RADIO TEST REPORT ETSI EN 300 440 V2.2.1 (2018-07)

Product : 4G Tablet Trade Mark : Blackview Model Name : Tab 60 Family Model : Tab 60 Kids Report No. : S23083004602005

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

Page 2 of 74

Report No.: S23083004602005

TEST RESULT CERTIFICATION

Applicant's name:: DOKE COMMUNICATION (HK) LIMITED
Address
WANCHAI HK CHINA
Manufacturer's Name: Shenzhen DOKE Electronic Co.,Ltd
Address
Guangming District, Shenzhen, China
Product description
Product name: 4G Tablet
Trademark: Blackview
Model and/or type reference : Tab 60
Family Model: Tab 60 Kids
Standards ETSI EN 300 440 V2.2.1 (2018-07)
This device dependence has been to to to the NTEX, and the test second scheme the the

This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.

Test Sample NumberS230712034002Date of TestJul 12, 2023 ~ Aug 17, 2023Date (s) of performance of testsJul 12, 2023 ~ Aug 17, 2023Date of IssueSep 14, 2023Test ResultPass

Note: All test data of this report are based on the original test report S23071203401005 dated by Aug 17, 2023

Testing Engineer

hang. Hu

(Mary Hu)

Authorized Signatory:

(Alex Li)

Page 3 of 74

NTEK 北测[®]

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.2 MEASUREMENT UNCERTAINTY	8
2 . GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 TEST CONDITIONS	10
2.3 DESCRIPTION OF TEST CONDITIONS	11
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTER	D 12
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	13
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	14
3 . EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)	15
3.1 APPLICABILITY	15
3.2 LIMITS	15
3.3 GENERAL REQUIREMENTS	15
3.4 TEST PROCEDURES 3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS	15
3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS 3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS	15 16
3.5 TEST SETUP LAYOUT	16
3.6 EUT OPERATION DURING TEST	16
3.7 TEST RESULT FOR -6 DB BANDWIDTH	17
3.8 TEST RESULT FOR E.I.R.P	18
4 . PERMITTED RANGE OF OPERATING FREQUENCIES	19
4.1 APPLIED PROCEDURES / LIMIT	19
4.2 TEST PROCEDURES	19
4.3 TEST SETUP LAYOUT	19
4.4 EUT OPERATION DURING TEST	19
4.5 TEST RESULTS	20
5 . UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	23
5.1 APPLIED PROCEDURES / LIMIT	23
5.2 MEASURING INSTRUMENTS AND SETTING	23
5.3 TEST PROCEDURES	23
5.4 TEST SETUP LAYOUT	24

Page 4 of 74

NTEK 北测[®]

Table of Contents	Page
5.5 EUT OPERATION DURING TEST	24
5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS	24
5.7 TEST RESULTS	25
6.DUTY CYCLE	27
6.1 APPLICABILITY AND DESCRIPTION	27
6.2 LIMITS	27
6.4 METHOD OF MEASUREMENT	27
6.5 TEST SETUP	28
6.6 TEST RESULTS	28
7 . SPURIOUS EMISSIONS – RX	29
7.1 APPLIED PROCEDURES / LIMIT	29
7.2 MEASURING INSTRUMENTS AND SETTING	29
7.3 TEST PROCEDURES	29
7.5 TEST SETUP LAYOUT	29
7.6 EUT OPERATION DURING TEST	29
7.7 TEST RESULTS	30
8 . ADJACENT CHANNEL SELECTIVITY	31
8.1 APPLICABILITY	31
8.2 LIMITS	31
8.3 METHODS OF MEASUREMENT	31
8.4 TEST SETUP LAYOUT	32
8.5 TEST RESULTS	32
9 . BLOCKING OR DESENSITIZATION	33
9.1 APPLICABILITY	33
9.2 LIMITS	33
9.3 TEST PROCEDURES	33
8.4 TEST SETUP LAYOUT	34
9.4 TEST RESULTS	35
10 . TEST RESULTS	42
10.1 DUTY CYCLE	42
10.2 -6DB EMISSION BANDWIDTH	50
10.3 OCCUPIED CHANNEL BANDWIDTH	58
10.4 RF OUTPUT POWER	66

Table of Contents	Page
11 . EUT TEST PHOTO	74
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	74
APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

Page 6 of 74

Report No.: S23083004602005

Revision History				
Report No.	Version	Description	Issued Date	
S23071203401005	Rev.01	Initial issue of report	Aug 17, 2023	
S23083004602005	Rev.02	Added an adapter	Sep 14, 2023	
	1	1	1	

Revision History

Page 7 of 74

Report No.: S23083004602005

1. SUMMARY OF TEST RESULTS

NTEK 北测[®]

Test procedures according to the technical standards: ETSI EN 300 440 V2.2.1 (2018-07)

Clause	Description of Test Item	Item Remarks		
	Transmitter Parameters			
4.2.2	-6 dB channel bandwidth	Conducted	Pass	
4.2.2	Effective isotropic radiated power	Conducted	Pass	
4.2.3	Permitted range of operation frequencies	Conducted	Pass	
4.2.4	Unwanted emissions in the spurious domain	Radiated	Pass	
4.2.5	Duty cycle	Conducted	Pass	
4.2.6	Additional requirements for FHSS equipment	Conducted	N/A	
Receiver Parameters				
4.3.3	Adjacent channel selectivity(For Receiver	Conducted	N/A	
4.3.4	category 1) Blocking or desensitization(For Receiver category 1,2,3)	Conducted	Pass	
4.3.5	Spurious emissions(For Receiver category 1,2,3)	Radiated	Pass	

Note: The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter

Page 8 of 74

Report No.: S23083004602005

1.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

No.	Item	Uncertainty
1	Radio frequency	±1 x 10-7
2	RF power (conducted)	±2,5 dB
3	Radiated emission of transmitter, valid to 26,5 GHz	±6 dB
4	Radiated emission of transmitter, valid between	±8 dB
	26,5 GHz and 66 GHz	
5	Radiated emission of receiver, valid to 26,5 GHz	±6 dB
6	Radiated emission of receiver, valid between 26,5	±8 dB
	GHz and 66 GHz	
7	Temperature	±1 ℃
8	Humidity	±5 %
9	Voltage (DC)	±1 %
10	Voltage (AC, < 10 kHz)	±2 %
i		

NOTE: For radiated emissions above 26,5 GHz it may not be possible to achieve measurement uncertainties complying with the levels specified in this table. In these cases alone it is acceptable to employ the alternative interpretation procedure specified in EN 300440 V2.2.1 clause 5.9.1.

Page 9 of 74

Report No.: S23083004602005

2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT

Equipment	4G Tablet		
Trade Mark	Blackview		
Model Name	Tab 60		
Family Model	Tab 60 Kids		
Model Difference	All the model are the same circuit and RF mo model names.	odule, except the	
	Operation 5745-5825 MHz for 802.11a/n Frequency: 5755-5795 MHz for 802.11n4 5775MHz for 802.11 ac80; 5755MHz for 802.11 ac80; Data Rate: 802.11a: 6,9,12,18,24,36,48,3 802.11n(HT20/HT40):MCS0-802.11ac(VHT20/ VHT40/VH MCS0-MCS9, NSS2	0/ac40; 54Mbps; MCS7;	
Product Description	ModulationOFDM with BPSK/QPSK/16QAM/64QAMChannel No.:5 channels for 802.11a/n20/a 5745-5825MHz band ; 2 channels for 802.11 n40/ac 5755-5795MHz band ; 1 channels for 802.11 ac80 in band ;	c20 in the 40 in the	
	Antenna Designation: PIFA Antenna Antenna 1.5 dBi		
Receiver category	Gain(Peak) 1.0 dbi Category 1: Highly reliable SRD communication media; e.g. serving human life inherent systems (may result in a physical risk to a person). Category 2: Medium reliable SRD communication media e.g. causing inconvenience to persons, which cannot simply be overcome by other means. Category 3: Standard reliable SRD communication media e.g. Inconvenience to persons, which can simply be overcome by other means (e.g. manual).		
Channel List	Refer to below		
Adapter	Adapter 1: Model: QZ-01000EA00 Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A (10.0W) Adapter 2: Model: QZ-01001EA00 Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A (10.0W)		
Battery	DC 3.87V, 6050mAh, 23.413Wh		
Rating	DC 3.87V from battery or DC 5V from adapted	er	
Hardware Version	DK058-T616-V1.0-230602-L1		
Software Version	Tab_60_NEU_P30_V1.0		

NTEK 北测

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Channel list:

Frequency and Channel list for 802.11a/n/ac(20 MHz) band IV (5745-5825MHz):

Page 10 of 74

	802.11a/n/ac(20 MHz) Carrier Frequency Channel						
Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-

Frequency and Channel list for 802.11n/ac(40MHz) band IV (5755-5795MHz):

802.11n/ac 40MHz Carrier Frequency Channel					
ChannelFrequency (MHz)ChannelFrequency (MHz)Frequency (MHz)					
151	5755	159	5795	-	-

Frequency and Channel list for 802.11ac(80MHz) band IV (5775MHz):

802.11ac 80MHz Carrier Frequency Channel		
Channel Frequency (MHz)		
155	5775	

2.2 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature	15°C - 35°C	-10°C ~ 40°C _{Note1}
Relative Humidity	20% - 75%	N/A
Power Rating	DC 3.87V	N/A
Test voltage	DC 3.87V	DC 4.45V-DC 3.29V Note2

Note:

- (1) The temperature range as declared by the manufacturer; or one of the following specified temperature ranges:
 - Temperature category I (General): -20 °C to +40 °C;
 - Temperature category II (Portable): -10 °C to +40 °C;
 - Temperature category III (Equipment for normal indoor use): 5 °C to +35 °C.

(2) The High Voltage 4.45V and Low Voltage 3.29V was declarated by manufacturer.

Page 11 of 74

Report No.: S23083004602005

2.3 DESCRIPTION OF TEST CONDITIONS

NTEK 北测[®]

For Conducted Test					
Pretest Mode Description					
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165				
Mode 2	802.11n/ ac40 CH 151 / CH 159				
Mode 3	802.11 ac80 CH 155				

For Radiated Test					
Final Test Mode Description					
Mode 1 802.11a /n/ ac 20 CH149/ CH157/ CH 16					
Mode 2	802.11n/ ac40 CH 151 / CH 159				
Mode 3	802.11 ac80 CH 155				

Report No.: S23083004602005

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED E-1 EUT

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	4G Tablet	Tab 60	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength^a column.
- (3) "YES" means "shielded" or "with ferrite core";"NO" means "unshielded" or "without ferrite core"

Page 14 of 74

Report No.: S23083004602005

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

NTEK 北测[®]

	[[[A W U
EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.15	1 year
Turn Table	EM	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	2816	2023.01.12	2024.01.11	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.11.07	2023.11.06	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2023.05.29	2024.05.28	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2023.03.31	2024.03.30	1 year
Filter	TRILTHIC	2400MHz	29	2023.03.27	2026.03.26	3 year
Attenuator	Weinschel	33-10-33	AR4010	2023.03.27	2026.03.26	3 year
Attenuator	Weinschel	24-20-34	BP4485	2023.03.27	2026.03.26	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2023.03.21	2024.03.20	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2023.03.27	2026.03.26	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2023.03.27	2026.03.26	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2023.07.04	2026.07.03	3 year
Attenuator	Agilent	8495B	MY42147029	2023.03.27	2026.03.26	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2023.05.29	2024.05.28	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2023.05.29	2024.05.28	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2023.05.29	2024.05.28	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Page 15 of 74

3. EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)

3.1 APPLICABILITY

The equivalent isotropically radiated power requirement shall apply to all transmitters.

3.2 LIMITS

Table 2: Maximum radiated peak power (e.i.r.p.)

Frequency Bands	Power	Application	Notes
2 400 MHz to 2 483,5 MHz	10 mW e.i.r.p.	Non-specific short range devices	
2 400 MHz to 2 483,5 MHz	25 mW e.i.r.p.	Radio determination devices	
(a) 2 446 MHz to 2 454 MHz	500 mW e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
(b) 2 446 MHz to 2 454 MHz	4 W e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
5 725 MHz to 5 875 MHz	25 mW e.i.r.p.	Non-specific short range devices	
9 200 MHz to 9 500 MHz	25 mW e.i.r.p.	Radio determination devices	
9 500 MHz to 9 975 MHz	25 mW e.i.r.p.	Radio determination devices	
10,5 GHz to 10,6 GHz	500 mW e.i.r.p.	Radio determination devices	
13,4 GHz to 14,0 GHz	25 mW e.i.r.p.	Radio determination devices	
17,1 GHz to 17,3 GHz	400 mW e.i.r.p.	Radio determination devices	See annex F
24,00 GHz to 24,25 GHz	100 mW e.i.r.p.	Non-specific short range devices and Radio determination devices	

3.3 GENERAL REQUIREMENTS

1. To measure e.i.r.p. it is first necessary to determine the appropriate method of measurement: see EN 300440 V2.2.1 clauses 4.2.2.3.1 and 4.2.2.3.2. The -6 dB transmitter bandwidth shall be determined using a 100 kHz measuring bandwidth in order to establish which measurement method is applicable:

Со	Method of measurement	
☐ Non spread spectrum transmitters with a -6 dB bandwidth of up to 20 MHz and spread spectrum transmitters with channel bandwidth of up to 1 MHz;	 Non spread spectrum equipment with a -6 dB bandwidth of 20 MHz or less and a duty cycle above 50 %; Spread spectrum equipment with a -6 dB channel bandwidth of 1 MHz or less. 	Refer to section 3.4.1
☐ for all other transmitter bandwidths.	☐equipment with a -6 dB bandwidth greater than 20 MHz, and equipment with a duty cycle below 50 %; ⊠spread spectrum equipment with a channel bandwidth above 1 MHz.	Refer to section 3.4.2

2. Measurements shall be performed at normal test conditions.

3.4 TEST PROCEDURES

3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS

The measurement shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded. **Equipment measured as constant envelope modulation equipment**

NTEK 北测

Page 16 of 74

For practical reasons, measurements shall be performed only at the highest power level at which the transmitter is intended to operate. The measurement arrangement in figure 2 shall be used. The measurement shall be performed preferably in the absence of modulation.

When it is not possible to measure it in the absence of modulation, this fact shall be stated in test reports.

The transmitter shall be set in continuous transmission mode. If this is not possible, the measurements shall be carried

out in a period shorter than the duration of the transmitted burst. It may be necessary to extend the duration of the burst.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

Equipment measured as non-constant envelope modulation equipment

The measurement shall be performed with test signals D-M2 or D-M3 as appropriate. The transmitter shall be preferably set in continuous transmission mode. If this is not possible, the measurement can be performed in discontinuous mode.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured. The measuring instrument shall have a measurement bandwidth not less than sixteen times the channel bandwidth.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS

Step 1:

• using a suitable means, the output of the transmitter shall be coupled to a matched diode detector;

• the output of the diode detector shall be connected to the vertical channel of an oscilloscope;

• the combination of the diode detector and the oscilloscope shall be capable of faithfully

reproducing the envelope peaks and the duty cycle of the transmitter output signal;

• the observed duty cycle of the transmitter (Tx on/(Tx on + Tx off)) shall be noted as x, (0 < x < 1)And recorded.

Step 2:

• the average output power of the transmitter shall be determined using a wideband, calibrated RF power meter with a matched thermocouple detector or an equivalent thereof and, where applicable, with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);

• the e.i.r.p. shall be calculated from the above measured power output A, the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

 $- P = A + G + 10 \log (1/x);$

- P should be EIRP POWER.

3.5 TEST SETUP LAYOUT

3.6 EUT OPERATION DURING TEST

Where possible, the equipment shall be able to operate in a continuous transmit mode for testing purposes.

Page 17 of 74

Report No.: S23083004602005

3.7 TEST RESULT FOR -6 DB BANDWIDTH

EUT :	4G Tablet	Model Name :	Tab 60
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

Page 18 of 74

Report No.: S23083004602005

3.8 TEST RESULT FOR E.I.R.P

EUT :	4G Tablet	Model Name :	Tab 60
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	Mode 1/2/3		

Test data reference attachment

4. PERMITTED RANGE OF OPERATING FREQUENCIES

4.1 APPLIED PROCEDURES / LIMIT

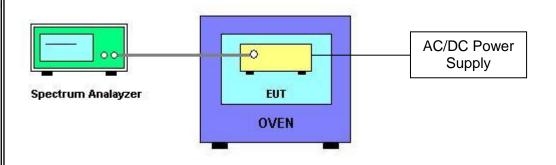
NTEK 北测

The Permitted range of operating frequencies shall apply to all transmitters.

Limits: The width of the power spectrum envelope is fH -fL for a given operating frequency. In equipment that allows adjustment or selection of different operating frequencies, the power envelope takes up different positions in the allowed band. The frequency range is determined by the lowest value of fL and the highest value of fH resulting from the adjustment of the equipment to the lowest and highest operating frequencies.

The occupied bandwidth (i.e. the bandwidth in which 99 % of the wanted emission is contained) of the transmitter shall fall within the assigned frequency band.

For all equipment the frequency range shall lie within the frequency band given by section 3.2, table 2. For non-harmonized frequency bands the available frequency range may differ between national administrations.


4.2 TEST PROCEDURES

These measurements shall be performed under both normal and extreme operating conditions except for the occupied bandwidth assessment for which measurement at normal operating conditions is sufficient.

The measurement procedure shall be as follows:

- a) put the spectrum analyser in video averaging mode with a minimum of 50 sweeps selected;
- b) select the lowest operating frequency of the equipment under test and activate the transmitter with modulation applied. The RF emission of the equipment shall be displayed on the spectrum analyser;
- c) using the marker of the spectrum analyser, find the lowest frequency below the operating frequency at which the spectral power density drops below the level given in clause 4.2.3. This frequency shall be recorded in the test report;
- d) select the highest operating frequency of the equipment under test and find the highest frequency at which the spectral power density drops below the value given in clause 4.2.3. This frequency shall be recorded in the test report;
- e) the difference between the frequencies measured in steps c) and d) is the operating frequency range. It shall be recorded in the test report.

4.3 TEST SETUP LAYOUT

4.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

Page 20 of 74

Report No.: S23083004602005

4.5 TEST RESULTS

EUT :	4G Tablet	Model Name :	Tab 60
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	ТХ		

802.11a

Extreme condition			Frequency range (MHz)		
			F _L CH149	F _н CH165	
		V max (V)	4.45	5736.740	5833.259
T min (°C)	-10	V nom (V)	3.87	5736.741	5833.261
		V min (V)	3.29	5736.737	5833.257
		V max (V)	4.45	5736.738	5833.258
T max (°C)	40	V nom (V)	3.87	5736.739	5833.259
		V min (V)	3.29	5736.740	5833.260
Min. f	Min. f_L / Max. f_H Band Edges			5736.737	5833.261
Indoor Use Limits			F _L > 5725.0 MHz	F _L < 5875.0 MHz	
Result			Con	nplies	

802.11n20

Extreme condition			Frequency range (MHz)		
			F _L CH149	F _н CH165	
		V max (V)	4.45	5736.145	5833.827
T min (°C)	-10	V nom (V)	3.87	5736.146	5833.828
		V min (V)	3.29	5736.142	5833.824
		V max (V)	4.45	5736.143	5833.826
T max (°C)	40	V nom (V)	3.87	5736.144	5833.827
		V min (V)	3.29	5736.145	5833.828
Min. f _L / Max. f _H Band Edges			5736.142	5833.828	
Indoor Use Limits			F _L > 5725.0 MHz	F L < 5875.0 MHz	
	R	esult		Con	nplies

Page 21 of 74

Report No.: S23083004602005

802.11n40						
	Extreme condition			Frequency range (MHz)		
				F _L CH151	F _н CH159	
		V max (V)	4.45	5736.826	5813.150	
T min (°C)	-10	V nom (V)	3.87	5736.827	5813.152	
		V min (V)	3.29	5736.823	5813.148	
		V max (V)	4.45	5736.824	5813.149	
T max (°C)	40	V nom (V)	3.87	5736.825	5813.150	
		V min (V)	3.29	5736.826	5813.151	
Min. 1	Min. f_L / Max. f_H Band Edges			5736.823	5813.152	
Indoor Use Limits			F _L > 5725.0 MHz	F _L < 5875.0 MHz		
	R	esult		Con	nplies	

802.11ac20

Extreme condition			Frequency range (MHz)		
			F _L CH149	F _н CH165	
		V max (V)	4.45	5736.145	5833.823
T min (°C)	-10	V nom (V)	3.87	5736.146	5833.825
		V min (V)	3.29	5736.142	5833.821
		V max (V) 4.45		5736.143	5833.822
T max (°C)	40	V nom (V)	3.87	5736.144	5833.823
		V min (V)	3.29	5736.145	5833.824
Min. f _L / Max. f _H Band Edges			5736.142	5833.825	
Indoor Use Limits				F _L > 5725.0 MHz	F _L < 5875.0 MHz
	R	esult		Con	nplies

Report No.: S23083004602005

802.11ac40						
	Extreme condition			Frequency range (MHz)		
				F _L CH151	F _н CH159	
		V max (V)	4.45	5736.826	5813.131	
T min (°C)	-10	V nom (V)	3.87	5736.827	5813.132	
		V min (V)	3.29	5736.823	5813.128	
		V max (V)	4.45	5736.824	5813.129	
T max (°C)	40	V nom (V)	3.87	5736.825	5813.130	
		V min (V)	3.29	5736.826	5813.131	
Min. f	Min. f _L / Max. f _H Band Edges			5736.823	5813.132	
	Indoor Use Limits			F _L > 5725.0 MHz	F _L < 5875.0 MHz	
	R	esult		Con	nplies	

Page 22 of 74

802.11ac80

Extreme condition			Frequency range (MHz)		
			F _L CH155	F _н CH155	
		V max (V)	4.45	5737.196	5812.836
T min (°C)	-10	V nom (V)	3.87	5737.197	5812.838
		V min (V)	3.29	5737.193	5812.834
		V max (V)	4.45	5737.194	5812.835
T max (°C)	40	V nom (V)	3.87	5737.195	5812.836
		V min (V)	3.29	5737.196	5812.837
Min. f _L / Max. f _H Band Edges				5737.193	5812.838
Indoor Use Limits				F _L > 5725.0 MHz	F _L < 5875.0 MHz
	Result			Con	nplies

5. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

5.1 APPLIED PROCEDURES / LIMIT

The unwanted emissions in the spurious domain requirement shall apply to all transmitters.

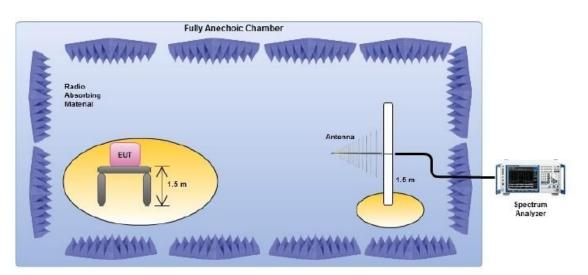
		47 MHz to 74 MHz		
Sto	State	87.5 MHz to 118 MHz	Other frequencies	Frequencies
Sla	ale	174 MHz to 230 MHz	≤□ 1 000 MHz	> 1 000 MHz
		470 MHz to 862 MHz		
Opera	ating	4 nW /-54dBm	250 nW/-36dBm	1 µW /-30dBm
Stan	dby	2 nW /-57dBm	2 nW /-57dBm	20 nW /-47dBm

5.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

5.3 TEST PROCEDURES


- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable. For above 1G, using Horn antenna .
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

Page 24 of 74

Report No.: S23083004602005

5.4 TEST SETUP LAYOUT

Radiated Emission Test Set-Up

5.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS

For the initial investigation on standby mode and receiving mode, no significant differences in spurious emissions were observed between these 2 modes. So test data for standby mode was omitted in this section.

Page 25 of 74

Report No.: S23083004602005

5.7 TEST RESULTS

EUT :	4G Tablet	Model Name :	Tab 60
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V (NORMAL)
Test Mode :	TX-802.11ac40 mode		

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	37.95	-76.32	14.91	-61.41	-36	-25.41	peak
V	102.73	-73.96	15.76	-58.20	-54	-4.20	peak
V	201.37	-79.52	15.26	-64.26	-54	-10.26	peak
V	232.45	-79.82	16.03	-63.79	-36	-27.79	peak
V	474.22	-71.28	14.90	-56.38	-54	-2.38	peak
V	707.91	-71.88	16.11	-55.77	-36	-19.77	peak
Н	42.84	-78.27	15.71	-62.56	-36	-26.56	peak
Н	109.24	-80.71	14.42	-66.29	-54	-12.29	peak
Н	210.77	-77.64	15.51	-62.13	-54	-8.13	peak
Н	358.26	-79.66	16.08	-63.58	-36	-27.58	peak
Н	535.83	-72.47	14.30	-58.17	-36	-22.17	peak
Н	843.93	-75.74	14.28	-61.46	-36	-25.46	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Page 26 of 74

Report No.: S23083004602005

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
	-	op	peration frequency	/:5755 MHz		-	
V	1234.23	-49.37	13.64	-35.73	-30	-5.73	peak
V	1734.38	-51.88	15.03	-36.85	-30	-6.85	peak
V	2234.42	-54.34	11.57	-42.77	-30	-12.77	peak
V	5797.58	-60.53	16.82	-43.71	-30	-13.71	peak
Н	1734.71	-50.26	14.82	-35.44	-30	-5.44	peak
Н	3860.10	-66.69	16.54	-50.15	-30	-20.15	peak
Н	5797.37	-59.95	17.17	-42.78	-30	-12.78	peak
Н	9420.75	-63.38	19.52	-43.86	-30	-13.86	peak
	operation frequency:5795 MHz						
V	1234.36	-51.84	13.64	-38.20	-30	-8.20	peak
V	1736.26	-52.65	15.03	-37.62	-30	-7.62	peak
V	2235.42	-52.49	11.57	-40.92	-30	-10.92	peak
V	3923.90	-66.39	15.98	-50.41	-30	-20.41	peak
Н	1735.47	-52.23	14.82	-37.41	-30	-7.41	peak
Н	2233.40	-56.66	16.65	-40.01	-30	-10.01	peak
Н	5860.56	-60.89	16.88	-44.01	-30	-14.01	peak
Н	9424.74	-60.87	19.51	-41.36	-30	-11.36	peak

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Note: Only the worst case 802.11ac40 mode recorded in the report.

Page 27 of 74

Report No.: S23083004602005

6. DUTY CYCLE

6.1 APPLICABILITY AND DESCRIPTION

Duty Cycle (DC) shall apply to all transmitting equipment except those which utilize Listen Before Talk (LBT) clause 4.4.2, or Detect And Avoid (DAA), clause 4.4.3. RFID transmitters operating in the 2 446 MHz to 2 454 MHz frequency band that transmit at a maximum radiated peak power level of less than 500 mW e.i.r.p. are also excluded.

Duty cycle is the ratio expressed as a percentage, of the cumulative duration of transmissions T_{on_cum} within an observation interval $T_{obs.}$

$$DC = \left(\frac{T_{on_cum}}{T_{obs}}\right)F_{obs}$$

on an observation bandwidth F_{obs} .

Unless otherwise specified, $T_{\mbox{\tiny obs}}$ is 1 hour and the observation bandwidth $F_{\mbox{\tiny obs}}$ is the operational frequency band

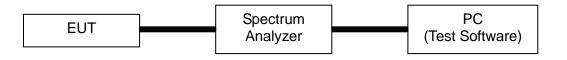
Each transmission consists of an RF emission, or sequence of RF emissions separated by intervals $< T_{Dis}$.

6.2 LIMITS

Table 4 defines the maximum duty cycle within a 1 hour period. Table 4: Duty cycle limits

Frequency Band	Duty cycle	Application	Notes
2 400 MHz to 2 483,5 MHz	No Restriction	Generic use	
2 400 MHz to 2 483,5 MHz	No Restriction	Detection, movement and alert	
		applications	
(a) 2 446 MHz to 2 454 MHz	No Restriction	RFID	Limits shown in
			annex D shall apply
(b) 2 446 MHz to 2 454 MHz	≤ 15 %	RFID	Limits shown in
			annex D shall apply
5 725 MHz to 5 875 MHz	No Restriction	Generic use	
9 200 MHz to 9 500 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
9 500 MHz to 9 975 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
10,5 GHz to 10,6 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
13,4 GHz to 14,0 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
17,1 GHz to 17,3 GHz	DAA or	Radiodetermination:	Limits shown in
	equivalent	GBSAR detecting and movement	annex F shall apply
	techniques	and alert applications	
24,00 GHz to 24,25 GHz	No Restriction	Generic use and for	
		Radiodetermination:	
		radar, detection, movement and	
		alert applications	

For devices with a 100 % duty cycle transmitting an unmodulated carrier most of the time, a time-out shut-off facility shall be implemented in order to improve the efficient use of spectrum. The method of implementation shall be declared by the manufacturer.


6.4 METHOD OF MEASUREMENT

Please refer to EN 300440 V2.2.1 Clause 4.2.5.3.

Page 28 of 74

Report No.: S23083004602005

6.5 TEST SETUP

6.6 TEST RESULTS

EUT:	4G Tablet	Model Name:	Tab 60
Temperature:	26°C	Relative Humidity:	53 %
Pressure:	1012 hPa	Test Voltage:	DC 3.87V (NORMAL)
Test Mode:	Mode 1/2/3		

Test data reference attachment

7. SPURIOUS EMISSIONS – RX

7.1 APPLIED PROCEDURES / LIMIT

Clause	Test Item	Frequency(MHz)	Limit
4.3.5.4	Spurious emissions	30-1000	-57dBm
	(radiated)	Above 1000	-47dBm

7.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

7.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.For above 1G, using Horn antenna .
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

7.5 TEST SETUP LAYOUT

This test setup layout is the same as that shown in section 5.4.

7.6 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously receiving mode.

Page 30 of 74

Report No.: S23083004602005

7.7 TEST RESULTS

EUT :	4G Tablet	Model Name :	Tab 60
Temperature :	26°C	Relative Humidity :	53 %
Pressure :	1012 hPa	Test Power :	DC 3.87V (NORMAL)
Test Mode :	RX-802.11ac40 mode		

Below 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	36.47	-83.62	18.60	-65.02	-57	-8.02	peak
V	111.64	-79.45	9.62	-69.83	-57	-12.83	peak
V	176.70	-80.65	10.28	-70.37	-57	-13.37	peak
V	396.26	-83.02	12.06	-70.96	-57	-13.96	peak
V	588.32	-78.14	11.56	-66.58	-57	-9.58	peak
V	751.17	-84.32	14.99	-69.33	-57	-12.33	peak
Н	36.05	-81.12	9.91	-71.21	-57	-14.21	peak
Н	109.92	-77.62	10.70	-66.92	-57	-9.92	peak
Н	229.02	-82.97	12.77	-70.20	-57	-13.20	peak
Н	349.70	-81.60	12.34	-69.26	-57	-12.26	peak
Н	577.13	-81.71	15.31	-66.40	-57	-9.40	peak
Н	706.17	-78.30	18.55	-59.75	-57	-2.75	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Above 1G :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	1918.121	-82.0346	14.92	-67.11	-47	-20.11	peak
V	2275.29	-81.2527	14.56	-66.69	-47	-19.69	peak
V	3695.486	-82.9103	15.95	-66.96	-47	-19.96	peak
V	3936.401	-77.9151	17.15	-60.77	-47	-13.77	peak
V	4419.027	-84.2388	13.73	-70.51	-47	-23.51	peak
V	4672.539	-83.6574	20.42	-63.24	-47	-16.24	peak
Н	2558.256	-82.3554	14.11	-68.25	-47	-21.25	peak
Н	2836.669	-81.4362	15.29	-66.15	-47	-19.15	peak
Н	3098.423	-84.324	15.89	-68.43	-47	-21.43	peak
Н	3582.749	-79.6107	16.70	-62.91	-47	-15.91	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Page 31 of 74

Report No.: S23083004602005

8. ADJACENT CHANNEL SELECTIVITY

8.1 APPLICABILITY

This requirement applies to channelized Category 1 receivers..

8.2 LIMITS

The adjacent channel selectivity of the equipment under specified conditions shall not be less than -30 dBm + k.

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

8.3 METHODS OF MEASUREMENT

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.

Signal generator B shall be unmodulated and shall be adjusted to the adjacent channel centre frequency immediately

above that of the wanted signal.

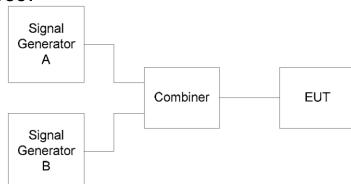
Initially signal generator B shall be switched off and using signal generator A the level that still gives sufficient

response shall be established. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurements shall be repeated with signal generator B unmodulated and adjusted to the adjacent channel centre immediately below the wanted signal.

The adjacent channel selectivity shall be recorded for the upper and lower adjacent channels as the level in dBm of the unwanted signal.

For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres.


In this case, the adjacent selectivity shall be recorded as the level in dBm of lowest level of the unwanted signal

(generator B) resulting in a non-read of the tag.

Page 32 of 74

Report No.: S23083004602005

8.4 TEST SETUP LAYOUT

8.5 TEST RESULTS

EUT :	4G Tablet	Model Name :	Tab 60
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	N/A
Test Mode :	N/A		

Not applicable.

Page 33 of 74

Report No.: S23083004602005

9. BLOCKING OR DESENSITIZATION

9.1 APPLICABILITY

This requirement applies to all Category 1, 2, and 3 SRD communication media receivers.

9.2 LIMITS

The blocking level, for any frequency within the specified ranges, shall not be less than the values given in table 6, except at frequencies on which spurious responses are found.

Receiver category	Limit
1	-30 dBm + k
2	-45 dBm + k
3	-60 dBm + k

The correction factor, k, is as follows:

 $k = \Box$ -20log f -10log BW

Where:

- f is the frequency in GHz;

- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

- -40 dB < k < 0 dB.

9.3 TEST PROCEDURES

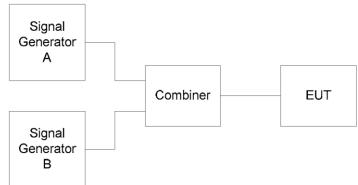
This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or

b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.


Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.Signal generator B shall be unmodulated and shall be adjusted to a test frequency at approximately 10 times, 20 times and 50 times of the occupied bandwidth above upper band edge of occupied bandwidth.Initially signal generator B shall be switched off and using signal generator A the level which still gives sufficient response shall be established. The output level of generator A shall then be increased by 3 dB.Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurement shall be repeated with the test frequency for signal generator B at 10 times, 20 times and 50 times of the occupied bandwidth below the lower band edge of the occupied bandwidth The blocking or desensitization shall be recorded as the level in dBm of lowest level of the unwanted signal(generator B).

For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres. In this case, the blocking or desensitization shall be recorded as the ratio in dB of lowest level of the unwanted signal (generator B) resulting in a non-read of the tag. to the declared sensitivity of the receiver +3 dB.

Page 34 of 74

Page 35 of 74

Report No.: S23083004602005

9.4 TEST RESULTS

			1
EUT :	4G Tablet	Model Name :	Tab 60
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	DC 3.87V (NORMAL)
Test Mode :	RX		

802.11a

5745 MHz

Flow= 5736.741MHz; Fhigh= 5753.251MHz, occupied bandwidth=16.51MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5571.641	-	-32.34	-87.36(Note1)
3	20 times lower band edge of the occupied bandwidth	5406.541	-	-32.71	-87.36
	50 times lower band edge of the occupied bandwidth	4911.241	-	-29.01	-87.36
	10 times upper band edge of the occupied bandwidth	5918.351	-	-32.09	-87.36
	20 times upper band edge of the occupied bandwidth	6083.451	-	-29.22	-87.36
	50 times upper band edge of the occupied bandwidth	6578.751	-	-29.03	-87.36

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.36

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

Page 36 of 74

Report No.: S23083004602005

802.11a

5825 MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5825 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5651.341	-	-29.12	-87.49(Note1)
3	20 times lower band edge of the occupied bandwidth	5485.961	-	-31.81	-87.49
	50 times lower band edge of the occupied bandwidth	4989.821	-	-32.9	-87.49
	10 times upper band edge of the occupied bandwidth	5998.639	-	-30.98	-87.49
	20 times upper band edge of the occupied bandwidth	6164.019	-	-29.66	-87.49
	50 times upper band edge of the occupied bandwidth	6660.159	-	-32.89	-87.49

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.49

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

Page 37 of 74

Report No.: S23083004602005

802.11n20

5745 MHz

Flow= 5736.614MHz; Fhigh= 5754.268MHz, occupied bandwidth=17.654MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5560.074	-	-30.47	-87.65(Note1)
	20 times lower band edge of the occupied bandwidth	5383.534	-	-29.02	-87.65
3	50 times lower band edge of the occupied bandwidth	4853.914	-	-32.65	-87.65
	10 times upper band edge of the occupied bandwidth	5930.808	-	-30.37	-87.65
	20 times upper band edge of the occupied bandwidth	6107.348	-	-32.75	-87.65
	50 times upper band edge of the occupied bandwidth	6636.968	-	-31.6	-87.65

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.65

Where:

- f is the frequency in GHz;

NTEK ILW[®] Page 38 of 74

Report No.: S23083004602005

802.11n20

5825 MHz

Flow= 5816.157MHz: Fhigh= 5833.825MHz, occupied bandwidth=17.67MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5825 MHz	5825	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5639.457	-	-32.56	-87.66(Note1)
	20 times lower band edge of the occupied bandwidth	5462.757	-	-31.13	-87.66
3	50 times lower band edge of the occupied bandwidth	4932.657	-	-29.27	-87.66
	10 times upper band edge of the occupied bandwidth	6010.527	-	-29.01	-87.66
	20 times upper band edge of the occupied bandwidth	6187.227	-	-30.07	-87.66
	50 times upper band edge of the occupied bandwidth	6717.327	-	-30.96	-87.66

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -27.66

Where:

- f is the frequency in GHz;

NTEK ILW[®] Page 39 of 74

Report No.: S23083004602005

802.11n40

5755 MHz

Flow= 5736.826MHz; Fhigh= 5773.126MHz, occupied bandwidth=36.3MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5755 MHz	5755	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5373.826	-	-31.88	-90.8(Note1)
	20 times lower band edge of the occupied bandwidth	5010.826	-	-30.88	-90.80
3	50 times lower band edge of the occupied bandwidth	3921.826	-	-30.03	-90.80
	10 times upper band edge of the occupied bandwidth	6136.126	-	-32.65	-90.80
	20 times upper band edge of the occupied bandwidth	6499.126	-	-30.96	-90.80
	50 times upper band edge of the occupied bandwidth	7588.126	-	-30.87	-90.80

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -30.80

Where:

- f is the frequency in GHz;

NTEK ILW[®] Page 40 of 74

Report No.: S23083004602005

802.11n40

5795 MHz

Flow= 5776.856MHz; Fhigh= 5813.148MHz, occupied bandwidth=36.292MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5795	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	5413.936	-	-29.07	-90.86(Note1)
	20 times lower band edge of the occupied bandwidth	5051.016	-	-30.19	-90.86
3	50 times lower band edge of the occupied bandwidth	3962.256	-	-30.51	-90.86
	10 times upper band edge of the occupied bandwidth	6176.068	-	-29.81	-90.86
	20 times upper band edge of the occupied bandwidth	6538.988	-	-30.93	-90.86
	50 times upper band edge of the occupied bandwidth	7627.748	-	-32.55	-90.86

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

k = -30.86

Where:

- f is the frequency in GHz;

Page 41 of 74

Report No.: S23083004602005

802.11ac80

5775 MHz

Flow= 5737.2MHz; Fhigh= 5812.84MHz, occupied bandwidth=75.64MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5775 MHz	5775	-65.47	-	-
	10 times lower band edge of the occupied bandwidth	4980.8	-	-31.11	-94.05(Note1)
	20 times lower band edge of the occupied bandwidth	4224.4	-	-29.49	-94.05
3	50 times lower band edge of the occupied bandwidth	1955.2	-	-31.1	-94.05
	10 times upper band edge of the occupied bandwidth	6569.24	-	-31.73	-94.05
	20 times upper band edge of the occupied bandwidth	7325.64	-	-30.67	-94.05
	50 times upper band edge of the occupied bandwidth	9594.84	-	-30.77	-94.05

Note1:

The limit :

-60 dBm + k

The correction factor, k, is as follows:

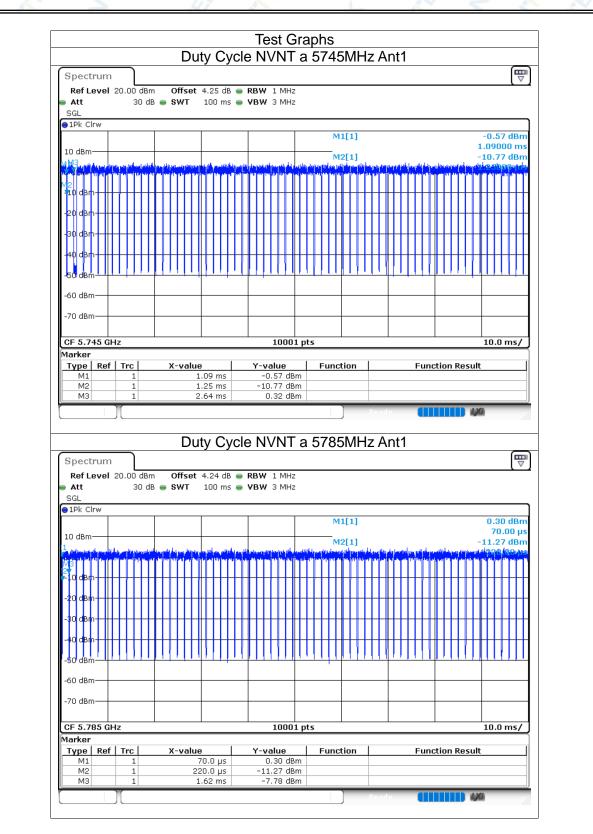
k = -20log f -10logBW

k = -34.05

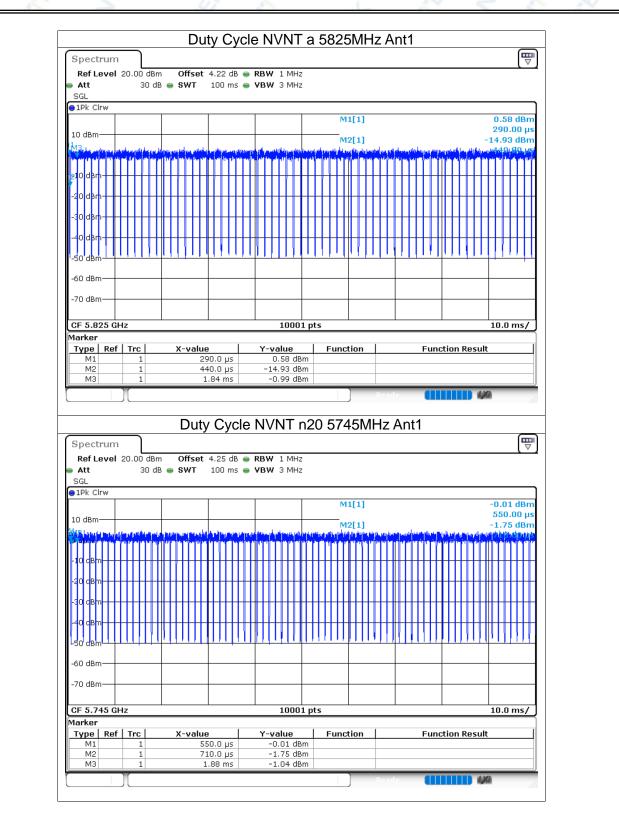
Where:

- f is the frequency in GHz;

Page 42 of 74

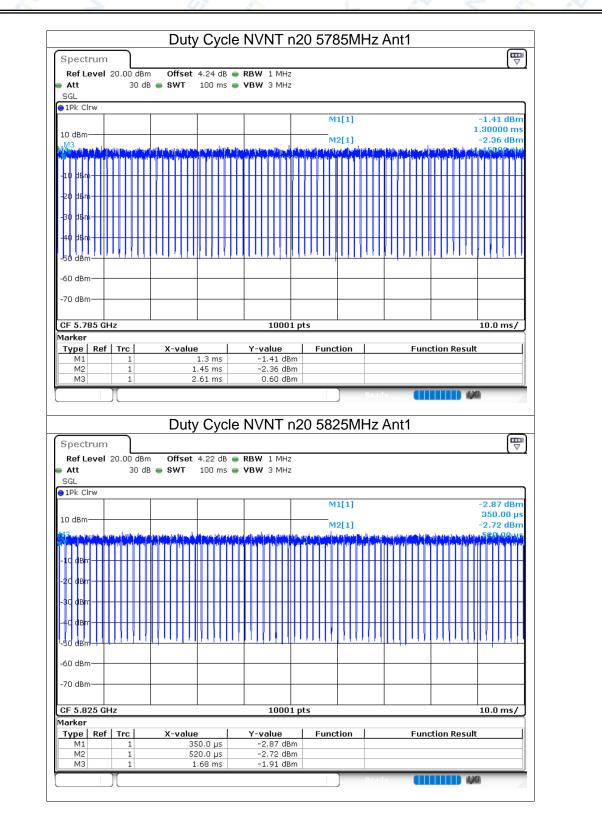

Report No.: S23083004602005

10. TEST RESULTS

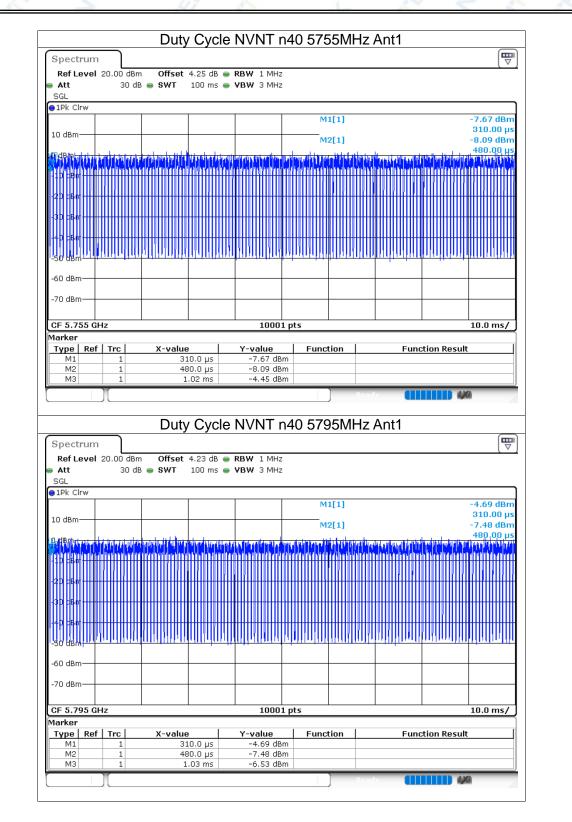

10.1 DUTY CYCLE

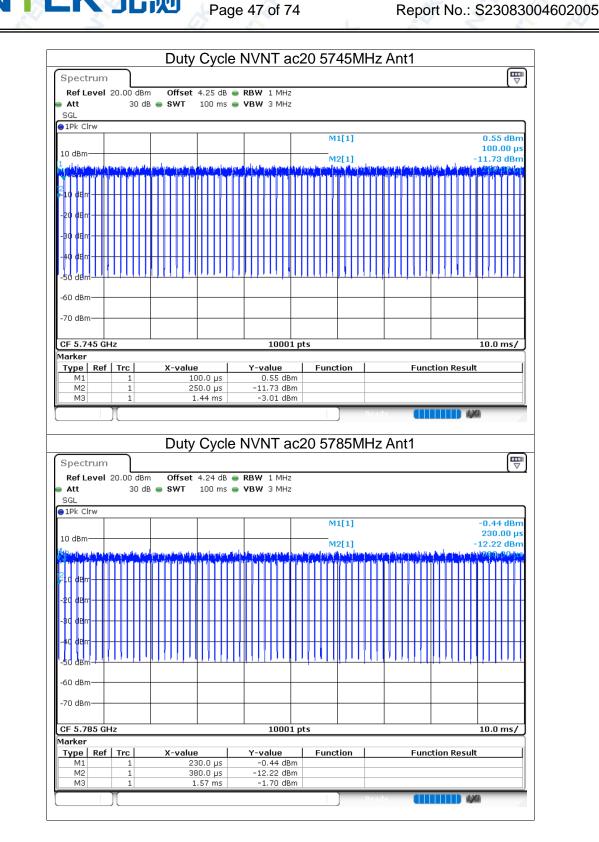
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	а	5745	Ant1	90.51	0.43	0.72
NVNT	а	5785	Ant1	90.91	0.41	0.71
NVNT	а	5825	Ant1	90.82	0.42	0.71
NVNT	n20	5745	Ant1	88.7	0.52	0.85
NVNT	n20	5785	Ant1	88.7	0.52	0.86
NVNT	n20	5825	Ant1	88.6	0.53	0.86
NVNT	n40	5755	Ant1	77.5	1.11	1.85
NVNT	n40	5795	Ant1	77.72	1.09	1.82
NVNT	ac20	5745	Ant1	89.39	0.49	0.84
NVNT	ac20	5785	Ant1	89.45	0.48	0.84
NVNT	ac20	5825	Ant1	89.45	0.48	0.85
NVNT	ac40	5755	Ant1	80.47	0.94	1.67
NVNT	ac40	5795	Ant1	81.03	0.91	1.69
NVNT	ac80	5775	Ant1	68.74	1.63	3.45

Page 43 of 74

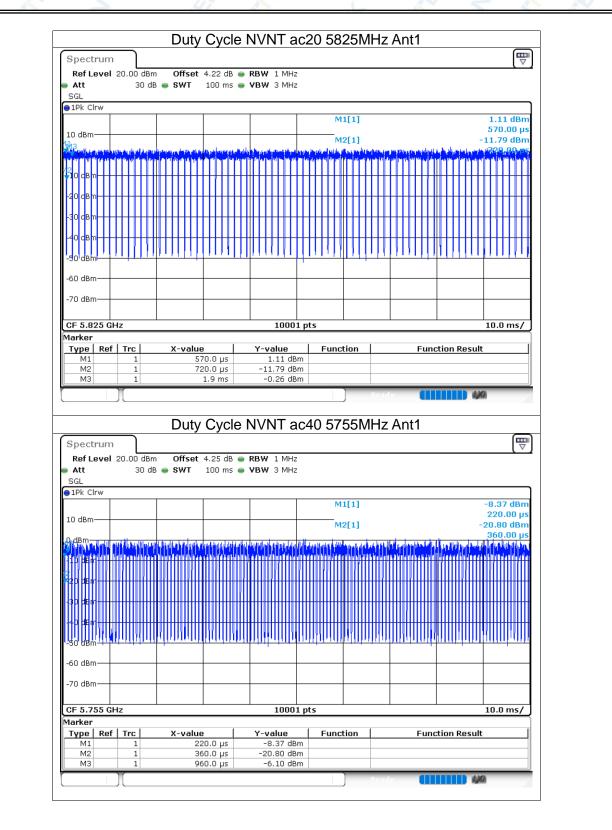


Report No.: S23083004602005




Page 44 of 74

Page 45 of 74



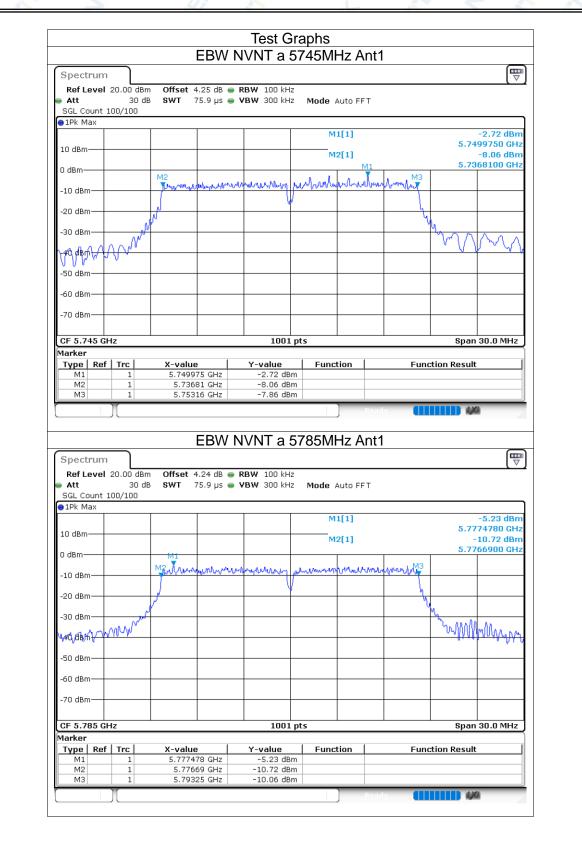
Page 46 of 74


Report No.: S23083004602005

Page 48 of 74

NTEK 北测®

Page 49 of 74


Page 50 of 74

Report No.: S23083004602005

10.2 -6DB EMISSION BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	а	5745	Ant1	16.35	0.5	Pass
NVNT	а	5785	Ant1	16.56	0.5	Pass
NVNT	а	5825	Ant1	16.56	0.5	Pass
NVNT	n20	5745	Ant1	17.55	0.5	Pass
NVNT	n20	5785	Ant1	17.58	0.5	Pass
NVNT	n20	5825	Ant1	17.43	0.5	Pass
NVNT	n40	5755	Ant1	36.3	0.5	Pass
NVNT	n40	5795	Ant1	36.18	0.5	Pass
NVNT	ac20	5745	Ant1	17.22	0.5	Pass
NVNT	ac20	5785	Ant1	17.61	0.5	Pass
NVNT	ac20	5825	Ant1	17.16	0.5	Pass
NVNT	ac40	5755	Ant1	36.42	0.5	Pass
NVNT	ac40	5795	Ant1	36	0.5	Pass
NVNT	ac80	5775	Ant1	75.48	0.5	Pass

NTEK Lin[®] Page 51 of 74

NTEK 比测[®] Page 52 of 74

Spectrum									E
Ref Level 2		Offect 4	22 dB 👄 🛛	RBW 100 kHz					(V
Att	30 dB			/BW 300 kHz	Mode A	Auto FFT			
SGL Count 10	00/100		•						
●1Pk Max									
					M	1[1]			-5.42 dBm
10 dBm						0[1]			199650 GHz
					INL.	2[1]			-10.86 dBm 166900 GHz
0 dBm			MIT						
-10 dBm		Mananal	mound	man man p	Julywhanna	pulmumber	Marria M3		
10 0.0				I V					
-20 dBm		y l					+ \		
20 dBm	N.	Y I						ha	
-30 dBm	a wh							Www	a.a A. a.
AAAAAAAAAAAAA	And							iγ°ν	WWW
•									
-50 dBm									
-60 dBm									
SO GDIT									
-70 dBm									
CF 5.825 GH	z			1001 p	ots			Spai	n 30.0 MHz
4arker									
Type Ref	Trc	X-value		Y-value	Funct	tion	Fund	tion Resul	t
M1	1	5.81996		-5.42 dBm					
M2 M3	1	5.8166		-10.86 dBm -11.21 dBm					
ino	1	0.0002		11.21 000	· · ·				
Chastering		El	BW NV	/NT n20	5745N) Pen /IHz An	dv 🚺		
Spectrum					5745N) noo /Hz An	dv 🚺		
Spectrum Ref Level 20 Att	0.00 dBm 35 dB	Offset 4.2	25 dB 😑 RE	3W 100 kHz			dy (11		
Ref Level 20	35 dB	Offset 4.2	25 dB 😑 RE				dy 🚺		
Ref Level 20 Att	35 dB	Offset 4.2	25 dB 😑 RE	3W 100 kHz			dy 🚺		
Ref Level 20 Att SGL Count 10	35 dB	Offset 4.2	25 dB 😑 RE	3W 100 kHz	Mode At		dv 🚺		-2.39 dBm
Ref Level 20 Att SGL Count 10	35 dB	Offset 4.2	25 dB 😑 RE	3W 100 kHz	Mode Au	uto FFT 1[1]	tt1	5.7	-2.39 dBm 474880 GHz
Ref Level 20 Att SGL Count 10 1Pk Max	35 dB	Offset 4.2	25 dB 😑 RE	3W 100 kHz	Mode Au Mi	uto FFT	tt1		-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 20 Att SGL Count 10 1Pk Max	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]			-2.39 dBm 474880 GHz
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	35 dB 000/1000	Offset 4.2	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au Mi	uto FFT 1[1] 2[1]	tr t1		-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 20 Att SGL Count 10 1Pk Max	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]			-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 20 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 21 Att SGL Count 11 SGL Count 11 11 IPk Max 10 dBm 10 0 dBm -10 dBm -20	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]			-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 21 Att SGL Count 10 IPk Max 10 dBm 10 dBm - -10 dBm - -20 dBm -	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 21 Att SGL Count 11 SGL Count 11 11 IPk Max 0 dBm 10 dBm - - -10 dBm - - -20 dBm - -	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 21 Att SGL Count 11 SGL Count 11 10 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm -	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 21 Att SGL Count 11 SGL Count 11 11 IPk Max 0 dBm 10 dBm - - -10 dBm - - -20 dBm - -	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 21 Att SGL Count 11 SGL Count 11 10 dBm 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -40 dBm -	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 21 Att SGL Count 11 SGL Count 11 10 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm -	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 21 Att SGL Count 11 SGL Count 11 10 dBm 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -40 dBm -	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 21 Att SGL Count 11 SGL Count 11 10 dBm 10 dBm 0 -10 dBm	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au M: M1	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 21 Att SGL Count 11 SGL Count 11 10 dBm 10 dBm 0 -10 dBm	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz BW 300 kHz	Mode Au Mi Mi	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm
Ref Level 21 Att SGL Count 11 SGL Count 11 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -40 dBm - -50 dBm - -60 dBm - -70 dBm -	35 dB 000/1000	Offset 4.2 SWT 75	25 dB 👄 RE .9 µs 👄 VI	3W 100 kHz 300 kHz	Mode Au Mi Mi	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm 362100 GHz
Ref Level 2// Att SGL Count 1// SGL Count 1// 10 dBm 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -30 dBm - -70 dBm -	35 dB 000/1000	Offset 4.2 SWT 75	25 dB • RE .9 μs • VE	3W 100 kHz BW 300 kHz	Mode Au Mi M1 M2 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm 362100 GHz
Ref Level 21 Att SGL Count 11 SGL Count 11 11 IPk Max 10 0 0 10 dBm - 0 0 0 -10 dBm - - 0 0 0 -20 dBm - - 0	35 dB 000/1000	Offset 4.2 SWT 75	25 dB ● RE .9 µs ● VE	3W 100 kHz BW 300 kHz	Mode Au Mi Mi Mi Mi Sts	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm 362100 GHz
Ref Level 2// Att SGL Count 1// SGL Count 1// 10 dBm 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -30 dBm - -70 dBm -	35 dB 000/1000	Offset 4.2 SWT 75	25 dB • RE .9 μs • VE	3W 100 kHz BW 300 kHz	Mode Au Mi Mi Mi Mi Mi Mi Mi Mi Mi Mi Mi Mi Mi	uto FFT 1[1] 2[1]		5.7	-2.39 dBm 474880 GHz -8.07 dBm 362100 GHz

Page 53 of 74

Report No.: S23083004602005

		-		VNT n20	2. 50.0				Ē
Spectrum									
Ref Level 2	0.00 dBm	Offset 4	1.24 dB 😑	RBW 100 kHz					
Att	30 dB	SWT 7	75.9 µs 👄	VBW 300 kHz	Mode A	uto FFT			
SGL Count 10	10/100								
1Pk Max									
					M1	[1]		-	-3.63 dBn
10 dBm						C 4 1		5	7899750 GH: -8.68 dBn
					112	[1]		5	-6.06 UBI
0 dBm		12		+ +		M1			
-10 dBm		John Some	mound	www.mannan,	materia	waymen	mound	M3	
-10 UBIII				V				1	
-20 dBm				-					
	ر بر							β	
-30 dBm				+ +				- m	
	M							V//	Marun
¥4.0°dBnb∽									- ALAN
-50 dBm									
-60 dBm				++			_		
-70 dBm				+ +					
CF 5.785 GH:	z			1001	pts			Sp	an 30.0 MHz
1arker									
Type Ref		X-value		Y-value	Functi	ion	F	unction Res	ult
M1	1	5.7899		-3.63 dBm					
M2	1		18 GHz	-8.68 dBn -9.22 dBn					
M3	1	5.793	76 GHz	-9.22 dBm	1				
	_	E	BW N	VNT n20	5825M	⊪ IHz A	nt1		4 40
Spectrum		E	BW N	VNT n20	〕 5825M	⊪ IHz A	nt1		
Ref Level 2		Offset 4	⊦.22 dB ●	RBW 100 kHz			nt1		
Ref Level 2 Att	30 dB	Offset 4	⊦.22 dB ●				nt1		4)44 [₩ ▽
Ref Level 2 Att SGL Count 10	30 dB	Offset 4	⊦.22 dB ●	RBW 100 kHz			nt1		4)44 (₩ ⊽
Ref Level 2 Att	30 dB	Offset 4	⊦.22 dB ●	RBW 100 kHz	Mode A	uto FFT	nt1		
Ref Level 2 Att SGL Count 10 1Pk Max	30 dB	Offset 4	⊦.22 dB ●	RBW 100 kHz	Mode A		nt1		-3.26 dBn
Ref Level 2 Att SGL Count 10	30 dB	Offset 4	⊦.22 dB ●	RBW 100 kHz	Mode A	uto FFT [1]	nt1	5	-3.26 dBn 8299750 GH:
Ref Level 2 Att SGL Count 10 1Pk Max	30 dB	Offset 4	⊦.22 dB ●	RBW 100 kHz	Mode A	uto FFT			-3.26 dBn
Ref Level 2 Att SGL Count 10 1Pk Max	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		5	-3.26 dBn 8299750 GH: -9.21 dBn
Ref Level 2 Att SGL Count 10 1Pk Max	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		5	-3.26 dBn 8299750 GH: -9.21 dBn
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		5	-3.26 dBn 8299750 GH: -9.21 dBn
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		5	-3.26 dBn 8299750 GH: -9.21 dBn
Ref Level 2 Att SGL Count 10 >IPk Max 10 dBm -10 dBm	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		M3	-3.26 dBn 8299750 GH; -9.21 dBn 8163300 GH;
Ref Level 2 Att SGL Count 10 IPk Max 10 10 dBm	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		M3	-3.26 dBn 8299750 GH; -9.21 dBn 8163300 GH;
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 10 dBm	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		M3	-3.26 dBn 8299750 GH: -9.21 dBn
Ref Level 2 Att SGL Count 10 >IPk Max 10 dBm -10 dBm	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		M3	-3.26 dBn 8299750 GH; -9.21 dBn 8163300 GH;
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 10 dBm	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		M3	-3.26 dBn 8299750 GH; -9.21 dBn 8163300 GH;
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		M3	-3.26 dBn 8299750 GH; -9.21 dBn 8163300 GH;
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		M3	-3.26 dBn 8299750 GH; -9.21 dBn 8163300 GH;
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	30 dB	Offset 4 SWT 7	.22 dB ● 75.9 µs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		M3	-3.26 dBn 8299750 GH; -9.21 dBn 8163300 GH;
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	30 dB	Offset 4 SWT 7	ŀ.22 dB ● 75.9 μs ●	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT [1] [1]		M3	-3.26 dBn 8299750 GH; -9.21 dBn 8163300 GH;
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	30 de 000/1000	Offset 4 SWT 7	ŀ.22 dB ● 75.9 μs ●	RBW 100 kHz VBW 300 kHz	Mode Ar	uto FFT [1] [1]		5 M3 More constrained of the second s	-3.26 dBn 8299750 GH: -9.21 dBn 8163300 GH:
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm -70 dBm -70 dBm	30 de 000/1000	Offset 4 SWT 7	ŀ.22 dB ● 75.9 μs ●	RBW 100 kHz VBW 300 kHz	Mode Ar	uto FFT [1] [1]		5 M3 More constrained of the second s	-3.26 dBn 8299750 GH; -9.21 dBn 8163300 GH;
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	30 d2 000/1000	M2	 22 dB 75.9 μs ,,η,Λιμη,Λι 	RBW 100 kHz VBW 300 kHz UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	Mode A	uto FF T		5 M3 C C C C C C C C C C C C C C C C C C	-3.26 dBn 8299750 GH: -9.21 dBn 8163300 GH:
Ref Level 2 Att SGL Count 10 SGL Count 10 IPk Max 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm - -70 dBm -	30 d£ 000/1000	N2 X-value	5.22 dB • .22 dB •	RBW 100 kHz VBW 300 kHz UUU MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Mode A	uto FF T		5 M3 More constrained of the second s	-3.26 dBn 8299750 GH: -9.21 dBn 8163300 GH:
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -60 dBm -70 dBm	30 d2 000/1000	оffset 4 SwT 7 Сариальный Х-value 5.8299	 22 dB 25.9 μs με μ	RBW 100 kHz VBW 300 kHz vww.h.m. vww.h.m. 1001 Y-value -3.26 dBm	Mode An M1 M2 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	uto FF T		5 M3 C C C C C C C C C C C C C C C C C C	-3.26 dBn 8299750 GH: -9.21 dBn 8163300 GH:
Ref Level 2 Att SGL Count 10 SGL Count 10 IPk Max 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm - -70 dBm -	30 d£ 000/1000	M2 X-value 5.8299 5.816:	5.22 dB • .22 dB •	RBW 100 kHz VBW 300 kHz UUU MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Mode A	uto FF T [1] [1] 		5 M3 C C C C C C C C C C C C C C C C C C	-3.26 dBn 8299750 GH: -9.21 dBn 8163300 GH:

NTEK 北测[®]

NTEK ILW[®] Page 54 of 74

Spectrum									
-	20.00 dBm	Offcot	4 95 db @	RBW 100 kH	17				(V
Att	20.00 dBm 30 dB			VBW 300 kH		Auto FFT			
SGL Count		1	49 🛥	. .	- noue				
●1Pk Max									
					M:	1[1]			-4.18 dBn
10 dBm									386960 GH
					M	2[1]			-10.15 dBn 367600 GH:
0 dBm		M1							307000 GH
-10 dBm	M	Swhappy	marghand	July Joshma	montal day	and gluow	Halphal	3	
-10 UBIII	(
-20 dBm				V	,			\	
	1							N	
-30 dBm	Murth							YVAN ANT	MARAMA
	A. Mart							ייץ	a a ll chailteacht
-50 dBm									
eo de									
-60 dBm									
-70 dBm									_
CF 5.755 G	Hz	I		1001	pts		1	Spai	n 60.0 MHz
Marker									
Type Ref	Trc	X-value	1	Y-value	Funct	ion	Fund	tion Resul	lt
M1	1	5.73869	96 GHz	-4.18 dB	m				
M2	1	5.7367		-10.15 dB					
M3	1	5.7730)6 GHz	-9.96 dBi	m				
)			
				<u></u>					
		E	BW N\	/NT n40	5795N	, 1Hz An	t1		
Spectrum		E	BW N\	/NT n40	5795N	, 1Hz An	t1		Ē
Spectrum Ref Level						/ 1Hz An	t1		
Spectrum Ref Level Att		Offset 4	.23 dB 👄 F	RBW 100 kH:	2		t1		[⊞ ⊽
Ref Level	20.00 dBm 35 dB	Offset 4	.23 dB 👄 F		2		t1		
Ref Level Att	20.00 dBm 35 dB	Offset 4	.23 dB 👄 F	RBW 100 kH:	2		t1		∏
Ref Level Att SGL Count	20.00 dBm 35 dB	Offset 4	.23 dB 👄 F	RBW 100 kH:	2 2 Mode A		t1		-4.86 dBn
Ref Level Att SGL Count	20.00 dBm 35 dB	Offset 4	.23 dB 👄 F	RBW 100 kH:	2 Mode A	Auto FFT	t1		-4.86 dBn 074680 GH:
Ref Level Att SGL Count 1Pk Max	20.00 dBm 35 dB	Offset 4	.23 dB 👄 F	RBW 100 kH:	2 Mode A	auto FFT	t1		-4.86 dBn 074680 GH -10.25 dBn
Ref Level Att SGL Count 1Pk Max	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 μs ● N	RBW 100 kH:	2 Mode A	Auto FFT	t1		-4.86 dBn 074680 GH:
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 μs ● N	RBW 100 kH:	2 2 Mode A M2	Auto FFT		5.7	-4.86 dBn 074680 GH -10.25 dBn
Ref Level Att SGL Count 1Pk Max	20.00 dBm 35 dB 1000/1000	Offset 4	.23 dB ● F 2.7 μs ● N	RBW 100 kH:	2 2 Mode A M2	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 μs ● N	RBW 100 kH:	2 2 Mode A M2	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn
Ref Level Att SGL Count • 1Pk Max 10 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 μs ● N	RBW 100 kH:	2 2 Mode A M2	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn
Ref Level Att SGL Count • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 µs ● N	RBW 100 kH:	2 2 Mode A M2	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn 770000 GH
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 µs ● N	RBW 100 kH:	2 2 Mode A M2	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn 770000 GH
Ref Level Att SGL Count • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 µs ● N	RBW 100 kH:	2 2 Mode A M2	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn
Ref Level Att SGL Count • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 µs ● N	RBW 100 kH:	2 2 Mode A M2	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn 770000 GH
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 µs ● N	RBW 100 kH:	2 2 Mode A M2	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn 770000 GH
Ref Level Att SGL Count • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 µs ● N	RBW 100 kH:	2 2 Mode A M2	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn 770000 GH
Ref Level Att SGL Count • 1Pk Max 10 dBm - 10 dBm - 20 dBm - 30 dBm - 30 dBm - 50 dBm - 60 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 µs ● N	RBW 100 kH:	2 2 Mode A M:	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn 770000 GH
Ref Level Att SGL Count I O dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 µs ● N	RBW 100 kH:	2 2 Mode A M:	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn 770000 GH
Ref Level Att SGL Count • 1Pk Max 10 dBm - 10 dBm - 20 dBm - 30 dBm - 30 dBm - 50 dBm - 60 dBm - 70 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 µs ● N	RBW 100 kHz /BW 300 kHz	2 Mode A M: M:	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH: -10.25 dBn 770000 GH:
Ref Level Att SGL Count • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 µs ● N	RBW 100 kH:	2 Mode A M: M:	Auto FFT L[1] 2[1]		5.7	-4.86 dBn 074680 GH -10.25 dBn 770000 GH
Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.795 G Marker	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB • F 2.7 μs • \	RBW 100 kH yBW 300 kH yBW 300 kH 100 kH 10	2 Mode A M: M: pts	Auto FFT		5.7	-4.86 dBn 074680 GH: -10.25 dBn 770000 GH:
Ref Level Att SGL Count • 1Pk Max • 1Pk Max 10 dBm • 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.795 G Marker Type	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB ● F 2.7 μs ● \	2BW 100 kH 2BW 300 kH 300 kH	2 Mode A M: M2 pts Funct	Auto FFT		5.7	-4.86 dBn 074680 GH: -10.25 dBn 770000 GH:
Ref Level Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB • F 2.7 μs • V	RBW 100 kHz /BW 300 kHz /BW 3	2 Mode A M: M2 pts pts	Auto FFT		5.7	-4.86 dBn 074680 GH: -10.25 dBn 770000 GH:
Ref Level Att SGL Count • 1Pk Max • 1Pk Max 10 dBm • 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.795 G Marker Type	20.00 dBm 35 dB 1000/1000	Offset 4 SWT 13	.23 dB • F 2.7 μs • \ 	2BW 100 kH 2BW 300 kH 300 kH	2 Mode A M: M: pts Funct m	Auto FFT		5.7	-4.86 dBn 074680 GH: -10.25 dBn 770000 GH:

NTEK III Page 55 of 74

Spectrum	<u> </u>								E
	20.00 dBn	n Offset 4.2	25 dB 😑 1	RBW 100 kHz					ι 🗸
Att	30 dB	B SWT 75	.9 µs 😑	VBW 300 kHz	Mode A	uto FFT			
SGL Count	100/100								
∋1Pk Max									
					M	1[1]		E 7.	-2.39 dBm 474880 GHz
10 dBm		+ +			MS	2[1]		3.7	-8.25 dBm
0 dBm					M1			5.73	363600 GHz
U UBIII		M2	1		A K	. A B.	M3	}	
-10 dBm		Junamuna	mallytown	and an and the second	who wrear and	ሆኑ" የጥብላት ህ	me www.hant		
				I ₩					
-20 dBm	1	4						h.	
-30 dBm	^"							n.	
	ender							1 WW	mm
e40 dBm		+		+					- •• // 1
50 dp									
-50 dBm									
-60 dBm				<u> </u>					
-70 dBm		+ +		+ +					
CF 5.745 G	Hz			1001 p	ts			Spar	n 30.0 MHz
larker			4						
Type Ref M1	Trc 1	X-value 5.747488		Y-value -2.39 dBm	Funct	ion	Fun	ction Resul	t
M2	1	5.73636		-8.25 dBm					
M3	1	5.75358		-7.84 dBm					
	11								
Spectrum		EB	W NV	/NT ac20	5785N) MHz A	nt1		•
Spectrum					5785N) MHz A	nt1		
		n Offset 4.2	24 dB 👄	'NT ac20 RBW 100 kHz YBW 300 kHz			nt1		
Ref Level	20.00 dBn 30 dB	n Offset 4.2	24 dB 👄	RBW 100 kHz			nt1		
Ref Level Att	20.00 dBn 30 dB	n Offset 4.2	24 dB 👄	RBW 100 kHz			nt1		
Ref Level Att SGL Count	20.00 dBn 30 dB	n Offset 4.2	24 dB 👄	RBW 100 kHz	Mode A		ntv		-4.64 dBm
Ref Level Att SGL Count	20.00 dBn 30 dB	n Offset 4.2	24 dB 👄	RBW 100 kHz	Mode A	Auto FFT	nt1	5.76	-4.64 dBm 399450 GHz
Ref Level Att SGL Count 1Pk Max	20.00 dBn 30 dB	n Offset 4.2	24 dB 👄	RBW 100 kHz	Mode A	Auto FFT	nt1		-4.64 dBm 399450 GHz -9.22 dBm
Ref Level Att SGL Count	20.00 dBn 30 dB	n Offset 4.2 B SWT 75	24 dB 👄	RBW 100 kHz	Mode A	Auto FFT 1[1] 2[1]		5.7	-4.64 dBm 399450 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	20.00 dBn 30 dB	n Offset 4.2	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A	Auto FFT	ntv	5.7	-4.64 dBm 399450 GHz -9.22 dBm
Ref Level Att SGL Count 1Pk Max	20.00 dBn 30 dB	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M1 M2	Auto FFT		5.7	-4.64 dBm 399450 GHz -9.22 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	20.00 dBn 30 dB	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M1 M2	Auto FFT		5.7	-4.64 dBm 399450 GHz -9.22 dBm
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBn 30 df 100/100	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M1 M2	Auto FFT		3	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBn 30 df 100/100	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M1 M2	Auto FFT		3	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBn 30 df 100/100	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M1 M2	Auto FFT		3	-4.64 dBm 399450 GHz -9.22 dBm
Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBn 30 df 100/100	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M1 M2	Auto FFT		3	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBn 30 df 100/100	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M1 M2	Auto FFT		3	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	20.00 dBn 30 df 100/100	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M1 M2	Auto FFT		3	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBn 30 df 100/100	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M1 M2	Auto FFT		3	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	20.00 dBn 30 df 100/100	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M1 M2	Auto FFT		3	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBn 30 df 100/100	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M1 M2	Auto FFT		3	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBn 30 df 100/100	n Offset 4.: B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	۸ Mode ۱۱ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰	Auto FFT		5.7 3	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 5.785 G Marker	20.00 dBn 30 dB 100/100	n Offset 4.2 B SWT 75	24 dB 🖷 1	RBW 100 kHz VBW 300 kHz	Mode A M3 M2 M2	Auto FF T [[1] 2[1] M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2		5.7	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm Type	20.00 dBm 30 dt 100/100	n Offset 4.; 8 SWT 75	24 dB • .9 µs • мульти	RBW 100 kHz VBW 300 kHz	Mode A M3 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	Auto FF T [[1] 2[1] M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2		5.7 3	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count SGL Count IPk Max 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBn 30 db 100/100 www Hz 1 Trc 1 1	n Offset 4.3 B SWT 75	24 dB •	RBW 100 kHz VBW 300 kHz 	Mode A M3 M2 M2	Auto FF T [[1] 2[1] M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2		5.7	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm Type	20.00 dBm 30 dt 100/100	n Offset 4.; 8 SWT 75	24 dB ● 1 .9 µs ● 1 ///////////////////////////////////	RBW 100 kHz VBW 300 kHz	Mode A M3 M2 kc,r/\uuulkay ts	Auto FF T [[1] 2[1] M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2		5.7	-4.64 dBm 399450 GHz -9.22 dBm 761800 GHz

NTEK ILW[®] Page 56 of 74

				/NT ac20	, 0020				(m.)
Spectrum									
Ref Level 20				RBW 100 kHz					
SGL Count 100	30 dB /100	SWT 7	(2'à hz 😑	VBW 300 kHz	Mode	Auto FFT			
100, 100, 100, 100, 100, 100, 100, 100,	100								
				1	м	1[1]			-3.37 dBm
10 40								5.8	299750 GHz
10 dBm					M	2[1]			-9.12 dBm
0 dBm						M1		5.8	164500 GHz
		M2			1.1	L.A	M. Augurtan MS	3	
-10 dBm		Judialan	hunkanna	Wermany	Man Alman A	איייאאנעיער בייזאא	when the start of	4	
-20 dBm				I V					
-20 dBm	ŕ							٩.	
-30 dBm	5							MA .	
an an Ma	w I							I WA	h m
,4a,6Bm								- \v	W W
-50 dBm									
-50 ubiii									
-60 dBm				+					
-70 dBm				+ +					
CF 5.825 GHz				1001	pts			Spar	n 30.0 MHz
larker									
Type Ref T		X-value		Y-value	Func	tion	Fun	ction Resul	t
M1 M2	1	5.8299	75 GHz 45 GHz	-3.37 dBr -9.12 dBr					
M3	1		45 GH2 61 GHz	-9.32 dBr					
	-	0.000		5100 001					
Spectrum	ר	E	BW N∖	/NT ac40) 5755) MHz A	nt1		۹ (آ
Spectrum Ref Level 20	.00 dBm			/NT ac40) Re MHz A	adv 🚺		
Ref Level 20 Att	30 dB	Offset	4.25 dB 👄		Z	MHZ A			
Ref Level 20 Att SGL Count 100,	30 dB	Offset	4.25 dB 👄	RBW 100 kH	Z				
Ref Level 20 Att	30 dB	Offset	4.25 dB 👄	RBW 100 kH	z z Mode	Auto FFT			
Ref Level 20 Att SGL Count 100,	30 dB	Offset	4.25 dB 👄	RBW 100 kH	z z Mode				-4.99 dBm
Ref Level 20 Att SGL Count 100,	30 dB	Offset	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT			-4.99 dBm 725020 GHz
Ref Level 20 Att SGL Count 100 1Pk Max	30 dB	Offset	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT			-4.99 dBm
Ref Level 20 Att SGL Count 100, 1Pk Max	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT			-4.99 dBm 725020 GHz -10.66 dBm
Ref Level 20 Att SGL Count 100 1Pk Max	30 dB	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT			-4.99 dBm 725020 GHz -10.66 dBm
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 0 dBm 0 0	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT			-4.99 dBm 725020 GHz -10.66 dBm
Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 0 0 dBm 0 0	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT			-4.99 dBm 725020 GHz -10.66 dBm
Ref Level 20 Att SGL Count 100, SGL Count 100, 100, IPk Max 0 0 dBm	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT			-4.99 dBm 725020 GHz -10.66 dBm
Ref Level 20 Att SGL Count 100 SGL Count 100 100 IPk Max 10 dBm 10 0 dBm -10 dBm -10	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT		5.7	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100, SGL Count 100, 100, IPk Max 0 0 dBm	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT			-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100, SGL Count 100, 100, IPk Max 0 0 dBm	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT		5.7	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100, SGL Count 100, 100, IPk Max 0 0 dBm	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT		5.7	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100 SGL Max 10 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm -	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT		5.7	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100, SGL Count 100, 100, IPk Max 100, 100, 10 dBm	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT		5.7	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100 SGL Count 100 100 IPk Max 10 dBm 10 0 dBm	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT		5.7	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100 SGL Max 100 100 10 dBm	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	z Z Mode M	Auto FFT		5.7	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100 SGL Count 100 100 IPk Max 10 dBm 10 dBm	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	Z Mode M M	Auto FFT		5.7:	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100 SGL Count 100 100 IPk Max 10 dBm 10 dBm	30 dB /100	Offset SWT 1	4.25 dB 👄	RBW 100 kH	Z Mode M M	Auto FFT		5.7:	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100 SGL Count 100 100 IPk Max 10 dBm 0 dBm	30 dB /100	Offset SWT 1	4.25 dB 32.7 μs	RBW 100 kH	z Mode M M M ptpov/ b M	Auto FFT 1[1] 2[1]		5.7	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100 SGL Count 100 100 IPk Max 10 dBm 10 dBm	30 dB /100	Offset SWT 1	4.25 dB .32.7 μs 	RBW 100 kH	z Mode	Auto FFT 1[1] 2[1]		5.7:	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100 1Pk Max 100 100 10 dBm	30 dB /100	Offset SWT 1 ورویدیاللاس پرویداللاس پرویدیاللاس پرویدیاللاس پرویدیاللاس پرویدیاللاس پرویدیاللاس پرویدیاللاس پرویدیاللاس	4.25 dB 32.7 μ5 4.27 μ5 4.27 μ5 4.27 μ5 4.27 μ5 4.27 μ5 4.27 μ5 4.27 μ5 4.27 μ5 4.27 μ5 4.25 μ5	RBW 100 kH VBW 300 kH 100 kH	pts	Auto FFT 1[1] 2[1]		5.7	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz
Ref Level 20 Att SGL Count 100 SGL Count 100 100 IPk Max 10 dBm 10 dBm	30 dB /100	Offset SWT 1 ورویدیاللاس پرویداللاس پرویدیاللاس پرویدیاللاس پرویدیاللاس پرویدیاللاس پرویدیاللاس پرویدیاللاس پرویدیاللاس پرویدیال	4.25 dB	RBW 100 kH VBW 300 kH	pts	Auto FFT 1[1] 2[1]	Fun	5.7	-4.99 dBm 725020 GHz -10.66 dBm 367600 GHz

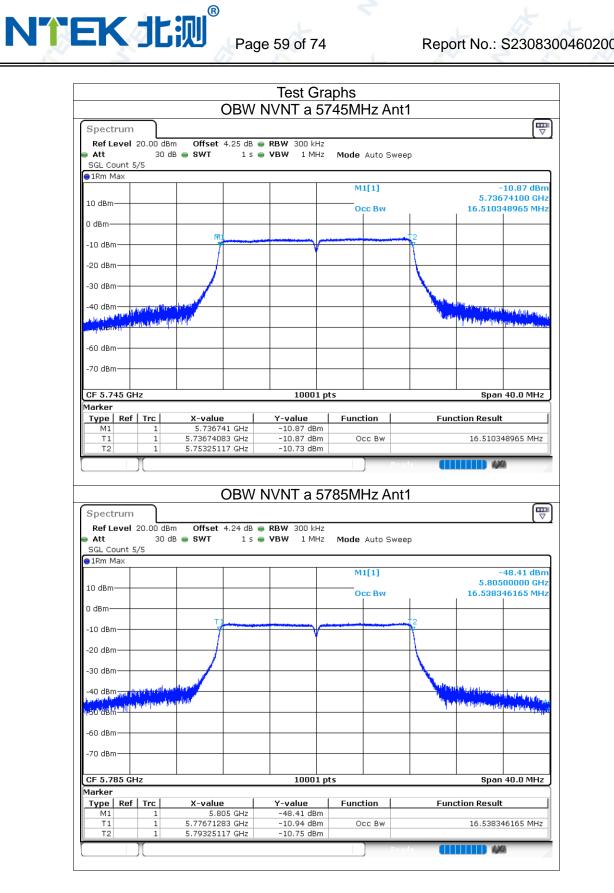
Page 57 of 74

NTEK 北测[®]

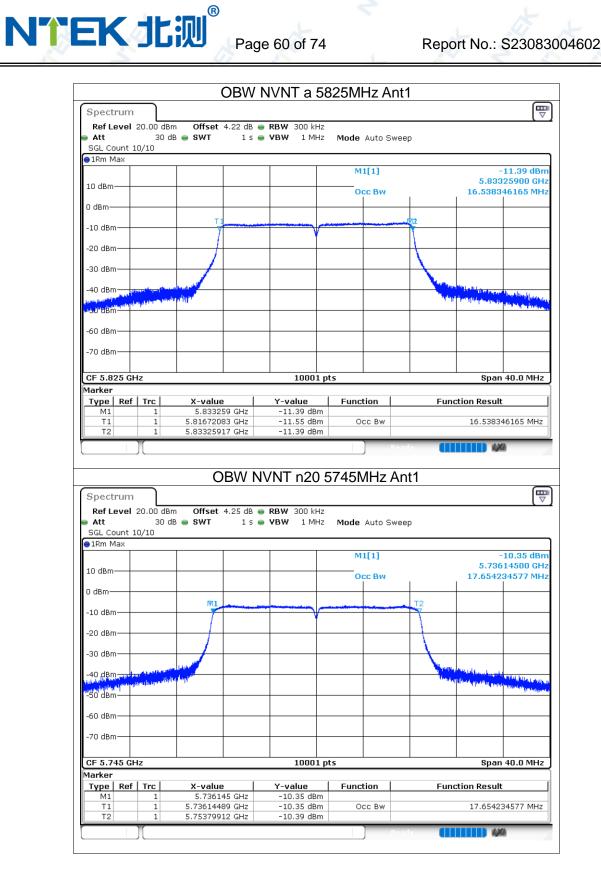
Report No.: S23083004602005

				/NT ac40	0100				
Spectrum	ı)								
	Г І 20.00 dB	m Offset	4.23 dB 👄	RBW 100 kH	z				U.
Att	30 d			VBW 300 kH		Auto FFT			
SGL Count	100/100								
1Pk Max		1							
					м	1[1]		5.7	-5.18 dBm 786960 GHz
10 dBm		-	+	+ +	м	2[1]			-10.64 dBm
0 dBm									771800 GHz
o ubili		M2 1						NI3	
-10 dBm		- John Withow Kongo	m berganatoretes	- moundaria	wyerdywellywyfyd	with white which the second	dollars bronder		
-20 dBm		1							
-20 UBIII				The second se					
-30 dBm	m AV			++				MILLIN	hat i
₩0.4₽₽0 <u>₩1</u>	MW NV							L WW	MMAAAAAA
Hen deuti-in-	. Mr.							1	an a bu
-50 dBm				+					
-60 dBm			1						
-70 dBm				↓					
CF 5.795 G	Hz	1		1001	ots	1	1	Spar	n 60.0 MHz
1arker									
Type Ref		X-valu		Y-value	Func	tion	Fun	iction Resul	t 🔤
M1 M2	1		596 GHz 718 GHz	-5.18 dBn -10.64 dBn					
M3	1		318 GHz	-10.90 dBn					
			1						
Cur e churun		E	BW NV	/NT ac80) Per	nt1	4	
	L 20.00 dB	m Offset	4.24 dB 🖷	RBW 100 kH	5775I		nt1		
Ref Level Att	l 20.00 dB 30 d	m Offset	4.24 dB 🖷		5775I) DATE OF T	nt1		
Ref Level	l 20.00 dB 30 d	m Offset	4.24 dB 🖷	RBW 100 kH	5775I		nt1		
Ref Level Att SGL Count	l 20.00 dB 30 d	m Offset	4.24 dB 🖷	RBW 100 kH	5775 ² Mode		ndv 🚺	••••••	₩ (₩)
Ref Level Att SGL Count	l 20.00 dB 30 d	m Offset	4.24 dB 🖷	RBW 100 kH	2 2 2 Mode	Auto FFT	ndv 🚺		-7.77 dBm 798740 GHz
Ref Level Att SGL Count 1Pk Max	l 20.00 dB 30 d	m Offset	4.24 dB 🖷	RBW 100 kH	2 2 2 Mode	Auto FFT	ntt		-7.77 dBm 798740 GHz -12.85 dBm
Ref Level Att SGL Count	l 20.00 dB 30 d	m Offset	4.24 dB 🖷	RBW 100 kH	2 2 2 Mode	Auto FFT 1[1] 2[1]	nt1		-7.77 dBm 798740 GHz
Ref Level Att SGL Count 1Pk Max	I 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	• RBW 100 kH • VBW 300 kH	2 2 Mode M	Auto FFT 1[1] 2[1]	м	5.	-7.77 dBm 798740 GHz -12.85 dBm
Ref Level Att SGL Count TPk Max T0 dBm O dBm -10 dBm	I 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	RBW 100 kH	2 2 Mode M	Auto FFT 1[1] 2[1]	м	5.	-7.77 dBm 798740 GHz -12.85 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	I 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	• RBW 100 kH • VBW 300 kH	2 2 Mode M	Auto FFT 1[1] 2[1]	м	5.	-7.77 dBm 798740 GHz -12.85 dBm
Ref Level Att SGL Count TPk Max T0 dBm O dBm -10 dBm	I 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	• RBW 100 kH • VBW 300 kH	2 2 Mode M	Auto FFT 1[1] 2[1]	м	5.	-7.77 dBm 798740 GHz -12.85 dBm
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	I 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	• RBW 100 kH • VBW 300 kH	2 2 Mode M	Auto FFT 1[1] 2[1]	м	5. M3	-7.77 dBm 798740 GHz -12.85 dBm 737320 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	I 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	• RBW 100 kH • VBW 300 kH	2 2 Mode M	Auto FFT 1[1] 2[1]	м	5. M3	-7.77 dBm 798740 GHz -12.85 dBm 737320 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	I 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	• RBW 100 kH • VBW 300 kH	2 2 Mode M	Auto FFT 1[1] 2[1]	м	5. M3	-7.77 dBm 798740 GHz -12.85 dBm 737320 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	I 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	• RBW 100 kH • VBW 300 kH	2 2 Mode M	Auto FFT 1[1] 2[1]	м	5. M3	-7.77 dBm 798740 GHz -12.85 dBm
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	I 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	• RBW 100 kH • VBW 300 kH	2 2 Mode M	Auto FFT 1[1] 2[1]	м	5. M3	-7.77 dBm 798740 GHz -12.85 dBm 737320 GHz
Ref Level Att SGL Count SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	I 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	• RBW 100 kH • VBW 300 kH	2 2 Mode M	Auto FFT 1[1] 2[1]	м	5. M3	-7.77 dBm 798740 GHz -12.85 dBm 737320 GHz
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	I 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	• RBW 100 kH • VBW 300 kH	2 2 Mode M	Auto FFT 1[1] 2[1]	м	5. M3	-7.77 dBm 798740 GHz -12.85 dBm 737320 GHz
Ref Level Att SGL Count SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm	1 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	RBW 100 kH	2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Auto FFT 1[1] 2[1]	м	5.	-7.77 dBm 798740 GHz -12.85 dBm 737320 GHz
Ref Level Att SGL Count SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -70 dBm	1 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB • 265.5 µs •	• RBW 100 kH • VBW 300 kH	2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Auto FFT 1[1] 2[1]	м	5.	-7.77 dBm 798740 GHz -12.85 dBm 737320 GHz
Ref Level Att SGL Count SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm	1 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB =	RBW 100 kH	22 Mode	Auto FFT 1[1] 2[1]	M2 triturtuduly	5.	-7.77 dBm 798740 GHz -12.85 dBm 737320 GHz
Ref Level Att SGL Count SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm	1 20.00 dB 30 d 100/100	m Offset B SWT	4.24 dB 265.5 µs 4.24 dB 4.24 dB 4.25 LS µs 4.24 dB 4.26 LS µs 4.24 dB 4.24	RBW 100 kH VBW 300 kH	57751	Auto FFT 1[1] 2[1]	M2 triturtuduly	5.	-7.77 dBm 798740 GHz -12.85 dBm 737320 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -70 dBm CF 5.775 G Marker Type	1 20.00 dB 30 d 100/100 M Hz Hz f Trc	m Offset B SWT	4.24 dB 265.5 µs 4	RBW 100 kH VBW 300 kH	57751	Auto FFT 1[1] 2[1]	M2 triturtuduly	5.	-7.77 dBm 798740 GHz -12.85 dBm 737320 GHz

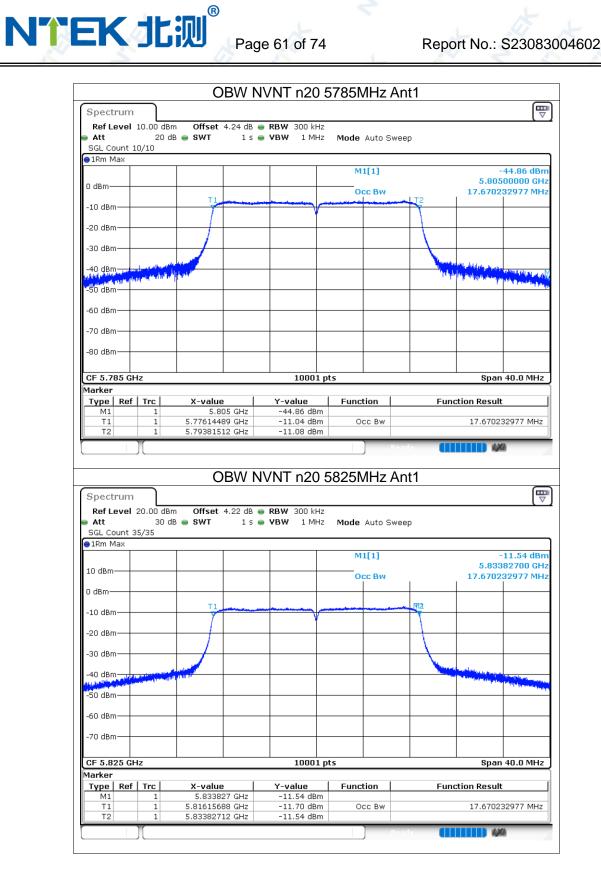
The Area Area

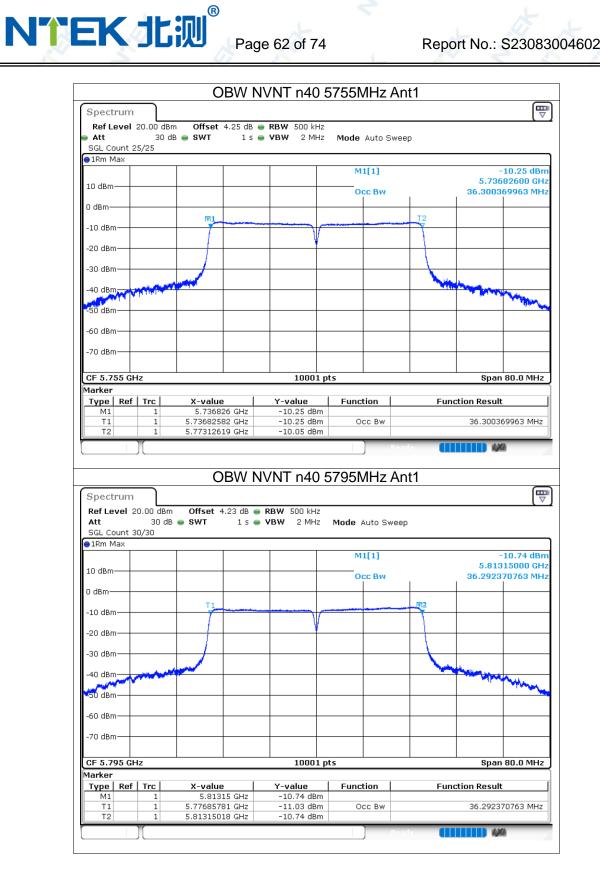

Page 58 of 74

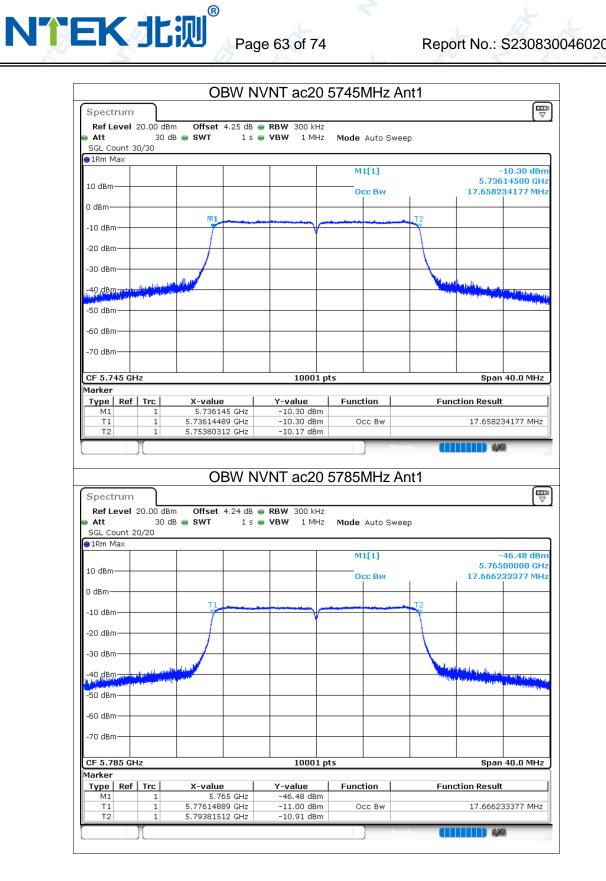
Report No.: S23083004602005

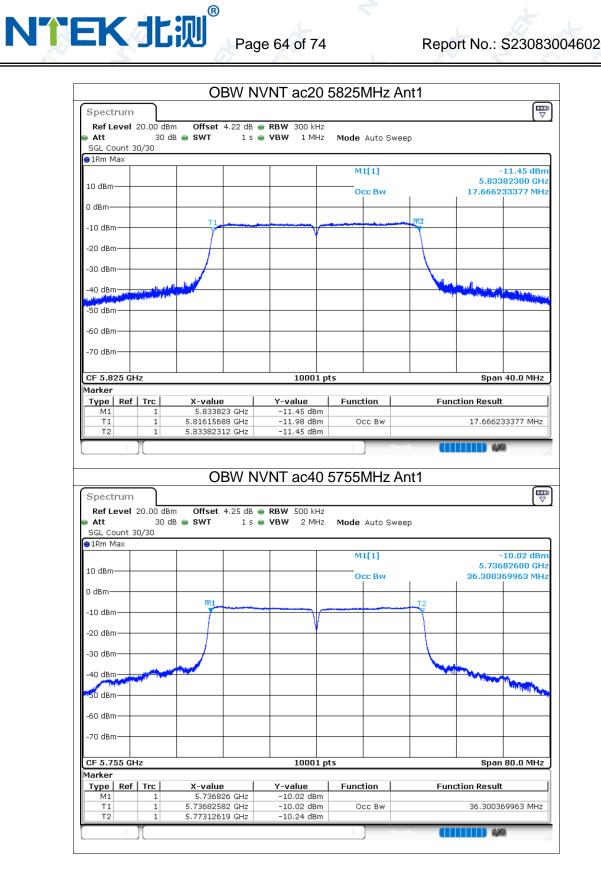

10.3 OCCUPIED CHANNEL BANDWIDTH

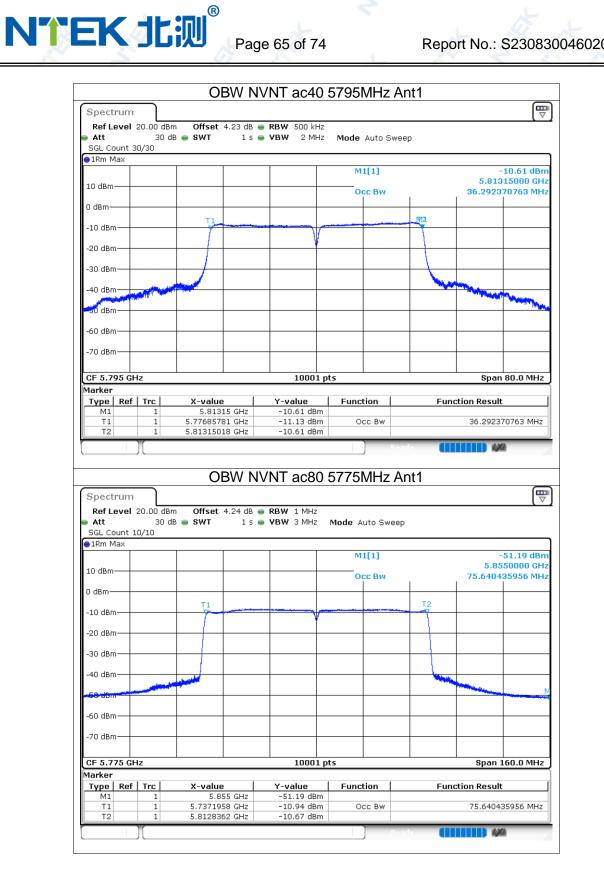
Condition	Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Verdict
NVNT	а	5745	Ant1	5744.996	16.51	Pass
NVNT	а	5785	Ant1	5784.982	16.538	Pass
NVNT	а	5825	Ant1	5824.99	16.538	Pass
NVNT	n20	5745	Ant1	5744.972	17.654	Pass
NVNT	n20	5785	Ant1	5784.98	17.67	Pass
NVNT	n20	5825	Ant1	5824.992	17.67	Pass
NVNT	n40	5755	Ant1	5754.976	36.3	Pass
NVNT	n40	5795	Ant1	5795.004	36.292	Pass
NVNT	ac20	5745	Ant1	5744.974	17.658	Pass
NVNT	ac20	5785	Ant1	5784.982	17.666	Pass
NVNT	ac20	5825	Ant1	5824.99	17.666	Pass
NVNT	ac40	5755	Ant1	5754.976	36.3	Pass
NVNT	ac40	5795	Ant1	5795.004	36.292	Pass
NVNT	ac80	5775	Ant1	5775.016	75.64	Pass


Page 59 of 74


Page 60 of 74

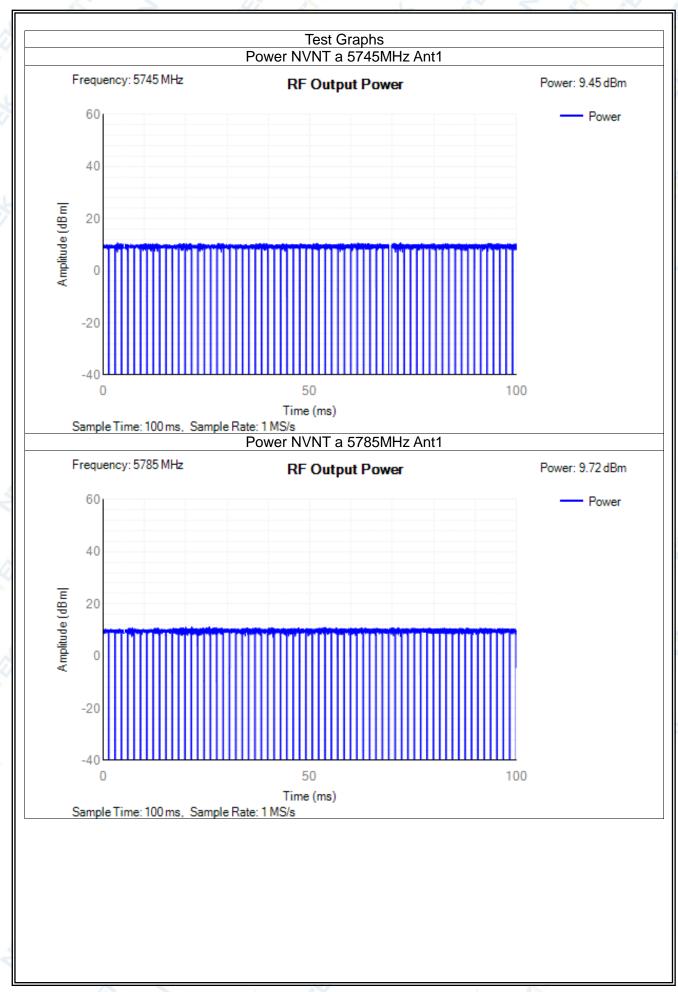

Page 61 of 74


Page 62 of 74


Page 63 of 74

Page 64 of 74

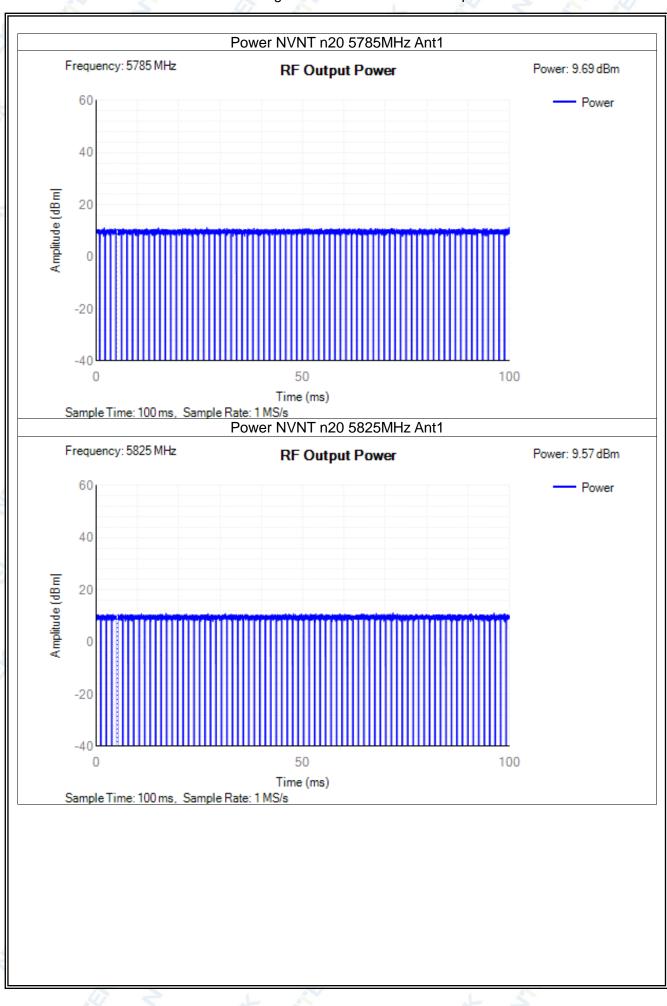
Page 65 of 74

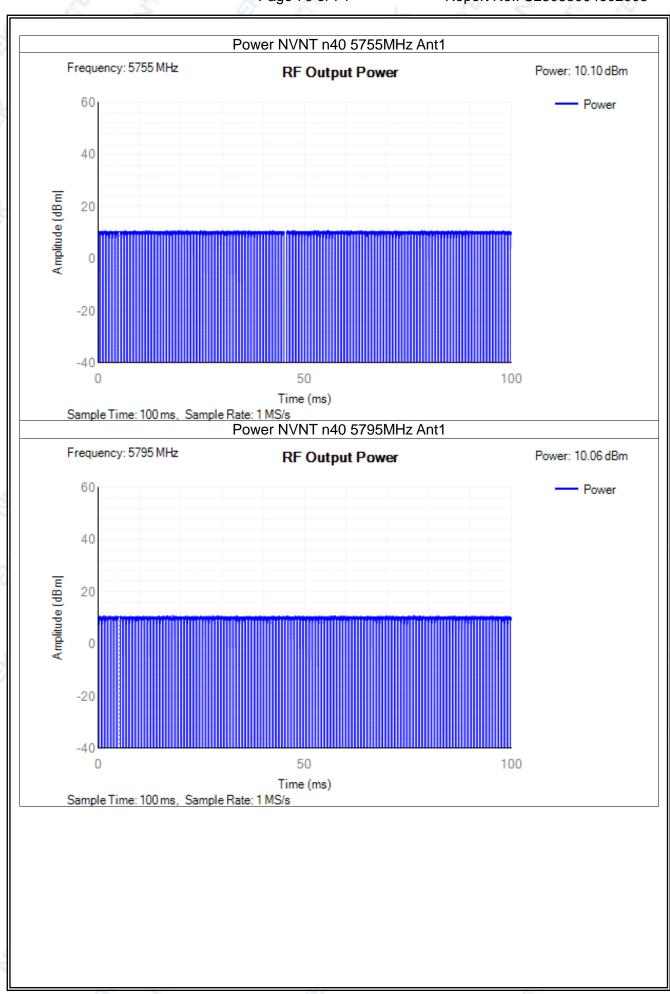

Page 66 of 74

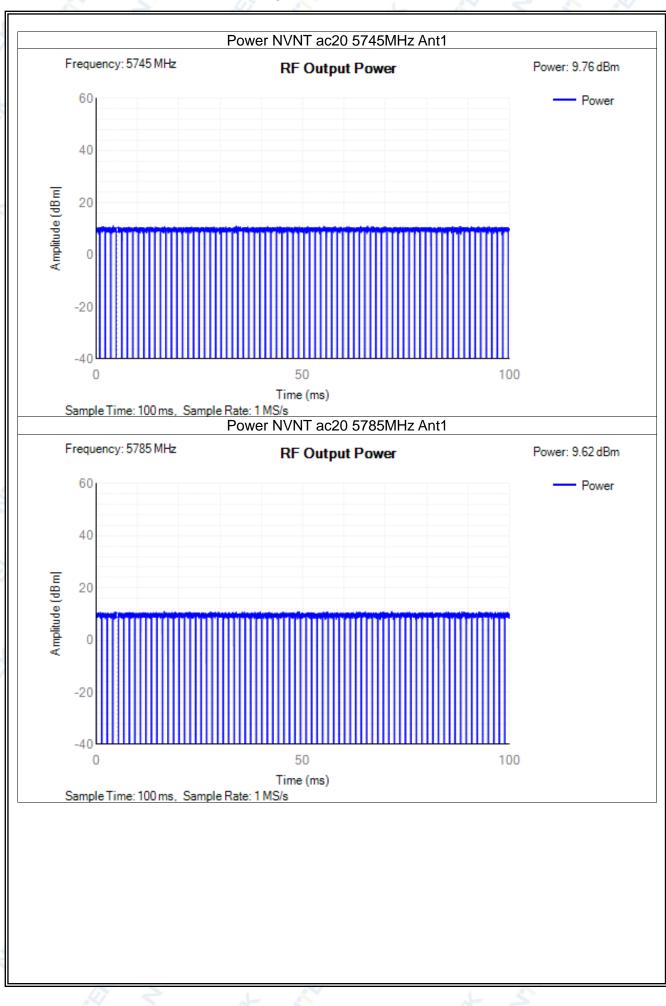
Report No.: S23083004602005

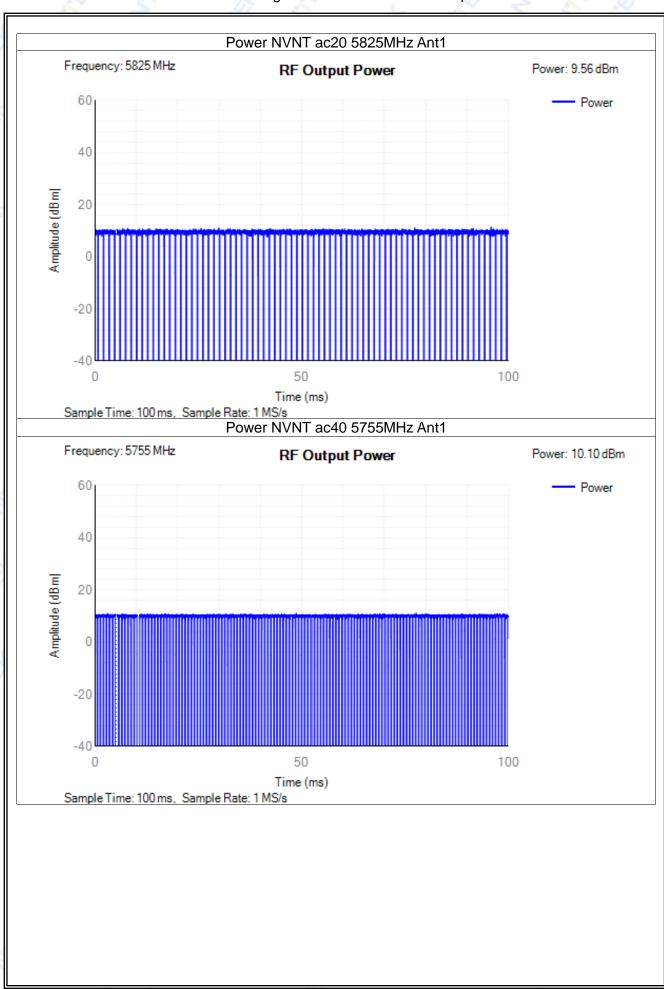

10.4 RF OUTPUT POWER

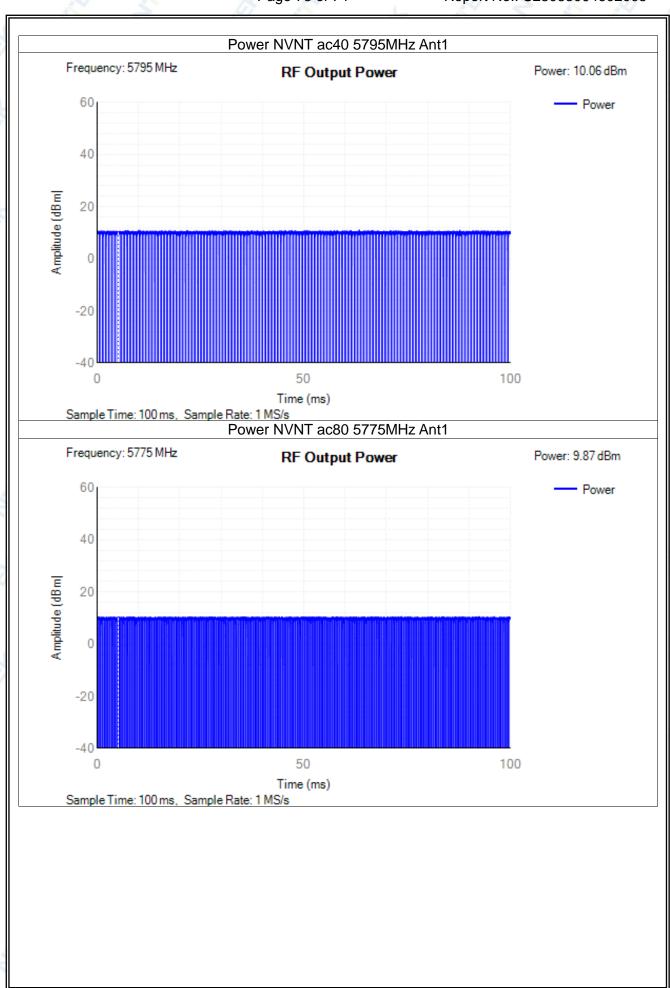
Condition	Mode	Frequency (MHz)	Antenna	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	а	5745	Ant1	9.45	65	10.95	13.98	Pass
NVNT	а	5785	Ant1	9.72	65	11.22	13.98	Pass
NVNT	а	5825	Ant1	9.59	66	11.09	13.98	Pass
NVNT	n20	5745	Ant1	9.82	77	11.32	13.98	Pass
NVNT	n20	5785	Ant1	9.69	76	11.19	13.98	Pass
NVNT	n20	5825	Ant1	9.57	76	11.07	13.98	Pass
NVNT	n40	5755	Ant1	10.1	137	11.6	13.98	Pass
NVNT	n40	5795	Ant1	10.06	136	11.56	13.98	Pass
NVNT	ac20	5745	Ant1	9.76	76	11.26	13.98	Pass
NVNT	ac20	5785	Ant1	9.62	75	11.12	13.98	Pass
NVNT	ac20	5825	Ant1	9.56	76	11.06	13.98	Pass
NVNT	ac40	5755	Ant1	10.1	135	11.6	13.98	Pass
NVNT	ac40	5795	Ant1	10.06	135	11.56	13.98	Pass
NVNT	ac80	5775	Ant1	9.87	225	11.37	13.98	Pass
HVLT	а	5745	Ant1	9.76	65	11.26	13.98	Pass
HVLT	а	5785	Ant1	9.79	65	11.29	13.98	Pass
HVLT	а	5825	Ant1	9.76	66	11.26	13.98	Pass
HVLT	n20	5745	Ant1	9.71	77	11.21	13.98	Pass
HVLT	n20	5785	Ant1	8.17	76	9.67	13.98	Pass
HVLT	n20	5825	Ant1	8.20	76	9.7	13.98	Pass
HVLT	n40	5755	Ant1	8.17	137	9.67	13.98	Pass
HVLT	n40	5795	Ant1	8.12	136	9.62	13.98	Pass
HVLT	ac20	5745	Ant1	8.09	76	9.59	13.98	Pass
HVLT	ac20	5785	Ant1	8.04	75	9.54	13.98	Pass
HVLT	ac20	5825	Ant1	8.01	76	9.51	13.98	Pass
HVLT	ac40	5755	Ant1	7.96	135	9.46	13.98	Pass
HVLT	ac40	5795	Ant1	7.93	135	9.43	13.98	Pass
HVLT	ac80	5775	Ant1	7.90	225	9.4	13.98	Pass
LVHT	а	5745	Ant1	7.79	65	9.29	13.98	Pass
LVHT	а	5785	Ant1	7.82	65	9.32	13.98	Pass
LVHT	а	5825	Ant1	7.79	66	9.29	13.98	Pass
LVHT	n20	5745	Ant1	7.74	77	9.24	13.98	Pass
LVHT	n20	5785	Ant1	8.17	76	9.67	13.98	Pass
LVHT	n20	5825	Ant1	8.20	76	9.7	13.98	Pass
LVHT	n40	5755	Ant1	8.17	137	9.67	13.98	Pass
LVHT	n40	5795	Ant1	8.12	136	9.62	13.98	Pass
LVHT	ac20	5745	Ant1	8.09	76	9.59	13.98	Pass
LVHT	ac20	5785	Ant1	8.04	75	9.54	13.98	Pass
LVHT	ac20	5825	Ant1	8.01	76	9.51	13.98	Pass
LVHT	ac40	5755	Ant1	7.96	135	9.46	13.98	Pass
LVHT	ac40	5795	Ant1	7.93	135	9.43	13.98	Pass
LVHT	ac80	5775	Ant1	7.90	225	9.4	13.98	Pass


Page 67 of 74


Page 68 of 74

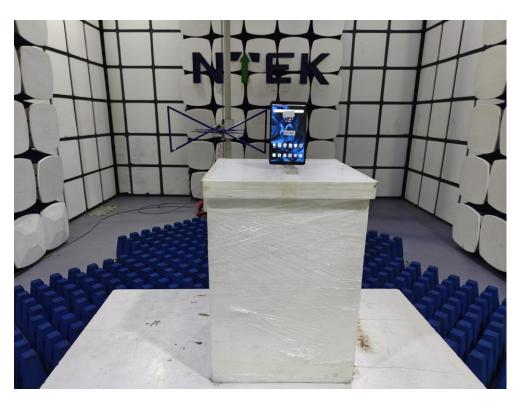

Page 69 of 74


Page 70 of 74


Page 71 of 74

Page 72 of 74

Page 73 of 74



Page 74 of 74

Report No.: S23083004602005

11. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT