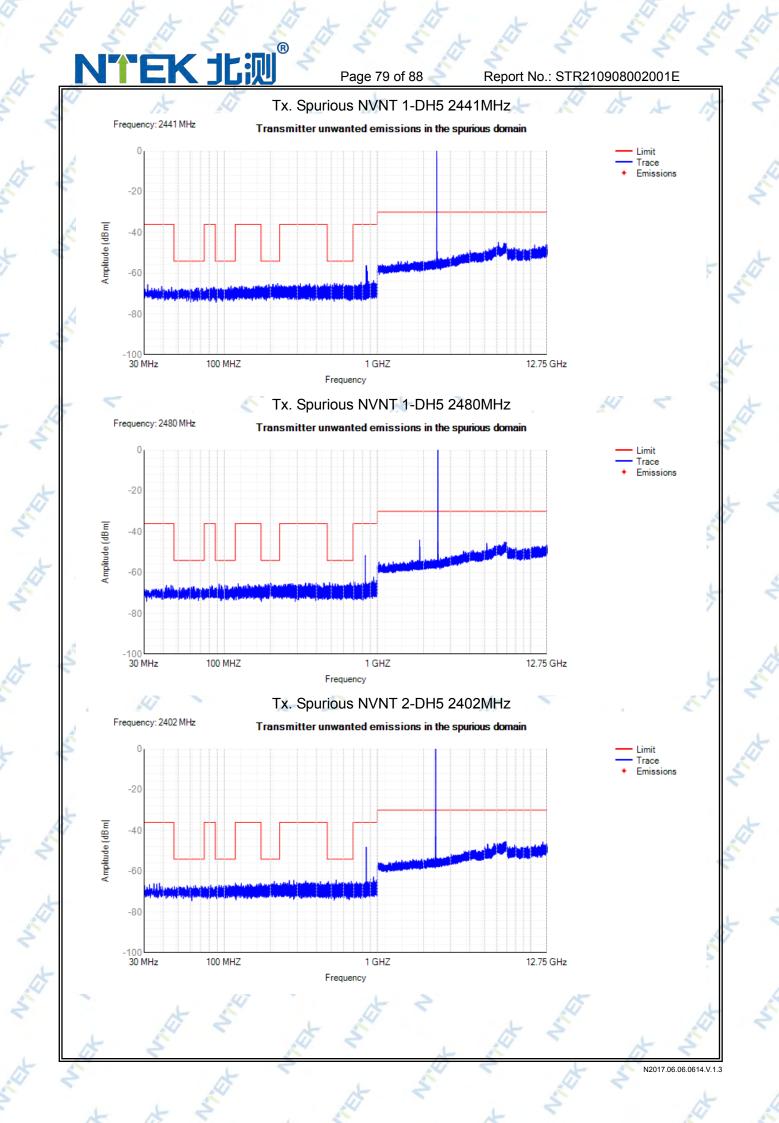
N2017.06.06.0614.V.1.3

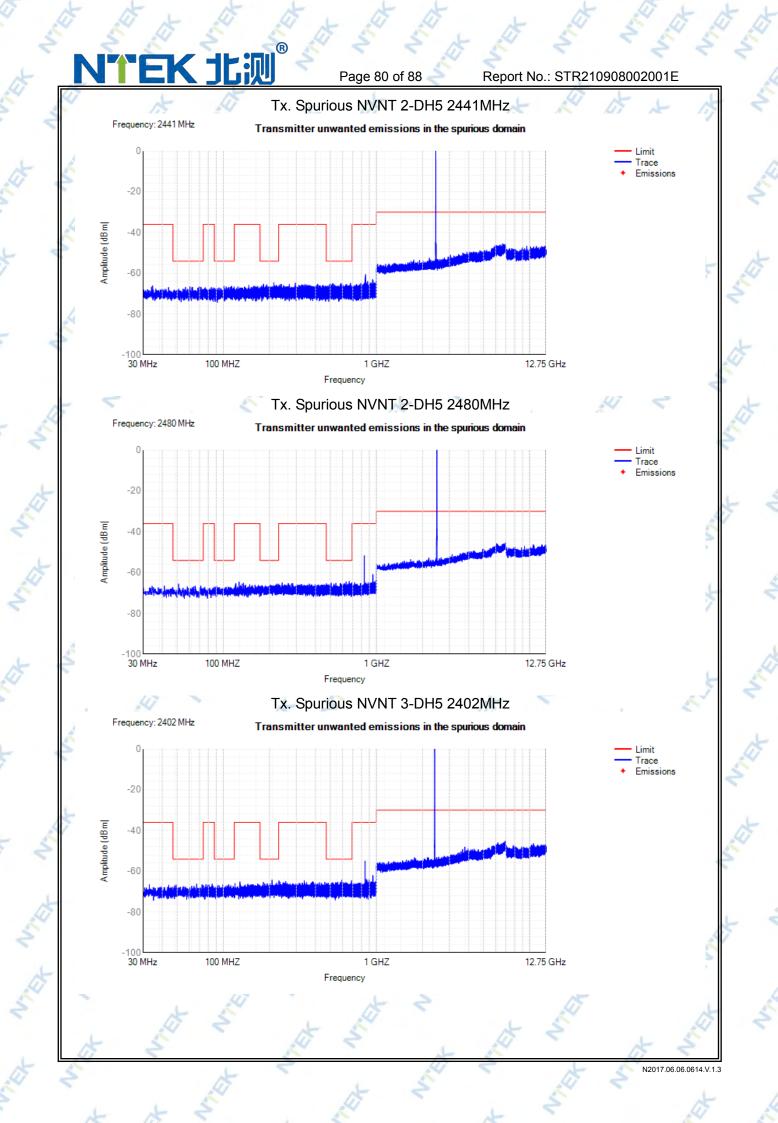
N2017.06.06.0614.V.1.3

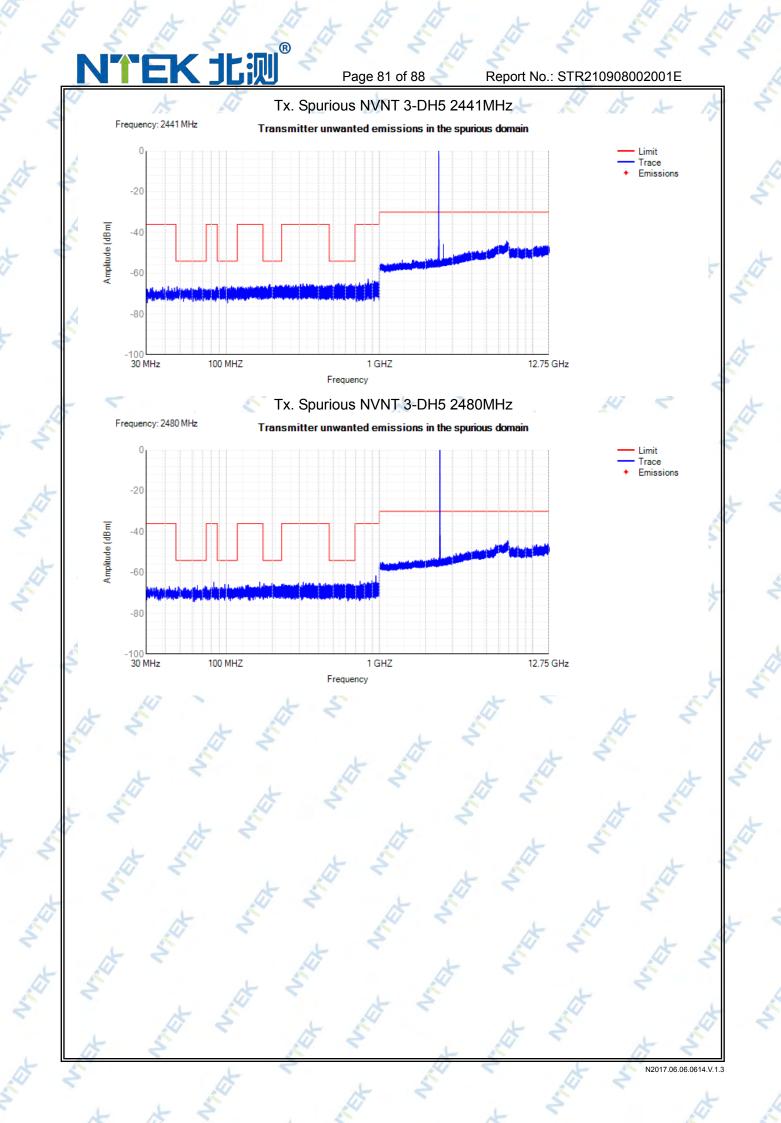
N2017.06.06.0614.V.1.3

.....

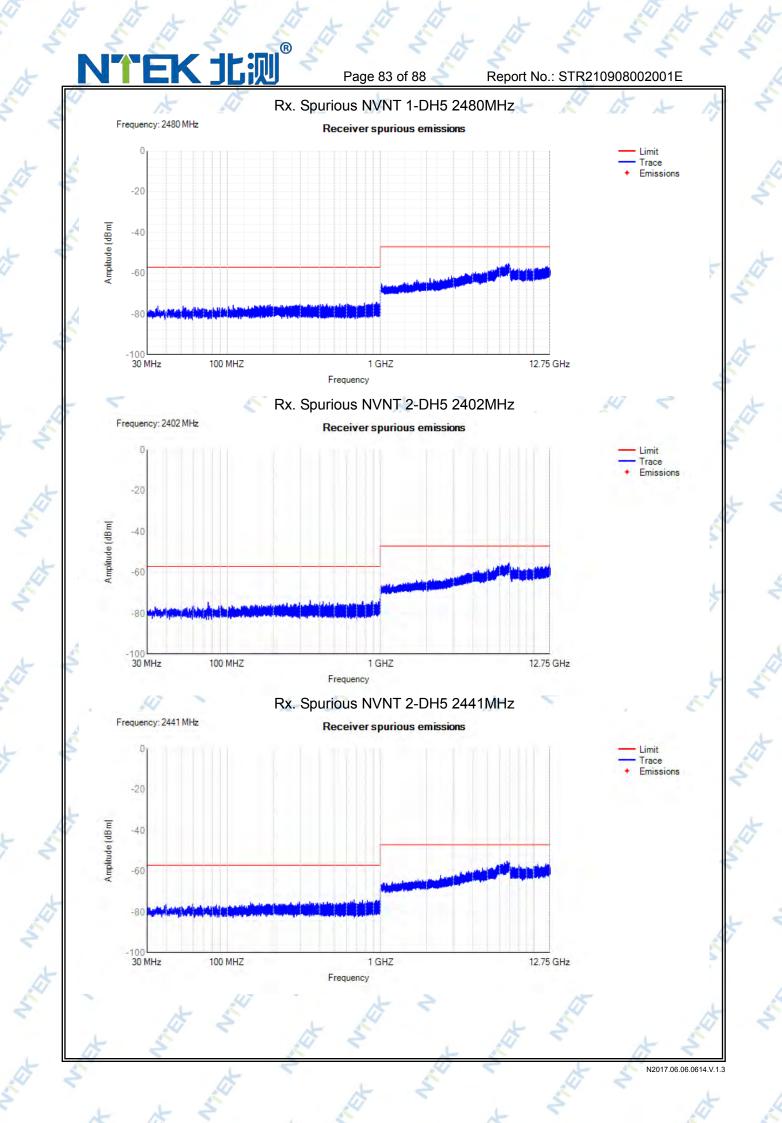

TEK 北测[®]

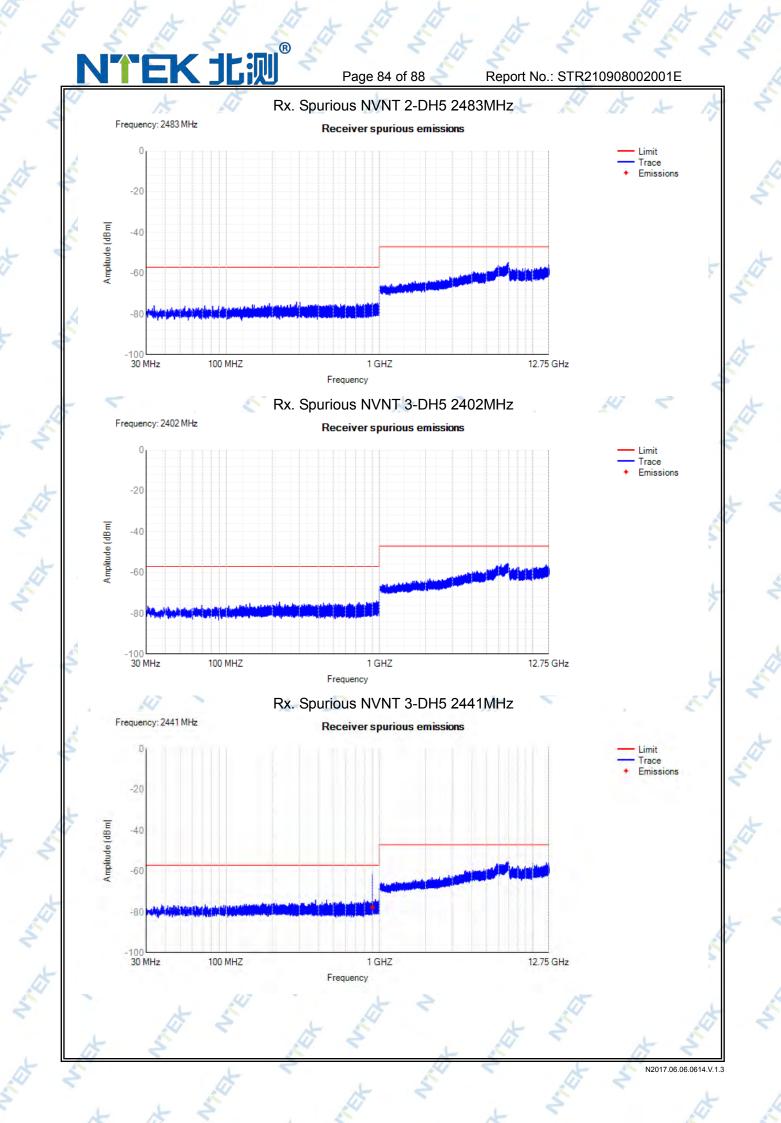

Page 77 of 88

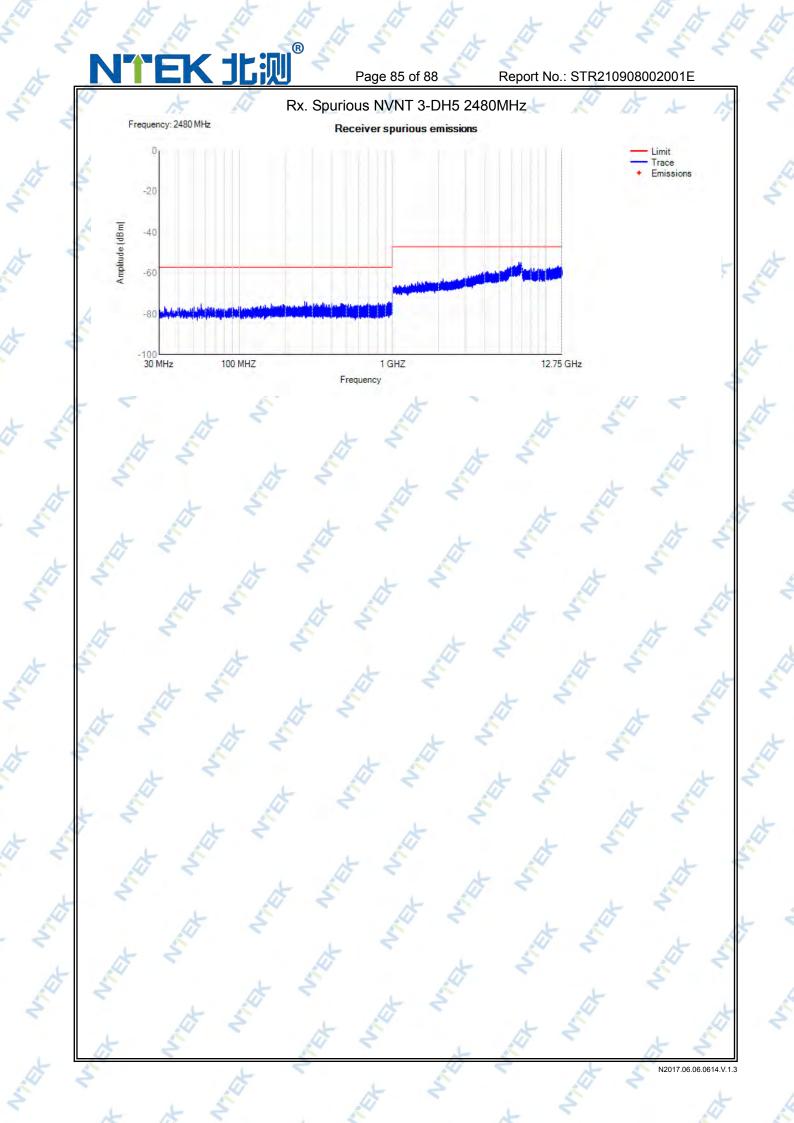

Report No.: STR210908002001E

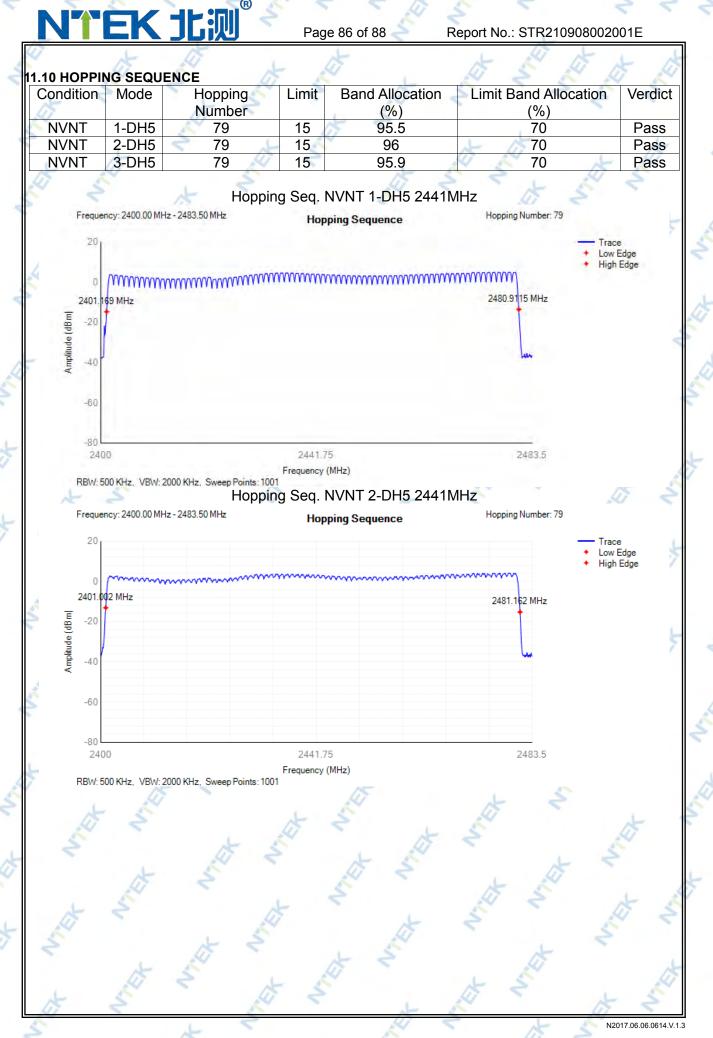

1 <u>1.8 TRAN</u>	SMITTE		TED EMISSIONS IN THE	SPURIOUS	DOMAIN	2 8	19	K
Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	30 MHz -47 MHz	35.45	-66.17	NA	-36	Pass
NVNT	1-DH5	2402	47 MHz -74 MHz	69.2	-66.13	NA	-54	Pass
NVNT	1-DH5	2402	74 MHz -87.5 MHz	85.35	-66.3	NA	-36	Pass
NVNT	1-DH5	2402	87.5 MHz -118 MHz	110.5	-65.52	NA	-54	Pass
NVNT	1-DH5	2402	118 MHz -174 MHz	122.85	-65.21	NA	-36	Pass
NVNT	1-DH5	2402	174 MHz -230 MHz	192.75	-64.66	NA	-54	Pass
NVNT	1-DH5	2402	230 MHz -470 MHz	336.25	-64.24	NA S	-36	Pass
NVNT	1-DH5	2402	470 MHz -694 MHz	625.15	-64.77	<> NA	-54	Pass
NVNT	1-DH5	2402	694 MHz -1000 MHz	841.15	-54.88	NA NA	-36	Pass
NVNT	1-DH5	2402	1000 MHz -2398 MHz	2393.5	-49.86	NA	-30	Pass
NVNT	1-DH5	2402	2485.5 MHz -12750 MHz	6988	-45.16	NA 🏑	-30	Pass
NVNT	1-DH5	2441	30 MHz -47 MHz	31.65	-65.47	NA 🔊	-36	Pass
NVNT	1-DH5	2441	47 MHz -74 MHz	67.75	-67.12	NA	-54	Pass
NVNT	1-DH5	2441	74 MHz -87.5 MHz	\$5.3	-66.71	NA	-36	Pass
NVNT	1-DH5	2441	87.5 MHz -118 MHz	110.7	-66.26	NA	-54	Pass
NVNT 🔬	1-DH5	2441	118 MHz -174 MHz	168.3	-65.99	NA	-36	Pass
NVNT	1-DH5	2441	174 MHz -230 MHz	223.55	-64.9	NA	54 🏒	Pass
NVNT	1-DH5	2441	🔊 230 MHz -470 MHz	469.7	-64.91	NA 📈	-36	Pass
NVNT	1-DH5	2441	470 MHz -694 MHz	524.25	-64.85	NA 🌊	-54	Pass
NVNT	1-DH5	2441	694 MHz -1000 MHz 🔬	845.75	-56.08	NA	-36	Pass
NVNT	1-DH5	2441	1000 MHz -2398 MHz	2365.5	-53.29	NA	-30	Pass
NVNT	1-DH5	2441	2485.5 MHz -12750 MHz	6159.5	-44.72	NA	-30	Pass
NVNT	1-DH5	2480	30 MHz -47 MHz	44.95	-66.19	NA	-36	Pass
NVNT	1-DH5	2480	47 MHz -74 MHz	62.6	-66.83	NA	-54	Pass
NVNT	1-DH5	2480	74 MHz -87.5 MHz	83.05	-66.32	NA	-36	Pass
NVNT	1-DH5	2480	87.5 MHz -118 MHz	92.55	-65.53	NA	-54	Pass
NVNT	1-DH5	2480	118 MHz -174 MHz	123.35	-65.42	NA	-36	Pass
NVNT	1-DH5	2480	174 MHz -230 MHz	200.15	-64.91	NA	-54	Pass
NVNT	1-DH5	2480	230 MHz -470 MHz	445.9	-64.96	NA	-36	Pass
NVNT	1-DH5	2480	470 MHz -694 MHz	666.9	-64.82	NA	-54	Pass
NVNT	1-DH5	2480	694 MHz -1000 MHz	832.4	-51.56	NA	-36	Pass
NVNT	1-DH5	2480	1000 MHz -2398 MHz	1886	-44.07	NA NA	-30	Pass
NVNT NVNT	1-DH5 2-DH5	2480 2402	2485.5 MHz -12750 MHz 30 MHz -47 MHz	<u>6879</u> 37.75	-45	NA NA	-30 -36	Pass
NVNT	2-DH5	2402	47 MHz -74 MHz	64.95	-65.81 -66.93	NA	-56	Pass Pass
NVNT	2-DH5	2402	74 MHz -87.5 MHz	81.7	-66.78	NA	-36	Pass
NVNT	2-DH5	2402	87.5 MHz -118 MHz	107.3	-66.67	NA	-50	Pass
NVNT	2-DH5	2402	118 MHz -174 MHz	118.05	-65.7	NA	-34	Pass
NVNT	2-DH5	2402	174 MHz -230 MHz	212.25	-64.9	NA	-54	Pass
NVNT	2-DH5	2402	230 MHz -470 MHz	284.3	-64.37	NA	-36	Pass
NVNT	2-DH5	2402	470 MHz -694 MHz	537.7	-64.2	NA 🔬	-54	Pass
NVNT	2-DH5	2402	694 MHz -1000 MHz	844.85	-48.11	NA	-36	Pass
NVNT	2-DH5	2402	1000 MHz -2398 MHz	2397.5	-52.84		-30	Pass
NVNT	2-DH5	2402	2485.5 MHz -12750 MHz	6834.5	-45.44	NA	-30	Pass
NVNT	2-DH5	2441	30 MHz -47 MHz	34.55	-66.08	NA	-36	Pass
NVNT	2-DH5	2441	47 MHz -74 MHz	60.6	-66.59	NA	-54	Pass
NVNT	2-DH5	2441	74 MHz -87.5 MHz	83.5	-66.92	NA	-36	Pass
NVNT	2-DH5	2441	5 87.5 MHz -118 MHz	100.75	-66.18	NA 💉	-54	Pass
NVNT	2-DH5	2441	118 MHz -174 MHz	146.9	-65.87	NAS	-36	Pass
NVNT	2-DH5	2441	174 MHz -230 MHz 💉	214.05	-64.57	NA	-54	Pass
NVNT	2-DH5	2441	230 MHz -470 MHz 🤍	295.75	-64.76	NA	-36 🍌	Pass
NVNT	2-DH5	2441	470 MHz -694 MHz	676.65 🦯	-64.82	NA	-54	Pass
NVNT	2-DH5	2441	694 MHz -1000 MHz	850.15	-60.6	NA	-36	Pass
NVNT	2-DH5	2441	🔨 1000 MHz -2398 MHz 🏒	2216	-52.52	NA	-30	Pass
NVNT	2-DH5	2441	2485.5 MHz -12750 MHz	6675	-45.57	NA	-30	Pass
NVNT	2-DH5	2480	30 MHz -47 MHz	41.27	-66.51	NA	-36	Pass
NVNT	2-DH5	2480	47 MHz -74 MHz	51.14	-65.54	NA	-54	Pass
NVNT	2-DH5	2480	74 MHz -87.5 MHz	87.39	-67.12	NA	-36	Pass
NVNT	2-DH5	2480	87.5 MHz -118 MHz	90.87	-66.89	NA	-54	Pass
NVNT	2-DH5	2480 🧹	118 MHz -174 MHz	126.88	-64.54	NA	-36	Pass
NVNT	2-DH5	2480 🔨	174 MHz -230 MHz	223.65	-65.57	NA	-54	Pass
NVNT	2-DH5	2480	230 MHz -470 MHz	242.47	-64.96	< <u>NA</u>	-36	Pass
NVNT	2-DH5	2480	470 MHz -694 MHz	664.16	-64.27	NA NA	-54	Pass
NVNT	2-DH5	2480	694 MHz -1000 MHz	833.18	-51.71	NA	-36	Pass

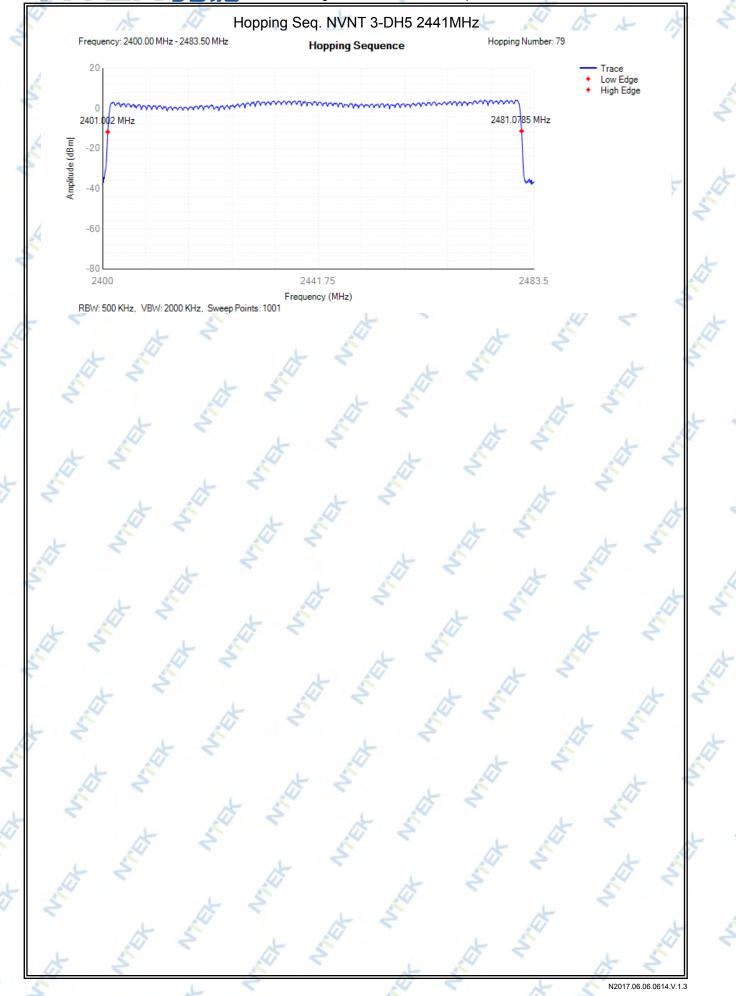
N2017.06.06.0614.V.1.3




NTEK 北测®

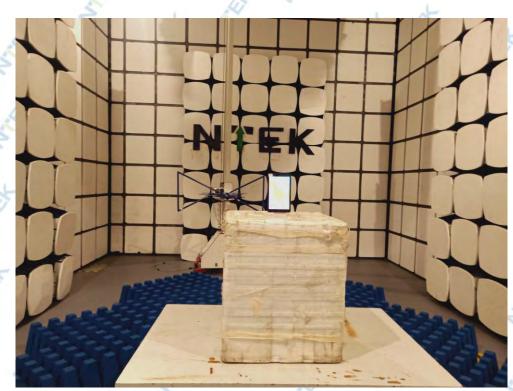

Page 82 of 88


Report No.: STR210908002001E



Page 87 of 88 🚽

Report No.: STR210908002001E


NTEK 北测[®]

Page 88 of 88

Report No.: STR210908002001E

12. EUT TEST PHOTO

END OF REPORT