RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product : Tablet PC
Trade Mark : Blackview
Model Name: Tab 7 WiFi
Family Model: Tab A7 Kids
Report No. : STR230215001001

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

Report No.: STR230215001001E

TEST RESULT CERTIFICATION

Applicant's name:	DOKE COMMUNICATION (HK) LIMITED
Address:	RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK, CHINA
Manufacturer's Name:	Shenzhen DOKE Electronic Co.,Ltd
Address:	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China

Product description

Product name:	Tablet PC
Trademark:	Blackview
Model Name:	Tab 7 WiFi
Family Model	Tab A7 Kids

Standards : ETSI EN 300 328 V2.2.2 (2019-07)

This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.

Test Sample Number T220923003R003

Date of Test

Date (s) of performance of tests Sep 23, 2022 ~ Oct 13, 2022

Date of Issue..... Feb 20, 2023

Test Result..... Pass

Note: All test data of this report are based on the original test report STR220923004001E dated by Oct 13, 2022

Testing Engineer

hrang. Hu

(Mary Hu)

Authorized Signatory :

(Alex Li)

Table of Contents	Page
1 . GENERAL INFORMATION	7
1.1 GENERAL DESCRIPTION OF EUT	7 🔶
1.2 INFORMATION ABOUT THE EUT	8
1.3 TEST CONDITIONS	13
1.4 TEST CONFIGURATION OF EUT	13
1.5 DESCRIPTION OF TEST CONDITIONS	14
1.6 DESCRIPTION OF SUPPORT UNITS	15
1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS	16
2 . SUMMARY OF TEST RESULTS	17-
2.1 TEST FACILITY	<u> </u>
3 . RF OUTPUT POWER	19
3.1 LIMITS OF RF OUTPUT POWER	19
3.2 TEST PROCEDURE	19
3.3 DEVIATION FROM TEST STANDARD	19
3.4 TEST SETUP	19
3.5 TEST RESULTS	20
4 . ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPAT	TION AND HOPPING
SEQUENCE	21
4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY	
HOPPING SEQUENCE	21
4.2 TEST PROCEDURE	21
4.3 DEVIATION FROM TEST STANDARD	21
4.4 TEST SETUP	22
4.5 TEST RESULTS	22
5 . OCCUPIED CHANNEL BANDWIDTH	23
5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	23
5.2 TEST PROCEDURE	23
5.3 DEVIATION FROM TEST STANDARD	24
5.4 TEST SETUP	24
5.5 TEST RESULTS	24
6 . TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-	
6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE	

Page 3 of 90

Table of Contents	Page
DOMAIN	25
6.2 TEST PROCEDURE	25
6.3 DEVIATION FROM TEST STANDARD	26
6.4 TEST SETUP	26
6.5 TEST RESULTS	26
7 . HOPPING FREQUENCY SEPARATION	27
7.1 LIMITS OF HOPPING FREQUENCY SEPARATION	27
7.2 TEST PROCEDURE	27
7.3 DEVIATION FROM TEST STANDARD	27
7.4 TEST SETUP	28
7.5 TEST RESULTS	28
8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMA	AIN 29
8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN	N THE
SPURIOUS DOMAIN	29
8.2 TEST PROCEDURE	29
8.3 DEVIATION FROM TEST STANDARD	29
8.4 TEST SETUP	30
8.5 TEST RESULTS (Radiated measurement)	31
8.6 TEST RESULTS (Conducted measurement)	32
9. RECEIVER SPURIOUS EMISSIONS	-33
9.1 LIMITS OF RECEIVER SPURIOUS RADIATION	33
9.2 TEST PROCEDURE	33
9.3 DEVIATION FROM TEST STANDARD	33
9.4 TEST SETUP	34
9.5 TEST RESULTS (Radiated measurement)	35
9.6 TEST RESULTS (Conducted measurement)	36
10. RECEIVER BLOCKING	37
10.1 PERFORMANCE CRITERIA	37
10.2 LIMITS OF RECEIVER BLOCKING	37
10.3 TEST PROCEDURE	38
10.4 DEVIATION FROM TEST STANDARD	39
10.5 TEST SETUP	39
10.6 TEST RESULTS	40
11. TEST RESULTS	43

Page 4 of 90

	Table of Contents	Page	
	11.1 Accumulated Transmit Time	43	
	11.2 Frequency Occupation	50	
	11.3 One Pulse Dwell Time	57	
	11.4 RF Output Power	67	
	11.5 Hopping Frequency Separation	69	
	11.6 Occupied Channel Bandwidth	73	
	11.7Transmitter unwanted emissions in the out-of-band domain	76	
	11.8 Transmitter unwanted emissions in the spurious domain	79	
	11.9 Receiver spurious emissions	84	
	11.10 Hopping Sequence	88	
12	2. EUT TEST PHOTO	90	
S	PURIOUS EMISSIONS MEASUREMENT PHOTOS	90	

Page 5 of 90

Revision History		
Version	Description	Issued Date
Rev.01	Initial issue of report	Oct 13, 2022
Rev.02	Added a model	Feb 20, 2023
		4
	4 4 7 P	
<u> </u>	×	A 4
	A 5	4
Č (×	Store All
	AT S	
	2	×
~		A S
	4	
		t l
		*
	<u> </u>	
	Version Rev.01 Rev.02	Version Description Rev.01 Initial issue of report Rev.02 Added a model Image: Imag

<u>NTEK 北测[®]</u>

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

		-		
Equipment	Tablet PC Blackview			
Trade Mark				
Model Name.	Tab 7 WiFi	A S		
Family Model	Tab A7 Kids			
Model Difference	model name.	circuit and RF module, except the		
		The EUT is Tablet PC		
	Operation Frequency:	2402~2480 MHz		
	Modulatin Type:	GFSK,π/4-DQPSK,8-DPSK		
	Modulation Technology:	FHSS		
	Adaptive/non-adaptive	Adaptive equipment		
	Receiver categories	2		
Product Description	Number Of Channel	79CH		
	Antenna Designation:	FPC Antenna		
	Antenna Gain(Peak)	0.67 dBi		
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.			
Channel List	Refer to below Table			
Adapter	Model: QZ-01000EA00 Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A (10.0W)			
Battery	DC 3.8V, 6580mAh, 25.0Wh			
Rating	DC 3.8V from battery or DC 5V from Adapter.			
I/O Ports	Refer to users manual	At .		
Hardware Version	R863T-DK-RK3326S-V1.0			
Software Version	Tab_7_WiFi_EEA_S863T_V1.0_20220930V01 Tab_A7_Kids_EEA_S863T_V1.0_20221228V01			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page 8 of 90

2.

79 channels are provided to (GFSK, π/4-DQPSK, 8-DPSK)

Channel	Frequency (MHz
00	2402
01	2403
×	
77	2479
78	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

FHSS

other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment:
 The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment:

The maximum number of Hopping Frequencies: 79

- The minimum number of Hopping Frequencies: 79
- The (average) Dwell Time: 339.84s Maximum

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The maximum Channel Occupancy Time implemented by the equipment:/..... ms

- The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment

The equipment can switch dynamically between Frame Based and Load Based equipment

The CCA time implemented by the equipment:/.. µs

-] The equipment has implemented a non-LBT based DAA mechanism
- The equipment can operate in more than one adaptive mode

<u>NTEK 北测®</u>

Page 9 of 90

Report No.: STR230215001001E

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.):

The maximum (corresponding) Duty Cycle:

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

• RF Output Power

GFSK

Power Spectral Density

N/A

• Duty cycle, Tx-Sequence, Tx-gap

N/A

- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
 8-DPSK
- Hopping Frequency Separation (only for FHSS equipment)
 8-DPSK
- Medium Utilization N/A
- Adaptivity

N/A

- Receiver Blocking
- GFSK, 8-DPSK
- Nominal Channel Bandwidth
- 8-DPSK
- Transmitter unwanted emissions in the OOB domain 8-DPSK
- Transmitter unwanted emissions in the spurious domain

π/4-DQPSK

Receiver spurious emissions

8-DPSK

g) The different transmit operating modes (tick all that apply):

- Operating mode 1: Single Antenna Equipment
- Equipment with only one antenna
- Equipment with two diversity antennas but only one antenna active at any moment in time

Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only

- one antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
- Single spatial stream / Standard throughput / (e.g. IEEE 802.11[™] [i.3] legacy mode)
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2

Page 10 of 90

NOTE 1: Add more lines if more channel bandwidths are supported.
Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
NOTE 2: Add more lines if more channel bandwidths are supported.
h) In case of Smart Antenna Systems:
The number of Receive chains:
The number of Transmit chains:
symmetrical power distribution
asymmetrical power distribution
In case of beam forming, the maximum (additional) beam forming gain: dB
NOTE: The additional beam forming gain does not include the basic gain of a single antenna.
i) Operating Frequency Range(s) of the equipment:
Operating Frequency Range 1: 2402 MHz to 2480 MHz
 Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported.
j) Nominal Channel Bandwidth(s):
Nominal Channel Bandwidth 1: 1.187MHz
Nominal Channel Bandwidth 2:/ MHz NOTE: Add more lines if more channel bandwidths are supported.
k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.):
Stand-alone
Combined Equipment (Equipment where the radio part is fully integrated within another type of
equipment)
 Plug-in radio device (Equipment intended for a variety of host systems) Other
I) The normal and the extreme operating conditions that apply to the equipment:
Normal operating conditions (if applicable):
Operating temperature: 15°C~35°C
Other (please specify if applicable):
Extreme operating conditions:
Operating temperature range: Minimum: -10°C Maximum 40°C
Other (please specify if applicable): Minimum: Maximum
Details provided are for the:
stand-alone equipment
combined (or host) equipment
Lest jig

<u>NTEK 北测®</u>

m) The intended combination(s) of the radio equipment power settings and one or more antenna
assemblies and their corresponding e.i.r.p. levels:

Antenna Type: FPC Antenna

Integral Antenna (information to be provided in case of conducted measurements)

Antenna Gain: 0.67 dBi 🧹

If applicable, additional beamforming gain (excluding basic antenna gain):/..... dB

Temporary RF connector provided

No temporary RF connector provided

Dedicated Antennas (equipment with antenna connector)

Single power level with corresponding antenna(s)

Multiple power settings and corresponding antenna(s)

Number of different Power Levels:

Power Level 1: dBm

Power Level 2: dBm

Power Level 3: dBm

NOTE 1: Add more lines in case the equipment has more power levels.

NOTE 2: These power levels are conducted power levels (at antenna connector).

•For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains

(G) and the resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable

Power Level 1: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
	0.67	4.08	
2			L L
3		2. 4	

NOTE 3: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 2: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			
2			
2		2	

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			
2	7	Y.	5
3		+ 5	

NOTE 5: Add more rows in case more antenna assemblies are supported for this power level.

NTEK 北测	Page 12 of 90	Report No.: STR230215001001E
n) The nominal voltages of the stand-alone		
combined (host) equipment or test jig in	n case of plug-in	devices:
Details provided are for the:		
Stand-alone equipment		
combined (or host) equipment		
🗌 test jig		
Supply Voltage 🗌 AC mains State AC vol	ltageV	
DC State DC voltage: I	DC 3.8V	
In case of DC, indicate the type of power so	ource	
Internal Power Supply		
External Power Supply or AC/DC ada	pter: DC 5V	
Battery: DC 3.8V		
Other:		
o) Describe the test modes available which	n can facilitate tes	sting: 🔔 🧭 🖉
See clause 1.4		
p) The equipment type (e.g. Bluetooth®, IE	EE 802.11™ [i.3],	IEEE 802.15.4™ [i.4], proprietary, etc.)
Bluetooth®		
q) If applicable, the statistical analysis refe	erred to in clause	5.4.1 q) 🗕 🛛 📩
(to be provided as separate attachment)		
r) If applicable, the statistical analysis refe	rred to in clause {	5.4.1 r)
(to be provided as separate attachment)		
s) Geo-location capability supported by the	e equipment:	
☐ Yes		
The geographical location determined	by the equipment	as defined in clause 4.3.1.13.2 or
clause 4.3.2.12.2 is not accessible to		
🖂 No		
t) Describe the minimum performance crite	eria that apply to t	the equipment (see clause 4.3.1.12.3 o
clause 4.3.2.11.3):	* *	×
GFSK(CH78), 8-DPSK(CH00) =0.99%		
× 2, 4		

1.3 TEST CONDITIONS

Normal Test Conditions		Extreme Test Conditions
Temperature	15℃ - 35℃	-10°C ~ 40°C Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	DC 3.8V	

Page 13 of 90

Note:

(1) The HT 40 $^\circ\!C$ and LT -10 $^\circ\!C$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

1.4 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing					
Bluetooth mode	Data rate	Modulation type			
BR	1Mbps	GFSK			
EDR	2Mbps	π/4-DQPSK			
EDR 📈	SMbps	8-DPSK			

Test Channel Frequencies Configuration						
Test Channel	EUT Channel	Test Frequency (MHz)				
Lowest	CH00	2402				
Middle	CH39	2441				
Highest	CH78	2480				

Page 14 of 90 Report No.: ST

Report No.: STR230215001001E

1.5 DESCRIPTION OF TEST CONDITIONS

E-1 EUT

1.6 DESCRIPTION OF SUPPORT UNITS

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Tablet PC	🔷 Tab 7 WiFi	N/A	EUT
	4.	4	K	4
		A A		
	×	Ke K		1
4	A.C.			<u>₹</u> , ∠
v			5	
		x x		

[14					NI-1-	
	Item	Shielded Type	Ferrite Core	Length		Note	
			X	S. I		<u>ــــــــــــــــــــــــــــــــــــ</u>	
							~
					1	7	

Note:

(1)

The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in ^C Length ^D column. (2)

<u>NTEK 北测[®]</u>

Page 16 of 90

Report No.: STR230215001001E

1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
Turn Table	EM 💉	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM 🔪	SC100	N/A	N/A	N/A	N/A
Horn Antenna 🔨	EM	EM-AH-10180	2011071402	2022.03.31	2023.03.30	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.04.01	2023.03.31	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2022.04.01	2023.03.31	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.04.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

Clause	Test Item	Results
Clade	TRANSMITTER PARAMETERS	
4.3.1.2	RF Output Power	Pass
4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
4.3.1.5	Hopping Frequency Separation	Pass
4.3.1.6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2
4.3.1.7	Adaptivity	Not Applicable (See Note 1)
4.3.1.8	Occupied Channel Bandwidth	Pass
4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	4
4.3.1.11	Receiver Spurious Emissions	Pass
4.3.1.12	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

NTEK 北测®

Page 18 of 90

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

	Maximum measurement un	certainty
No.	Item	Uncertainty
1	Occupied Channel Bandwidth	± 5%
2	RF output Power,conducted	÷1.5dB
3	Power Spectral Density, conducted	± 3dB
4	Unwanted emissions, conducted	± 3dB
5	All emissions, radiated	± 6dB
6	Temperature	± 3°C
7	Humidity	± 3%
9	Time	± 5%

<u>NTEK 北测®</u>

Page 19 of 90

TRANSMITTER PARAMETERS

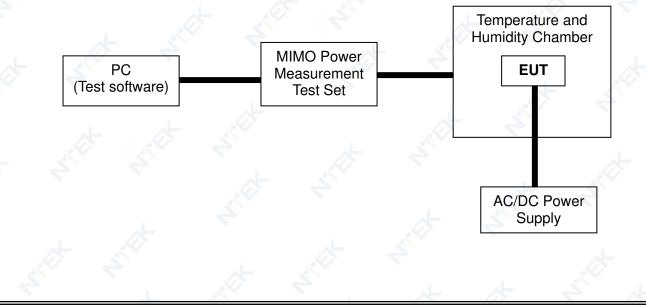
3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER

Refer to chapter 4.3.1.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER						
Condition	Limit					
Non-adaptive frequency hopping systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.					
Adaptive frequency hopping systems	equal to or less than 20 dBm.					

3.2 TEST PROCEDURE


Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

M M	easurement
Conducted measurement	Radiated measurement

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

N2017.06.06.0614.V.1.3

Page 20 of 90

3.5 TEST RESULTS

I .			
EUT :	Tablet PC	Model Name :	Tab 7 WiFi 🦲
Temperature :	20°C	Relative Humidity :	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.8V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK	7	<u> </u>

Test data reference attachment

Page 21 of 90

4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Refer to chapter 4.3.1.4.3 of ETSI EN 300 328 V2.2.2 (2019-07)

Accumulated Transmit Time		
Condition	Limit	
Non-adaptive frequency hopping systems	≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]	
Adaptive frequency hopping systems	≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]	
MINIMUM	FREQUENCY OCCUPATION TIME	
Condition	Limit	
Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not	
Adaptive frequency hopping systems	exceeding four times the product of the dwell time and the number of hopping frequencies in use.	
	IOPPING SEQUENCE (S)	
Condition	Limit	
Non-adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum	
Adaptive frequency	Operating over a minimum of 70% of the Operating in the band 2.4 GHz to 2.4835 GHz	
hopping systems	≥15 hopping frequencies or 15/minimum	

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of ETSI EN 300 328 V2.2.2 (2019-07)

Me	easurement
Conducted measurement	Radiated measurement
4.3 DEVIATION FROM TEST STANDARD	A. A. A.
No deviation	
	$\langle \cdot \rangle$ $\langle \cdot \rangle$ $\langle \cdot \rangle$ $\langle \cdot \rangle$

Report No.: STR230215001001E

4.4 TEST SETUP

EUT Spectrum Analyzer

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 22 of 90

4.5 TEST RESULTS

EUT :	Tablet PC	Model Name :	Tab 7 WiFi
Temperature :	26°C	Relative Humidity	60 %
Pressure :	1012 hPa 🛛 🖉 🧹	Test Voltage :	DC 3.8V
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-Hopping Mode		

Test data reference attachment

Page 23 of 90

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH

Refer to chapter 4.3.1.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	OCCUPIED CHANNEL BA	NDWIDTH
	Condition	Limit
A	Il types of equipment	Shall fall completely within the band 2400 to 2483.5 MHz
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Conducted measurement Radiated measurement	ment

The setting of the Spectrum Analyzer

Center Frequency	The centre frequency of the channel under test	4	
Frequency Span	2 × Nominal Channel Bandwidth		
Detector	RMS		
RBW	\sim 1 % of the span without going below 1 %		5
VBW	3 × RBW	4	
Trace	Max hold		
Sweep time	1s	L.	<

<u>NTEK北测®</u>

Page 24 of 90

Report No.: STR230215001001E

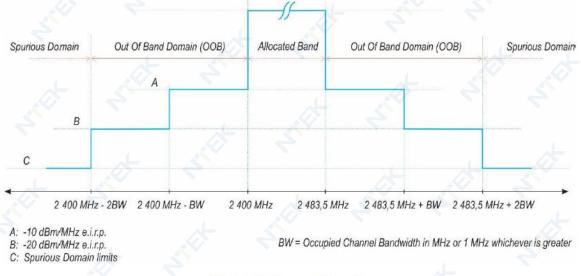
5.3 DEVIATION FROM TEST STANDARD

No deviation

5.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

5.5 TEST RESULTS


EUT :	Tablet PC	Model Name :	Tab 7 WiFi 🦲
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.8V
Test Mode : BT-GFSK/π/4-DQPSK /8-DPSK-(CH00/CH78)			

Test data reference attachment

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition	Limit 📈	
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	

Figure 1: Transmit mask

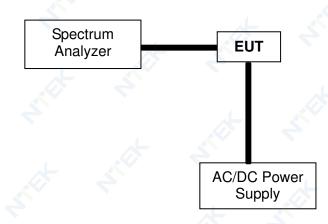
6.2 TEST PROCEDURE

Refer to chapter 5.4.8.2of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement
Conducted measure	ment Radiated measurement
The setting of the Spectrum Ana	alyzer
Span	0Hz
Filter Mode	Channel Filter
Trace Mode	Clear/Write
Trigger Mode	Video Trigger
Detector	RMS
Sweep Point / Sweep Mode	5000 / Continuous
RBW / VBW	1MHz / 3MHz

N2017.06.06.0614.V.1.3

<u>NTEK 北测[®]</u>


Page 26 of 90

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

6.5 TEST RESULTS

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

EUT :Tablet PCModel Name :Tab 7 WiFiTemperature :26°CRelative Humidity :60 %Pressure :1012 hPaTest Voltage :DC 3.8VTest Mode :BT-GFSK/π/4-DQPSK /8-DPSK-(CH78)

Test data reference attachment

Page 27 of 90

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of ETSI EN 300 328 V2.2.2 (2019-07)

HOPPING FREQUENCY SEPARATION	
Condition	Limit
Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.
Adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be 100 kHz.

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement		A.
Conducted measurement		Radiated measurement	
he setting of the Spectrum Analyzer	La construction of the second	< /	1.

The setting of the Spec	trum Analyzer		<u> </u>		
Center Frequency	Centre of the two adjacent hopping frequencies				
Frequency Span	an Sufficient to see the complete power envelope of both hopping frequencies				
Detector	Max Peak		5		
RBW	~ 1 % of the span	4			
VBW	3 × RBW				
Trace	Max hold	. [
Sweep Time	Auto		7		

7.3 DEVIATION FROM TEST STANDARD

No deviation

<u>NTEK 北测[®]</u>

Page 28 of 90 Report No

Report No.: STR230215001001E

7.4 TEST SETUP

EUT Spectrum Analyzer

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

7.5 TEST RESULTS

EUT :	Tablet PC	Model Name	Tab 7 WiFi	
Temperature :	26°C	Relative Humidity :	60 %	
Pressure :	1012 hPa	Test Voltage :	DC 3.8V	
Test Mode :	BT-GFSK/π/4-DQPSK /8-DPSK-(CH00/CH39/CH78)			

Test data reference attachment

Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz. 2.The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

<u>NTEK北测®</u>

8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Perfor to chapter 4.2.1.10.2 of ETSLEN 200.228 V2.2.2 (2019.07)

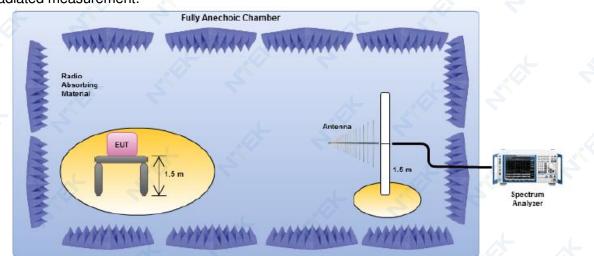
Refer to chapter 4.3.1.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EN	ISSIONS IN THE SPURIOUS DO	DMAIN 🔨
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

8.2 TEST PROCEDURE

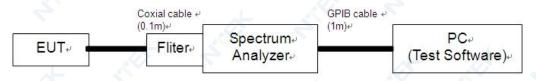
Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement						
Conducted measurement						
The setting of the Spect	The setting of the Spectrum Analyzer					
RBW	100K(<1GHz) / 1M	(>1GHz)		2		
VBW	300K(<1GHz) / 3M	(>1GHz)	F 4		4	


8.3 DEVIATION FROM TEST STANDARD

No deviation

Report No.: STR230215001001E


8.4 TEST SETUP

Radiated measurement:

Page 30 of 90

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

NTEK 北测

Page 31 of 90

8.5 TEST RESULTS (Radiated measurement)

BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)						
EUT :	Tablet PC Model Name Tab 7 WiFi					
Temperature :	24 °C	Relative Humidity	54%			
Pressure :	1010 hPa	Test Power :	DC 3.8V			
Test Mode :	BT-GFSK (CH00)	4	1 1			

Polar		Factor	Factor Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	42.183	-82.70	15.77	-66.93	-36	-30.93	peak
V	115.704	-80.40	16.26	-64.14	-54	-10.14	peak
V	207.086	-79.40	16.22	-63.18	-36	-27.18	peak
V	423.331	-81.00	16.19	64.81	-54	-10.81	peak
V	557.504	-82.40	14.53	-67.87	-36	-31.87	peak
V	746.101	-82.20	16.03	-66.17	-36	-30.17	peak
Н	44.297	-79.90	15.45	-64.45	-54	-10.45	peak
Н 🗸	90.241	-79.80	15.20	-64.60	-54	-10.60	peak
Н	205.723	-78.30	15.83 <	-62.47	-36	-26.47	peak
Н	335.463	-77.60	16.11	-61.49	-54	-7.49	peak
Н	348.624 🧹	-83.10	17.36	-65.74	-36	-29.74	peak
Н	704.878	-85.50	16.03	-69.47 📿	-36 💉	-33.47	peak

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

NTEK 北测

Page 32 of 90

ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

EUT :	Tablet PC	Model Name :	Tab 7 WiFi 🦲
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.8V
Test Mode :	GFSK (CH00/CH39/CH78)	7	2 1

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
		ор	eration freq	uency:2402			~
V	4804.83	-70.20	25.63	-44.57	-30	-14.57	peak
V	7206.36	-78.70	29.83	-48.87	-30	-18.87	peak
Н	4804.83	-65.10	25.63	-39.47	-30	-9.47	peak
Н	7206.36	-71.90	29.83	-42.07	-30	-12.07	peak
•		ор	eration freq	uency:2441			
V	4882.39	-72.40	26.62	-45.78	-30	-15.78	peak
V	7324.60	-78.10	29.64	-48.46	-30	-18.46	peak
H	4882.39	-73.00	26.62	-46.38	-30	-16.38	peak
Н	7324.60	-77.30	29.64	-47.66	-30	-17.66	peak
		– ор	eration freq	uency:2480	4		
V	4961.44	-71.60	27.49	-44.11	-30	-14.11	peak
V	7440.41	-73.50	29.82	-43.68	-30	-13.68	peak
Η	4961.44	-71.60	27.49	-44.11	-30	-14.11	peak
Н	7440.41	-73.40	29.82	-43.58	-30	-13.58	peak

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

8.6 TEST RESULTS (Conducted measurement) Test data reference attachment

Page 33 of 90

9. RECEIVER SPURIOUS EMISSIONS

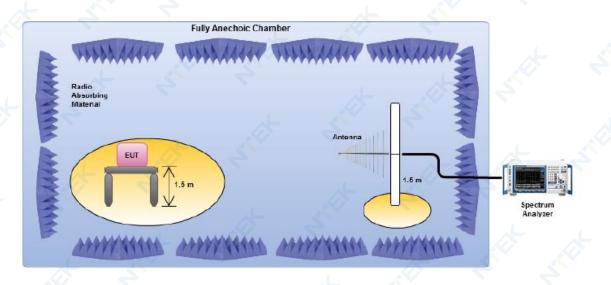
9.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.1.11.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RECEIVER SPURIOUS EMISSIONS					
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth			
30 MHz ~ 1 GHz	-57dBm	100KHz			
1 GHz ~ 12.75 GHz	-47dBm	1MHz			

9.2 TEST PROCEDURE

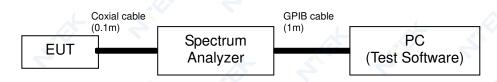
Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement
Radiated measurement
A A
M(>1GHz)
M(>1GHz)


9.3 DEVIATION FROM TEST STANDARD

No deviation

Report No.: STR230215001001E


9.4 TEST SETUP

Radiated measurement:

Page 34 of 90

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

NTEK 北测

Page 35 of 90

9.5 TEST RESULTS (Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)					
EUT :	Tablet PC	Model Name :	Tab 7 WiFi		
Temperature :	24 ℃	Relative Humidity	54%		
Pressure :	1010 hPa	Test Power :	DC 3.8V		
Test Mode :	GFSK(CH00)				

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
31.412	-81.88	15.98	-65.90	-57	-8.90	peak
96.848	-85.86	14.67	-71.19	-57	-14.19	peak
209.937	-84.80	21.94	-62.86	-57	-5.86	peak
419.764	-85.02	14.65	-70.37	-57	-13.37	peak
530.433	-80.90	13.25	-67.65	-57	-10.65	peak
719.121	-81.54	14.45	-67.09	-57	-10.09	peak
40.763	-84.16	13.60	-70.56	-57	-13.56	peak
115.471	-83.43	15.11	-68.32	-57	-11.32	peak
175.69	-88.45 💉	13.30	-75.15	-57	-18.15	peak
337.832	-81.10	18.00	-63.10	-57	-6.10	peak
561.359	-84.22	16.63	-67.59	-57	-10.59	peak
719.658	-83.41	17.63	-65.78	-57	-8.78	peak
	(MHz) 31.412 96.848 209.937 419.764 530.433 719.121 40.763 115.471 175.69 337.832 561.359	(MHz)(dBm)31.412-81.8896.848-85.86209.937-84.80419.764-85.02530.433-80.90719.121-81.5440.763-84.16115.471-83.43175.69-88.45337.832-81.10561.359-84.22	(MHz)(dBm)(dB)31.412-81.8815.9896.848-85.8614.67209.937-84.8021.94419.764-85.0214.65530.433-80.9013.25719.121-81.5414.4540.763-84.1613.60115.471-83.4315.11175.69-88.4513.30337.832-81.1018.00561.359-84.2216.63	FrequencyMeter ReadingFactorLevel(MHz)(dBm)(dB)(dBm)31.412-81.8815.98-65.9096.848-85.8614.67-71.19209.937-84.8021.94-62.86419.764-85.0214.65-70.37530.433-80.9013.25-67.65719.121-81.5414.45-67.0940.763-84.1613.60-70.56115.471-83.4315.11-68.32175.69-88.4513.30-75.15337.832-81.1018.00-63.10561.359-84.2216.63-67.59	FrequencyMeter ReadingFactorLevelLimits(MHz)(dBm)(dB)(dBm)(dBm)(dBm)31.412-81.8815.98-65.90-5796.848-85.8614.67-71.19-57209.937-84.8021.94-62.86-57419.764-85.0214.65-70.37-57530.433-80.9013.25-67.65-57719.121-81.5414.45-67.09-5740.763-84.1613.60-70.56-57115.471-83.4315.11-68.32-57175.69-88.4513.30-75.15-57337.832-81.1018.00-63.10-57561.359-84.2216.63-67.59-57	FrequencyMeter ReadingFactorLevelLimitsMargin(MHz)(dBm)(dBm)(dBm)(dBm)(dBm)(dBm)31.412-81.8815.98-65.90-57-8.9096.848-85.8614.67-71.19-57-14.19209.937-84.8021.94-62.86-57-5.86419.764-85.0214.65-70.37-57-13.37530.433-80.9013.25-67.65-57-10.65719.121-81.5414.45-67.09-57-10.0940.763-84.1613.60-70.56-57-13.56115.471-83.4315.11-68.32-57-11.32175.69-88.4513.30-75.15-57-18.15337.832-81.1018.00-63.10-57-6.10561.359-84.2216.63-67.59-57-10.59

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

ITEK 北测

Page 36 of 90

RX ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)

EUT:	Tablet PC	Model Name :	Tab 7 WiFi 🛛 🔨
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.8V
Test Mode :	GFSK (CH00)		

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	1203.60	-88.43	18.94	-69.49	-47	-22.49	peak
V	2432.16	-88.97	18.82	-70.15	-47	-23.15	peak
V	3757.74	-92.07	19.02	-73.05	-47	-26.05	peak
V	4756.35	-93.05	25.13	-67.92	-47	-20.92	peak
V	4110.90	-94.59	25.16	-69.43	-47	-22.43	peak
V	4772.09	-89.56	25.19	-64.37	-47	-17.37	peak
Н	2885.95	-92.13	19.11	-73.02	-47	-26.02	peak
Н	2952.54	-89.35	19.68	-69.67	-47	-22.67	peak
Н	3230.60	-90.75	19.21	-71.54	-47	-24.54	peak
H	3900.96	-89.90	20.23	-69.67	-47	-22.67	peak
Н	4275.47	-93.05 💉	17.6	-75.45	-47	-28.45	peak
Н	5741.45	-94.71	23.56	-71.15	-47	-24.15	peak

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

9.6 TEST RESULTS (Conducted measurement) Test data reference attachment

Page 37 of 90

Report No.: STR230215001001E

10. RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log₁₀(OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504	-34	CW
(-139 dBm + 10 × log₁₀(OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2524 2584 2674		AN THE

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 38 of 90

Report No.: STR230215001001E

Table 7: Receiver Blocking parameters receiver category 2 equipment					
Wanted signal mean power from companion device (dBm)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal		
(see notes 1 and 3)					
(-139 dBm + 10 × log₁₀(OCBW) + 10 dB)	2 380	-34	cw		
or (-74 dBm + 10 dB) whichever is less	2 504				
(see note 2)	2 300				
	2 584		< -		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	*	
(see note 2)	2 300		
	2 584	× ~	

NOTE 1: OCBW is in Hz.

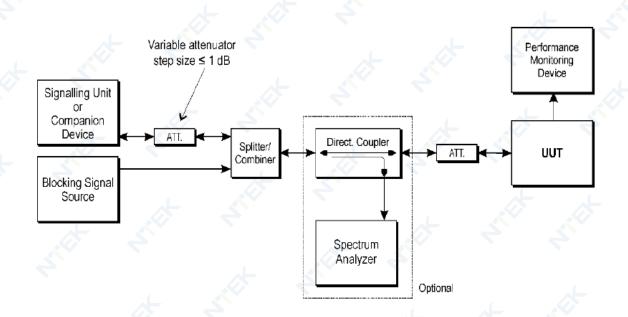
NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

10.3 TEST PROCEDURE

Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)

M	easurement
Conducted measurement	Radiated measurement
	S I I


Page 39 of 90

Report No.: STR230215001001E

10.4 DEVIATION FROM TEST STANDARD

No deviation

10.5 TEST SETUP

Page 40 of 90

10.6 TEST RESULTS

EUT :	Tablet PC	Model Name :	Tab 7 WiFi
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.8V
Test Mode :	GFSK Hopping mode (RX)	7	<u>x</u>

CH00

Wanted signal mean power	Blocking signal	Blocking signal		PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)				%
- <u>-</u>	2 380		0.24%	<10
70.11	2 504	04	0.20%	≤10
-70.11	2 300	34	0.39%	-10
	2 584		0.53%	≤10

CH78

	receiver cate	gory 2		
Wanted signal mean power	Blocking signal	Blocking signal		PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)				%
	2 380		0.42%	<10
70.15	2 504		0.31%	≤10
-70.15	2 300	-34	0.99%	<10
	2 584		0.97%	≤10

Page 41 of 90

Report No.: STR230215001001E

EUT:	Tablet PC	Model Name :	Tab 7 WiFi 🛛 🔶
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.8V
Test Mode :	∏/4-DQPSK Hopping mode (RX)		

CH00

	receiver cate	egory 2		
Wanted signal mean power	Blocking signal	Blocking signal	4	PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)				%
	2 380	a de la de l	0.73%	~10
-68.31	2 504		0.47%	≤10
	2 300		0.59%	<10
×	2 584		0.08%	≤10

CH78

	receiver cate	egory 2		
Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)	Blocking signal power(dBm) (see note 3)	PER %	PER Limit %
-68.36	2 380		0.60%	1 0
	2 504		0.76%	≤10
	2 300	-34	1.00%	<10
	2 584	<u> </u>	0.57%	≤10

Page 42 of 90

Report No.: STR230215001001E

EUT:	Tablet PC	Model Name :	Tab 7 WiFi
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.8V
Test Mode :	8-DPSK Hopping mode (RX)		2.

CH00

	receiver cate	egory 2		
Wanted signal mean power	Blocking signal	Blocking signal	4	PER
from companion device (dBm)	Frequency (MHz)	power(dBm) (see note 3)	PER %	Limit
(see notes 1 and 3)				%
	2 380		0.99%	~10
-68.26	2 504		0.80%	≤10
	2 300		0.57%	~10
×	2 584		0.06%	≤10

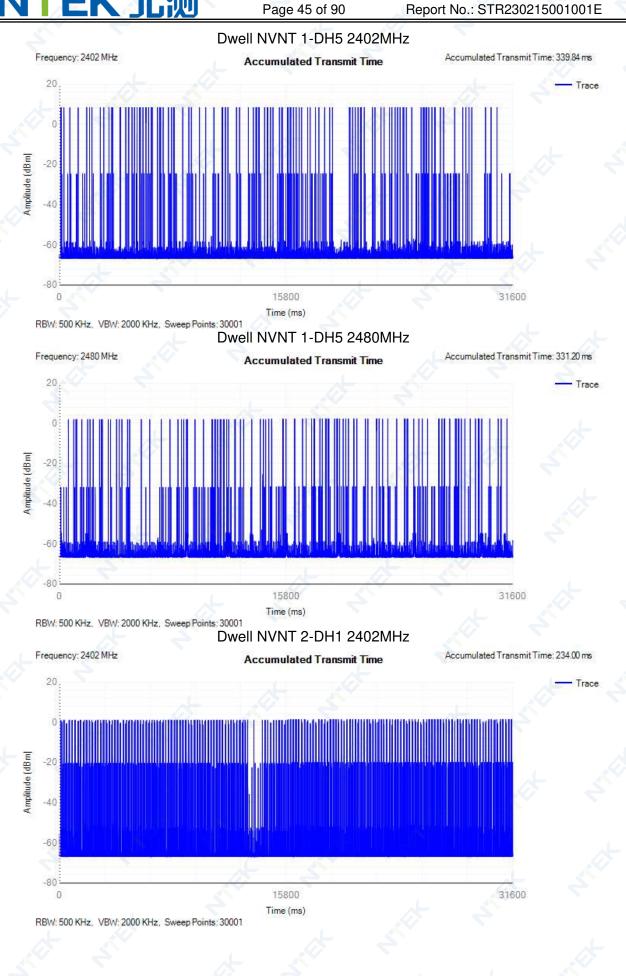
CH78

	receiver cate	egory 2		×-	
Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)	Blocking signal power(dBm) (see note 3)	PER %	PER Limit %	
	2 380		0.05%	-10	
69.09	2 504		0.84%	≤10	
-68.28	2 300	-34	0.28%	<10	
	2 584	<u> </u>	0.96%	≤10	

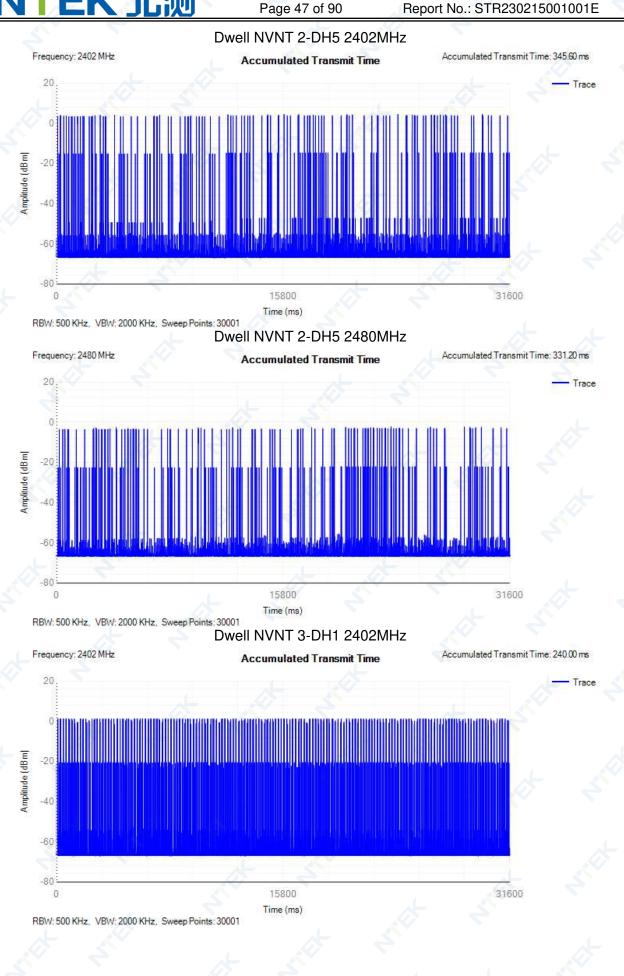

Note: (1) The above results were obtained from laboratory tests.

Page 43 of 90

11. TEST RESULTS


11.1 Accumulated Transmit Time

II.I Accullu	nated fia						
Condition	Mode	Frequency (MHz)	Accumulated Transmit Time (ms)	Limit (ms)	Sweep Time (ms)	Burst Number	Verdict
NVNT	1-DH1	2402	213	400	31600	568	Pass
NVNT	1-DH1	2480	117.12	400	31600	320	Pass
NVNT	1-DH3	2402	254.592	400	31600	156	Pass
NVNT	1-DH3	2480	276.42	400	31600	170	Pass
NVNT	1-DH5	2402	339.84	400	31600	118	Pass
NVNT	1-DH5	2480	331.2	400	31600	115	Pass
NVNT	2-DH1	2402	234	400	31600	624	Pass
NVNT	2-DH1	2480	120.96	400	31600	320	Pass
NVNT	2-DH3	2402	266.664 🖉	400	\$31600	164	Pass
NVNT 🤜	2-DH3	2480	249.696	400	31600	153	Pass
NVNT	2-DH5	2402	345.6	400	31600	120	Pass
NVNT	2-DH5	2480	331.2	400	31600	115	Pass
NVNT	3-DH1	2402	240	400	31600	640 <	Pass
NVNT 🧹	3-DH1	2480	236.982	400	31600	622 🚿	Pass
NVNT	3-DH3	2402	252.96	400	31600	155	Pass
NVNT	3-DH3	2480	274.176	400	31600	168	Pass
NVNT	3-DH5	2402	332.12	400	31600	115	Pass
NVNT	3-DH5	2480	281.456	400	31600	98 🔨	Pass



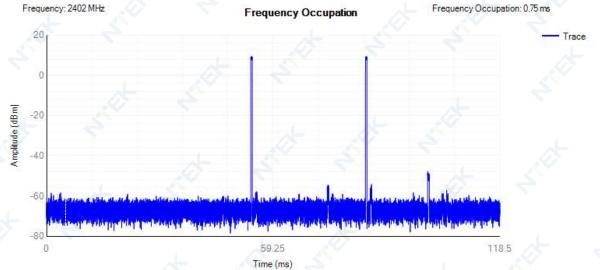
N2017.06.06.0614.V.1.3

Page 44 of 90 Report No.: STR230215001001E Dwell NVNT 1-DH1 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 117.12 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -20 -40 -60 -80 15800 31600 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 1-DH3 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 254.59 ms Accumulated Transmit Time 20. Trace 0 Amplitude (dBm) -60 -80 0 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 1-DH3 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 276.42 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -80 31600 0 15800 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

Page 46 of 90 Report No.: STR230215001001E Dwell NVNT 2-DH1 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 120.96 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -20 40 -60 -80 15800 31600 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 2-DH3 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 266.66 ms Accumulated Transmit Time 20. Trace Amplitude (dBm) -60 -80 0 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 2-DH3 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 249.70 ms Accumulated Transmit Time 20 Trace 0 Amplitude (dBm) -20 -60 -80 31600 0 15800 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

Page 48 of 90 Report No.: STR230215001001E Dwell NVNT 3-DH1 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 236.98 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -20 -40 -60 -80 15800 31600 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH3 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 252.96 ms Accumulated Transmit Time 20 Trace Amplitude (dBm) -80 0 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH3 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 274.18 ms Accumulated Transmit Time 20 Trace 0 Amplitude (dBm) -20 40 -60 -80 31600 0 15800 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

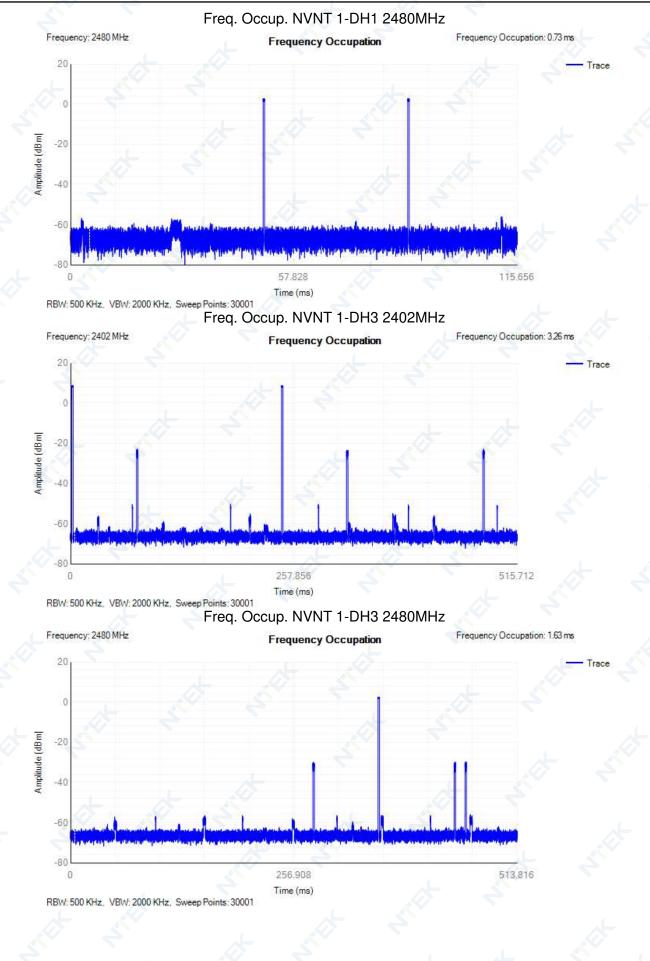
Page 49 of 90 Report No.: STR230215001001E Dwell NVNT 3-DH5 2402MHz Frequency: 2402 MHz Accumulated Transmit Time: 332.12 ms Accumulated Transmit Time 20. Trace Amplitude (dBm) 41 -60 -80 0 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Dwell NVNT 3-DH5 2480MHz Frequency: 2480 MHz Accumulated Transmit Time: 281.46 ms Accumulated Transmit Time 20. Trace 0 Amplitude (dBm) -20 -40 -80 0 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

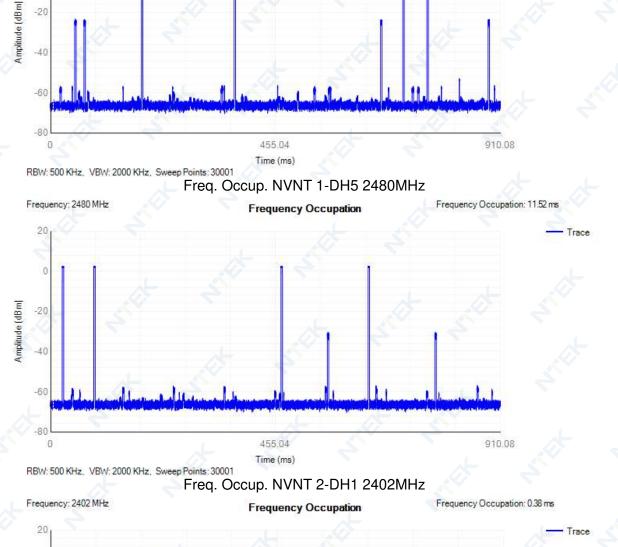

Page 50 of 90

Report No.: STR230215001001E

11.2 Frequency Occupation

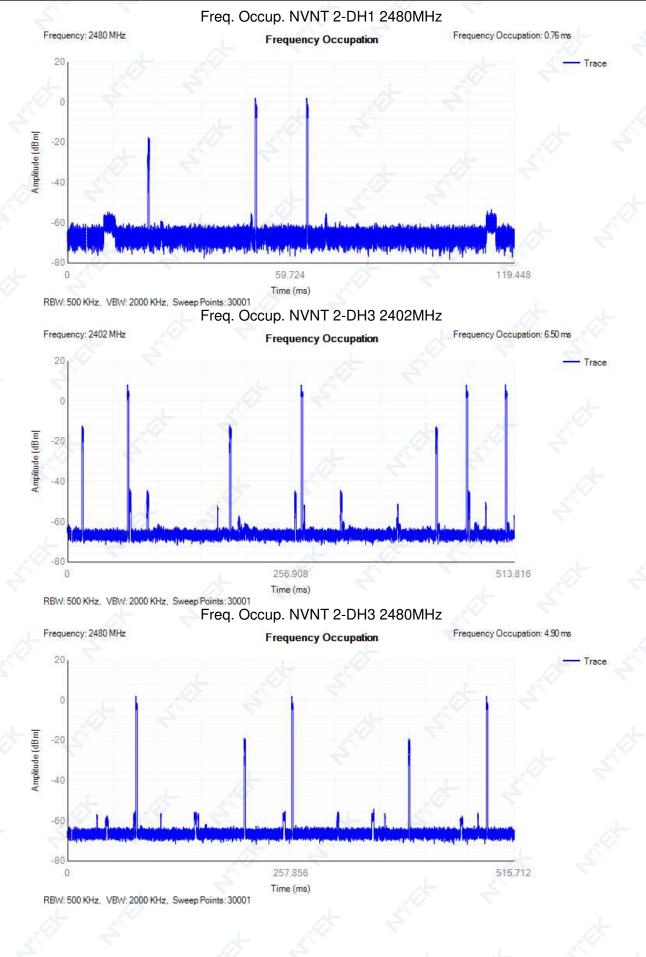
11.2 Treque	ncy Occu	pation					
Condition	Mode	Frequency	Frequency	Limit	Sweep	Burst	Verdict
		(MHz)	Occupation (ms)	(ms)	Time (ms)	Number	 '
NVNT	1-DH1	2402	0.75	0	118.5	2	Pass
NVNT	1-DH1	2480	0.732	0	115.656	2	Pass
NVNT	1-DH3	2402	3.264	0	515.712	2	Pass
NVNT	1-DH3	2480	1.626	0	513.816	1	Pass
NVNT	1-DH5	2402	-11.52	0	910.08	4	Pass
NVNT	1-DH5	2480	11.52	0	910.08	- 4	Pass
NVNT	2-DH1	2402	0.375	0	118.5	1	Pass
NVNT	2-DH1	2480	0.756	0	119.448	2	Pass
NVNT	2-DH3	2402	6.504	0	513.816	4	Pass
NVNT	2-DH3	2480	4.896	0	515.712	3	Pass
NVNT	2-DH5	2402	11.52	0	910.08	4	Pass
NVNT	2-DH5	2480	2.88	0	910.08	1	Pass
NVNT	3-DH1	2402	0.375	0	118.5	1	Pass
NVNT	3-DH1	2480	0.381	0	120.396		Pass
NVNT	3-DH3	2402	3.264	0	515.712	2	Pass
NVNT	3-DH3	2480	4.896	0	515.712	3	Pass
NVNT	3-DH5	2402	8.664	0	912.608	3 🔨	Pass
NVNT	3-DH5	2480	8.616	0	907.552	3	Pass

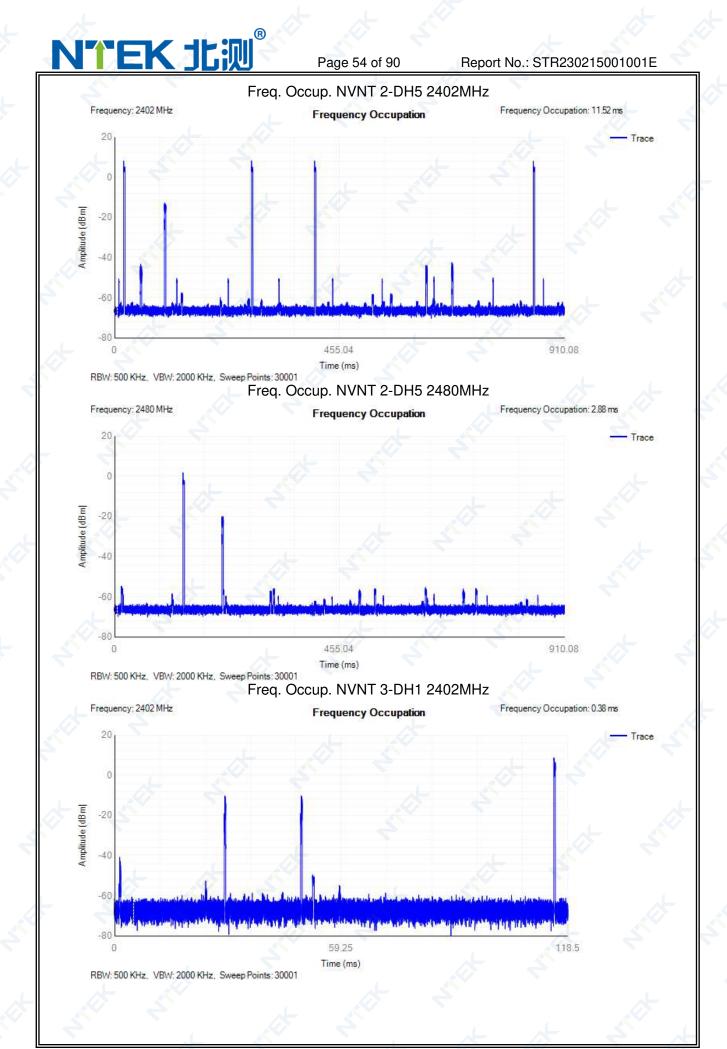

Freq. Occup. NVNT 1-DH1 2402MHz


RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

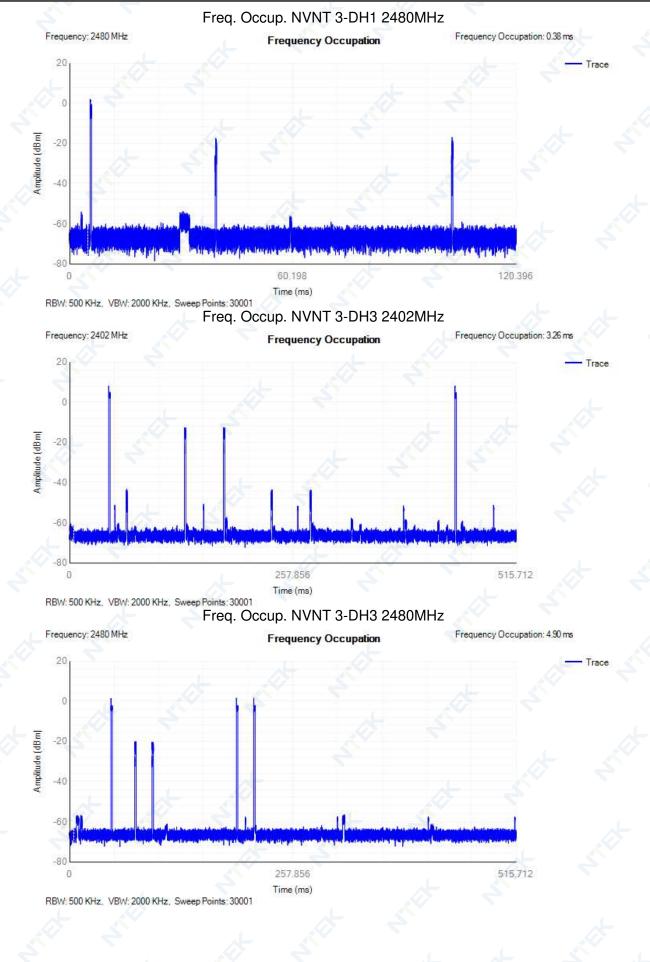
N2017.06.06.0614.V.1.3

Page 51 of 90


NTEK 北测 Page 52 of 90 Report No.: STR230215001001E Freq. Occup. NVNT 1-DH5 2402MHz Frequency: 2402 MHz Frequency Occupation: 11.52 ms Frequency Occupation 20



Amplitude (dBm) -20 -40 -60 a han se flag te general de mer de la serie de la s -80 59.25 118.5 0 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001


Trace

Page 53 of 90

Page 55 of 90

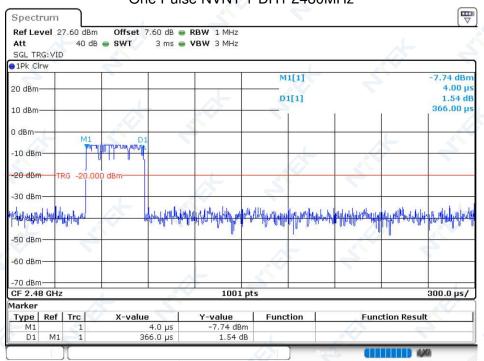
<u>NTEK 北测</u>® Page 56 of 90 Report No.: STR230215001001E Freq. Occup. NVNT 3-DH5 2402MHz Frequency: 2402 MHz Frequency Occupation: 8.66 ms Frequency Occupation 20 Trace Amplitude (dBm) -20 -40 -60 -80 0 456.304 912.608 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001 Freq. Occup. NVNT 3-DH5 2480MHz Frequency: 2480 MHz Frequency Occupation: 8.62 ms **Frequency Occupation** 20 Trace 0 Amplitude (dBm) -20 -40 -60 -80 0 453.776 907.552 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001

Page 57 of 90

Report No.: STR230215001001E

11.3 One Pulse Dwell Time

	4		
Condition	Mode	Frequency (MHz)	Pulse Time (ms)
NVNT 🔨	1-DH1	2402	0.375
NVNT	1-DH1	2480	0.366
NVNT	1-DH3	2402	1.632
NVNT	1-DH3	2480	1.626
NVNT	1-DH5	2402	2.88
NVNT 🔨	1-DH5	2480	2.88
NVNT	2-DH1	2402	0.375
NVNT	2-DH1	2480	0.378
NVNT	2-DH3	2402	1.626
NVNT	2-DH3	2480	1.632
NVNT	2-DH5	2402	2.88
NVNT	2-DH5	2480	2.88
NVNT	3-DH1	2402	0.375
NVNT	3-DH1	2480	0.381
NVNT	3-DH3	2402	1.632
NVNT	3-DH3	2480	1.632
NVNT	3-DH5	2402	2.888
NVNT	3-DH5	2480	2.872

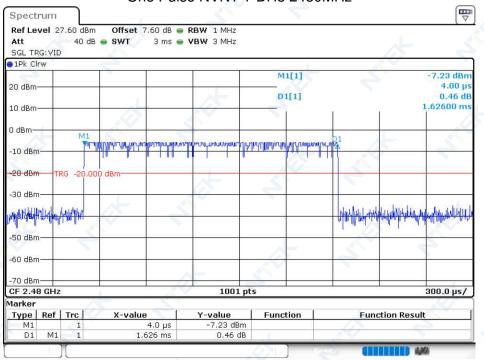


SGL TR	and the second second									
1Pk Clr	W					M	1[1]		<u> </u>	9.50 dBm
20 dBm-							+[+]			4.00 µs
100000000000000000000000000000000000000		M1				D	1[1]			-4.70 dB
LO dBm-		- 1	D				Ì	1	1	375.00 µs
) dBm—	4									
-10 dBm										
-20 dBm	TF	RG -19.98	0 dBm							
-30 dBm										
		1.575		a and a state		Sector R	inter an		120.00	
	with the	man		and the second	ALANKA ALANA	WHHMM	HAR HAR HAR	Here a way the second states of the second states o	HANNA MAR	the ward and and
50 dBm					and set of second	90 M A. 1991 S. 19	1. Alt			
	÷									
-60 dBm										
-70 dBm										
CF 2.40	2 GH	z			1001 μ	pts				300.0 µs/
1arker	Def	Trc	X-value		Y-value	Funct	tion	Eup	tion Resul	. <
Type										

Page 58 of 90

Report No.: STR230215001001E

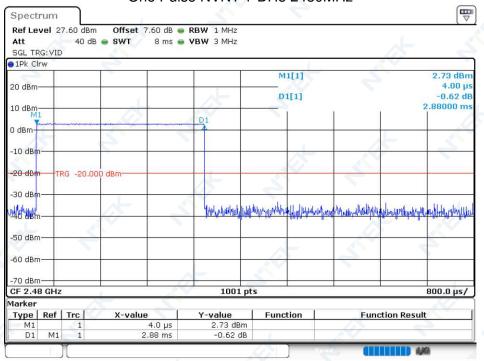
One Pulse NVNT 1-DH1 2480MHz


One Pulse NVNT 1-DH3 2402MHz

1Pk Clrw 20 dBm M1 D1[1] D1[1]	9.41 dB 4.00 µ -3.20 d 1.63200 m
M1 D1[1] 10 dBm 1 0 dBm 1 -10 dBm 1 -20 dBm 1 -30 dBm 1 -50 dBm 1	-3.20 d
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	
-10 dBm -20 dBm TRG -19.980 dBm -30 dBm -30 dBm -50 dBm	
-20 dBm TRG -19.980 dBm	
-30 dBm	
-30 dBm	
ар berg Wenderhund	
-50 dBm-	
50 dBm	م الإدامان واليا
	Han When Man
-60 dBm	
-60 dBm	
-70 dBm	
CF 2.402 GHz 1001 pts	300.0 µs/
1arker Type Ref Trc X-value Y-value Function Function Resul	•
M1 1 4.0 μs 9.41 dBm	

Page 59 of 90

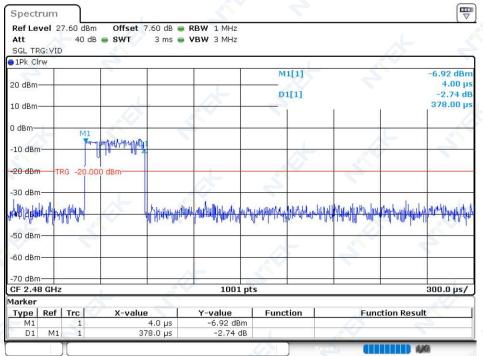
Report No.: STR230215001001E


One Pulse NVNT 1-DH5 2402MHz

1Pk Cl	W									
						м	1[1]			9.31 dBn
20 dBm·						D	1[1]			4.00 µ -0.66 di
10 dBn					D1		*[*]			2.88000 m
					1					
) dBm-				-						
-10 dBm										
								2		
-20 dBm	TI	RG -19.98	0 dBm	: •						
-30 dBm						-	-	-	المسطية وسيك سعو	ų 🖌
a an					unter all handly up	ul i		0.002		WHIMMANNUL
HO AB				0	Aller India L.A.					field or out filling to
-50 dBm	. <u> </u>		-							
-60 dBm										
-70 dBm				<u> </u>					-	
CF 2.40	02 GH	z			1001 p	ts				800.0 µs/
1arker		-					(
Type M1	Ref	1 Irc	X-value	4.0 µs	Y-value 9.31 dBm	Func	tion	Fun	ction Resu	lt
D1	M1	1		4.0 µs .88 ms	-0.66 dB					

Page 60 of 90

Report No.: STR230215001001E

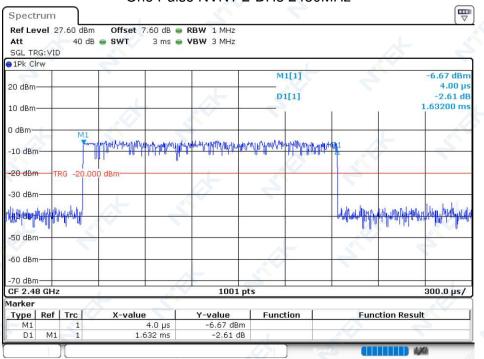

One Pulse NVNT 2-DH1 2402MHz

SGL TF)				_			\rightarrow	
						M	1[1]			-0.13 dBn
20 dBm 10 dBm		L				D	1[1]			4.00 μ -1.43 di 375.00 μ
D dBm-		M1	Mature					1	X	
-10 dBn			IU Y I							-
-20 dBn		RG -19.98	30 dBm	-	S					
-30 dBn		HAMPAN	K.	al a contraction of the second	HA ANNA MANAGAN		hiller and the second	phar phan the state	House Charles	Hand Hannier
50 dBn	1				**		- 1° - 1°			
-60 dBn										
	02 GH	Iz			1001 pt	s		+		300.0 µs/
-70 dBn	02 GF	lz	<u> </u>		1001 pt	S				300.0 µs/
	UZ GF	12			Y-value	Func	ten 1		ction Resul	

Page 61 of 90

Report No.: STR230215001001E

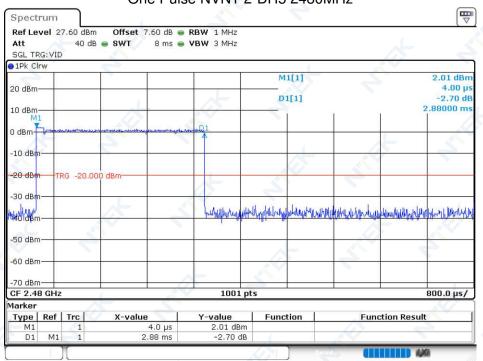
One Pulse NVNT 2-DH1 2480MHz


One Pulse NVNT 2-DH3 2402MHz

	w									0.07.10
20 dBm-						M	1[1]			-0.27 dBr 4.00 μ
20 0011						D	1[1]			0.76 d
10 dBm-		_			-		1	9	1	.62600 m
	50	M1					100.0	p1		
) dBm-			L. Bardhala	LINAL ANAL	and allowing a shift	Allowing the	and malled	i i i i i i i i i i i i i i i i i i i		
-10 dBm	_	-		1989-946-1211-4010						8
-20 dBm	TR	G -19.9	980 dBm	-		_			-	4.
-30 dBm										
		1951			-			and the second		
ABUER	Allaha	Hurs						Juli viji av je stati se stati	A A A A A A A A A A A A A A A A A A A	MARKA HILL
	and M								A State of the	and the second
-50 dBm			-	-				-		
-60 dBm					4					
-00 0011										
-70 dBm	_									
CF 2.40	2 GH	z			1001	ots				300.0 µs/
1arker		- 1				1 -				
Type M1	Ref	Trc 1	X-value	4.0 μs	Y-value -0.27 dBm	Func	tion	Fun	ction Result	
D1	M1	1		4.0 µs 526 ms	-0.27 uBr					

Page 62 of 90

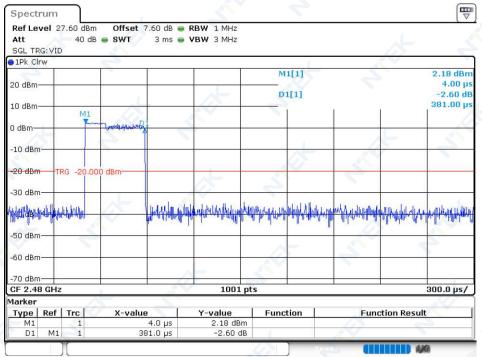
Report No.: STR230215001001E


One Pulse NVNT 2-DH5 2402MHz

1Pk Cli	G: VID						Ż		-	
	N.C.					M	1[1]			8.69 dBr
20 dBm- 10 dBn	6				2	D	1[1]			4.00 µ -2.45 d 2.88000 m
	Juno	ل _و ر بالاستراك مح ^و قت عادمی		energyte	mon Ry 1 4]	1		
) dBm-									< C	
-10 dBm	1									7
20 dBm	TF	G -19.98	30 dBm			3				
30 dBm	2							+		
40 eBm	-			-	penduratively	handerledente	the strategy and	d the place of the	alling multility	holy Martin to
50 dBm				-	_					
60 dBm	i 		1							
70 dBm			L							
CF 2.40		z			1001	pts	1	<u> </u>		800.0 µs/
larker	Ref	Tral	X-value		Y-value	Func	tion 1	Euro	tion Result	
Type M1	Ker	1		4.0 μs	<u>-value</u> 8.69 dB			Fund	cion Result	<u>)</u>
M1 D1	M1	1		4.0 µs .88 ms	8.69 dB -2.45 (

Page 63 of 90

Report No.: STR230215001001E

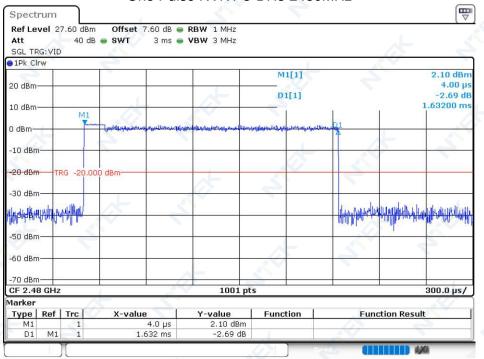

One Pulse NVNT 3-DH1 2402MHz

1Pk Clrw									
20 dBm					м	1[1]			-0.07 dBr 4.00 µ
10 dBm				4	D	1[1]			0.06 d 375.00 µ
) dBm	M1	Hunnyy and							
10 dBm	- (J. ***								1
	RG -19.98	0 dBm		S	4				
30 dBm	languar	S.	-	hter and the second sec	han have been and the	Heidfr-Heighther	and the state of t	a la far far far far far far far far far fa	
50 dBm									×
60 dBm		8							
70 dBm									
CF 2.402 GI	Ηz			1001	ots	<u>.</u>			300.0 µs/

Page 64 of 90

Report No.: STR230215001001E

One Pulse NVNT 3-DH1 2480MHz


One Pulse NVNT 3-DH3 2402MHz

1Pk Clr										
JIPK CI	w				1		1[1]			8.85 dBn
20 dBm-						141	IT[T]			4.00 μ
to upin						D	1[1]			-2.35 d
LO dBm-	-	M1				11		ח1		1.63200 m
			paratrianond	havenmentally	enderstander of an address	nonlinearchard	Aller and sources	MAN BAT		
) dBm—					+					
10 dBm										1
20 dBm		RG -19.98								
20 0011		(0 -19.90	UBIII							
30 dBm				-						
- Kinga		T AL						- A Real	a dinin	a mail N
ward and the second	HA	hall -		2	+ +			- WHW W	HUNHAN	Contraction of the second s
	5	R ft i	1 ×							
50 dBm										
60 dBm					4					
00 4011										
-70 dBm										
CF 2.40	02 GH	lz			1001 p	ots				300.0 µs/
larker							4			
Туре	Ref		X-value		Y-value	Func	tion	Fun	ction Resu	lt
M1	M1	1		4.0 µs 532 ms	8.85 dBm -2.35 dB					

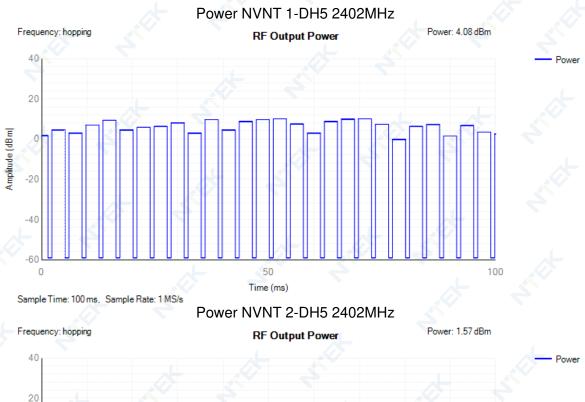
Page 65 of 90

Report No.: STR230215001001E

One Pulse NVNT 3-DH5 2402MHz

1Pk Cl	G: VID										
JIFK OI							M	1[1]			9.08 dBn
20 dBm	0				+	~	D	1[1]			4.00 μ -4.38 di
LO dBm	"Langer	ananapara	autoninaminature	www.weithermagnet	were linging	1		1	1	1	2.88800 m
) dBm-	-				4	2					
) asm-										$\langle \mathcal{O} \rangle$	
-10 dBm											14
20 dBn	TF	RG -19.98	30 dBm								
-30 dBm											
						Corrections.	1	a training tra	in the second	1 Contractor	
40 BBn	-					hourshary	All Alan	planted to be	Manager Manager Manager P	(Urakilaya Kriya)	M PUR WILL POR
-50 dBm					+						-
-60 dBm											
00 ubii											
-70 dBm											
CF 2.4	02 GH	z				1001 pts					800.0 µs/
1arker								4			
Type	Ref		X-value		Y-value		Function		Function Result		
M1 D1	M1	1		4.0 µs 88 ms		9.08 dBm -4.38 dB					

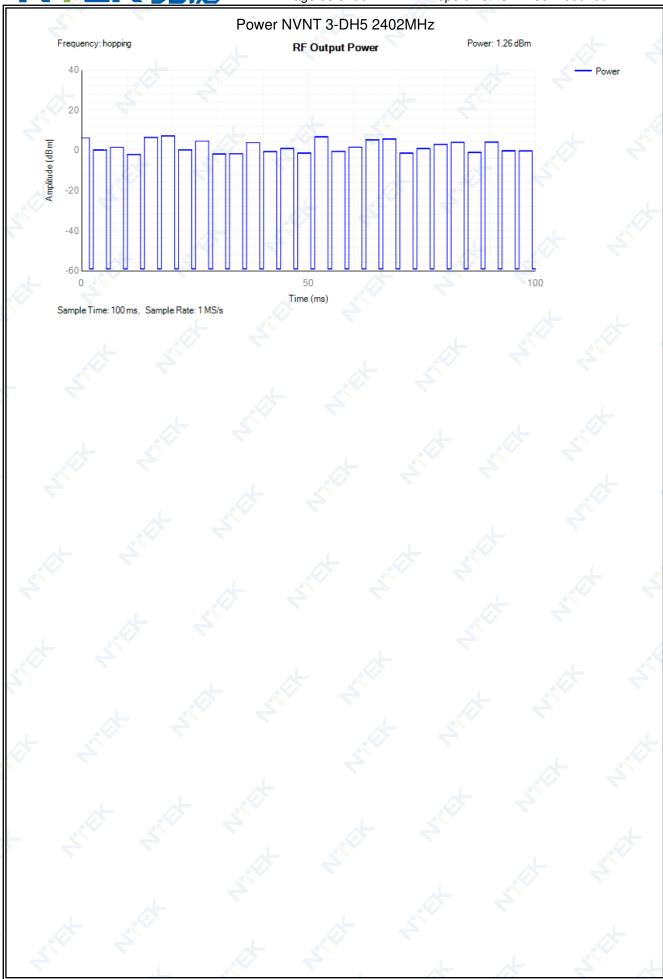
Page 66 of 90



1Pk Cl	G: VID							4		<u> </u>	
P	~						м	1[1]			-6.94 dBm
20 dBm-							D	1[1]			4.00 µ -0.31 di
0 dBm-	-							0.000	9 S		2.87200 m
dBm					0.1						
	youn	-utiladour/www.ey	uning presentations and	-universition	Halas an						
20 dBm	TF	RG -20.00	0 dBm			-					-
reenar- sarrer											
30 dBm						(a.)				51	
10 dBm					4 HAN	WHAT WALLAND	unperturbed	by a planta bady a	allard marker that	dus tradiplanta	ANAPARAMANA AND
in april											
50 dBm											
60 dBm	-										
70 dBm	_										
F 2.48						1001 pts					800.0 µs/
arker											
Туре	Ref	Trc 🚺	X-value		Y-va		Func	tion	Fund	tion Resul	t l
M1 D1	M1	1		4.0 µs 72 ms		.94 dBm 0.31 dB					

Page 67 of 90

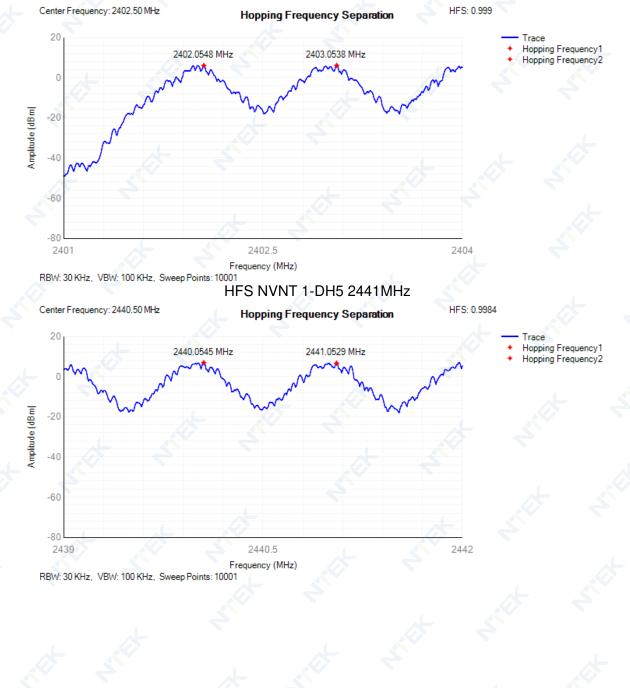
11.4 RF Output Power


Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	hopping	3.41	28	4.08	20	Pass
NVNT	2-DH5	hopping	0.9	28	1.57	20 🔨	Pass
NVNT	3-DH5	hopping	0.59	27	1.26	20	Pass
NVLT	1-DH5	hopping	2.73	28	3.4	20	Pass
NVLT	2-DH5	hopping	0.31	28	0.98	20	Pass
NVLT	3-DH5	hopping	0.02	27	0.69	20	Pass
NVHT	- 1-DH5 <	hopping	2.7	28	3.37	20	Pass
NVHT	2-DH5	hopping	0.21	28	0.88	20	Pass
NVHT	3-DH5	hopping	-0.18	27	0.49	20	Pass

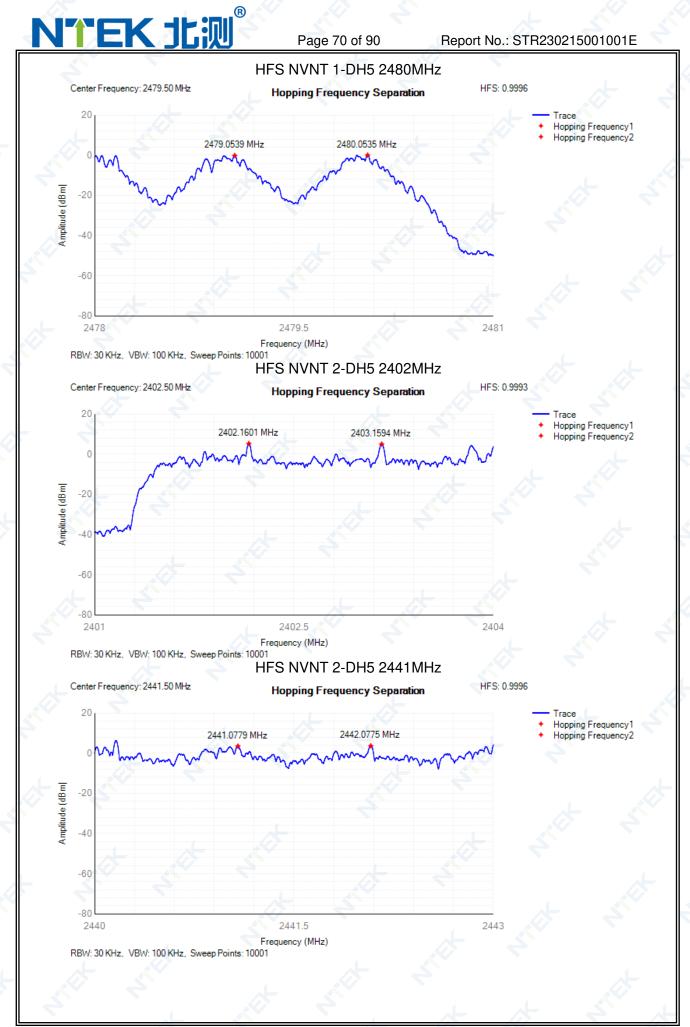
 10^{-40} 10^{-40}

N2017.06.06.0614.V.1.3

Page 68 of 90

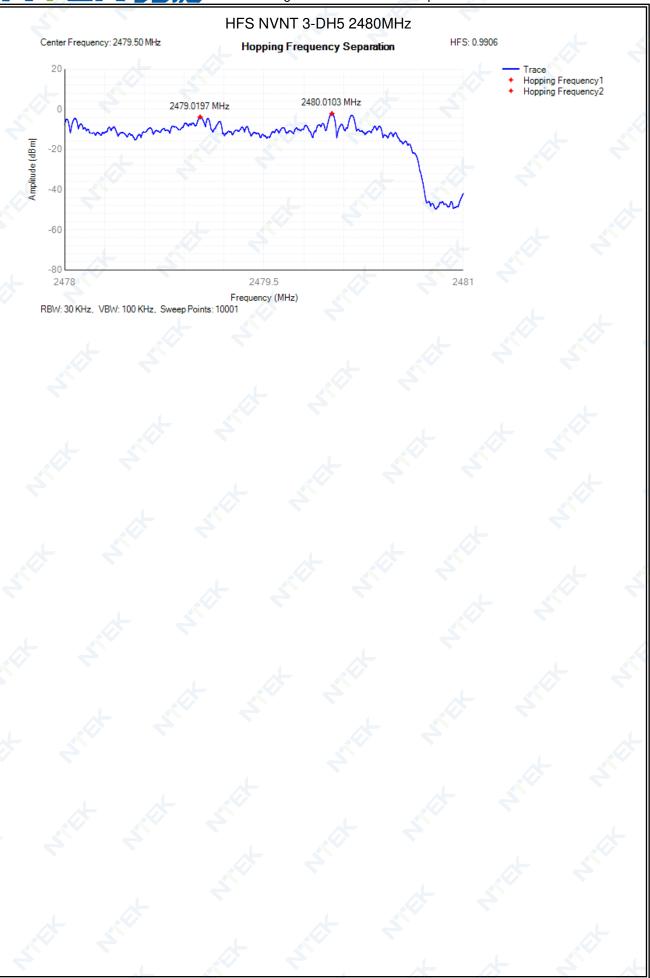

Page 69 of 90

Report No.: STR230215001001E


11.5 Hopping Frequency Separation

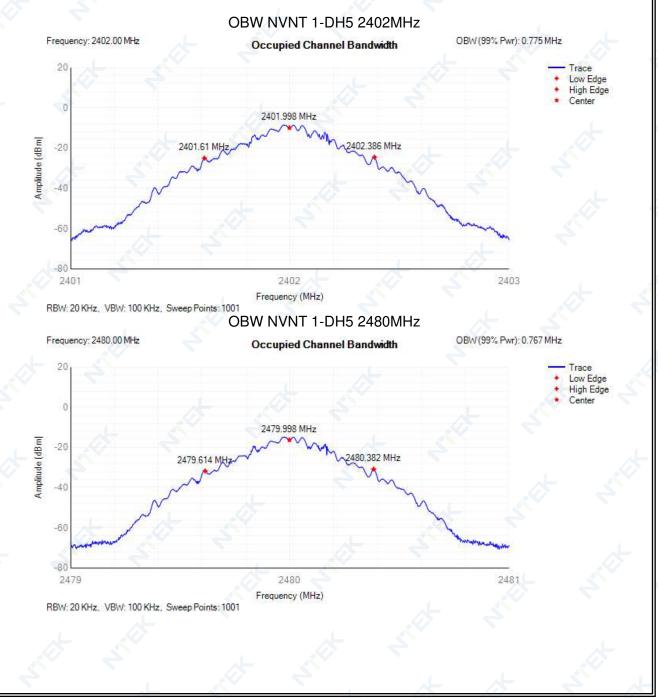
ino nopping	1 loquoin	oy ooparation				
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
Condition	woue	(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2402.0548	2403.0538	0.999	0.1	Pass
NVNT	1-DH5	2440.0545	2441.0529	0.9984	0.1	Pass
NVNT	1-DH5	2479.0539	2480.0535	0.9996	0.1	Pass
NVNT	2-DH5	2402.1601	2403.1594	0.9993	0.1	Pass
NVNT	2-DH5	2441.0779	2442.0775	0.9996	0.1	Pass
NVNT	2-DH5	2479.0095	2480.0088	0.9993	0.1	Pass
NVNT	3-DH5	2402.0101	2403.0178	1.0077	0.1	Pass
NVNT	3-DH5	2441.1601	2442.1585	0.9984	0.1	Pass
NVNT	3-DH5	2479.0197	2480.0103	0.9906	0.1	Pass


HFS NVNT 1-DH5 2402MHz


N2017.06.06.0614.V.1.3

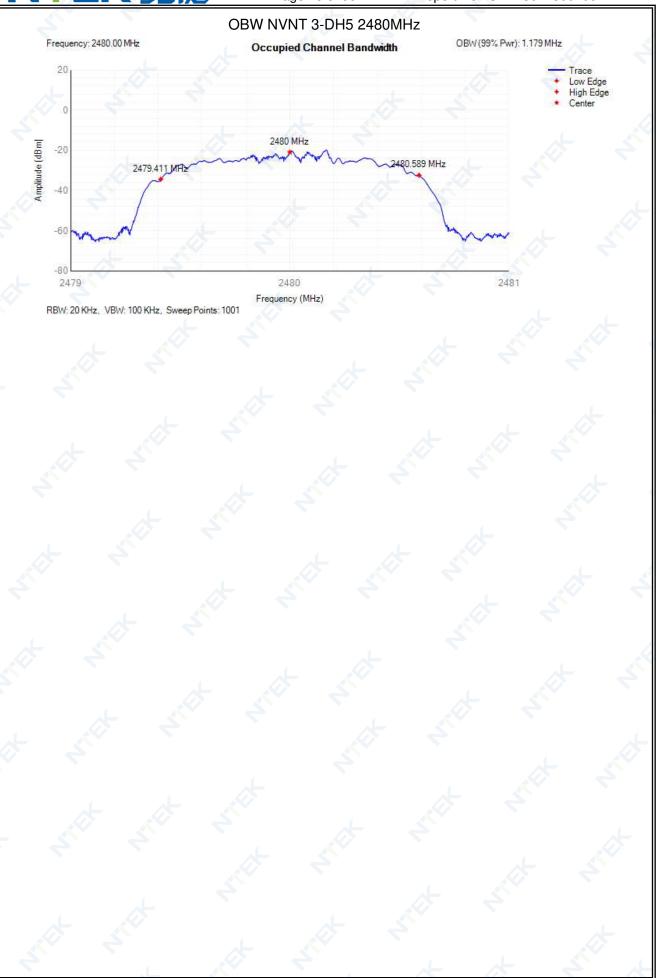
Page 71 of 90

Page 72 of 90


NTEK 北测®

Page 73 of 90

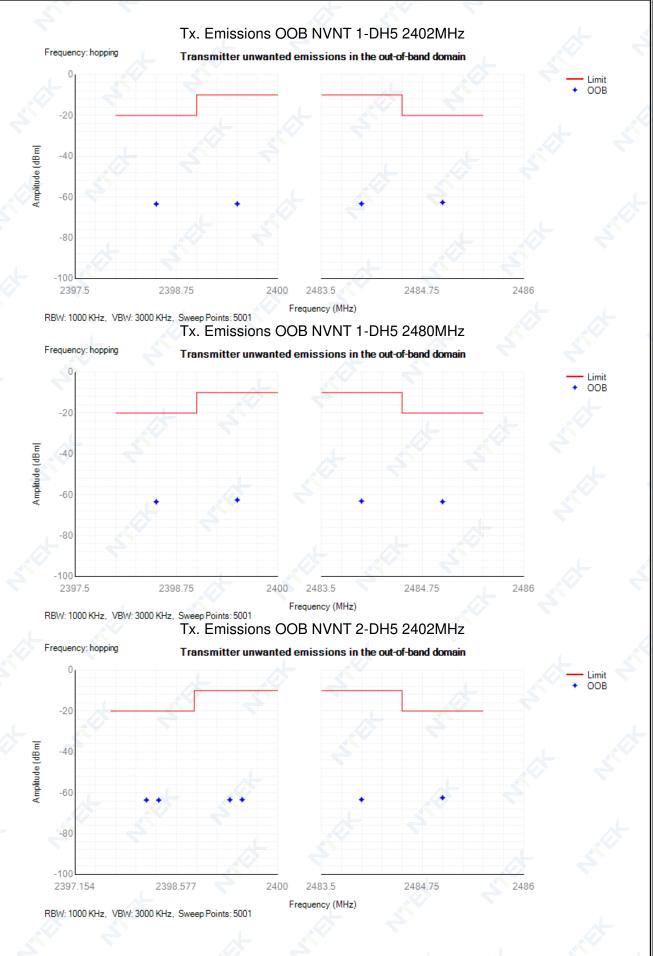
Report No.: STR230215001001E


11.6 Occupied Channel Bandwidth

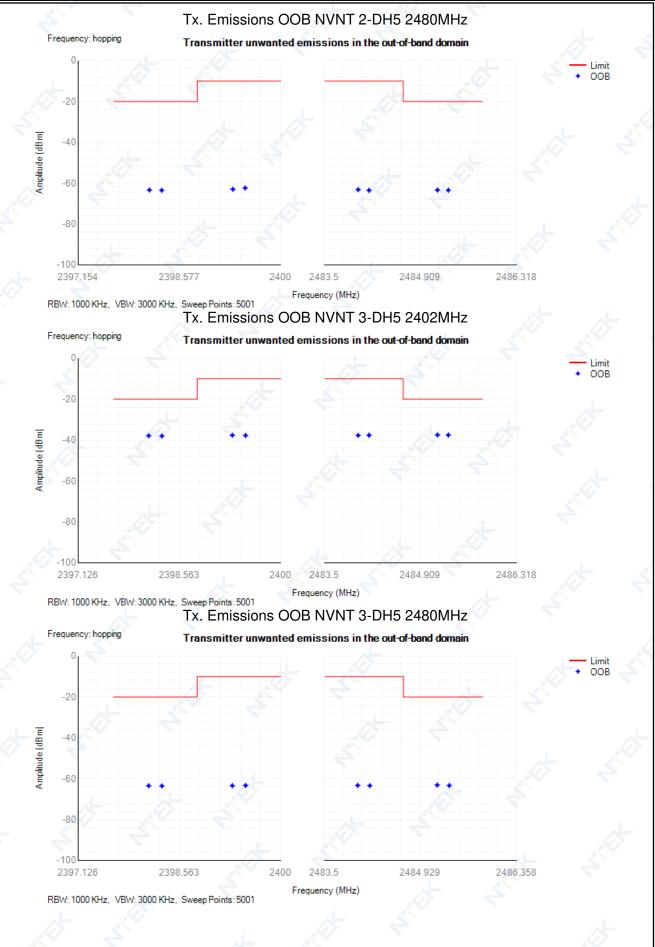
	ieu cital	mer banuwiu	ui					
Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
NVNT	1-DH5	2402	2401.998	0.775	2401.61	2402.386	2400 - 2483.5MHz	Pass
NVNT	1-DH5	2480	2479.998	0.767	2479.614	2480.382	2400 - 2483.5MHz	Pass
NVNT	2-DH5	2402	2401.995	1.173	2401.409	2402.581	2400 - 2483.5MHz	Pass
NVNT	2-DH5	2480	2479.994	1.159	2479.415	2480.573	2400 - 2483.5MHz	Pass
NVNT	3-DH5	2402	2401.998	1.187	2401.405	2402.591	2400 - 2483.5MHz	Pass
NVNT	3-DH5	2480	2480	1.179	2479.411	2480.589	2400 - 2483.5MHz	Pass

Page 74 of 90 Report No.: STR230215001001E OBW NVNT 2-DH5 2402MHz Frequency: 2402.00 MHz OBW (99% Pwr): 1.173 MHz Occupied Channel Bandwidth 20 Trace Low Edge High Edge Center 2401.995 MHz Amplitude (dBm) -20 2401.409 MHz 402.581 MHz -40 -60 -80 2401 2402 2403 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001 OBW NVNT 2-DH5 2480MHz Frequency: 2480.00 MHz OBW (99% Pwr): 1.159 MHz Occupied Channel Bandwidth 20 Trace Low Edge High Edge Center 0 2479.994 MHz Amplitude (dBm) -20 2479.415 MAz 480.573 MHz -40 -60 -80 2479 2480 2481 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001 OBW NVNT 3-DH5 2402MHz Frequency: 2402.00 MHz OBW (99% Pwr): 1.187 MHz Occupied Channel Bandwidth 20 Trace Low Edge High Edge Center 0 2401.998 MHz Amplitude (dBm) -20 2402.591 MHz 2401.405 MHz -40 -60 -80 2403 2401 2402 Frequency (MHz) RBW: 20 KHz, VBW: 100 KHz, Sweep Points: 1001

Page 75 of 90


Page 76 of 90

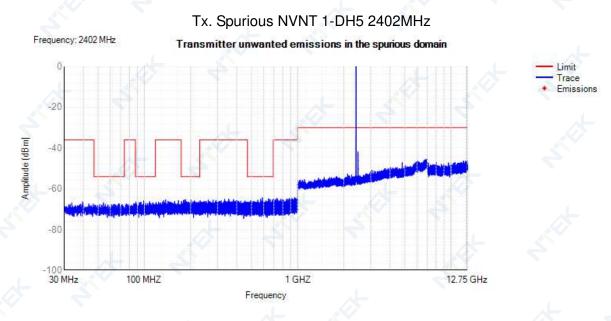
11.7Transmitter unwanted emissions in the out-of-band domain


Condition	Mode	Frequency	OOB Frequency	Level	Limit 📈	Verdict	
		(MHz)	(MHz)	(dBm/MHz)	(dBm/MHz)		
NVNT	1-DH5	hopping	2399.5	-63.37 💉	-10	Pass	
NVNT	1-DH5	hopping	2398.5	-63.44	-20	Pass	
NVNT	1-DH5	hopping	2484	-63.31	-10	Pass	
NVNT	1-DH5	hopping	2485	-62.68	-20	Pass	
NVNT	1-DH5	hopping	2399.5	-62.56	-10	Pass	
NVNT	1-DH5	hopping	2484	-63.14	-10	Pass	
NVNT	1-DH5	hopping	2485	-63.4	-20	Pass	
NVNT	2-DH5	hopping	2399.5	-63.4	-10	Pass	
NVNT	2-DH5	hopping	2399.327	-63.44	-10	Pass	
NVNT	2-DH5	hopping	2398.327	-63.6	-20	Pass	
NVNT	2-DH5	hopping	2398.154	-63.56	-20	Pass	
NVNT	2-DH5	hopping	2484	-63.35	-10	Pass	
NVNT	2-DH5	hopping	2485	-62.44	-20	Pass	
NVNT	2-DH5	hopping	2399.5	-62.34	-10	Pass	
NVNT	2-DH5	hopping	2399.327	-62.93	-10	Pass	
NVNT	2-DH5	hopping	2398.327	-63.45	-20	Pass	
NVNT	2-DH5	hopping	2398.154	-63.3	-20	Pass	
NVNT	2-DH5	hopping	2484	-63.11	-10	Pass	
NVNT	2-DH5	hopping	2484.159	-63.44	-10	Pass	
NVNT	2-DH5	hopping	2485.159	-63.32	-20	Pass	
NVNT	2-DH5	hopping	2485.318	-63.4	-20	Pass	
NVNT	3-DH5	hopping	2399.5	-37.74	-10 🤿	Pass	
NVNT	3-DH5	hopping	2399.313	-37.64	-10	Pass	
NVNT	3-DH5	hopping	2398.313	-37.97	-20	Pass	
NVNT	3-DH5	hopping	2398.126	-37.87	-20 🔥	Pass	
NVNT	3-DH5	hopping	2484	-37.71	-10 🤿	Pass	
NVNT	3-DH5	hopping	2484.159	-37.63	-10	Pass	
NVNT	3-DH5	hopping	2485.159	-37.5	-20	Pass	
NVNT	3-DH5	hopping	2485.318	-37.54	-20	Pass	
NVNT	3-DH5	hopping	2399.5	-63.31	-10	Pass	
NVNT	3-DH5	hopping	2399.313	-63.39	-10	Pass	
NVNT	3-DH5	hopping	2398.313	-63.52 🔨	-20	Pass	
NVNT	3-DH5	hopping	2398.126	-63.44	-20	Pass	
NVNT	3-DH5	hopping	2484	-63.26	-10	Pass	
NVNT	3-DH5	hopping	2484.179	-63.37	-10	Pass	
NVNT	3-DH5	hopping	2485.179	-63.1	-20	Pass	
NVNT	3-DH5	hopping	2485.358	-63.3	-20	Pass	

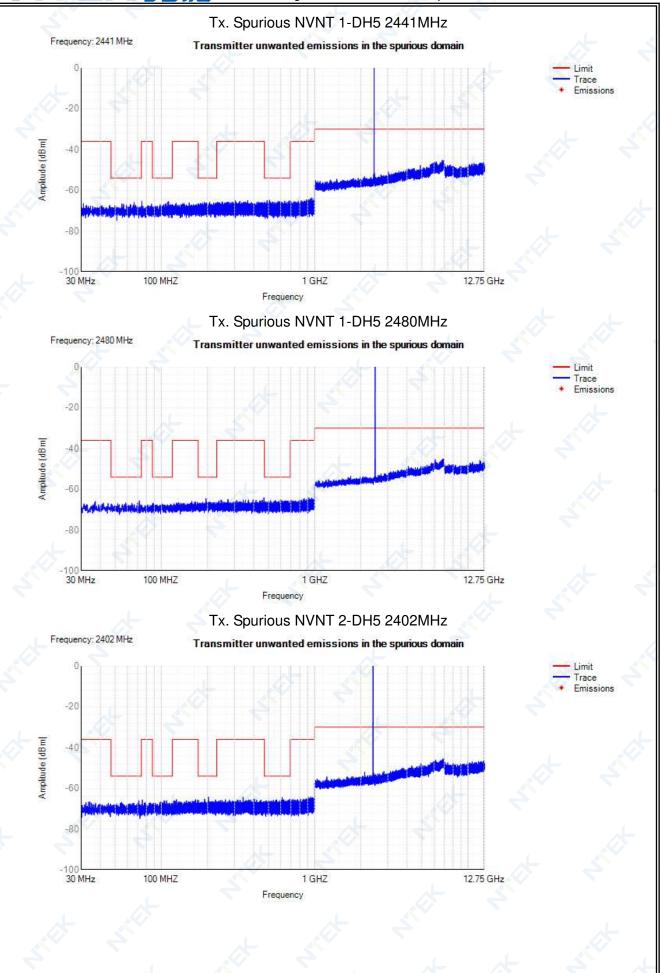
Page 77 of 90

Report No.: STR230215001001E

Page 78 of 90

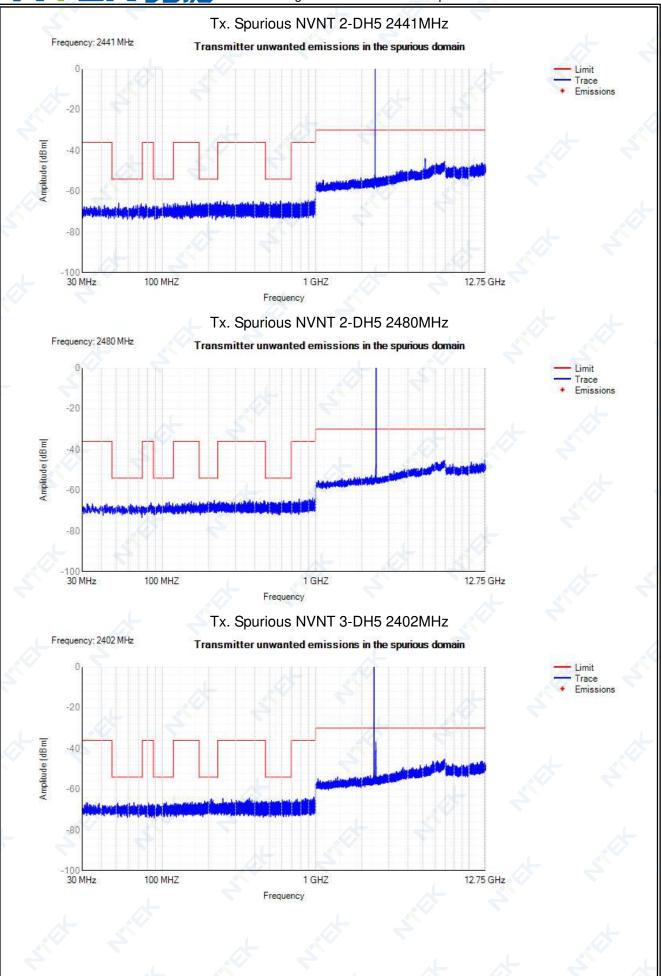

Page 79 of 90

:...

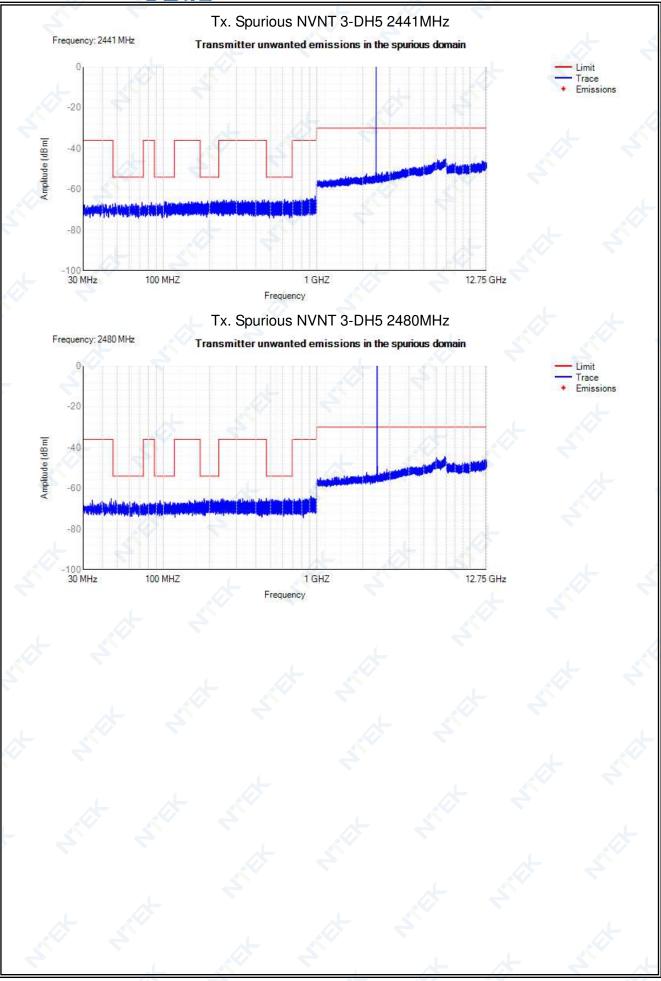

Condition	Mode	Frequency	Range	Spur Freq	Spur Level	Spur Level	Limit	Verdio
NVNT	1-DH5	(MHz) 2402	30 MHz -47 MHz	(MHz)	Peak(dBm)	RMS(dBm) NA	(dBm) -36	Deee
NVNT	1-DH5	2402	47 MHz -74 MHz	39.55 54	-66.27 -66.84	NA	-36 -54	Pass Pass
NVNT	1-DH5	2402	74 MHz -87.5 MHz	85.25	-67.29	NA	-34	Pass
NVNT	1-DH5	2402	87.5 MHz -118 MHz	99.05	-65.92	NA	-56	Pase
NVNT	1-DH5	2402	118 MHz -174 MHz	137.55	-65.29	NA	-36	Pase
NVNT	1-DH5	2402	174 MHz -230 MHz	185.1	-65.29	NA	-54	Pas
NVNT	1-DH5	2402	230 MHz -470 MHz	355.25	-64.97	NA	-36	Pas
NVNT	1-DH5	2402	470 MHz -694 MHz	588.05	-64.32		-54	Pas
NVNT	1-DH5	2402	694 MHz -1000 MHz	955.65	-64.28	NA	-36	Pas
NVNT	1-DH5	2402	1000 MHz -2398 MHz	2117	-52.66	NA	-30	Pas
NVNT	1-DH5	2402	2485.5 MHz -12750 MHz	6969.5	-45.5	NA	-30	Pas
NVNT	1-DH5	2441	30 MHz -47 MHz	31	-66.42	NA	-36	Pas
NVNT	1-DH5	2441	47 MHz -74 MHz	66.35	-65.93	NA	-54	Pas
NVNT	1-DH5	2441	74 MHz -87.5 MHz	74.6	-65.38	NA	-36	Pas
NVNT	1-DH5	2441	87.5 MHz -118 MHz	111.45	-65.5	NA	-54	Pas
NVNT	1-DH5	2441	118 MHz -174 MHz	151.85	-66.14	NA	-36	Pas
NVNT	1-DH5	2441	174 MHz -230 MHz	206.55	-65.78	NA	-54	Pas
NVNT	1-DH5	2441	230 MHz -470 MHz	365.35	-64.94	NA	-36	Pas
NVNT	1-DH5	2441	470 MHz -694 MHz	507.2	-64.81	NA	-54	Pas
NVNT	1-DH5	2441	694 MHz -1000 MHz	959.35	-63.72	NA	-36	Pas
NVNT	1-DH5	2441	1000 MHz -2398 MHz	2118.5	-53.32	NA	-30	Pas
NVNT	1-DH5	2441	2485.5 MHz -12750 MHz	6782	-45.31	NA	-30	Pas
NVNT	1-DH5	2480	30 MHz -47 MHz	37.09	-65.94	NA	-36	Pas
NVNT	1-DH5	2480	47 MHz -74 MHz	71.82	-65.67	NA	-54	Pas
NVNT	1-DH5	2480	74 MHz -87.5 MHz	81.58	-67.61	NA	-36	Pas
NVNT	1-DH5	2480	87.5 MHz -118 MHz	87.85	-66.81	NA	-54	Pas
NVNT	1-DH5	2480	118 MHz -174 MHz	158.02	-65.95	NA	-36	Pas
NVNT	1-DH5	2480	174 MHz -230 MHz	195.54	-64.54	NA	-54	Pas
NVNT NVNT	1-DH5	2480	230 MHz -470 MHz	466.44	-64.07	NA	-36	Pas
	1-DH5	2480	470 MHz -694 MHz	598.29	-64.83	NA	-54 -36	Pas
NVNT NVNT	1-DH5 1-DH5	2480 2480	694 MHz -1000 MHz 1000 MHz -2398 MHz	906.95 1719.07	-64 -53.61	NA NA	-36	Pas
NVNT	1-DH5	2480	2485.5 MHz -12750 MHz	6896.11	-45.09	NA	-30	Pas: Pas:
NVNT	2-DH5	2400	30 MHz -47 MHz	34.2	-66.65	NA	-30	Pas
NVNT	2-DH5	2402	47 MHz -74 MHz	71.35	-66.03	NA	-54	Pase
NVNT	2-DH5	2402	74 MHz -87.5 MHz	75.15	-65.76	NA	-36	Pas
NVNT	2-DH5	2402	87.5 MHz -118 MHz	108.15	-66.08	NA	-54	Pas
NVNT	2-DH5	2402	118 MHz -174 MHz	125.5	-65.5	NA	-36	Pas
NVNT	2-DH5	2402	174 MHz -230 MHz	202.9	-64.22	NA	-54	Pas
NVNT	2-DH5	2402	230 MHz -470 MHz	341.3	-64.39	NA	-36	Pas
NVNT	2-DH5	2402	470 MHz -694 MHz	613.95	-64.49	NA	-54	Pas
NVNT	2-DH5	2402	694 MHz -1000 MHz	906.05	-64.24	NA	-36	Pas
NVNT	2-DH5	2402	1000 MHz -2398 MHz	2119.5	-52.01	NA	-30	Pas
NVNT	2-DH5	2402	2485.5 MHz -12750 MHz	6999.5	-45.01	NA	-30	Pas
NVNT	2-DH5	2441	30 MHz -47 MHz	41.9	-66.79	NA	-36	Pas
NVNT	2-DH5	2441	47 MHz -74 MHz	52	-65.71	NA	-54	Pas
NVNT	2-DH5	2441	74 MHz -87.5 MHz	78.1	-66.17	NA	-36	Pas
NVNT	2-DH5	2441	87.5 MHz -118 MHz	102.15	-65.87	NA	-54	Pas
NVNT	2-DH5	2441	118 MHz -174 MHz	154.35	-64.63	NA	-36	Pas
NVNT	2-DH5	2441	174 MHz -230 MHz	228.7	-65.02	<u> </u>	-54	Pas
NVNT	2-DH5	2441	230 MHz -470 MHz	240.3	-64.64	NA	-36	Pas
NVNT	2-DH5	2441	470 MHz -694 MHz	589.1	-64.59	NA	-54	Pas
NVNT	2-DH5	2441	694 MHz -1000 MHz	989.55	-63.39	NA	-36	Pas
NVNT	2-DH5	2441	1000 MHz -2398 MHz	1971	-53.3	NA	-30	Pas
NVNT	2-DH5	2441	2485.5 MHz -12750 MHz	5178.5	-43.87	NA	-30	Pas
NVNT	2-DH5	2480	30 MHz -47 MHz	32.32	-66.53	NA	-36	Pas
	2-DH5	2480	47 MHz -74 MHz	62.06	-66.75	NA	-54	Pas
	2-DH5	2480	74 MHz -87.5 MHz	84.37	-66.06	NA	-36	Pas
NVNT NVNT	2-DH5	2480 2480	87.5 MHz -118 MHz	110.85	-65.64 -65.4	NA NA	-54 -36	Pas
NVNT	2-DH5	2480	118 MHz -174 MHz 174 MHz -230 MHz	154.18		NA	-36 -54	Pas
NVNT	2-DH5 2-DH5	2480	230 MHz -470 MHz	218.08 372.46	-64.88 -64.7	NA	-54 -36	Pas: Pas:
NVNT	2-DH5 2-DH5	2480	470 MHz -694 MHz	619.67	-64.98	NA	-36	Pas
NVNT	2-DH5 2-DH5	2480	694 MHz -1000 MHz	957.71	-64.98 -63.84	NA	-54	Pas
NVNT	2-DH5 2-DH5	2480		2315.72	-52.55	NA		Pas
NVNT	2-DH5 2-DH5	2480	1000 MHz -2398 MHz 2485.5 MHz -12750 MHz	12679.64	-52.55 -45.28	NA	-30 -30	Pase
NVNT	2-DH5 3-DH5	2480	30 MHz -47 MHz	31.9	-45.28	NA	-30	Pas
NVNT	3-DH5	2402	47 MHz -74 MHz	65.2	-66.49	NA	-36 -54	Pas
NVNT	3-DH5 3-DH5	2402	74 MHz -87.5 MHz	81.15	-66.67	NA	-34 -36	Pas
NVNT	3-DH5	2402	87.5 MHz -118 MHz	106.15	-66.34	NA	-56	Pas
NVNT	3-DH5 3-DH5	2402	118 MHz -174 MHz	156.5	-66.09	NA	-34	Pass
INVINI	3-DH5 3-DH5	2402	174 MHz -230 MHz	209.35	-64.63	NA	-54	Pase

Page 80 of 90

	×		A					
NVNT	3-DH5	2402	230 MHz -470 MHz 🥢	369.7	-64.28	NA	-36	Pass
NVNT	3-DH5	2402	470 MHz -694 MHz	674.65	-65.03	NA	-54	Pass
NVNT	3-DH5	2402	694 MHz -1000 MHz	972.8	-63.68	NA	-36	Pass
NVNT	3-DH5	2402	1000 MHz -2398 MHz	2397.5	-52.3	NA	-30	Pass
NVNT	3-DH5	2402	2485.5 MHz -12750 MHz	6986	-45.15	NA	-30	Pass
NVNT	3-DH5	2441	30 MHz -47 MHz	39.85	-67.13	NA	-36	Pass
NVNT	3-DH5	2441	47 MHz -74 MHz	72.6	-66.36 🔬	NA	-54	Pass
NVNT	3-DH5	2441	74 MHz -87.5 MHz	83.55	-66.4	NA	-36	Pass
NVNT	3-DH5	2441	87.5 MHz -118 MHz	102.1	-65.93	NA	-54	Pass
NVNT	3-DH5	2441	118 MHz -174 MHz	146.35	-66.02	NA	-36	Pass
NVNT	3-DH5	2441	174 MHz -230 MHz	223.45	-65.39	NA	-54	Pass
NVNT	3-DH5	2441	230 MHz -470 MHz	455	-65.09	NA	-36	Pass
NVNT	3-DH5	2441	470 MHz -694 MHz	618.25	-64.87	NA	-54	Pass
NVNT	3-DH5	2441	694 MHz -1000 MHz	975.95	-63.25	NA	-36	Pass
NVNT	3-DH5	2441	1000 MHz -2398 MHz	2118	-52.34	NA	-30	Pass
NVNT	3-DH5	2441	2485.5 MHz -12750 MHz	6946	-44.94	NA	-30	Pass
NVNT	3-DH5	2480	30 MHz -47 MHz	45.65	-65.04	NA	-36	Pass
NVNT	3-DH5	2480	47 MHz -74 MHz	48.7	-66.02	NA	-54	Pass
NVNT	3-DH5	2480	74 MHz -87.5 MHz	81.7	-67.08	NA	-36	Pass
NVNT	3-DH5	2480	87.5 MHz -118 MHz	95.05	-65.99	NA	-54	Pass
NVNT	3-DH5	2480	118 MHz -174 MHz	160.25	-65.76	NA	-36	Pass
NVNT	3-DH5	2480	174 MHz -230 MHz	184.4	-64.95	NA	-54	Pass
NVNT	3-DH5	2480	230 MHz -470 MHz	329.35	-65	NA	-36	Pass
NVNT	3-DH5	2480	470 MHz -694 MHz	659.7	-64.88	NA	-54	Pass
NVNT	3-DH5	2480	694 MHz -1000 MHz	917.75	-63.7	NA	-36	Pass
NVNT	3-DH5	2480	1000 MHz -2398 MHz	2119.5	-52.12	NA	-30 🔺	Pass
NVNT	3-DH5	2480	2485.5 MHz -12750 MHz	6851	-44.45	NA	-30	Pass



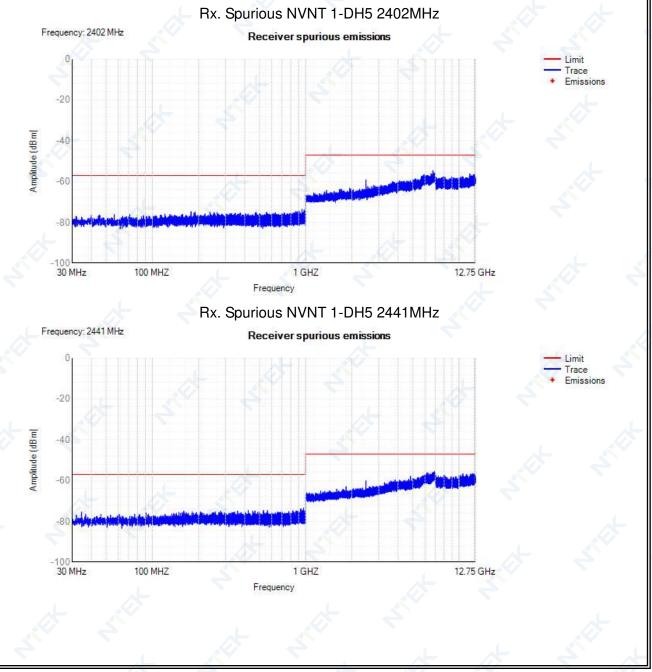
Page 81 of 90



<u>NTEK 北测[®]</u>

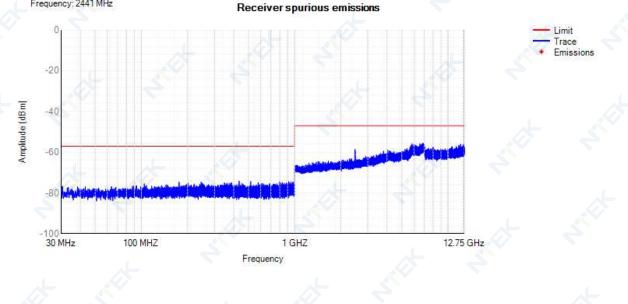
Page 82 of 90

Page 83 of 90

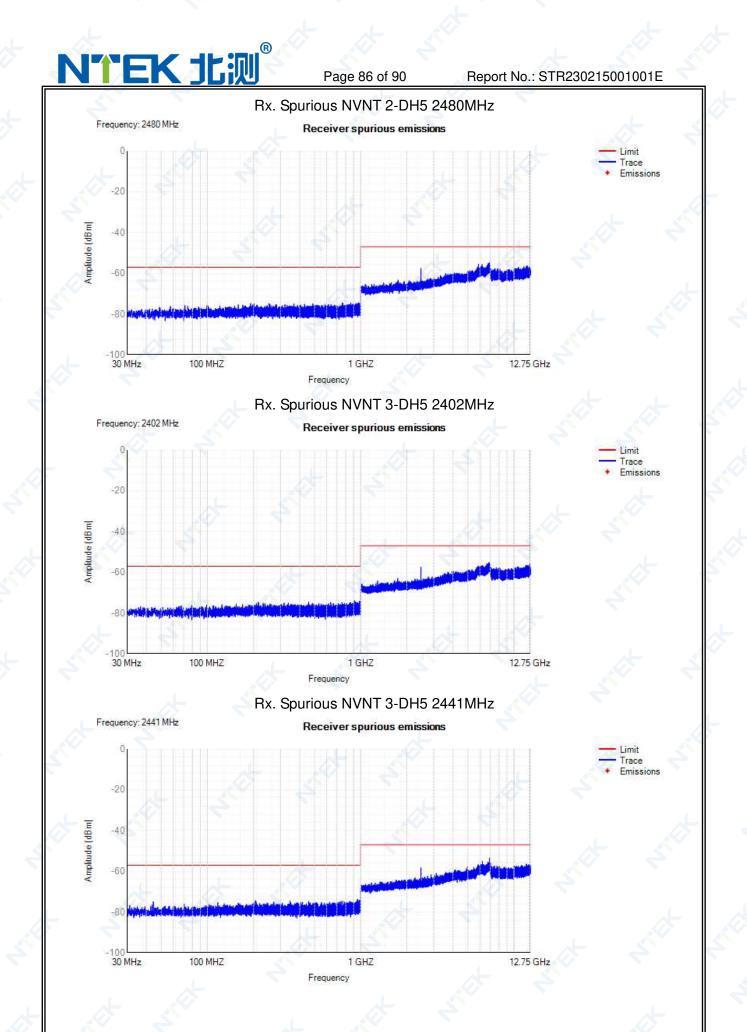

NTEK 北测®

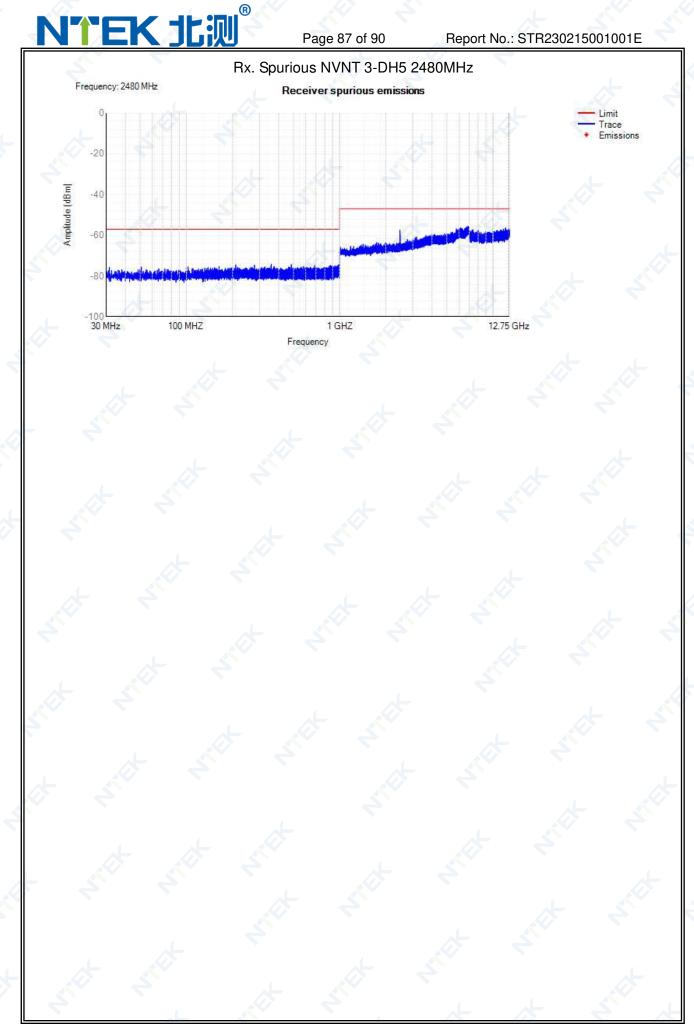
Page 84 of 90

Report No.: STR230215001001E

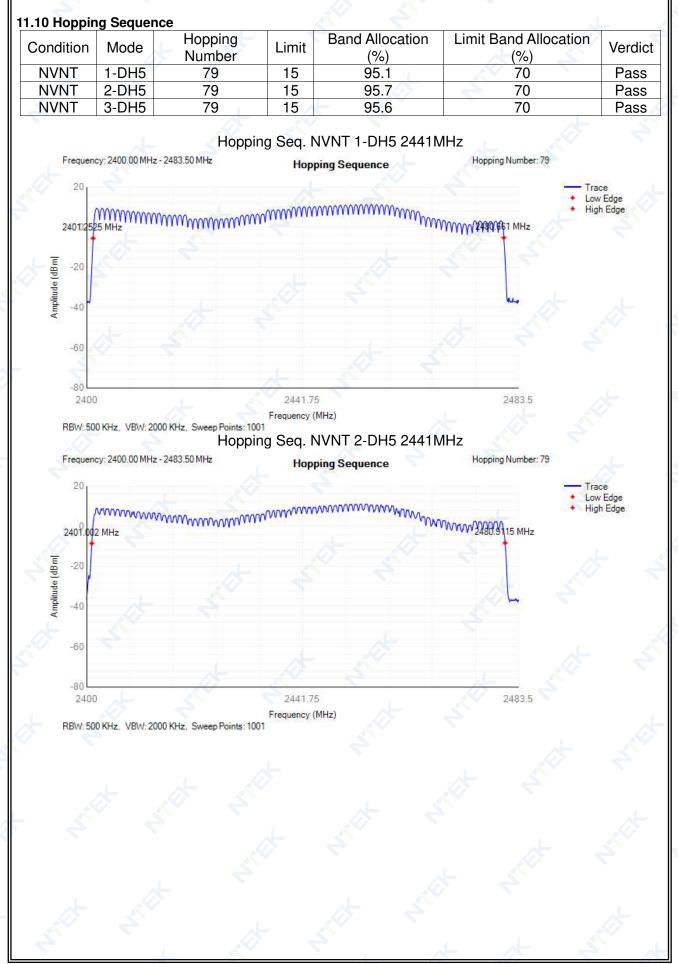

11.9 Receiver spurious emissions

Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
NVNT	1-DH5	2402	30 MHz -1000 MHz	946.91	-73.56	NA	-57	Pass
NVNT	1-DH5	2402	1000 MHz -12750 MHz	6775.26	-54.65	NA	-47	Pass
NVNT	1-DH5	2441	30 MHz -1000 MHz	968.05	-73.36	NA	-57	Pass
NVNT	1-DH5	2441	1000 MHz -12750 MHz	6927.5	-55.47	NA	-47	Pass
NVNT	1-DH5	2480	30 MHz -1000 MHz	823.3	-73.56	NA	-57	Pass
NVNT	1-DH5	2480	1000 MHz -12750 MHz	6991.5	-54.71	NA	-47	Pass
NVNT	2-DH5	2402	30 MHz -1000 MHz	411.3	-74.01	NA	-57	Pass
NVNT	2-DH5	2402	1000 MHz -12750 MHz	6972	-54.58	NA 🔇	-47	Pass
NVNT	2-DH5	2441	30 MHz -1000 MHz	434.55	-74.16	NA	-57	Pass
NVNT	2-DH5	2441	1000 MHz -12750 MHz	6852	-55.63	NA	-47	Pass
NVNT	2-DH5	2480	30 MHz -1000 MHz	966.45	-74.39	NA	-57	Pass
NVNT	2-DH5	2480	1000 MHz -12750 MHz	6898.5	-54.82	NA	-47	Pass
NVNT	3-DH5	2402	30 MHz -1000 MHz	908.8	-73.84	NA	-57	Pass
NVNT	3-DH5	2402	1000 MHz -12750 MHz	6884	-55.24	NA	-47	Pass
NVNT	3-DH5	2441	30 MHz -1000 MHz	951.45	-73.91	NA 🔨	-57	Pass
NVNT	3-DH5	2441	1000 MHz -12750 MHz	6937	-53.46	NA	-47	Pass
NVNT	3-DH5	2480	30 MHz -1000 MHz	995	-74.13	NA	-57	Pass
NVNT	3-DH5	2480	1000 MHz -12750 MHz	6936.5	-55.44	NA	-47	Pass

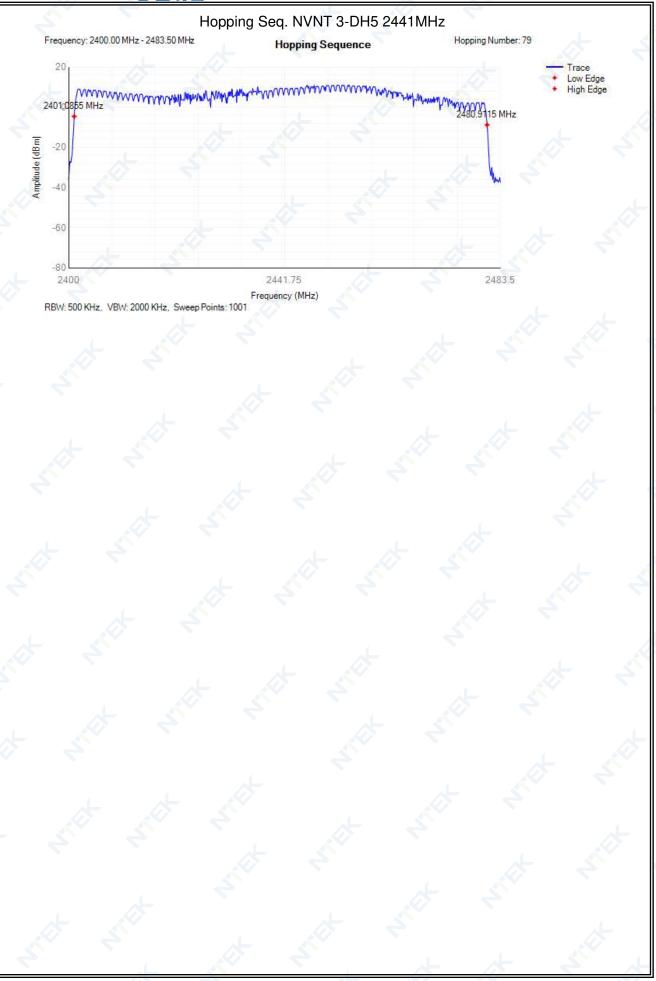



NTEK 北测 Page 85 of 90 Report No.: STR230215001001E Rx. Spurious NVNT 1-DH5 2480MHz Frequency: 2480 MHz **Receiver spurious emissions** Limit Trace Emissions Amplitude (dBm) -40 -60 alah mengerasiki -80 100 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency Rx. Spurious NVNT 2-DH5 2402MHz Frequency: 2402 MHz Receiver spurious emissions Limit Trace Emissions -20 Amplitude (dBm) -40 -60 nal m adapte photo -80 100 30 MHz 100 MHZ 1 GHZ 12.75 GHz Frequency

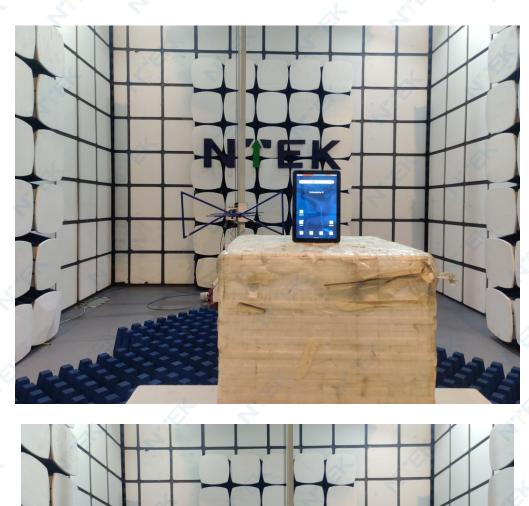
Frequency: 2441 MHz



Rx. Spurious NVNT 2-DH5 2441MHz



Page 88 of 90



Page 89 of 90

Page 90 of 90

12. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT