

RADIO TEST REPORT ETSI EN 300 440 V2.2.1 (2018-07)

Product: 4G Tablet

Trade Mark: Blackview/OSCAL

Model Name: Tab 80 Family Model: Pad 12

Report No.: S23082304803005

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090

Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Report No.: S23082304803005

Applicant's name: DOKE COMMUNICATION (HK) LIMITED
Address RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA
Manufacturer's Name: Shenzhen DOKE Electronic Co., Ltd
Address
Product description
Product name: 4G Tablet
Trademark: Blackview/OSCAL
Model and/or type reference : Tab 80
Family Model: Pad 12
Standards: ETSI EN 300 440 V2.2.1 (2018-07)
This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document. Test Sample Number
Date of Test
Date (s) of performance of tests
Date of Issue
Test Result
Note: All test data of this report are based on the original test report \$23061304101005 dated by Jul 12, 2023
Testing Engineer : Wen live
(Allen Liu)
Authorized Signatory:
(Alex Li)

Page 3 of 82

Table of Contents	Page
1 . SUMMARY OF TEST RESULTS	7
1.1 TEST FACILITY	8
1.2 MEASUREMENT UNCERTAINTY	8
2. GENERAL INFORMATION	9 /
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 TEST CONDITIONS	10
2.3 DESCRIPTION OF TEST CONDITIONS	11
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TEST	ED 12
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	13
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	14
3 . EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)	15
3.1 APPLICABILITY	15
3.2 LIMITS	15
3.3 GENERAL REQUIREMENTS	15
3.4 TEST PROCEDURES	15
3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS 3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS	15 16
3.5 TEST SETUP LAYOUT	16
3.6 EUT OPERATION DURING TEST	_16
3.7 TEST RESULT FOR -6 DB BANDWIDTH	17
3.8 TEST RESULT FOR E.I.R.P	18
4 . PERMITTED RANGE OF OPERATING FREQUENCIES	19
4.1 APPLIED PROCEDURES / LIMIT	19
4.2 TEST PROCEDURES	19
4.3 TEST SETUP LAYOUT	19
4.4 EUT OPERATION DURING TEST	19
4.5 TEST RESULTS	20
5 . UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	23
5.1 APPLIED PROCEDURES / LIMIT	23
5.2 MEASURING INSTRUMENTS AND SETTING	23
5.3 TEST PROCEDURES	23
5.4 TEST SETUP LAYOUT	24

Page 4 of 82

Table of Contents	Page
5.5 EUT OPERATION DURING TEST	24
5.6 RESULTS OF STANDBY MODE SPURIOUS E	MISSIONS 24
5.7 TEST RESULTS	25
6 . DUTY CYCLE	27
6.1 APPLICABILITY AND DESCRIPTION	27
6.2 LIMITS	27
6.4 METHOD OF MEASUREMENT	27
6.5 TEST SETUP	28
6.6 TEST RESULTS	28
7 . SPURIOUS EMISSIONS – RX	29
7.1 APPLIED PROCEDURES / LIMIT	29
7.2 MEASURING INSTRUMENTS AND SETTING	29
7.3 TEST PROCEDURES	29
7.5 TEST SETUP LAYOUT	29
7.6 EUT OPERATION DURING TEST	29
7.7 TEST RESULTS	30
8 . ADJACENT CHANNEL SELECTIVITY	31
8.1 APPLICABILITY	31
8.2 LIMITS	31
8.3 METHODS OF MEASUREMENT	31
8.4 TEST SETUP LAYOUT	32
8.5 TEST RESULTS	32
9 . BLOCKING OR DESENSITIZATION	33
9.1 APPLICABILITY	33
9.2 LIMITS	33
9.3 TEST PROCEDURES	33
8.4 TEST SETUP LAYOUT	34
9.4 TEST RESULTS	35
10 . TEST RESULTS	42
10.1 DUTY CYCLE	42
10.2 -6DB EMISSION BANDWIDTH	50
10.3 FREQUENCY RANGE	58
10.4 OCCUPIED CHANNEL BANDWIDTH	65

Table of Contents	Page
10.5 RF OUTPUT POWER	73
11 . EUT TEST PHOTO	82
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	82
APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAI	LS

Page 6 of 82

Report No.: S23082304803005

Revision History

Report No.	Version	Description	Issued Date
S23061304101005	Rev.01	Initial issue of report	Jul 12, 2023
S23082304803005	Rev.02	Added adapter	Sep 05, 2023
	2, -	4 .O	4
7		4 30 5	
			et s
, dt - 4		* 10	4
9	_Q	- 35	.1
	4	+	200
		J 30	4 4
~		400	4
	(4	A 30
10 5		.d 40 4	
	100	4.	197
1	P	(0	
			*

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

ETSI EN 300 440 V2.2.1 (2018-07)

Clause	Description of Test Item	Remarks	Results
	Transmitter Parameters		
4.2.2	-6 dB channel bandwidth	Conducted	Pass
4.2.2	Effective isotropic radiated power	Conducted	Pass
4.2.3	Permitted range of operation frequencies	Conducted	Pass
4.2.4	Unwanted emissions in the spurious domain	Radiated	Pass
4.2.5	Duty cycle	Conducted	Pass
4.2.6 Additional requirements for FHSS equipment		Conducted	N/A
	Receiver Parameters		
4.3.3	Adjacent channel selectivity(For Receiver category 1)	Conducted	N/A
4.3.4	Blocking or desensitization(For Receiver category 1,2,3)	Conducted	Pass
4.3.5	Spurious emissions(For Receiver category 1,2,3)	Radiated	Pass

Page 7 of 82

Note: The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter

1.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd.

Add.: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District,

Report No.: S23082304803005

Shenzhen 518126 P.R. China

FCC Registered No.: 463705 IC Registered No.:9270A-1

CNAS Registration No.:L5516

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty		
1	1 Radio frequency			
2	RF power (conducted)	±2,5 dB		
3	Radiated emission of transmitter, valid to 26,5 GHz	±6 dB		
4_	Radiated emission of transmitter, valid between 26,5 GHz and 66 GHz	±8 dB		
5	Radiated emission of receiver, valid to 26,5 GHz	±6 dB		
6	Radiated emission of receiver, valid between 26,5 GHz and 66 GHz	±8 dB		
7	Temperature	±1℃		
8	Humidity	±5 %		
9	Voltage (DC)	±1 %		
10	Voltage (AC, < 10 kHz)	±2 %		

NOTE: For radiated emissions above 26,5 GHz it may not be possible to achieve measurement uncertainties complying with the levels specified in this table. In these cases alone it is acceptable to employ the alternative interpretation procedure specified in EN 300440 V2.2.1 clause 5.9.1.

2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT

	4G Tablet	
Trade Mark	Blackview/OSCAL	* 3
Model Name	Tab 80	* 3
Family Model	Pad 12	
Model Difference	All the model are to memory.	the same circuit and RF module, except the model name, logo,
4.	Operation Frequency:	5745-5825 MHz for 802.11a/n20/ac20; 5755-5795 MHz for 802.11n40/ac40;
	Data Rate:	5775MHz for 802.11 ac80; 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS7; 802.11ac(VHT20/ VHT40/VHT80): NSS1, MCS0-MCS9, NSS2
Product Description	Modulation	OFDM with BPSK/QPSK/16QAM/64QAM/256QAM
	Channel No.:	5 channels for 802.11a/n20/ac20 in the 5745-5825MHz band; 2 channels for 802.11 n40/ac40 in the 5755-5795MHz band; 1 channels for 802.11 ac80 in the 5775MHz band;
	Antenna Designation:	PIFA Antenna
	Antenna Gain(Peak)	3.97 dBi
Receiver category	inconvenience to	ledium reliable SRD communication media e.g. causing persons, which cannot simply be overcome by other means.
		tandard reliable SRD communication media e.g. Inconvenience to an simply be overcome by other means (e.g. manual).
Channel List		tandard reliable SRD communication media e.g. Inconvenience to an simply be overcome by other means (e.g. manual).
Channel List Adapter	persons, which can Refer to below Adapter 1: Brand name: OSC Model: QZ-01000l Input: 100-240V-5 Output: 5.0V2 Adapter 2: Brand name: Blac Model: QZ-01000l Input: 100-240V-5 Output: 5.0V2	CAL EA00 50/60Hz 0.3A 2.0A (10.0W) ekview EA00 50/60Hz 0.3A
Zi ^{cht}	persons, which can Refer to below Adapter 1: Brand name: OSC Model: QZ-01000l Input: 100-240V-{ Output: 5.0V2 Adapter 2: Brand name: Blac Model: QZ-01000l Input: 100-240V-{	CAL EA00 50/60Hz 0.3A 2.0A (10.0W) Ekview EA00 50/60Hz 0.3A 2.0A (10.0W) Ekview EA00 50/60Hz 0.3A
Zi ^{cht}	persons, which can Refer to below Adapter 1: Brand name: OSC Model: QZ-01000l Input: 100-240V-5 Output: 5.0V2 Adapter 2: Brand name: Blac Model: QZ-01000l Input: 100-240V-5 Output: 5.0V2 Adapter 3: Brand name: Blac Model: QZ-01001l Input: 100-240V-5	CAL EA00 50/60Hz 0.3A 2.0A (10.0W) Ekview EA00 50/60Hz 0.3A 2.0A (10.0W) Ekview EA00 50/60Hz 0.3A 2.0A (10.0W)
Adapter	persons, which can Refer to below Adapter 1: Brand name: OSC Model: QZ-01000l Input: 100-240V-5 Output: 5.0V2 Adapter 2: Brand name: Blac Model: QZ-01000l Input: 100-240V-5 Output: 5.0V2 Adapter 3: Brand name: Blac Model: QZ-01001l Input: 100-240V-5 Output: 5.0V2 DC 3.85V, 7680m.	CAL EA00 50/60Hz 0.3A 2.0A (10.0W) Ekview EA00 50/60Hz 0.3A 2.0A (10.0W) Ekview EA00 50/60Hz 0.3A 2.0A (10.0W)
Adapter	persons, which can Refer to below Adapter 1: Brand name: OSC Model: QZ-01000l Input: 100-240V-5 Output: 5.0V2 Adapter 2: Brand name: Blac Model: QZ-01000l Input: 100-240V-5 Output: 5.0V2 Adapter 3: Brand name: Blac Model: QZ-01001l Input: 100-240V-5 Output: 5.0V2 DC 3.85V, 7680m.	CAL EA00 50/60Hz 0.3A 2.0A (10.0W) Ekview EA00 50/60Hz 0.3A 2.0A (10.0W) Ekview EA00 50/60Hz 0.3A 2.0A (10.0W) Ekview EA00 50/60Hz 0.3A 2.0A (10.0W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. Channel list:

Frequency and Channel list for 802.11a/n/ac(20 MHz) band IV (5745-5825MHz):

802.11a/n/ac(20 MHz) Carrier Frequency Channel							
	Frequen		Frequen		Frequen		Frequen
Channel	су	Channel	су	Channel	су	Channel	су
	(MHz)		(MHz)		(MHz)		(MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	5 - 2	-	-	1	- / -	-5

Frequency and Channel list for 802.11n/ac(40MHz) band IV (5755-5795MHz):

802.11n/ac 40MHz Carrier Frequency Channel					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
151	5755	159	5795	-	-

Frequency and Channel list for 802.11ac(80MHz) band IV (5775MHz):

802.11ac 80MHz Carrier Frequency Channel			
Channel Frequency (MHz)			
155	5775		

2.2 TEST CONDITIONS

	Normal Test Conditions	Extreme Test Conditions
Temperature 15°C - 35°C		-10°C ~ 40°C _{Note1}
Relative Humidity	20% - 75%	N/A
Power Rating	DC 3.85V	N/A
Test voltage	DC 3.85V	DC 4.4V-DC 3.4V _{Note2}

Note

- (1) The temperature range as declared by the manufacturer; or one of the following specified temperature ranges:
 - Temperature category I (General): -20 °C to +55 °C;
 - Temperature category II (Portable): -10 °C to +55 °C;
 - Temperature category III (Equipment for normal indoor use): 5 °C to +35 °C.
- (2) The High Voltage 4.4V and Low Voltage 3.4V was declarated by manufacturer.

2.3 DESCRIPTION OF TEST CONDITIONS

	For Conducted Test					
Pretest Mode	Description					
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165					
Mode 2	802.11n/ ac40 CH 151 / CH 159					
Mode 3	802.11 ac80 CH 155					

For Radiated Test						
Final Test Mode Description						
Mode 1	802.11a /n/ ac 20 CH149/ CH157/ CH 165					
Mode 2	802.11n/ ac40 CH 151 / CH 159					
Mode 3	802.11 ac80 CH 155					

E-1 EUT

Report No.: S23082304803005

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Report No.: S23082304803005

Item	Equipment	Model/Type No.	Series No.	Note
E-1	4G Tablet	Tab 80	N/A	EUT
	3			
			4	
	,L	70 A		<u>+ </u>
<u></u>		6	<i>*</i>	Α,

Item	Shielded Type	Ferrite Core	Length	Note
			4	
			7	
		A 2		1 AL A
	* .	35	1 4	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (3) "YES" means "shielded" or "with ferrite core"; "NO" means "unshielded" or "without ferrite core"

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT	Manufacturer	Type No.	Serial No.	Last	Calibrated	Calibration
TYPE	IIFE "		calibration	until	period	
EMI Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.15	1 year
Turn Table	EM	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	2816	2023.01.12	2024.01.11	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.11.07	2023.11.06	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2023.05.29	2024.05.28	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2023.03.31	2024.03.30	1 year
Filter	TRILTHIC	2400MHz	29	2023.03.27	2026.03.26	3 year
Attenuator	Weinschel	33-10-33	AR4010	2023.03.27	2026.03.26	3 year
Attenuator	Weinschel	24-20-34	BP4485	2023.03.27	2026.03.26	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2023.03.21	2024.03.20	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2023.03.27	2026.03.26	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2023.03.27	2026.03.26	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2023.03.27	2026.03.26	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2023.05.29	2024.05.28	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2023.05.29	2024.05.28	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2023.05.29	2024.05.28	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

3. EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)

3.1 APPLICABILITY

The equivalent isotropically radiated power requirement shall apply to all transmitters.

3.2 LIMITS

Table 2: Maximum radiated peak power (e.i.r.p.)

Report No.: S23082304803005

Frequency Bands	Power	Application	Notes
2 400 MHz to 2 483,5 MHz	10 mW e.i.r.p.	Non-specific short range devices	
2 400 MHz to 2 483,5 MHz	25 mW e.i.r.p.	Radio determination devices	
(a) 2 446 MHz to 2 454 MHz	500 mW e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
(b) 2 446 MHz to 2 454 MHz	4 W e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
5 725 MHz to 5 875 MHz	25 mW e.i.r.p.	Non-specific short range devices	
9 200 MHz to 9 500 MHz	25 mW e.i.r.p.	Radio determination devices	
9 500 MHz to 9 975 MHz	25 mW e.i.r.p.	Radio determination devices	
10,5 GHz to 10,6 GHz	500 mW e.i.r.p.	Radio determination devices	
13,4 GHz to 14,0 GHz	25 mW e.i.r.p.	Radio determination devices	
17,1 GHz to 17,3 GHz	400 mW e.i.r.p.	Radio determination devices	See annex F
24,00 GHz to 24,25 GHz	100 mW e.i.r.p.	Non-specific short range devices and Radio determination devices	

3.3 GENERAL REQUIREMENTS

1. To measure e.i.r.p. it is first necessary to determine the appropriate method of measurement: see EN 300440 V2.2.1 clauses 4.2.2.3.1 and 4.2.2.3.2. The -6 dB transmitter bandwidth shall be determined using a 100 kHz measuring bandwidth in order to establish which measurement method is applicable:

Co	Condition			
Non spread spectrum transmitters with a -6 dB bandwidth of up to 20 MHz and spread spectrum transmitters with channel bandwidth of up to 1 MHz;	□Non spread spectrum equipment with a -6 dB bandwidth of 20 MHz or less and a duty cycle above 50 %; □Spread spectrum equipment with a -6 dB channel bandwidth of 1 MHz or less.	Refer to section 3.4.1		
	□ equipment with a -6 dB bandwidth greater than 20 MHz, and equipment with a duty cycle below 50 %;; □ Spread spectrum equipment with a channel bandwidth above 1 MHz	Refer to section 3.4.2		

2. Measurements shall be performed at normal test conditions.

3.4 TEST PROCEDURES

3.4.1 FOR NON SPREAD SPECTRUM TRANSMITTERS

The measurement shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range. These frequencies shall be recorded.

Equipment measured as constant envelope modulation equipment

Page 16 of 82 Report No.: S23082304803005

For practical reasons, measurements shall be performed only at the highest power level at which the transmitter is intended to operate. The measurement arrangement in figure 2 shall be used. The measurement shall be performed preferably in the absence of modulation.

When it is not possible to measure it in the absence of modulation, this fact shall be stated in test reports.

The transmitter shall be set in continuous transmission mode. If this is not possible, the measurements shall be carried

out in a period shorter than the duration of the transmitted burst. It may be necessary to extend the duration of the burst.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

Equipment measured as non-constant envelope modulation equipment

The measurement shall be performed with test signals D-M2 or D-M3 as appropriate.

The transmitter shall be preferably set in continuous transmission mode. If this is not possible, the measurement can be performed in discontinuous mode.

The transmitter shall be connected to an artificial antenna (see clause 5.8.2) and the power delivered to this artificial antenna shall be measured. The measuring instrument shall have a measurement bandwidth not less than sixteen times the channel bandwidth.

The equivalent isotropically radiated power is then calculated from the measured value, the known antenna gain, relative to an isotropic antenna, and if applicable, any losses due to cables and connectors in the measurement system.

3.4.2 FOR ALL OTHER TRANSMITTER BANDWIDTHS

Step 1:

- using a suitable means, the output of the transmitter shall be coupled to a matched diode detector;
- the output of the diode detector shall be connected to the vertical channel of an oscilloscope;
- the combination of the diode detector and the oscilloscope shall be capable of faithfully reproducing the envelope peaks and the duty cycle of the transmitter output signal;
- the observed duty cycle of the transmitter (Tx on/(Tx on + Tx off)) shall be noted as x, (0 < x < 1) And recorded.

Step 2:

- the average output power of the transmitter shall be determined using a wideband, calibrated RF power meter with a matched thermocouple detector or an equivalent thereof and, where applicable, with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);
- the e.i.r.p. shall be calculated from the above measured power output A, the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:
- $-P = A + G + 10 \log (1/x);$
- P should be EIRP POWER.

3.5 TEST SETUP LAYOUT

3.6 EUT OPERATION DURING TEST

Where possible, the equipment shall be able to operate in a continuous transmit mode for testing purposes.

Page 17 of 82

Report No.: S23082304803005

3.7 TEST RESULT FOR -6 DB BANDWIDTH

EUT:	4G Tablet	Model Name :	Tab 80
Temperature:	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	Mode 1/2/3	7	* <

Test data reference attachment

Page 18 of 82

Report No.: S23082304803005

3.8 TEST RESULT FOR F.LR.P

EUT:	4G Tablet	Model Name :	Tab 80
Temperature :	26°C	Relative Humidity:	60 %
Pressure:	1012 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	Mode 1/2/3		7 70 4

Test data reference attachment

4. PERMITTED RANGE OF OPERATING FREQUENCIES

4.1 APPLIED PROCEDURES / LIMIT

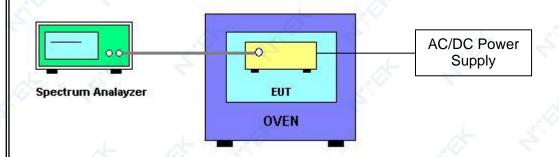
The Permitted range of operating frequencies shall apply to all transmitters.

Limits: The width of the power spectrum envelope is fH -fL for a given operating frequency. In equipment that allows adjustment or selection of different operating frequencies, the power envelope takes up different positions in the allowed band. The frequency range is determined by the lowest value of fL and the highest value of fH resulting from the adjustment of the equipment to the lowest and highest operating frequencies.

Report No.: S23082304803005

The occupied bandwidth (i.e. the bandwidth in which 99 % of the wanted emission is contained) of the transmitter shall fall within the assigned frequency band.

For all equipment the frequency range shall lie within the frequency band given by section 3.2, table 2. For non-harmonized frequency bands the available frequency range may differ between national administrations.


4.2 TEST PROCEDURES

These measurements shall be performed under both normal and extreme operating conditions except for the occupied bandwidth assessment for which measurement at normal operating conditions is sufficient.

The measurement procedure shall be as follows:

- a) put the spectrum analyser in video averaging mode with a minimum of 50 sweeps selected;
- b) select the lowest operating frequency of the equipment under test and activate the transmitter with modulation applied. The RF emission of the equipment shall be displayed on the spectrum analyser:
- c) using the marker of the spectrum analyser, find the lowest frequency below the operating frequency at which the spectral power density drops below the level given in clause 4.2.3. This frequency shall be recorded in the test report;
- d) select the highest operating frequency of the equipment under test and find the highest frequency at which the spectral power density drops below the value given in clause 4.2.3. This frequency shall be recorded in the test report;
- e) the difference between the frequencies measured in steps c) and d) is the operating frequency range. It shall be recorded in the test report.

4.3 TEST SETUP LAYOUT

4.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

4.5 TEST RESULTS

EUT:	4G Tablet	Model Name :	Tab 80
Temperature :	26°C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	TX		<u>ب</u>

802.11a

Extreme condition				Frequency r	ange (MHz)
				F _L CH149	F _H CH165
T nom (°C)	20	V nom (V)	3.85	5736.635	5833.083
		V max (V)	4.4	5736.646	5833.091
T min (°C)	-10	V nom (V)	3.85	5736.657	5833.099
.1	<u>ــــــــــــــــــــــــــــــــــــ</u>	V min (V)	3.4	5736.668	5833.107
A		V max (V)	4.4	5736.679	5833.115
T max (°C)	40	V nom (V)	3.85	5736.69	5833.123
		V min (V)	3.4	5736.701	5833.131
Min. f _L	/ Max. f _H Ba	and Edges		5736.635	5833.131
Indoor Use Limits				F _L > 5725.0	$F_L < 5875.0$
				MHz	MHz
Result			Com	plies	

802.11n20

02.111120	4 5				ange (MHz)
E	treme condi	tion	F _L CH149	F _H CH165	
T nom (°C)	20	V nom (V)	3.85	5736.323	5833.962
	4	V max (V)	4.4	5736.334	5833.97
T min (°C)	-10	V nom (V)	3.85	5736.345	5833.978
		V min (V)	3.4	5736.356	5833.986
4		V max (V)	4.4	5736.367	5833.994
T max (°C)	40	V nom (V)	3.85	5736.378	5834.002
		V min (V)	3.4	5736.389	5834.01
Min. f _L	/ Max. f _H Bar	nd Edges		5736.323	5834.010
Indoor Use Limits				F _L > 5725.0	F _L < 5875.0
				MHz	MHz
Result			Com	plies	

802.11n40

Extreme condition			Frequency	range (MHz)	
			F _L CH151	F _H CH159	
T nom (°C)	20	V nom (V)	3.85	5737.036	5813.186
	T min (°C) -10	V max (V)	4.4	5737.047	5813.194
T min (°C)		V nom (V)	3.85	5737.058	5813.202
		V min (V)	3.4	5737.069	5813.21
		V max (V)	4.4	5737.08	5813.218
T max (°C)	T max (°C) 40	V nom (V)	3.85	5737.091	5813.226
4	-	V min (V)	3.4	5737.102	5813.234
Min	Min. f _L / Max. f _H Band Edges			5737.036	5813.234
	Indoor Use Limits			F _L > 5725.0 MHz	F _L < 5875.0 MHz
	Result			Con	nplies

802.11ac20

Extreme condition				Frequency range (MHz)		
			F _L CH149	F _H CH165		
T nom (°C)	20	V nom (V)	3.85	5736.057	5833.626	
- C - C	V max (V)	4.4	5736.068	5833.634		
T min (°C)	-10	V nom (V)	3.85	5736.079	5833.642	
	V min (V)	3.4	5736.09	5833.65		
	V max (V)	4.4	5736.101	5833.658		
T max (°C)	T max (°C) 40	V nom (V)	3.85	5736.112	5833.666	
		V min (V)	3.4	5736.123	5833.674	
	Min. f _L /	Max. f _H Band Edo	ges	5736.057	5833.674	
.1	In	door Use Limits		F _L > 5725.0 MHz	F _L < 5875.0 MHz	
Result			Con	nplies		

802.11ac40

Extreme condition				Frequency range (MHz)		
				F _L CH151	F _H CH159	
T nom (°C)	20	V nom (V)	3.85	5737.765	5813.944	
	A	V max (V)	4.4	5737.776	5813.952	
T min (°C)	-10	V nom (V)	3.85	5737.787	5813.96	
		V min (V)	3.4	5737.798	5813.968	
		V max (V)	4.4	5737.809	5813.976	
T max (°C)	40	V nom (V)	3.85	5737.82	5813.984	
		V min (V)	3.4	5737.831	5813.992	
Min. f _L /	Max. f _H Baı	nd Edges		5737.765	5813.992	
				F _L > 5725.0	F _L < 5875.0	
Indoor Use Limits				MHz	MHz	
Result				Con	nplies	

802.11ac80

0			Frequency range (MHz)		
Extr	eme condi	F _L CH155	F _H CH155		
T nom (°C)	20	V nom (V)	3.85	5737.489	5812.735
4	<u>s</u>	V max (V)	4.4	5737.5	5812.743
T min (°C)	-10	V nom (V)	3.85	5737.511	5812.751
+ 3	Ť	V min (V)	3.4	5737.522	5812.759
		V max (V)	4.4	5737.533	5812.767
T max (°C)	40	V nom (V)	3.85	5737.544	5812.775
	4	V min (V)	3.4	5737.555	5812.783
Min. f _L / N	∕lax. f _H Bar	nd Edges		5737.489	5812.783
Indoor Use Limits				F _L > 5725.0	F _L < 5875.0
				MHz	MHz
Result				Com	plies

5. UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

5.1 APPLIED PROCEDURES / LIMIT

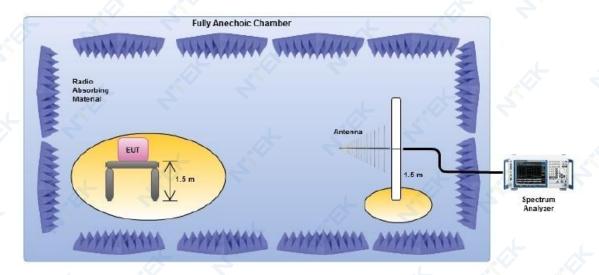
The unwanted emissions in the spurious domain requirement shall apply to all transmitters.

	47 MHz to 74 MHz	* 3	
State	87.5 MHz to 118 MHz	Other frequencies	Frequencies
State	174 MHz to 230 MHz	≤□ 1 000 MHz	> 1 000 MHz
	470 MHz to 862 MHz		
Operating	4 nW /-54dBm	250 nW/-36dBm	1 μW /-30dBm
Standby	2 nW /-57dBm	2 nW /-57dBm	20 nW /-47dBm

5.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB -	For frequency 30MHz~1G:100 kHz~120 kHz
ND	For frequency above 1G:1MHz


5.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable. For above 1G, using Horn antenna.
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

5.4 TEST SETUP LAYOUT

Radiated Emission Test Set-Up

5.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

5.6 RESULTS OF STANDBY MODE SPURIOUS EMISSIONS

For the initial investigation on standby mode and receiving mode, no significant differences in spurious emissions were observed between these 2 modes. So test data for standby mode was omitted in this section.

5.7 TEST RESULTS

EUT:	4G Tablet	Model Name : Tab 80
Temperature:	24 ℃	Relative Humidity: 54%
Pressure:	1010 hPa	Test Power : DC 3.85V (NORMAL)
Test Mode :	TX-802.11a mode	<i>₽</i> ₹ .L 2

Report No.: S23082304803005

Below 1G:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	38.308	-73.02	14.47	-58.55	-36	-22.55	peak
V	118.288	-87.34	7.22	-80.12	-54	-26.12	peak
V	133.032	-67.61	12.25	-55.36	-36	-19.36	peak
V	217.976	-81.52	13.31	-68.21	-54	-14.21	peak
V	398.05	-73.35	15.91	-57.44	-36	-21.44	peak
V	504.191	-83.32	21.65	-61.67	-54	-7.67	peak
Н	35.593	-73.06	18.31	-54.75	-36	-18.75	peak
H	103.166	-83.04	6.20	-76.84	-54	-22.84	peak
Н	118.159	-73.27	10.27	-63.00	-36	-27.00	peak
Н	214.187	-77.24	12.05	-65.19	-54	-11.19	peak
Н	422.844	-72.83	12.93	-59.90	36	-23.90	peak
H	762.536	-77.8	17.58	-60.22	-54	-6.22	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Δ	h	n۱	/0	1	G	•

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(H/V) (MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Type
		ope	ration frequen	cy:5745 MHz			
V	2934.706	-74.28	2.61	-71.67	-30	-41.67	peak
V	5229.721	-77.72	3.32	-74.40	-30	-44.40	peak
V	2021.693	-70.64	8.34	-62.30	-30	-32.30	peak
V	5461.004	-70.93	8.72	-62.21	-30	-32.21	peak
Н	2899.592	-69.43	3.12	-66.31	-30	-36.31	peak
Н	4661.913	-70.99	8.53	-62.46	-30	-32.46	peak
Н	2865.925	-75.3	9.58	-65.72	-30	-35.72	peak
Н	3152.767	-67.08	14.73	-52.35	-30	-22.35	peak
		ope	ration frequen	cy:5785 MHz			从
V	2021.963	-77.33	2.61	-74.72	-30	-44.72	peak
V	5852.697	-67.95	3.32	-64.63	-30	-34.63	peak
V	2046.025	-77.48	8.34	-69.14	-30	-39.14	peak
V	5233.336	-75.48	8.72	-66.76	-30	-36.76	peak
V	2382.501	-75.43	3.12	-72.31	-30	-42.31	peak
Н	5830.594	-69.92	8.53	-61.39	-30	-31.39	peak
Н	2674.739	-70.54	9.58	-60.96	-30	-30.96	peak
Н	4941.075	-74.72	14.73	-59.99	-30	-29.99	peak
Н	3725.081	-69.61	14.73	-54.88	-30	-24.88	peak
	247	ope	ration frequen	cy:5825 MHz	<i>*</i>	,	
V	2977.846	-76.29	2.61	-73.68	-30	-43.68	peak
V	5883.441	-76.56	3.32	-73.24	-30	-43.24	peak
V	2978.525	-69.37	8.34	-61.03	-30	-31.03	peak
V	5271.699	-75.36	8.72	-66.64	-30	-36.64	peak
V	2079.044	-73.17	3.12	-70.05	-30	-40.05	peak
Н	3854.663	-71.77	8.53	-63.24	-30	-33.24	peak
Н	2145.425	-69.01	9.58	-59.43	-30	-29.43	peak
Н	3490.668	-71.05	14.73	-56.32	-30	-26.32	peak
Н	3540.463	-75.31	14.73	-60.58	-30	-30.58	peak

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Note: Only the worst case 802.11a mode recorded in the report.

6. DUTY CYCLE

6.1 APPLICABILITY AND DESCRIPTION

Duty Cycle (DC) shall apply to all transmitting equipment except those which utilize Listen Before Talk (LBT) clause 4.4.2, or Detect And Avoid (DAA), clause 4.4.3. RFID transmitters operating in the 2 446 MHz to 2 454 MHz frequency band that transmit at a maximum radiated peak power level of less than 500 mW e.i.r.p. are also excluded.

Duty cycle is the ratio expressed as a percentage, of the cumulative duration of transmissions Ton cum within an observation interval Tobs.

$$DC = (\frac{T_{on_cum}}{T_{obs}})F_{obs}$$
 on an observation bandwidth F_{obs} .

Unless otherwise specified, Tobs is 1 hour and the observation bandwidth Fobs is the operational frequency band

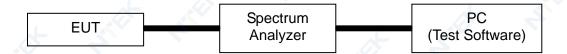
Each transmission consists of an RF emission, or sequence of RF emissions separated by intervals $< T_{Dis}$.

6.2 LIMITS

Table 4 defines the maximum duty cycle within a 1 hour period.

Table 4: Duty cycle limits

Frequency Band	Duty cycle	Application	Notes
2 400 MHz to 2 483,5 MHz	No Restriction	Generic use	
2 400 MHz to 2 483,5 MHz	No Restriction	Detection, movement and alert applications	
(a) 2 446 MHz to 2 454 MHz	No Restriction	RFID	Limits shown in annex D shall apply
(b) 2 446 MHz to 2 454 MHz	≤ 15 %	RFID	Limits shown in annex D shall apply
5 725 MHz to 5 875 MHz	No Restriction	Generic use	
9 200 MHz to 9 500 MHz	No Restriction	Radiodetermination: radar, detection, movement and alert applications	
9 500 MHz to 9 975 MHz	No Restriction	Radiodetermination: radar, detection, movement and alert applications	<u> </u>
10,5 GHz to 10,6 GHz	No Restriction	Radiodetermination: radar, detection, movement and alert applications	
13,4 GHz to 14,0 GHz	No Restriction	Radiodetermination: radar, detection, movement and alert applications	
17,1 GHz to 17,3 GHz	DAA or equivalent techniques	Radiodetermination: GBSAR detecting and movement and alert applications	Limits shown in annex F shall apply
24,00 GHz to 24,25 GHz	No Restriction	Generic use and for Radiodetermination: radar, detection, movement and alert applications	4


For devices with a 100 % duty cycle transmitting an unmodulated carrier most of the time, a time-out shut-off facility shall be implemented in order to improve the efficient use of spectrum. The method of implementation shall be declared by the manufacturer.

6.4 METHOD OF MEASUREMENT

Please refer to EN 300440 V2.2.1 Clause 4.2.5.3.

6.5 TEST SETUP

6.6 TEST RESULTS

EUT:	4G Tablet	Model Name:	Tab 80
Temperature:	26°C	Relative Humidity:	53 %
Pressure:	1012 hPa	Test Voltage:	DC 3.85V (NORMAL)
Test Mode:	Mode 1/2/3		

Test data reference attachment

7. SPURIOUS EMISSIONS - RX

7.1 APPLIED PROCEDURES / LIMIT

Clause	Test Item	Frequency(MHz)	Limit
4.3.5.4	Spurious emissions	30-1000	-57dBm
4.3.3.4	(radiated)	Above 1000	-47dBm

7.2 MEASURING INSTRUMENTS AND SETTING

The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	40GHz
Detector	Positive Peak
Sweep Time	Auto
RB A	For frequency 30MHz~1G:100 kHz~120 kHz For frequency above 1G:1MHz

7.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable. For above 1G, using Horn antenna.
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

7.5 TEST SETUP LAYOUT

This test setup layout is the same as that shown in section 5.4.

7.6 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously receiving mode.

7.7 TEST RESULTS

EUT:	4G Tablet	Model Name : Tab 80
Temperature :	26°C	Relative Humidity: 53 %
Pressure:	1012 hPa	Test Power : DC 3.85V (NORMAL)
Test Mode :	RX-802.11a mode	.Ø ₹ .L .A

Report No.: S23082304803005

Below 1G:

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	46.591	-81.61	18.82	-62.79	-57	-5.79	peak
V	117.376	-81.19	11.11	-70.08	-57	-13.08	peak
V	217.721	-81.78	11.41	-70.37	-57	-13.37	peak
V	334.265	-84.14	12.72	-71.42	-57	-14.42	peak
V	484.514	-79.21	12.66	-66.55	-57	-9.55	peak
V	587.882	-77.26	12.62	-64.64	-57	-7.64	peak
Н	43.937	-83.87	19.94	-63.93	-57	-6.93	peak
H	89.429	-84.55	10.96	-73.59	-57	-16.59	peak
Н	228.693	-80.15	9.42	-70.73	-57	-13.73	peak
Н	249.14	-84.12	12.65	-71.47	-57	-14.47	peak
Н	617.884	-80.2	11.78	-68.42	-57	-11.42	peak
H	562.936	-79.96	15.38	-64.58	-57	-7.58	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Above 1G:

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Туре
V	2615.496	-81.55	11.33	-70.22	-47	-23.22	peak
V	5307.93	-82.44	10.97	-71.47	-47	-24.47	peak
V	2783.593	-84.5	10.14	-74.36	-47	-27.36	peak
V	3175.39	-78.44	16.83	-61.61	-47	-14.61	peak
V	2555.213	-79.37	10.52	-68.85	-47	-21.85	peak
Н	3116.732	-77.91	11.70	-66.21	-47	-19.21	peak
Н	2477.425	-77.69	6.62	-71.07	-47	-24.07	peak
Н	3674.45	-79.93	14.99	-64.94	-47	-17.94	peak
Н	5347.636	-69.67	8.25	-61.42	-47	-14.42	peak
Н	5478.893	-81.65	14.99	-66.66	-47	-19.66	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

8. ADJACENT CHANNEL SELECTIVITY

8.1 APPLICABILITY

This requirement applies to channelized Category 1 receivers..

8.2 LIMITS

The adjacent channel selectivity of the equipment under specified conditions shall not be less than -30 dBm + k.

The correction factor, k, is as follows:

 $k = -20\log f - 10\log BW$

Where:

- f is the frequency in GHz;
- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

-40 dB < k < 0 dB.

8.3 METHODS OF MEASUREMENT

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

- a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or
- b) directly to the receiver permanent or temporary antenna connector.

The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal.

Signal generator B shall be unmodulated and shall be adjusted to the adjacent channel centre frequency immediately

above that of the wanted signal.

Initially signal generator B shall be switched off and using signal generator A the level that still gives sufficient

response shall be established. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurements shall be repeated with signal generator B unmodulated and adjusted to the adjacent channel centre immediately below the wanted signal.

The adjacent channel selectivity shall be recorded for the upper and lower adjacent channels as the level in dBm of the unwanted signal.

For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres.

In this case, the adjacent selectivity shall be recorded as the level in dBm of lowest level of the unwanted signal

(generator B) resulting in a non-read of the tag.

8.4 TEST SETUP LAYOUT

8.5 TEST RESULTS

0.5 ILSI KESU	LIO		
EUT:	4G Tablet	Model Name :	Tab 80
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Test Voltage :	N/A
Test Mode :	N/A		

Not applicable.

9. BLOCKING OR DESENSITIZATION

9.1 APPLICABILITY

This requirement applies to all Category 1, 2, and 3 SRD communication media receivers.

9.2 LIMITS

The blocking level, for any frequency within the specified ranges, shall not be less than the values given in table 6, except at frequencies on which spurious responses are found.

Table 6: Limits for blocking or desensitization

Receiver category	Limit
1	-30 dBm + k
2	-45 dBm + k
3	-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10log BW

Where:

- f is the frequency in GHz;
- BW is the channel bandwidth in MHz.

The factor k is limited within the following:

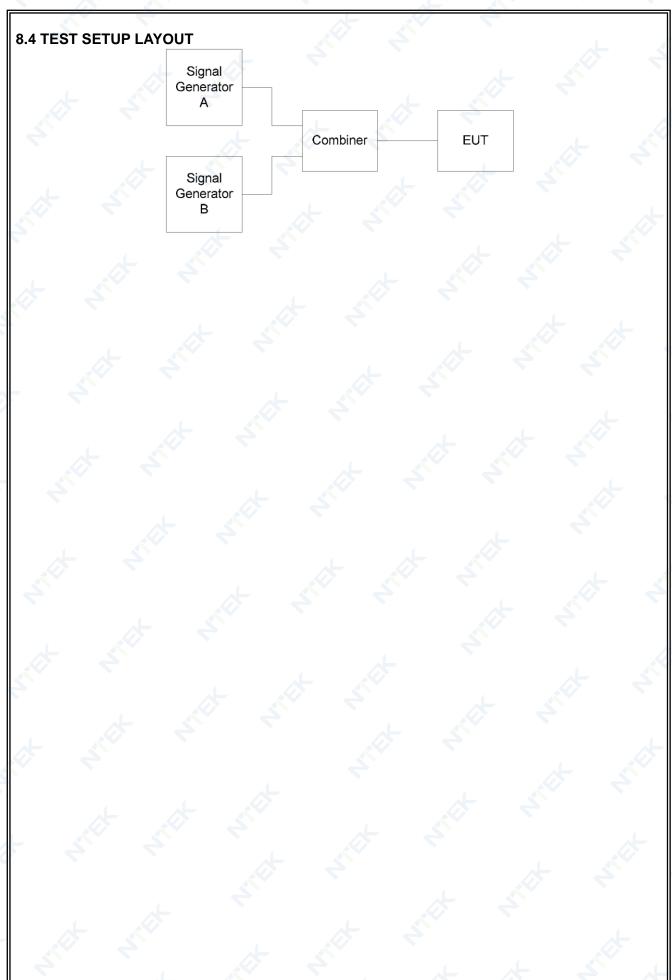
-40 dB < k < 0 dB.

9.3 TEST PROCEDURES

This measurement shall be conducted under normal conditions.

Two signal generators A and B shall be connected to the receiver via a combining network to the receiver, either:

- a) via a test fixture or a test antenna to the receiver integrated, dedicated or test antenna; or
- b) directly to the receiver permanent or temporary antenna connector.


The method of coupling to the receiver shall be stated in the test report.

Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal. Signal generator B shall be unmodulated and shall be adjusted to a test frequency at approximately 10 times, 20 times and 50 times of the occupied bandwidth above upper band edge of occupied bandwidth. Initially signal generator B shall be switched off and using signal generator A the level which still gives sufficient response shall be established. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria are met. This level shall be recorded.

The measurement shall be repeated with the test frequency for signal generator B at 10 times, 20 times and 50 times of the occupied bandwidth below the lower band edge of the occupied bandwidth The blocking or desensitization shall be recorded as the level in dBm of lowest level of the unwanted signal(generator B).

For tagging systems (e.g. RF identification, anti-theft, access control, location and similar systems) signal generator A may be replaced by a physical tag positioned at 70 % of the measured system range in metres. In this case, the blocking or desensitization shall be recorded as the ratio in dB of lowest level of the unwanted signal (generator B) resulting in a non-read of the tag. to the declared sensitivity of the receiver +3 dB.

Page 35 of 82

Report No.: S23082304803005

9.4 TEST RESULTS

EUT:	4G Tablet	Model Name :	Tab 80
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Test Voltage :	DC 3.85V (NORMAL)
Test Mode :	RX	4	L K

802.11a

5745 MHz

Flow= 5736.72083MHz; Fhigh= 5753.25517MHz, occupied bandwidth=16.53434MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
<u>.</u>	5745 MHz	5745	-64.69	- 6	-
3	10 times lower band edge of the occupied bandwidth	5571.37743	-	-29.98	-87.37(Note ¹)
	20 times lower band edge of the occupied bandwidth	5406.03403	-	-35.56	-87.37
	50 times lower band edge of the occupied bandwidth	4910.00383	<	-35.88	-87.37
	10 times upper band edge of the occupied bandwidth	5918.59857	. 4	-30.30	-87.37
	20 times upper band edge of the occupied bandwidth	6083.94197	-	-35.52	-87.37
	50 times upper band edge of the occupied bandwidth	6579.97217		-31.97	-87.37

Note1:

The limit:

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.37

Where:

- f is the frequency in GHz;
- BW is the occupied bandwidth in MHz.

802.11a

5825 MHz

Flow= 5816.70883MHz; Fhigh= 5833.25117MHz, occupied bandwidth=16.54234MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5825 MHz	5825	-65.36	-	大 - 3
3	10 times lower band edge of the occupied bandwidth	5651.28543		-30.73	-87.49(Note ¹)
	20 times lower band edge of the occupied bandwidth	5485.86203	AO	-34.81	-87.49
	50 times lower band edge of the occupied bandwidth	4989.59183	-	-35.68	-87.49
	10 times upper band edge of the occupied bandwidth	5998.67457	-	-31.01	-87.49
	20 times upper band edge of the occupied bandwidth	6164.09797	d - 4	-34.72	-87.49
	50 times upper band edge of the occupied bandwidth	6660.36817	-	-31.96	-87.49

Note1:

The limit:

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.49

Where:

- f is the frequency in GHz;

- BW is the occupied bandwidth in MHz.

Page 37 of 82

Report No.: S23082304803005

802.11n20

5745 MHz

Flow= 5736.15688MHz; Fhigh= 5753.80312MHz, occupied bandwidth=17.64624MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5745 MHz	5745	-65.82	-	-
	10 times lower band edge of the occupied bandwidth	5559.69448	-	-28.52	-87.65(Note ¹)
.(_	20 times lower band edge of the occupied bandwidth	5383.23208	*	-33.65	-87.65
3	50 times lower band edge of the occupied bandwidth	4853.84488	<u> </u>	-34.31	-87.65
	10 times upper band edge of the occupied bandwidth	5930.26552	-	-29.61	-87.65
¥ 4	20 times upper band edge of the occupied bandwidth	6106.72792		-35.42	-87.65
	50 times upper band edge of the occupied bandwidth	6636.11512	Ø - d	-31.11	-87.65

Note1:

The limit:

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.65

Where:

- f is the frequency in GHz;

802.11n20

5825 MHz

Flow= 5816.14489MHz; Fhigh= 5833.81512MHz, occupied bandwidth=17.67023MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5825 MHz	5825	-64.60	-	大 · 3
	10 times lower band edge of the occupied bandwidth	5639.44259	. ت	-28.34	-87.78(Note ¹)
	20 times lower band edge of the occupied bandwidth	5462.74029		-34.07	-87.78
3	50 times lower band edge of the occupied bandwidth	4932.63339	-	-35.07	-87.78
	10 times upper band edge of the occupied bandwidth	6010.51742	-	-29.13	-87.78
	20 times upper band edge of the occupied bandwidth	6187.21972	d - 4	-35.39	-87.78
	50 times upper band edge of the occupied bandwidth	6717.32662	-	-30.40	-87.78

Note1:

The limit:

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -27.78

Where:

- f is the frequency in GHz;

802.11n40

5755 MHz

Flow= 5736.83382MHz; Fhigh= 5773.14219MHz, occupied bandwidth=36.30837MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5755 MHz	5755	-65.33	-	Jr - 3
	10 times lower band edge of the occupied bandwidth	5373.75012	٠,-	-29.83	-90.80(Note ¹)
	20 times lower band edge of the occupied bandwidth	5010.66642	10 - K	-35.57	-90.80
3	50 times lower band edge of the occupied bandwidth	3921.41532	-	-35.05	-90.80
	10 times upper band edge of the occupied bandwidth	6136.22589	<u>-</u>	-29.91	-90.80
	20 times upper band edge of the occupied bandwidth	6499.30959	Ø - 3	-35.37	-90.80
	50 times upper band edge of the occupied bandwidth	7588.56069	-	-32.61	-90.80

Note1:

The limit:

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.80

Where:

- f is the frequency in GHz;

802.11n40

5795 MHz

Flow= 5776.82582MHz; Fhigh= 5813.15818MHz, occupied bandwidth=36.33236MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5795	-64.91	-	Jr - 3
4	10 times lower band edge of the occupied bandwidth	5413.50222	٠,-	-30.01	-90.86(Note ¹)
	20 times lower band edge of the occupied bandwidth	5050.17862	10 - K	-33.82	-90.86
3	50 times lower band edge of the occupied bandwidth	3960.20782	-	-35.56	-90.86
	10 times upper band edge of the occupied bandwidth	6176.48178	<u>-</u>	-29.72	-90.86
	20 times upper band edge of the occupied bandwidth	6539.80538	Ø - 3	-35.10	-90.86
	50 times upper band edge of the occupied bandwidth	7629.77618	-	-30.60	-90.86

Note1:

The limit:

-60 dBm + k

The correction factor, k, is as follows:

k = -20log f -10logBW

k = -30.86

Where:

- f is the frequency in GHz;

802.11ac80

5775 MHz

Flow= 5737.2918MHz; Fhigh= 5812.8522MHz, occupied bandwidth=75.5604MHz

Receiver category	Frequency offset	Test Frequency (MHz)	Measurement Vause(dB) (Generator A)	Measurement Vause(dB) (Generator B)	≧Limit(dB)
	5795 MHz	5775	-65.30		* 3
	10 times lower band edge of the occupied bandwidth	4981.688	. Ē	-29.52	-94.01(Note ¹)
<u>_</u>	20 times lower band edge of the occupied bandwidth	4226.084	A	-34.83	-94.01
3	50 times lower band edge of the occupied bandwidth	1959.272	-	-35.01	-94.01
	10 times upper band edge of the occupied bandwidth	6568.456	-	-30.79	-94.01
	20 times upper band edge of the occupied bandwidth	7324.060	Ø - €	-35.22	-94.01
	50 times upper band edge of the occupied bandwidth	9590.872	-	-30.62	-94.01

Note1:

The limit:

-60 dBm + k

The correction factor, k, is as follows:

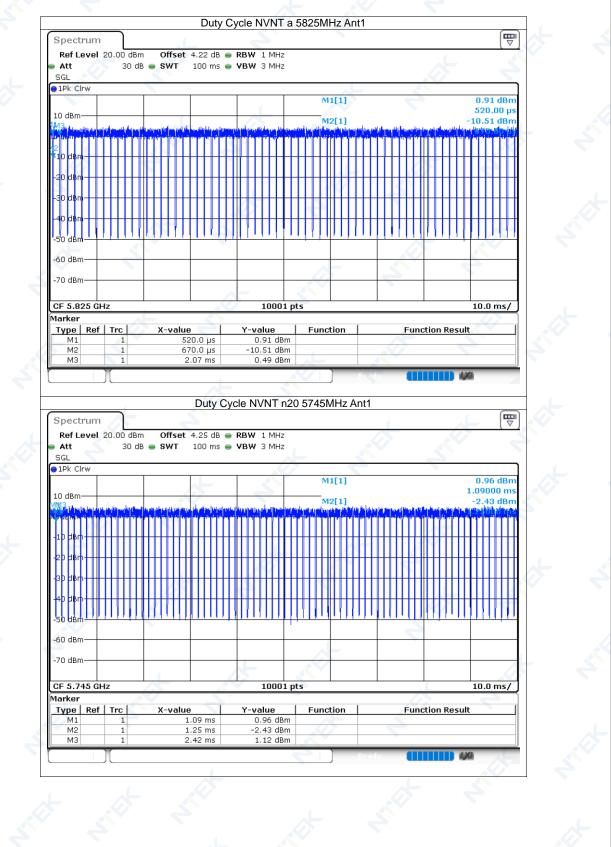
k = -20log f -10logBW

k = -34.01

Where:

- f is the frequency in GHz;

10. TEST RESULTS


10.1 DUTY CYCLE

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	а	5745	Ant1	90.81	0.42	0.72
NVNT	а	5785	Ant1	90.85	0.42	0.72
NVNT	а	5825	Ant1	90.87	0.42	0.71
NVNT	n20	5745	Ant1	88.9	0.51	0.85
NVNT	n20	5785	Ant1	88.74	0.52	0.85
NVNT	n20	5825	Ant1	88.72	0.52	0.86
NVNT	n40	5755	Ant1	77.63	1.1	1.75
NVNT	n40	5795	Ant1	77.69	1.1	1.72
NVNT	ac20	5745	Ant1	89.38	0.49	0.85
NVNT	ac20	5785	Ant1	89.37	0.49	0.85
NVNT	ac20	5825	Ant1	89.32	0.49	0.84
NVNT	ac40	5755	Ant1	81.06	0.91	1.69
NVNT	ac40	5795	Ant1	80.86	0.92	1.69
NVNT	ac80	5775	Ant1	68.76	1.63	3.33

Page 43 of 82 Report No.: S23082304803005 Test Graphs Duty Cycle NVNT a 5745MHz Ant1 **W** Spectrum Offset 4.25 dB @ RBW 1 MHz 30 dB 🍙 SWT 100 ms 🍙 **VBW** 3 MHz Att SGL ●1Pk Clrw M1[1] CF 5.745 GHz 10001 pts 10.0 ms/ Marker Y-value 2.53 dBm -1.48 dBm Type | Ref | Trc X-value Function **Function Result** 850.0 µs M1 M2 1.01 ms МЗ 2.4 ms -0.09 dBm Duty Cycle NVNT a 5785MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 4.24 dB @ RBW 1 MHz Att 30 dB 🅌 SWT 100 ms 🁄 **VBW** 3 MHz 1Pk Clrw 2.36 dBm 490.00 μs -2.38 dBm M1[1] 10001 pts CF 5.785 GHz 10.0 ms/ Type | Ref | Trc **Function Result** X-value Y-value Function 2.36 dBm -2.38 dBm 0.39 dBm 490.0 µs M2 650.0 μs 2.04 ms

Page 45 of 82 Report No.: S23082304803005 Duty Cycle NVNT n20 5785MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 4.24 dB
RBW 1 MHz Att 30 dB 👄 SWT 100 ms 🌞 **VBW** 3 MHz 1Pk Clrw M1[1] 180.00 με CF 5.785 GHz 10001 pts 10.0 ms/ Marker
 Type
 Ref
 Trc

 M1
 1

 M2
 1
 Function Result X-value Y-value **Function** -0.46 dBm -2.67 dBm -0.88 dBm 180.0 µs 330.0 μs 1.5 ms МЗ Duty Cycle NVNT n20 5825MHz Ant1 Spectrum Offset 4.22 dB e RBW 1 MHz Ref Level 20.00 dBm 30 dB 🅌 SWT 100 ms 🌞 **VBW** 3 MHz Att SGL ●1Pk Clrw -1.87 dBm 1.12000 m 10 dBm 70 dBm-10001 pts 10.0 ms/ CF 5.825 GHz Marker Type | Ref | Trc | **Y-value** -1.87 dBm -1.43 dBm **Function Result** 1.12 ms 1.28 ms МЗ 2.44 ms 0.71 dBm

Page 46 of 82 Report No.: S23082304803005 Duty Cycle NVNT n40 5755MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 4.25 dB
RBW 1 MHz Att 30 dB 👄 SWT 100 ms 🌞 **VBW** 3 MHz 1Pk Clrw M1[1] 90.00 µs M2[1] 8.18 dBn CF 5.755 GHz 10001 pts 10.0 ms/ Marker
 Type
 Ref
 Trc

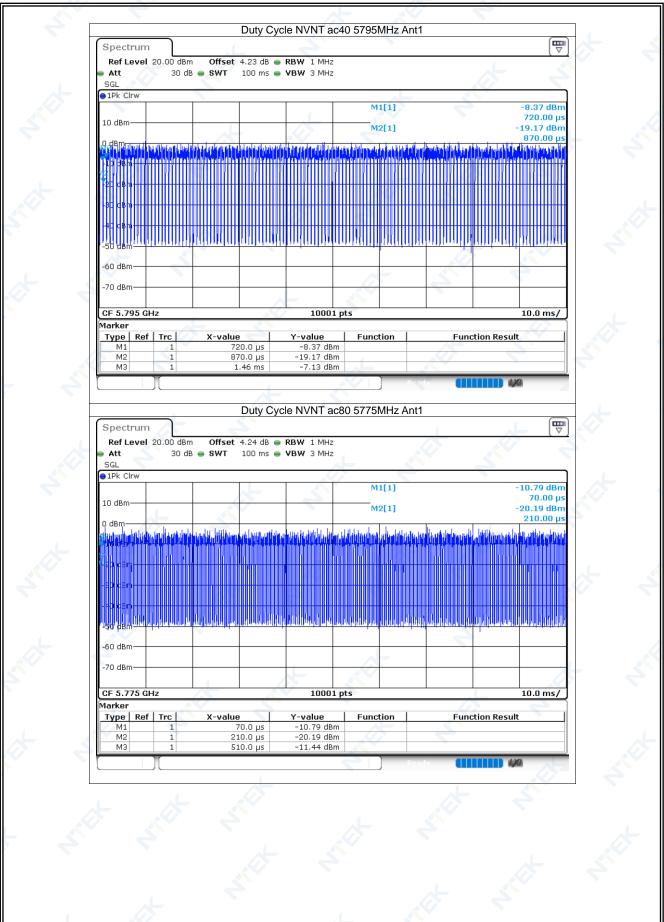
 M1
 1

 M2
 1
 Function Result Y-value Function X-value 90.0 µs 250.0 µs 820.0 µs -5.33 dBm -8.18 dBm -2.75 dBm МЗ Duty Cycle NVNT n40 5795MHz Ant1 Spectrum Offset 4.23 dB e RBW 1 MHz Ref Level 20.00 dBm 30 dB 🅌 SWT 100 ms 🌞 **VBW** 3 MHz Att SGL ●1Pk Clrw M1[1] 8.56 dBm 60.00 µs 70 dBm-10001 pts CF 5.795 GHz Marker Type | Ref | Trc | **Function Result** 60.0 µs 230.0 µs -8.56 dBm -9.30 dBm МЗ -7.73 dBm

Page 47 of 82 Report No.: S23082304803005 Duty Cycle NVNT ac20 5745MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 4.25 dB
RBW 1 MHz Att 30 dB 👄 SWT 100 ms 🁄 **VBW** 3 MHz 1Pk Clrw M1[1] 290.00 μs CF 5.745 GHz 10001 pts 10.0 ms/ Marker
 Type
 Ref
 Trc

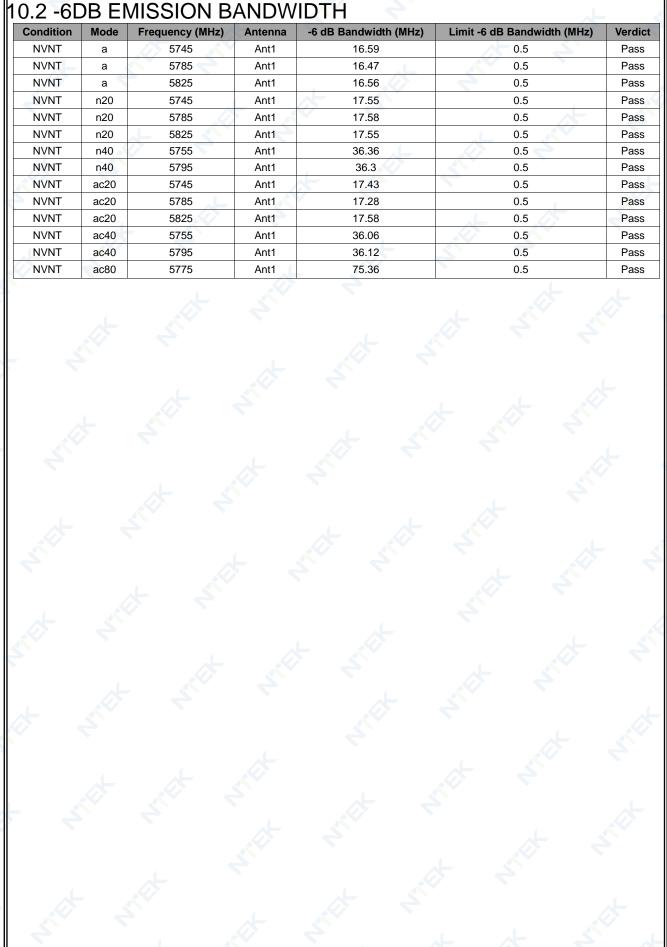
 M1
 1

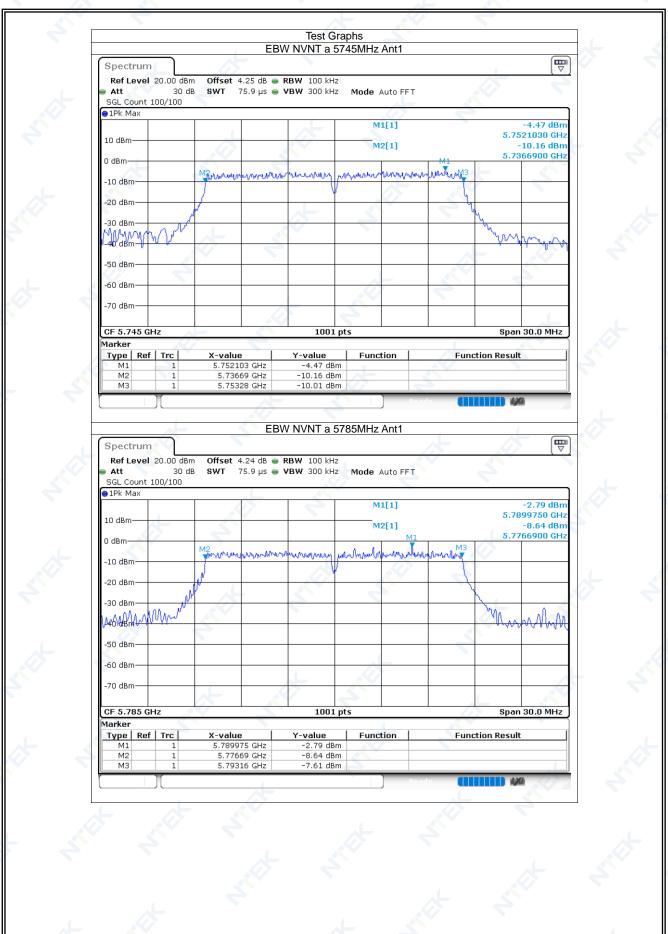
 M2
 1
 Function Result X-value Y-value **Function** 290.0 µs 460.0 µs 1.64 ms 2.11 dBm -2.34 dBm -0.53 dBm МЗ Duty Cycle NVNT ac20 5785MHz Ant1 Spectrum Offset 4.24 dB e RBW 1 MHz Ref Level 20.00 dBm 30 dB 🅌 SWT 100 ms 🌞 **VBW** 3 MHz Att SGL ●1Pk Clrw 0.33 dBm 930.00 µs 10 dBm 70 dBm-10001 pts 10.0 ms/ CF 5.785 GHz Marker Type | Ref | Trc | Y-value 0.33 dBm -1.18 dBm **Function Result** 930.0 µs 1.09 ms МЗ 1.48 dBm



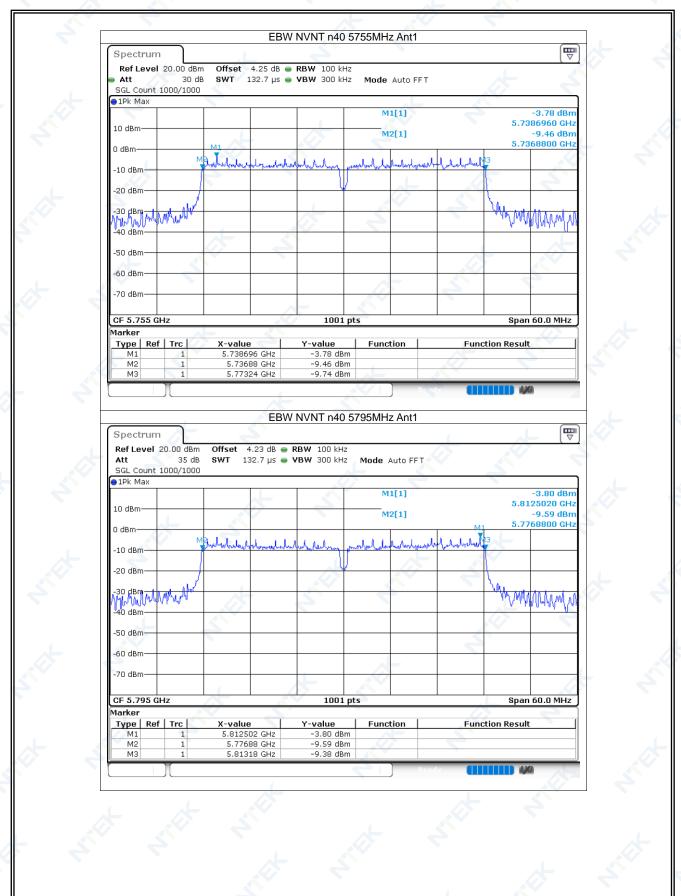
Page 48 of 82 Report No.: S23082304803005 Duty Cycle NVNT ac20 5825MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 4.22 dB
RBW 1 MHz Att 30 dB 👄 SWT 100 ms 🌞 **VBW** 3 MHz 1Pk Clrw M1[1] 130.00 με M2[1] CF 5.825 GHz 10001 pts 10.0 ms/ Marker
 Type
 Ref
 Trc

 M1
 1


 M2
 1
 Function Result Y-value **Function** X-value 130.0 µs 290.0 µs 1.48 ms 0.38 dBm -10.33 dBm 1.25 dBm МЗ Duty Cycle NVNT ac40 5755MHz Ant1 Spectrum Offset 4.25 dB e RBW 1 MHz Ref Level 20.00 dBm 30 dB 🅌 SWT 100 ms 🅌 VBW 3 MHz Att SGL ●1Pk Clrw M1[1] 2.24 dBm 370.00 µs 70 dBm 10001 pts CF 5.755 GHz Marker Type | Ref | Trc | **Function Result** 370.0 μs 520.0 μs -2.24 dBm -17.49 dBm МЗ -5.99 dBm



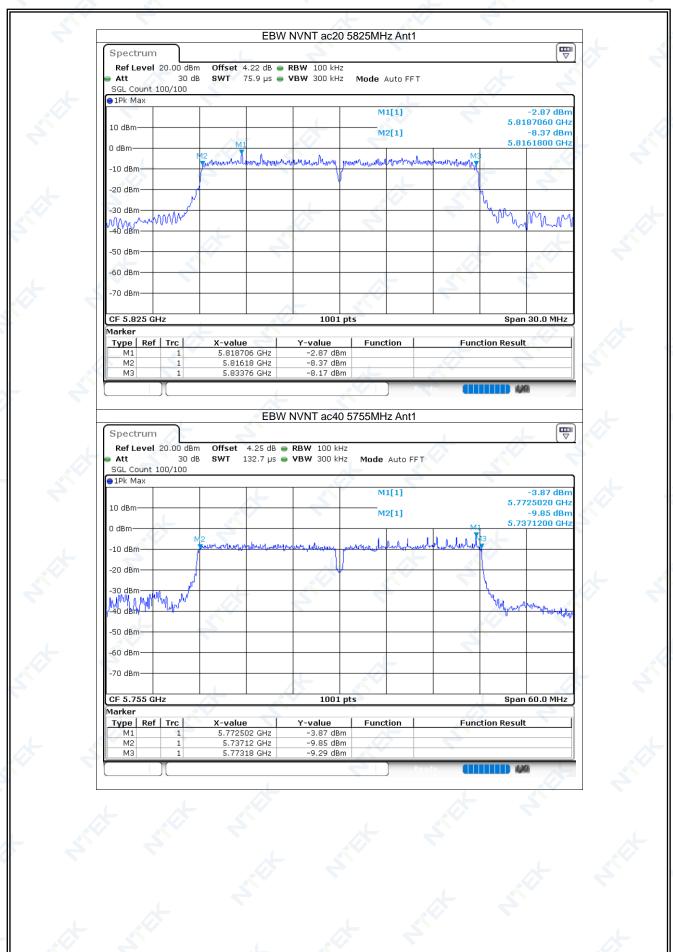




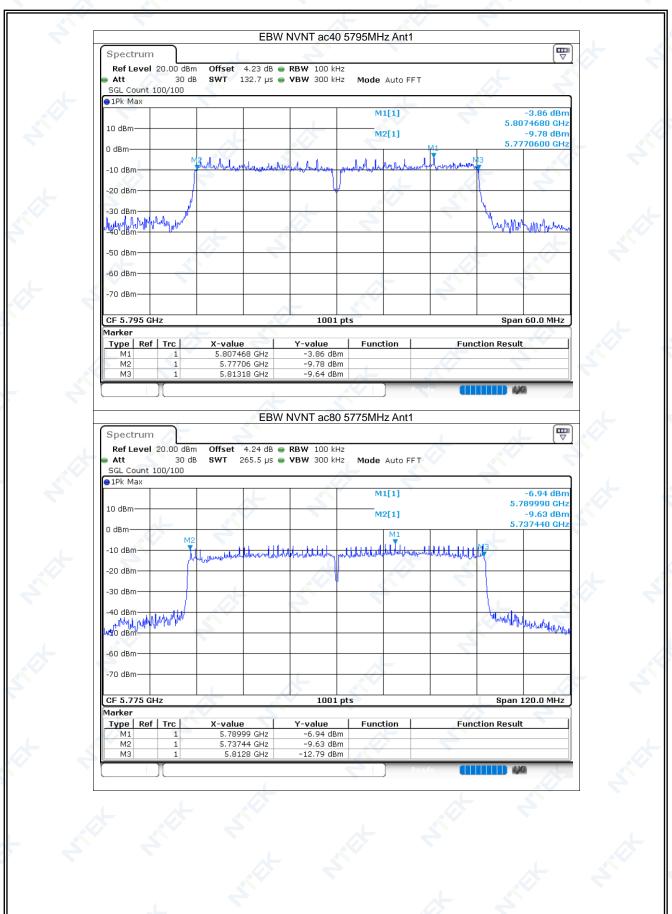
Report No.: S23082304803005 EBW NVNT n20 5785MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 4.24 dB ● RBW 100 kHz SWT 75.9 µs ● VBW 300 kHz 30 dB Mode Auto FFT Att SGL Count 100/100 1Pk Max M1[1] -2.69 dBn 5.7887160 GHz 10 dBm M2[1] 5.7761800 GHz -10 dBm 40 dBm CF 5.785 GHz 1001 pts Span 30.0 MHz Marker
 Type
 Ref
 Trc

 M1
 1

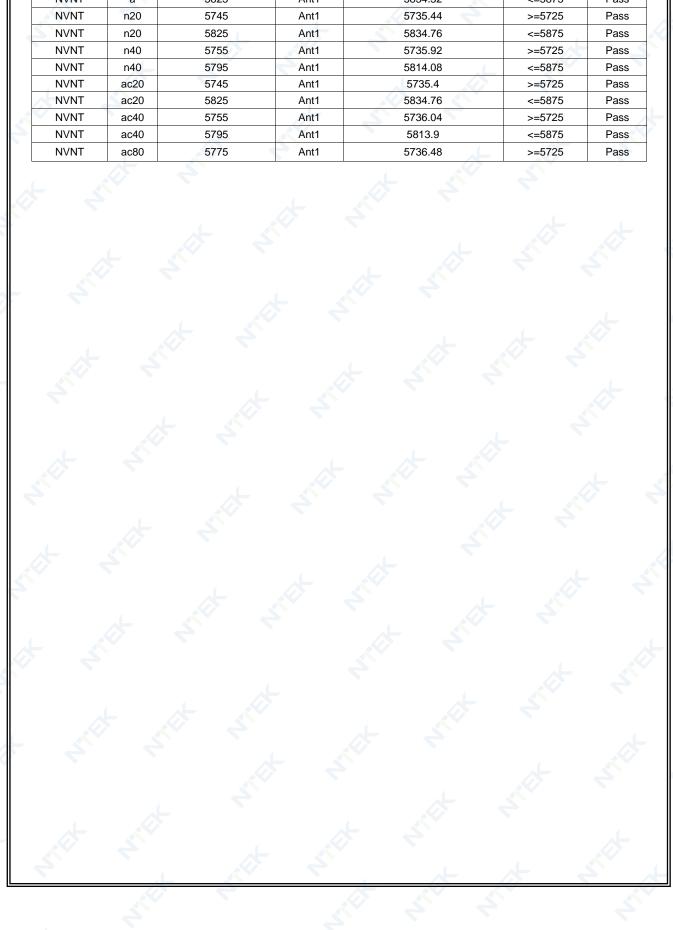
 M2
 1
 Function Result Y-value **Function** X-value 5.788716 GHz 5.77618 GHz -2.69 dBm -8.50 dBm -8.51 dBm МЗ 5.79376 GHz EBW NVNT n20 5825MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 4.22 dB @ RBW 100 kHz 30 dB SWT 75.9 µs ● VBW 300 kHz Att Mode Auto FFT SGL Count 1000/1000 ●1Pk Max M1[1] 5.8299750 GHz 10 dBm M2[1] -7.50 dBm 5.816<u>210</u>0 GHz -10 dBm -30 dBm -50 dBm 70 dBm 1001 pts Span 30.0 MHz CF 5.825 GHz Marker Type | Ref | Trc **Function Result** -2.04 dBm -7.50 dBm 5.829975 GHz 5.81621 GHz МЗ -8.00 dBm

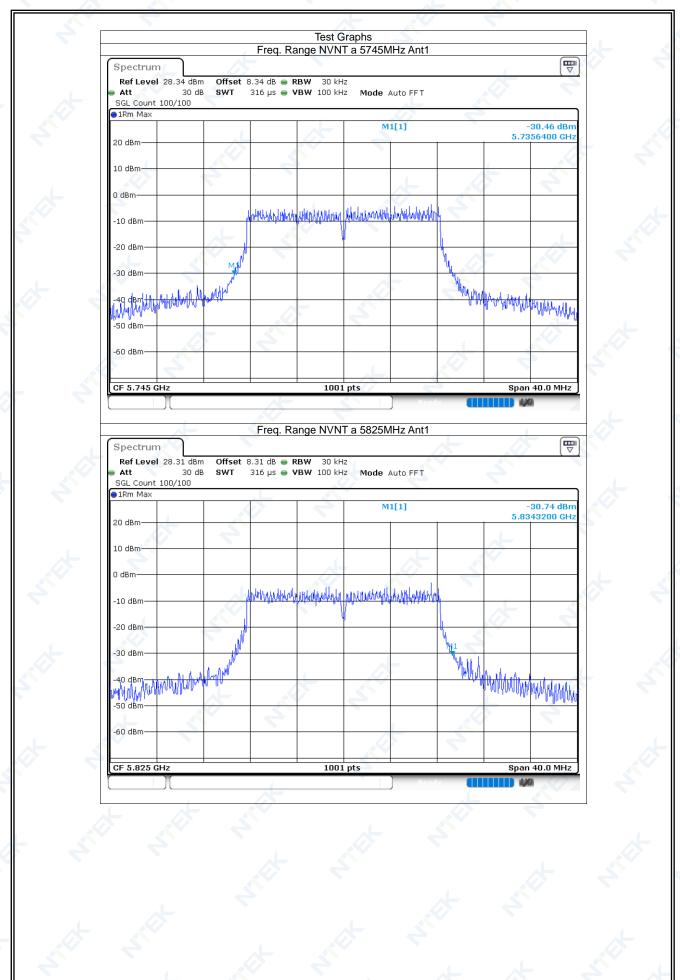


Page 55 of 82 Report No.: S23082304803005 EBW NVNT ac20 5745MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 4.25 dB ● RBW 100 kHz SWT 75.9 µs ● VBW 300 kHz 30 dB Mode Auto FFT Att SGL Count 100/100 1Pk Max M1[1] -2.35 dBn 5.7499750 GHz 10 dBm M2[1] 5.7362100 GHz 0 dBm -20 dBm CF 5.745 GHz 1001 pts Span 30.0 MHz Marker
 Type
 Ref
 Trc

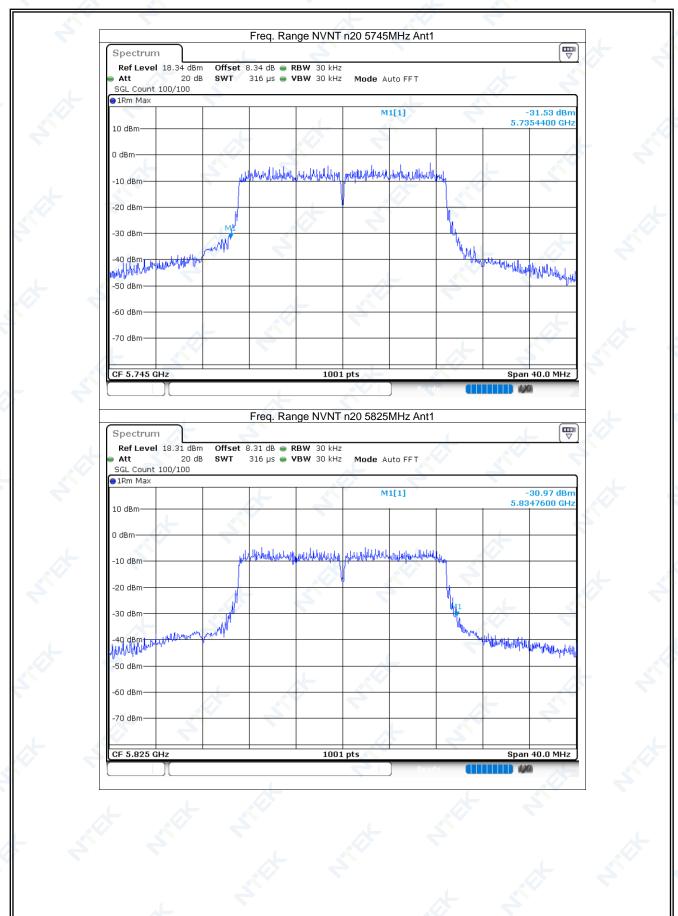

 M1
 1

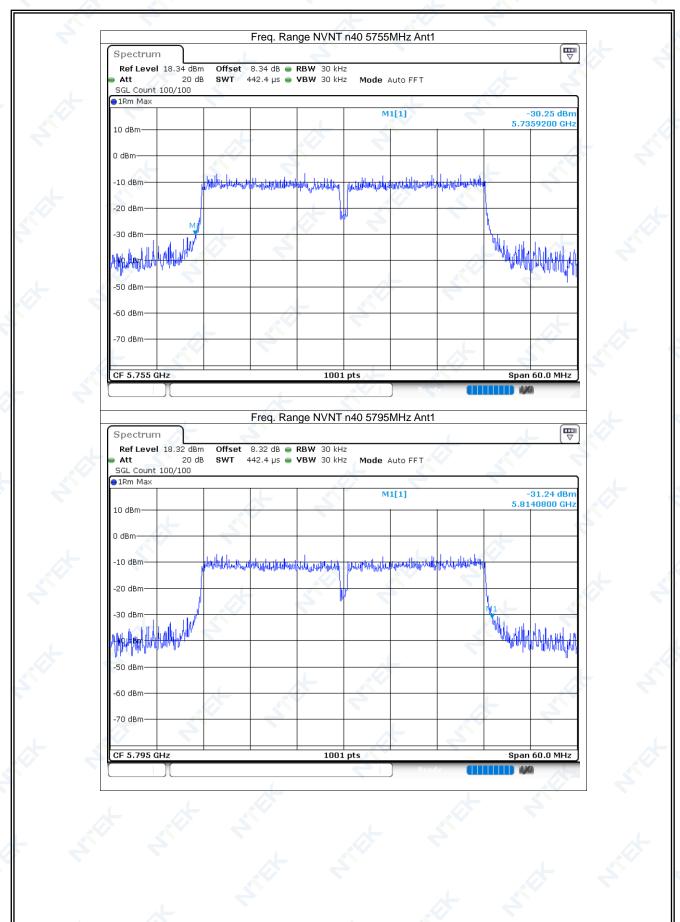
 M2
 1
 Function Result X-value Y-value **Function** 5.749975 GHz 5.73621 GHz 5.75364 GHz -2.35 dBm -8.30 dBm -8.25 dBm МЗ EBW NVNT ac20 5785MHz Ant1 Spectrum Offset 4.24 dB • RBW 100 kHz Ref Level 20.00 dBm 30 dB SWT 75.9 µs ● VBW 300 kHz Att Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] 5.7787060 GHz 10 dBm M2[1] -7.43 dBm 5.776<u>210</u>0 GHz -10 dBm -30 dBm -50 dBm 70 dBm 1001 pts Span 30.0 MHz CF 5.785 GHz Marker X-value 5.778706 GHz 5.77621 GHz Type | Ref | Trc | **Function Result** -1.66 dBm -7.43 dBm МЗ -7.40 dBm

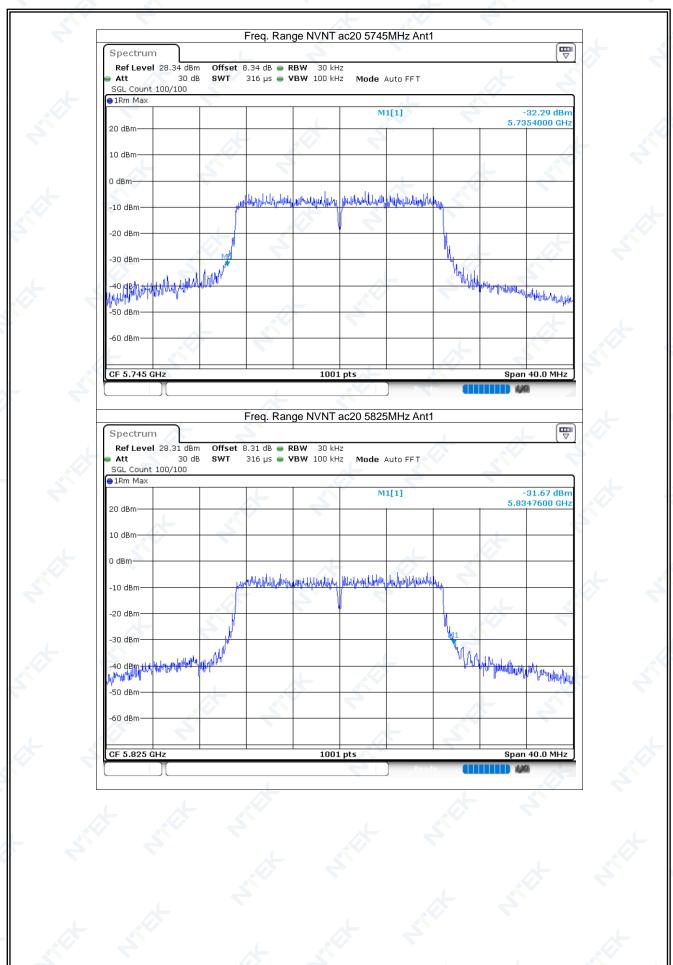


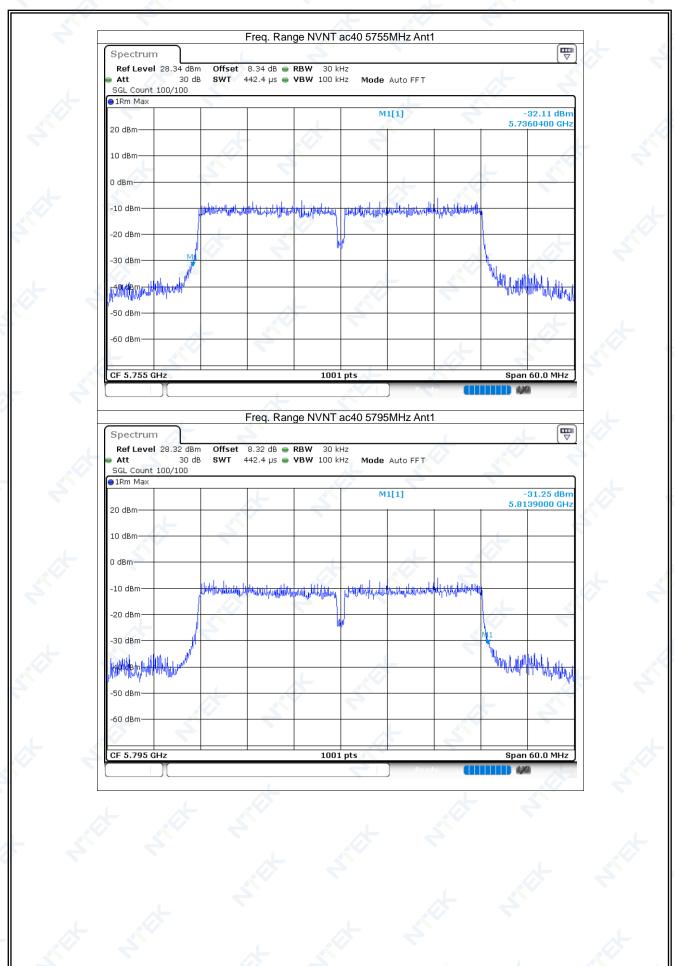


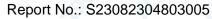
10.3 FREQUENCY RANGE

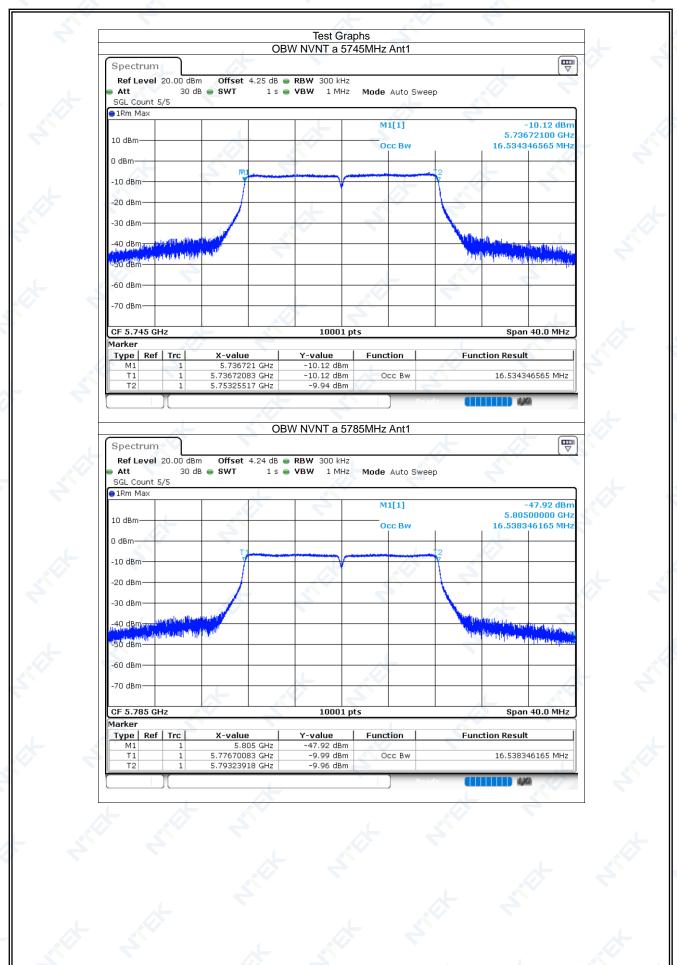

Condition	Mode	Frequency (MHz)	Antenna	Frequency Range (MHz)	Limit (MHz)	Verdict
NVNT	а	574 <mark>5</mark>	Ant1	5735.64	>=5725	Pass
NVNT	а	5825	Ant1	5834.32	<=5875	Pass
NVNT	n20	5745	Ant1	5735.44	>=5725	Pass
NVNT	n20	5825	Ant1	5834.76	<=5875	Pass
NVNT	n40	5755	Ant1	5735.92	>=5725	Pass
NVNT	n40	5795	Ant1	5814.08	<=5875	Pass
NVNT	ac20	5745	Ant1	5735.4	>=5725	Pass
NVNT	ac20	5825	Ant1	5834.76	<=5875	Pass
NVNT	ac40	5755	Ant1	5736.04	>=5725	Pass
NVNT	ac40	5795	Ant1	5813.9	<=5875	Pass
NVNT	ac80	5775	Ant1	5736.48	>=5725	Pass

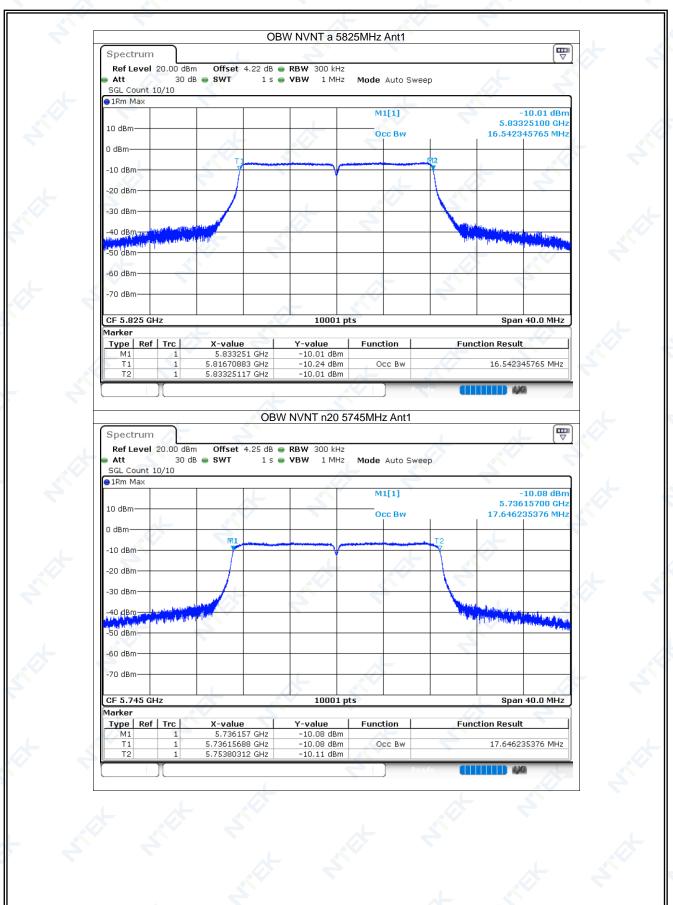




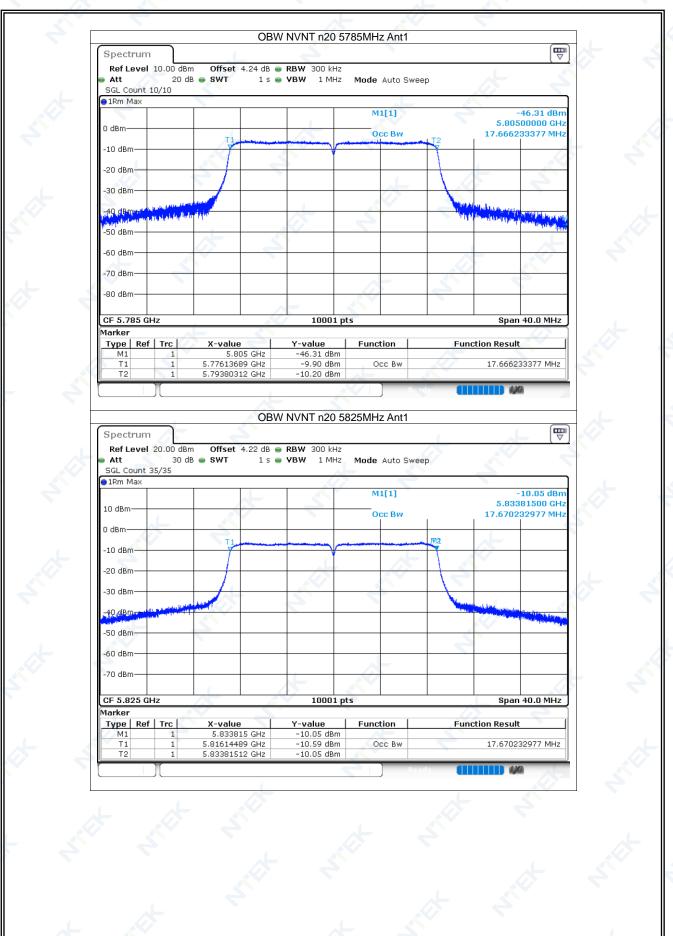


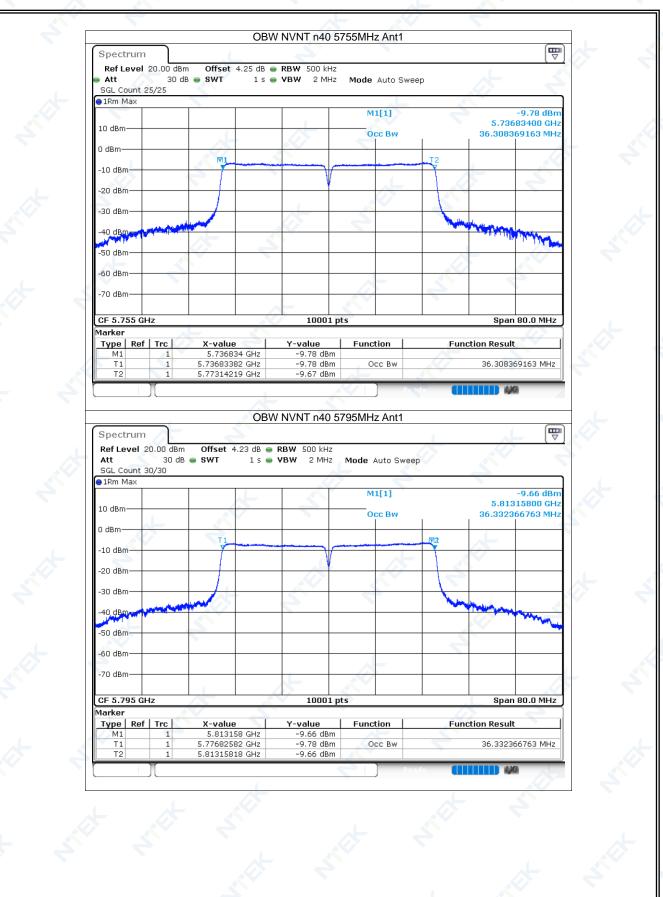


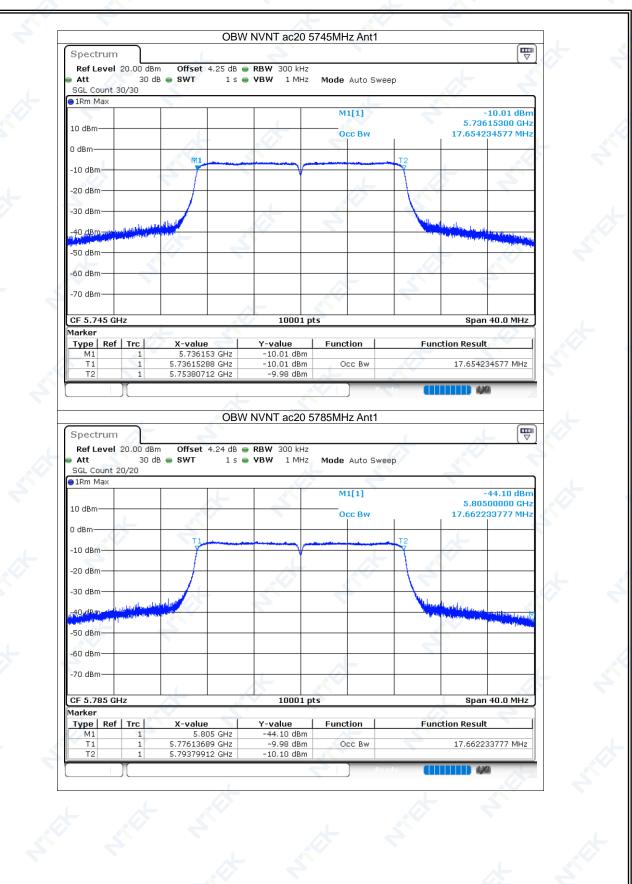


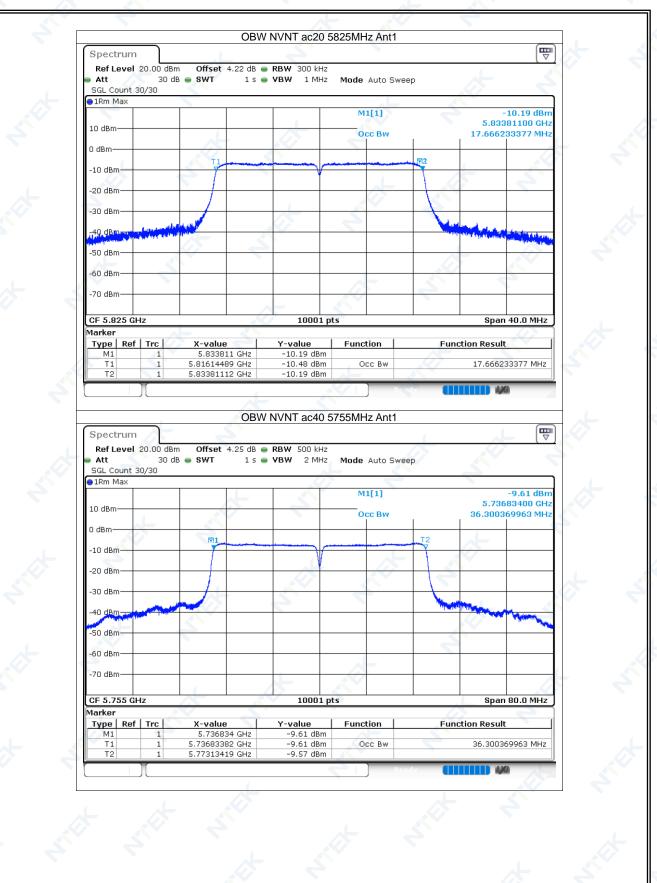

10.4 OCCUPIED CHANNEL BANDWIDTH

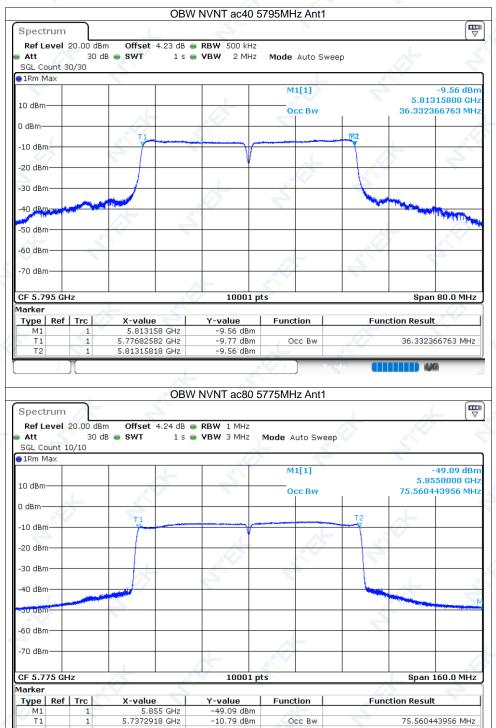
Condition	Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Verdict
NVNT	а	5745	Ant1	5744.988	16.534	Pass
NVNT	а	5785	Ant1	5784.97	16.538	Pass
NVNT	а	5825	Ant1	5824.98	16.542	Pass
NVNT	n20	5745	Ant1	5744.98	17.646	Pass
NVNT	n20	5785	Ant1	5784.97	17.666	Pass
NVNT	n20	5825	Ant1	5824.98	17.67	Pass
NVNT	n40	5755	Ant1	5754.988	36.308	Pass
NVNT	n40	5795	Ant1	5794.992	36.332	Pass
NVNT	ac20	5745	Ant1	5744.98	17.654	Pass
NVNT	ac20	5785	Ant1	5784.968	17.662	Pass
NVNT	ac20	5825	Ant1	5824.978	17.666	Pass
NVNT	ac40	5755	Ant1	5754.984	36.3	Pass
NVNT	ac40	5795	Ant1	5794.992	36.332	Pass
NVNT	ac80	5775	Ant1	5775.072	75.56	Pass











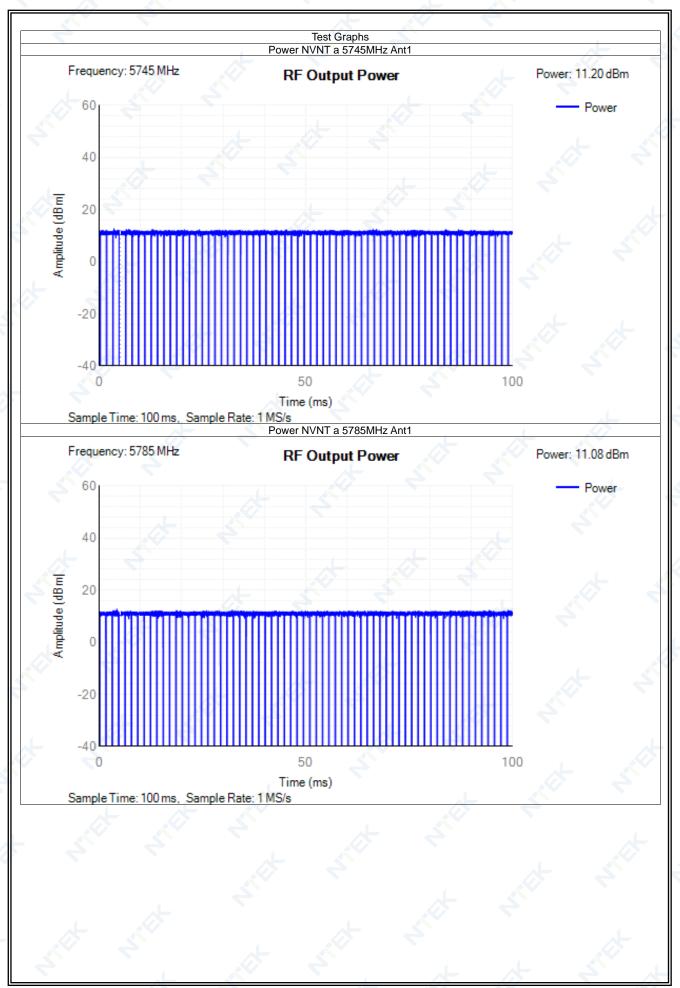
Report No.: S23082304803005 -9.56 dBm

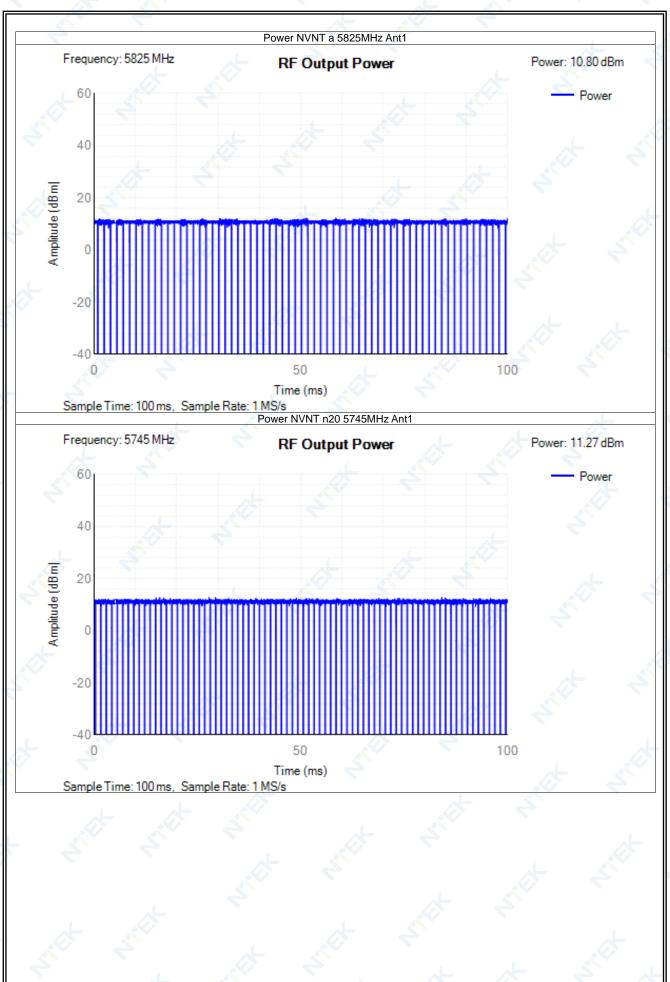
75.560443956 MHz

5.8128522 GHz

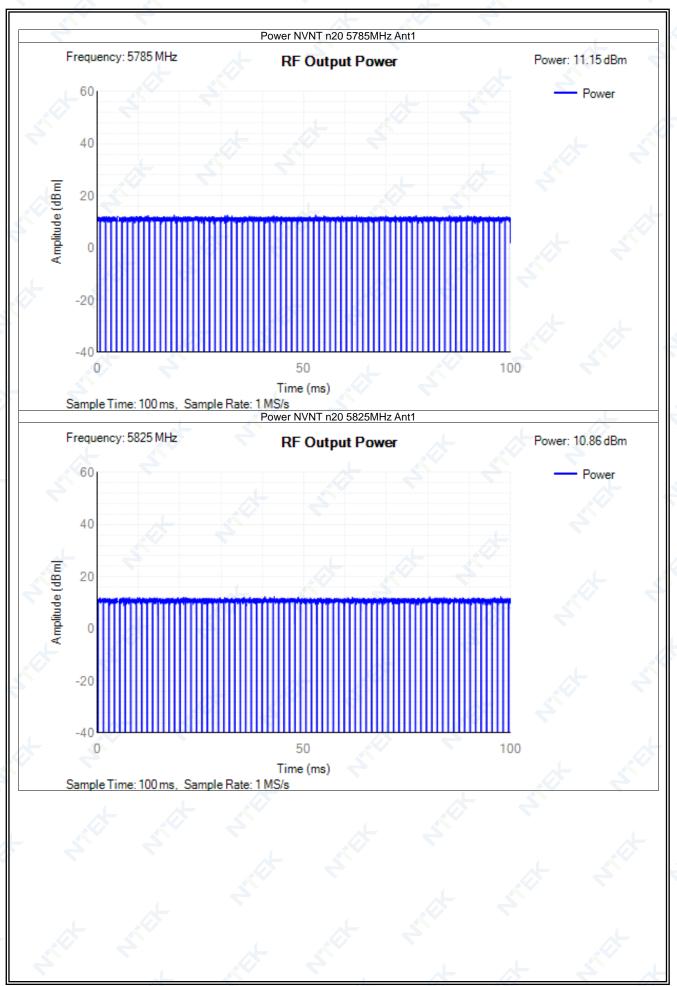
-9.96 dBm

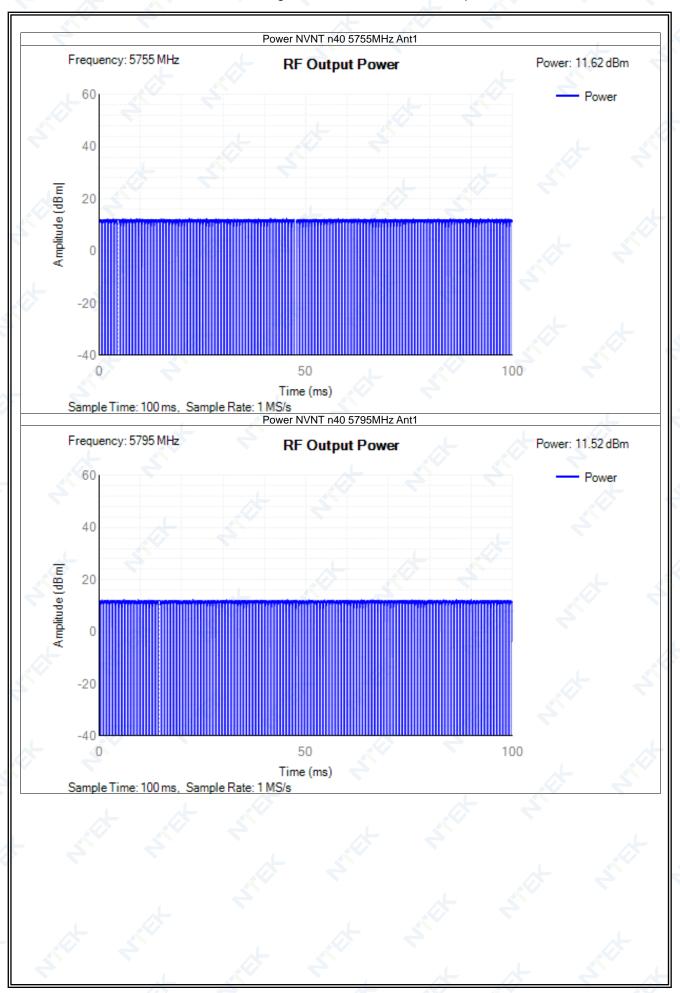
10.5 RF OUTPUT POWER

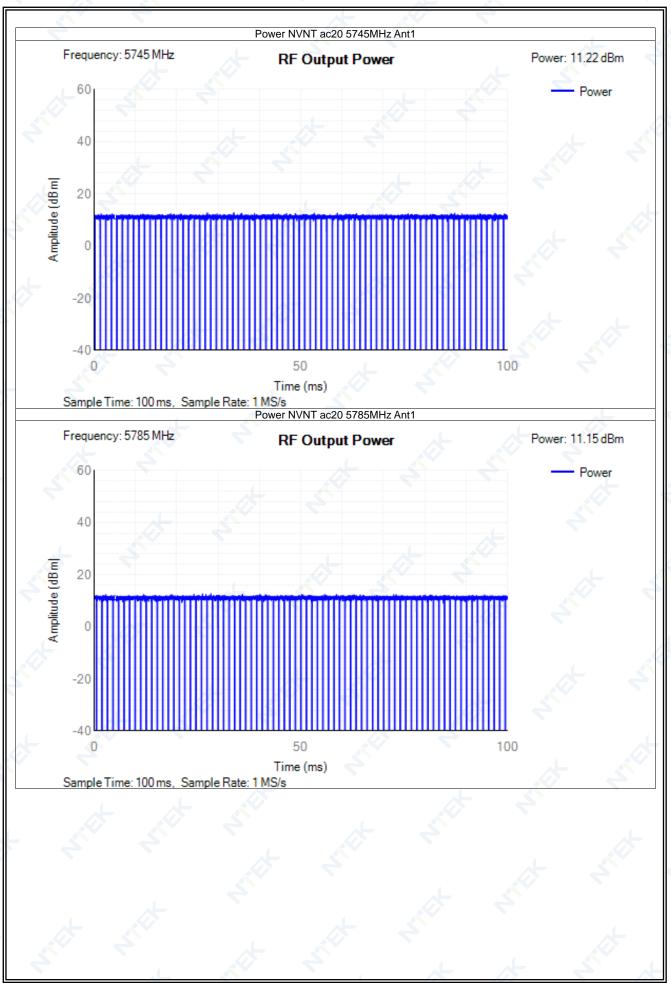

Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	а	5745	11.2	66	10.6	13.98	Pass
NVNT	а	5785	11.08	66	10.48	13.98	Pass
NVNT	а	5825	10.8	66	10.2	13.98	Pass
NVNT	n20	5745	11.27	77	10.67	13.98	Pass
NVNT	n20	5785	11.15	76	10.55	13.98	Pass
NVNT	n20	5825	10.86	77	10.26	13.98	Pass
NVNT	n40	5755	11.62	135	11.02	13.98	Pass
NVNT	n40	5795	11.52	136	10.92	13.98	Pass
NVNT	ac20	5745	11.22	76	10.62	13.98	Pass
NVNT	ac20	5785	11.15	76	10.55	13.98	Pass
NVNT	ac20	5825	10.84	76	10.24	13.98	Pass
NVNT	ac40	5755	11.65	135	11.05	13.98	Pass
NVNT	ac40	5795	11.53	136	10.93	13.98	Pass
NVNT	ac80	5775	11.07	226	10.47	13.98	Pass
HVLT	а	5745	10.96	43	10.36	13.98	Pass
HVLT	а	5785	10.99	43	10.39	13.98	Pass
HVLT	а	5825	10.96	43	10.36	13.98	Pass
HVLT	n20	5745	10.91	45	10.31	13.98	Pass
HVLT	n20	5785	8.17	44	7.57	13.98	Pass
HVLT	n20	5825	8.20	44	7.6	13.98	Pass
HVLT	n40	5755	8.17	61	7.57	13.98	Pass
HVLT	n40	5795	8.12	62	7.52	13.98	Pass
HVLT	ac20	5745	8.09	76	7.49	13.98	Pass
HVLT	ac20	5785	8.04	44	7.44	13.98	Pass
HVLT	ac20	5825	8.01	44	7.41	13.98	Pass
HVLT	ac40	5755	7.96	45	7.36	13.98	Pass
HVLT	ac40	5795	7.93	62	7.33	13.98	Pass
HVLT	ac80	5775	7.90	62	7.3	13.98	Pass
LVHT	а	5745	7.79	43	7.19	13.98	Pass
LVHT	а	5785	7.82	43	7.22	13.98	Pass
LVHT	а	5825	7.79	43	7.19	13.98	Pass
LVHT	n20	5745	7.74	45	7.14	13.98	Pass
LVHT	n20	5785	8.17	44	7.57	13.98	Pass
		4	1				

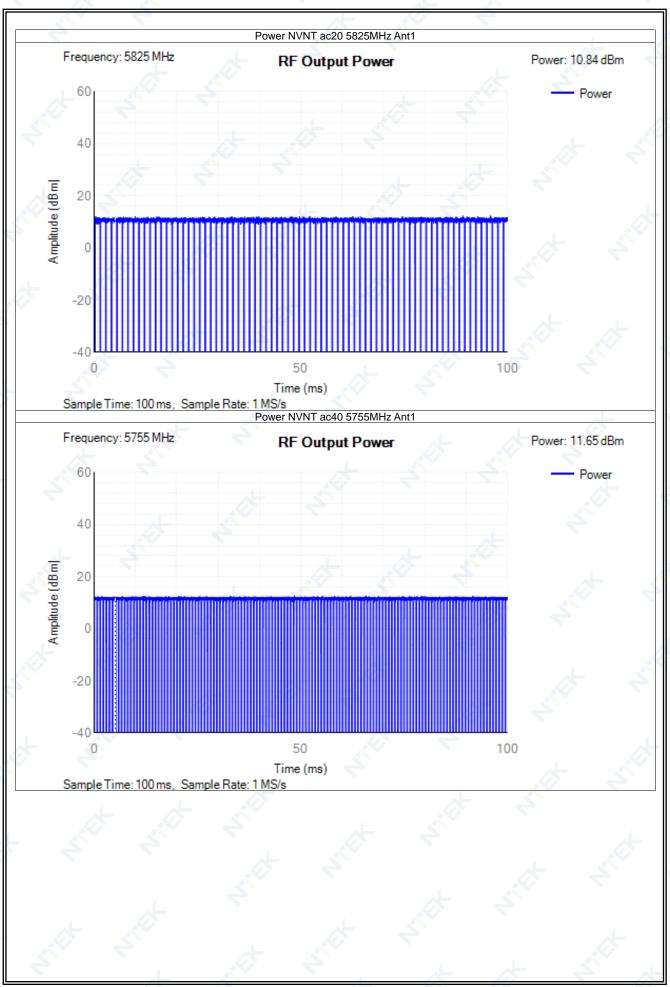

Page 74 of 82

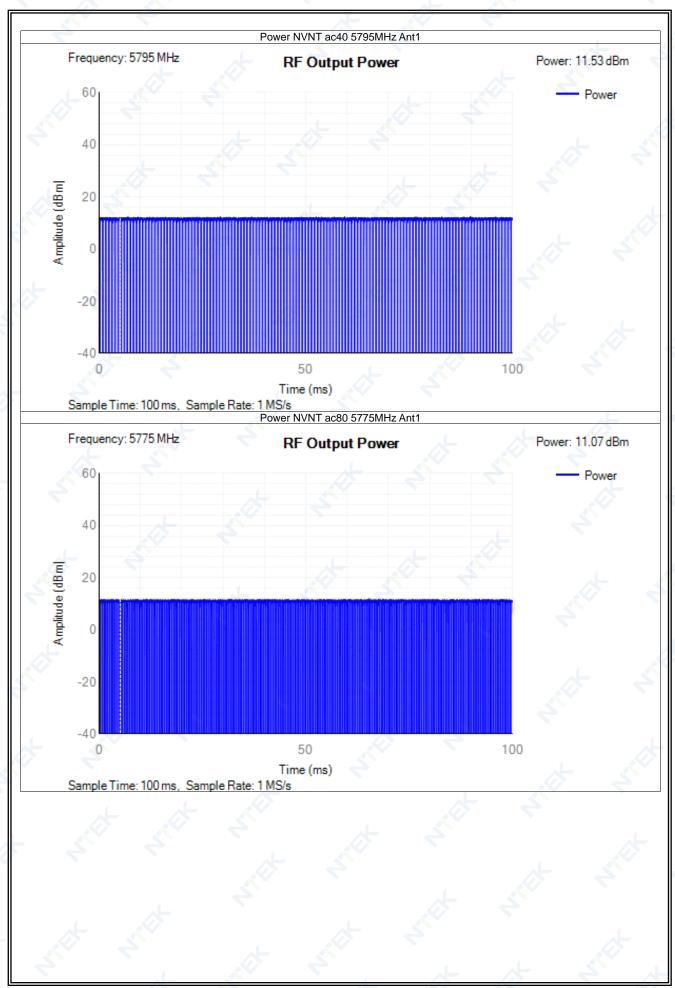
	LVHT	n40	5755	8.17	61	7.57	13.98	Pass
	LVHT	n40	5795	8.12	62	7.52	13.98	Pass
	LVHT	ac20	5745	8.09	76	7.49	13.98	Pass
	LVHT	ac20	5785	8.04	44	7.44	13.98	Pass
	LVHT	ac20	5825	8.01	44	7.41	13.98	Pass
	LVHT	ac40	5755	7.96	45	7.36	13.98	Pass
	LVHT	ac40	5795	7.93	62	7.33	13.98	Pass
ŧ	LVHT	ac80	5775	7.90	62	7.3	13.98	Pass
	HVHT	а	5745	7.79	43	7.19	13.98	Pass
	HVHT	а	5785	7.82	43	7.22	13.98	Pass
	HVHT	а	5825	7.79	43	7.19	13.98	Pass
ĺ	HVHT	n20	5745	7.74	45	7.14	13.98	Pass
Ī	HVHT	n20	5785	8.17	44	7.57	13.98	Pass
	HVHT	n20	5825	8.20	63	7.6	13.98	Pass
Ī	HVHT	n40	5755	8.17	61	7.57	13.98	Pass
Ī	HVHT	n40	5795	8.12	62	7.52	13.98	Pass
ľ	HVHT	ac20	5745	8.09	76	7.49	13.98	Pass
	HVHT	ac20	5785	8.04	44	7.44	13.98	Pass
	HVHT	ac20	5825	8.01	44	7.41	13.98	Pass
4	HVHT	ac40	5755	7.96	45	7.36	13.98	Pass
	HVHT	ac40	5795	7.93	62	7.33	13.98	Pass
	HVHT	ac80	5775	7.90	62	7.3	13.98	Pass
	LVLT	а	5745	7.79	43	7.19	13.98	Pass
1	LVHT	а	5785	7.82	43	7.22	13.98	Pass
Ī	LVHT	а	5825	7.79	43	7.19	13.98	Pass
1	LVHT	n20	5745	7.74	45	7.14	13.98	Pass
	LVHT	n20	5785	8.17	44	7.57	13.98	Pass
	LVHT	n20	5825	8.20	65	7.6	13.98	Pass
	LVHT	n40	5755	8.17	61	7.57	13.98	Pass
	LVHT	n40	5795	8.12	62	7.52	13.98	Pass
ľ	LVHT	ac20	5745	8.09	76	7.49	13.98	Pass
ľ	LVHT	ac20	5785	8.04	44	7.44	13.98	Pass
ľ	LVHT	ac20	5825	8.01	44	7.41	13.98	Pass
ľ	LVHT	ac40	5755	7.96	45	7.36	13.98	Pass
ľ	LVHT	ac40	5795	7.93	62	7.33	13.98	Pass
ľ	LVHT	ac80	5775	7.92	62	7.32	13.98	Pass

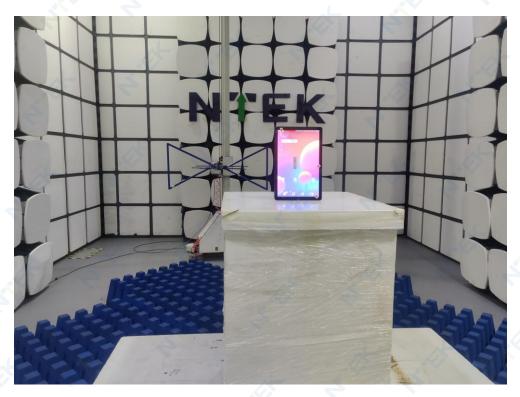












11. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT