

EMC TEST REPORT

Applicant...... SHENZHEN FENDA TECHNOLOGY CO., LTD.

Address.....: Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town, Baoan District, Shenzhen

City, Guangdong, China

Manufacturer.....: SHENZHEN FENDA TECHNOLOGY CO., LTD.

Address......: Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town, Baoan District, Shenzhen

City, Guangdong, China

Factory....: SHENZHEN FENDA TECHNOLOGY CO., LTD.

Address......: Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town, Baoan District, Shenzhen

City, Guangdong, China

Product Name...... 2.1 computer multimedia speaker

Brand Name.....: F&D

Model No.: HT-350, HT-360, HT-380, HT-390(For model difference refer to section 2)

Measurement Standard....... EN 55032: 2015+A11: 2020

EN IEC 61000-3-2: 2019

EN 61000-3-3: 2013+A1: 2019

EN 55035: 2017+A11: 2020

Receipt Date of Samples....: July 02, 2021

Date of Tested...... July 02, 2021 to August 20, 2021

Date of Report...... December 28, 2021

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore Testing Center Co., Ltd, this report shall not be reproduced except in full.

Prepared by

Jenny Liu / Project Engineer

Iori Fan / Authorized Signatory

Table of Contents

1. Summary of Test Result	4
2. General Description of EUT	5
3. Configuration of EUT	7
4. Description of Support Device	8
5. Test Facility	9
6. Test Conditions	10
7. Measurement Uncertainty	11
8. Measurement Bandwidths	11
9. Deviations and Abnormalities from Standard Conditions	11
10. Sample Calculations	12
11. Conducted Emission Measurement	13
12. Conducted Differential Voltage Emissions Measurement	20
13. Radiated Emission Measurement	22
14. Harmonic Current Emission Measurement	28
15. Voltage Fluctuations & Flicker Measurement	30
16. Performance Criteria for Immunity	34
17. Electrostatic Discharge Measurement	35
18. Continuous RF Electromagnetic Field Disturbances Measurement	41
19. Electrical Fast Transient/Burst Measurement	46
20. Surge Measurement	49
21. Continuous Induced RF Disturbances Measurement	53
22. Power Frequency Magnetic Field Measurement	58
23. Voltage Dips and Interruptions Measurement	60
24. Measuring Devices and Test Equipment	63
25. Photographs of Test Configuration	67
26. Photographs of the FLIT	71

Revision History

Report Number	Description	Issued Date
NTC2112024EV00	Initial Issue	2021-12-28

1. Summary of Test Result

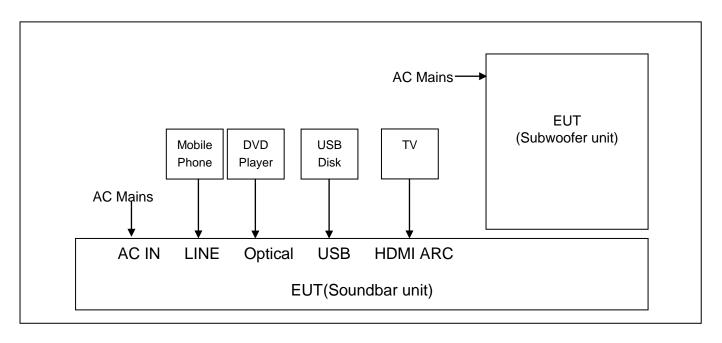
EMISSION				
Standard	Test Item	Result	Remarks	
	Conducted Emission	PASS		
EN 55032: 2015+A11: 2020	Conducted Disturbance at the telecommunication ports	N/A		
	Radiated Emission	PASS		
EN IEC 61000-3-2: 2019 Harmonic Current Emission		PASS		
EN 61000-3-3: 2013+A1: 2019	Voltage Fluctuations & Flicker	PASS		

IMMUNITY(EN 55035: 2017+A11: 2020)				
Standard	Test Item	Result	Remarks	
IEC 61000-4-2: 2008	Electrostatic Discharges (ESD)	PASS		
IEC 61000-4-3: 2006+A1: 2007+A2: 2010	Continuous RF Electromagnetic Field Disturbances	PASS		
IEC 61000-4-4: 2012	Electrical Fast Transients/Burst (EFT/B)	PASS		
IEC 61000-4-5: 2014	Surges	PASS		
IEC 61000-4-6: 2013	Continuous Induced RF Disturbances	PASS		
IEC 61000-4-8: 2009	Power Frequency Magnetic Field	N/A	The EUT does not Contain Magnetic Field Sensitive Components.	
IEC 61000-4-11: 2004	Voltage Dips and Interruptions	PASS		

2. General Description of EUT

Draduat Information	
Product Information	
Product name:	2.1 computer multimedia speaker
Main Model Name:	HT-350
Additional Model Name:	HT-360, HT-380, HT-390
Model Difference:	These models have the same circuit schematic, construction, PCB layout and
	critical components. Their differences are model number and the size of
	enclosure.
S/N:	2107-3437 for Soundbar;
	2107-3437-1 for Subwoofer
Brand Name:	F&D
EUT Type:	Class B
Operation Frequency:	Below 108MHz
Hardware Version:	V1.0
Software Version:	V1.0
Temperature Range:	0 − 40 °C
Rating:	For Soundbar: AC 100-240V 50/60Hz, 0.5A
	For Subwoofer: AC 100-240V 50/60Hz, 0.5A
I/O Port:	For Soundbar: AC Port*1, USB Port*1, Optical Port*1, AUX Port*1, HDMI ARC*1
	For Subwoofer: AC Port*1
Accessories Information	
Adapter:	N/A
Cable:	Power cord 1: 1.63m unshielded;
	Power cord 2: 1.63m unshielded
Other:	IR Remote * 1

Additional Information	
Note:	1. According to the model difference, all tests were performed on model HT-350.
	2. The EUT consists of Soundbar and Subwoofer two units.
	3. The manufacturer declared that length of Audio line/ Signal line is less than 3m.
Remark:	This report was an additional report based on NTC2107049EV00. Comparing with
	the original report NTC2107049EV00, this report changed the information of the
	applicant, manufacturer, product name, and model name, brand name. According
	to the manufacturer, all the original test data continue to be referenced but the
	changed information.



3. Configuration of EUT

Description of Test Modes

	Test Mode	Description			
Norma	Normal working: for Soudbar+Subwooferunit				
1	Line IN	Turn on the EUT and set it operating at LINE mode, then connect the EUT to mobile phone through 3.5mm signal wire to play 1KHz signal.			
2	USB Playing	Turn on the EUT and set it operating at USB mode, then insert the USB flash disk to the EUT to play 1KHz signal.			
3	Optial IN	Turn on the EUT and set it operating at Optical mode, then connect the EUT to DVD player through optical signal wire to play 1KHz signal.			
4	HDMI ARC IN	Turn on the EUT and set it operating at ARC mode, then connect the EUT to TV through HDMI signal wire to play audio signal.			
5	Stand-by	Turn on the EUT and set it operating at stand-by mode.			
For Subwoofer unit					
6	ON	Turn on the EUT and set it operating at normal working mode.			

Block Diagram of Configuration

Note:

- a. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the
- b. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use, if necessary.

4. Description of Support Device

No.	Equipment	Brand	M/N	S/N	Cable Specification	Remarks
2.	iPhone	Apple	MG492CH/A	F1MPLG6NG5 MQ		Provided by the laboratory
3.	Mobile Phone	HUAWEI	H60-L01	357143040643 733		Provided by the laboratory
4.	USB DISK	Sony	USB 3.0 8GB			Provided by the laboratory
5.	DVD Player	Pioneer	DV-310NC-K	0JTL030411CN	Power Cord: 1.8m Unshielded, with core	Provided by the laboratory
6.	TV	SONY	KDL-32W600D			Provided by the laboratory
7.	Adapter for TV	SONY	ACDP-045S03 I/P: AC100V-240V,50 Hz/60Hz,1.1A O/P: DC19.5V2.35A		AC Line: 1.09m unshielded DC Line: 1.15m unshielded with a core	Provided by the laboratory

5. Test Facility

Test Site	:	Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)
Accreditations and	:	The Laboratory has been assessed and proved to be in compliance with
Authorizations		CNAS/CL01
		Listed by CNAS, August 13, 2018
		The Certificate Registration Number is L5795.
		The Certificate is valid until August 13, 2024
		The Laboratory has been assessed and proved to be in compliance with
		ISO17025
		Listed by A2LA, November 01, 2017
		The Certificate Registration Number is 4429.01
		The Certificate is valid until December 31, 2021
		Listed by FCC, November 06, 2017
		Test Firm Registration Number: 907417
		Listed by Industry Canada, June 08, 2017
		The Certificate Registration Number. Is 46405-9743A
Test Site Location	:	Building D, Gaosheng Science and Technology Park, Hongtu Road,
		Nancheng District, Dongguan City, Guangdong Province, China

6. Test Conditions

No.	Test Item	Test Mode	Test Voltage	Tested by	Remarks
1.	Conducted Emission	1-6	AC 110V 60Hz	Alvin	See note 1
	Conducted Emission (Asymmetric mode)		AC 230V 50Hz		
2.	Wired network Port				
	Conducted Emission (Asymmetric mode)				
3.	-Antenna Port				
4.	Conducted Differential Voltage				
	Emissions				
5.	Radiated Emission	1-6	AC 110V 60Hz	Loki	See note 1
			AC 230V 50Hz		
6.	Harmonic Current Emission	1-6	AC 230V 50Hz	Rick	See note 1
7.	Voltage Fluctuations & Flicker	1-6	AC 230V 50Hz	Rick	See note 1
8.	Electrostatic Discharges (ESD)	1-6	AC 110V 60Hz	Rick	See note 2
0.	Electrostatic Discharges (ESD)	1-0	AC 230V 50Hz	RICK	See note 2
9.	Continuous RF Electromagnetic Field	1-6	AC 110V 60Hz	Alvin	See note 1
0.	Disturbances	1 0	AC 230V 50Hz	Aiviii	See note 1
10.	Electrical Fast Transients/Burst (EFT/B)	1-6	AC 110V 60Hz	Rick	See note 2
10.	Electrical Fast Transients/Burst (El 175)	10	AC 230V 50Hz	TOIC	See Hote 2
11.	Surges	1-6	AC 110V 60Hz	Rick	See note 2
	Cargos	1 0	AC 230V 50Hz	THOR	Occ note 2
12.	Continuous Induced RF Disturbances	1-6	AC 110V 60Hz	Alvin	See note 2
12.	Continuous indused 1tt Distarbaness	. 0	AC 230V 50Hz	7 ((V))	000 11010 2
13.	Power Frequency Magnetic Field				
14.	Voltage Dips and Interruptions	1-6	AC 100V 60Hz	Rick	See note 2
17.	vollage Dipo and interruptions	1-0	AC 230V 50Hz	TOIL	230 11010 2

Note:

- 1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: $15\sim35^{\circ}$ C, $30\sim70\%$, $86\sim106$ kPa.
- 2. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: $15\sim35^{\circ}$ C, $30\sim60\%$, $86\sim106$ kPa.
- 3. Only the worst case was recorded in the report.

7. Measurement Uncertainty

No.	Test Item	Frequency	Uncertainty	Remarks
1.	Conducted Emission (AC mains)	9KHz ~ 150KHz	± 3.04 dB	
١.	Conducted Emission (No mains)	150KHz ~ 30MHz	± 2.52 dB	
2.	Conducted Emission (Asymmetric mode) Wired network Port	150KHz ~ 30MHz	± 2.52 dB	
3.	Conducted Emission (Asymmetric mode) Antenna Port	150KHz ~ 30MHz	± 2.52 dB	
4.	Conducted Differential Voltage Emissions	30 ~ 2150MHz	± 2.52 dB	
5.	Radiated Emission	30MHz ~ 1GHz	± 4.68 dB	
		1GHz ~ 6GHz	± 5.14 dB	

Note:

8. Measurement Bandwidths

No.	Frequency Range (MHz)	Peak Level (kHz)	Quasi-Peak Level (kHz)	Average Level (kHz)
1.	0.01 ~ 0.15	0.3	0.2	0.2
2.	0.15 ~ 30.0	10.0	9.0	9.0
3.	30 ~ 1000	100.0	120.0	120.0
4.	Above 1000	1000.0	N/A	1000.0

Note: Measurements were made using the bandwidths and detectors specified by the standard. No video filter was used.

9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

^{1.} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

^{2.} The measurement uncertainly levels above are estimated and calculated according to CISPR 16-4-2.

10. Sample Calculations

	Conducted Emission						
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Over (dB)	Detector	
0.1600	40.80	10.60	51.40	65.16	-13.76	QP	

Where,

Freq. = Emission frequency in MHz

Reading Level = Spectrum Analyzer/Receiver Reading

Corrector Factor = Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation

Measurement = Reading + Corrector Factor
Limit = Limit stated in standard
Margin = Measurement - Limit

Detector = Reading for Quasi-Peak / Average / Peak

	Radiated Emission						
Freq. Reading Level Correct Factor Measurement Limit Over (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB)							
43.5800	41.36	-7.66	33.70	40.00	-6.30	QP	

Where,

Freq. = Emission frequency in MHz

Reading Level = Spectrum Analyzer/Receiver Reading

Corrector Factor = Antenna Factor + Cable Loss - Pre-amplifier

Measurement = Reading + Corrector Factor
Limit = Limit stated in standard

Over = Margin, which calculated by Measurement - Limit

Detector = Reading for Quasi-Peak / Average / Peak

11. Conducted Emission Measurement

LIMITS

Limits for conducted disturbance for the AC mains power ports:

Frequency	□Class A (dBuV)		⊠Class B (dBuV)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 to 0.5	79	66	66 to 56	56 to 46	
0.5 to 5	73	60	56	46	
5 to 30	73	60	60	50	

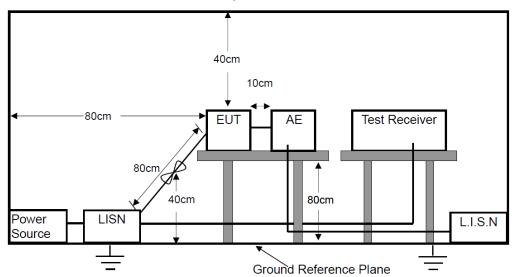
Note:

If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurements with the average detector are considered to be met.

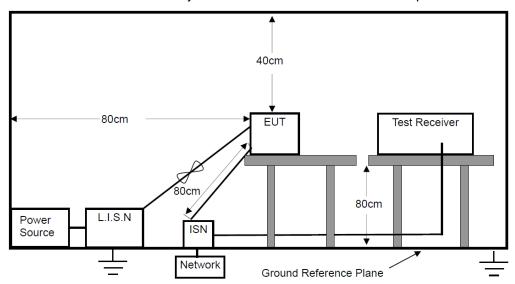
- 2. The higher value measured with and without the outer conductor screen of the antenna terminal connected to earth is considered.
- 3. Television receivers with teletext facilities should be tested in teletext mode with teletext Picture.
- The lower limit shall apply at the transition frequencies.
- The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

Limits for conducted disturbance for asymmetric mode:

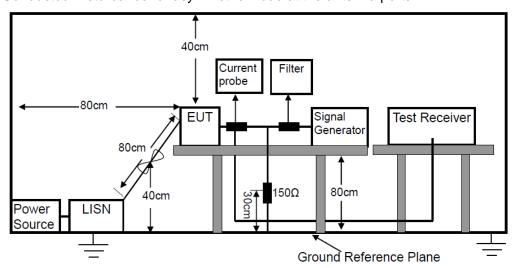
Frequency (MHz)	Voltage limits □Class A (dB(uV))		Current limits □Class A (dBuA)		
	Quasi-peak	Average	Quasi-peak	Average	
0.15 to 0.5	97 to 87	84 to 74	53 to 43	40 to 30	
0.5 to 30	87 74		43	30	
Frequency	Voltage limits □Class B (dBuV)		Current limits Class B (dBuA)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 to 0.5	84 to 74	74 to 64	40 to 30	30 to 20	
0.5 to 30	74	64	30	20	


Note: 1. The lower limit shall apply at the transition frequencies.

> The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.



BLOCK DIAGRAM OF TEST SETUP


Conducted Disturbance at the Mains power Ports

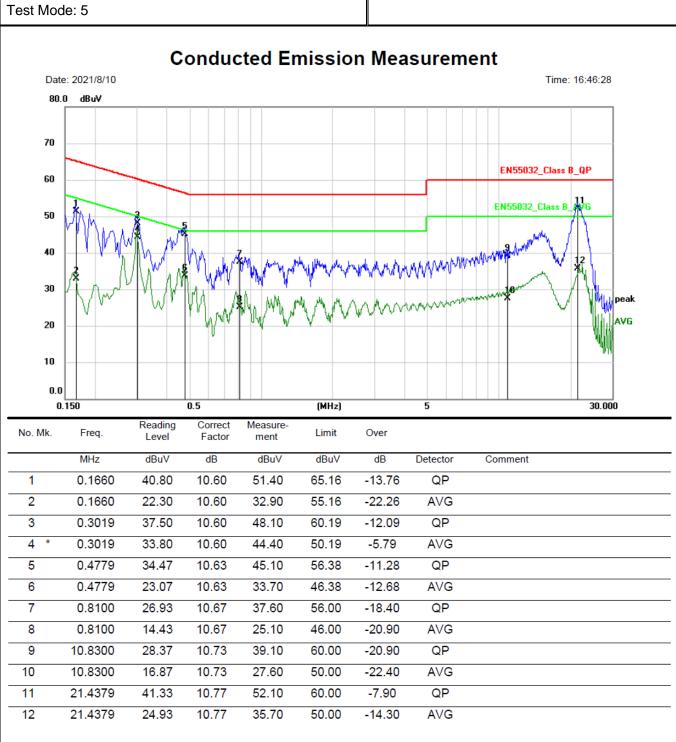
Conducted Disturbance for asymmetric mode at the wired network ports

Conducted Disturbance for asymmetric mode at the antenna ports

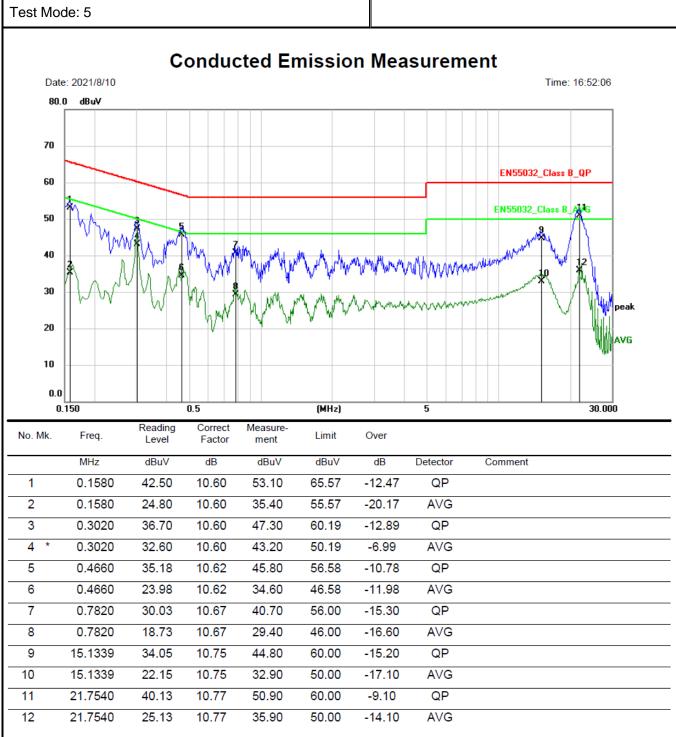
TEST PROCEDURES

- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. Configure the EUT and support devices as per section 3.
- c. All I/O cables and support devices were positioned as per EN 55032.
- d. Connect mains power port of the EUT to a line impedance stabilization network (LISN) and wired network port to Asymmetric Artificial Network (AAN).
- e. Connect all support devices to the other LISN and AAN, if needed.
- f. Turn on the EUT and all support devices, and make it run stably.
- g. Set the detector and measurement bandwidth of test-receiver system as per EN 55032.
- h. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for conducted interference checking
- i. Repeat the above scans in each mode and record the test data.

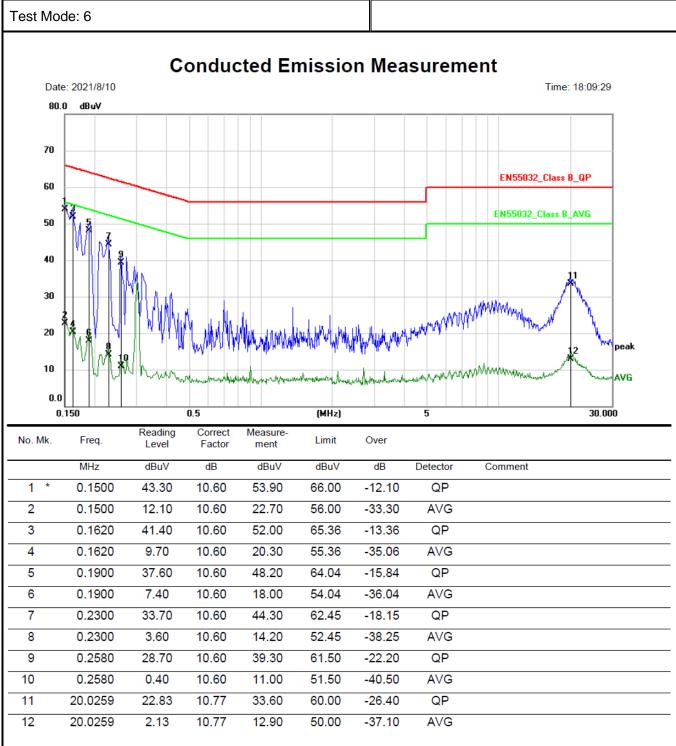
TEST RESULTS


PASS

Please refer to the following pages of the worst case.


M/N: HT-350	Testing Voltage: AC 230V 50Hz	
Phase: L1	Detector: QP & AVG	
Test Mode: 5		

M/N: HT-350	Testing Voltage: AC 230V 50Hz	
Phase: N	Detector: QP & AVG	
Test Mode: 5		


M/N: HT-350	Testing Voltage: AC 230V 50Hz	
Phase: L1	Detector: QP & AVG	
Test Mode: 6		

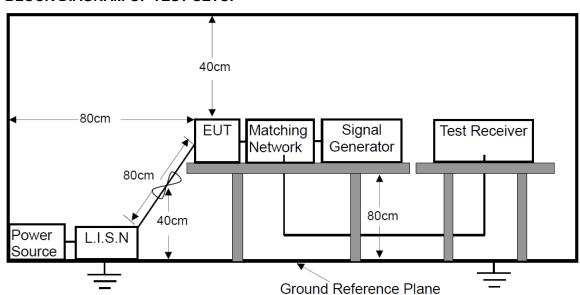
Conducted Emission Measurement Date: 2021/8/10 Time: 18:03:56 80.0 dBu∀ 70 EN55032_Class B_QP 60 EN55032_Class B_AVG 50 40 30 20 10 AVG 0.0 0.150 0.5 (MHz) 30.000 Reading Correct Measure-No. Mk. Limit Over Freq. Level Factor ment MHz dBuV dB dBuV dBuV dΒ Detector Comment 0.1660 52.20 -12.96QP 1 41.60 10.60 65.16 2 0.1660 9.80 10.60 20.40 -34.76 AVG 55.16 3 0.2020 36.10 10.60 46.70 63.53 -16.83 QP 0.2020 3.80 10.60 14.40 53.53 -39.13 AVG 4 0.2179 34.60 10.60 45.20 62.90 -17.70 QP 5 6 0.2179 4.70 10.60 15.30 52.90 -37.60 AVG 7 0.2660 28.90 -21.74 10.60 39.50 61.24 QP 8 0.2660 1.70 10.60 12.30 51.24 -38.94 AVG 9 22.79 -25.75 QP 0.3420 10.61 33.40 59.15 10 0.3420 -2.21 10.61 8.40 49.15 -40.75**AVG** QP 11 20.2179 20.03 10.77 30.80 60.00 -29.20 12 20.2179 -0.17 10.77 10.60 50.00 -39.40 AVG

M/N: HT-350	Testing Voltage: AC 230V 50Hz	
Phase: N	Detector: QP & AVG	
Test Mode: 6		

12. Conducted Differential Voltage Emissions Measurement

LIMITS

Limits for conducted differential voltage emissions from Class B equipment:


	Frequency	Detector	Cla	Class B Limits dB(uV) 75Ω			
Applicability	Range (MHz)	Type/ Bandwidth	Other*	Local Oscillator Fundamental	Local Oscillator Harmonics		
Con Note 4	30 to 950		46	46	46		
See Note 1	950 to 2150	For frequencies	46	54	54		
Tuner units (not the LNB) for satellite signal reception.	950 to 2150	≤1GHz	46	54	54		
Frequency modulation audio	30 to 300	Quasi Peak/	46	54	50		
receivers and PC tuner cards.	300 to 1000	120kHz			52		
Frequency modulation car	30 to 300	For	40	66	59		
radios.	300 to 1000	frequencies ≥1 GHz	46		52		
Con Note 2	30 to 950	Peak/1 MHz	46	76	46		
See Note 2	950 to 2150	. 3010 1 101112	46	N/A	54		

Note

1. Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.

- Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports. Limits specified for the LO are for the RF modulator carrier signal and harmonics.
- 3. The term 'other' refers to all emissions other than the fundamental and the harmonics of the LO.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. Configure the EUT and support devices as per section 3.
- c. All I/O cables and support devices were positioned as per EN 55032.
- d. Connect mains power port of the EUT to a line impedance stabilization network (LISN).
- e. Connect wired network port of the EUT and necessary support device to $75\sim50\Omega$ matching network.
- f. Connect all support devices to the other LISN and AAN, if needed.
- g. Set the output level of the auxiliary signal generator shall be set to give at the antenna input terminal of the receiver the value of 60 dB(μ V) for frequency modulation receivers and 70dB(μ V) for television receivers, on 75 Ω impedance.
- h. Turn on the EUT and all support devices, and make it run stably.
- i. Set the detector and measurement bandwidth of test-receiver system as per EN 55032.
- j. Scan the frequency range from 30MHz to 2150MHz for differential voltage emissions checking.
- k. Repeat the above scans in each specified mode and channel and record the test data.

TEST RESULTS

Not Applicable

13. Radiated Emission Measurement

LIMITS

Below 1GHz:

	☐ Class A				
Frequency (MHz)	Quasi-peak dB(uV/m)		Quasi-peak dB(uV/m)		
	At 3m	At 10m	At 3m	At 10m	
30 to 230	50	40	40	30	
230 to 1000	57 47		47	37	
Note 1. The lower limit shall apply at the transition frequency.					
Additional provisions may be required for cases where interference occurs.					

Above 1GHz:

Frequency	☐ Class A at 3m		☐ Class B at 3m		
(GHz)	Peak dB(uV/m)	Average dB(uV/m)	Peak dB(uV/m)	Average dB(uV/m)	
1 ~ 3	76	56	70	50	
3 ~ 6	80	60	74	54	

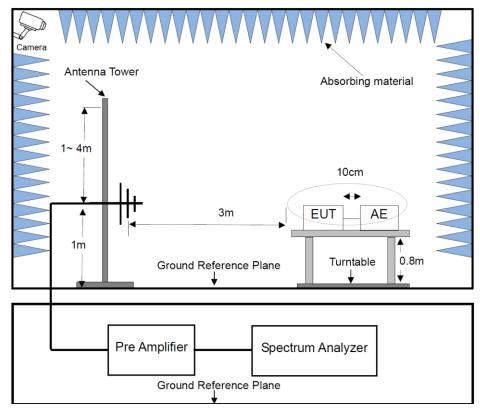
For FM Receiver:

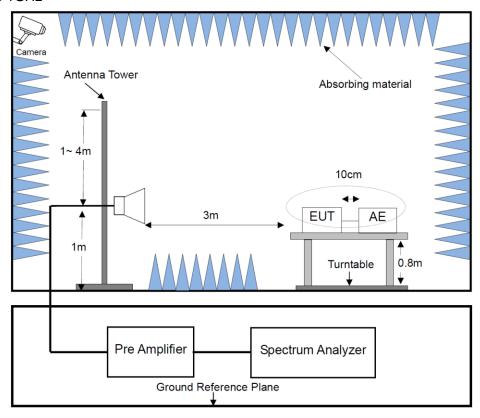
	Quasi-peak dB(uV/m)				
	⊠ Class	B At 3m	☐ Class B At 10m		
	Fundamental Harmonics		Fundamental	Harmonics	
30 to 230		52		42	
230 to 300	60	52	50	42	
300 to 1000		56		46	

Required highest frequency for radiated measurement

Highest internal frequency* (F _x)	Highest measured frequency
F _x ≤ 108 MHz	1 GHz
108 MHz < F _x ≤ 500 MHz	2 GHz
500 MHz < F _x ≤ 1 GHz	5 GHz
F _x > 1 GHz	5 × F _x up to a maximum of 6 GHz

Note 1. Highest fundamental frequency generated or used within the EUT or highest frequency at which it operates.


- 2. For FM and TV broadcast receivers, F_x is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.
- For outdoor units of home satellite receiving systems highest measured frequency shall be 18GHz.
- 4. Where F_x is unknown, the radiated emission measurements shall be performed up to 6 GHz.



BLOCKDIAGRAM OF TEST SETUP

Below 1GHz:

Above 1GHz

TEST PROCEDURES

- a. The EUT was placed on a rotatable wooden table top 0.8m above ground.
- b. The EUT was set 3m away from the receiving antenna which was mounted on the top of a variable height antenna tower.
- c. Configure the EUT and support devices as per section 3.
- d. All I/O cables and support devices were positioned as per EN 55032.
- e. Connect mains power port of the EUT to the outlet socket under the turntable and connect all other support devices to other outlet socket under the turntable.
- f. Turn on the EUT and all support devices, and make it run stably.
- g. Set the detector and measurement bandwidth of test-receiver system as per EN 55032.
- h. Scan the frequency range from 30MHz to 1000MHz for radiation emissions checking.
- i. Emissions were scanned and measured rotating the EUT from 0 to 360 degrees and positioning the antenna from 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- j. Repeat the above scans in each mode and channel and record the test data.

TEST RESULTS

PASS

Please refer to the following pages of the worst case.

M/N: HT-350	Testing Voltage: AC 230V 50Hz		
Polarization: Horizontal	Detector: QP		
Test Mode: 4	Distance: 3m		

Radiated Emission Measurement

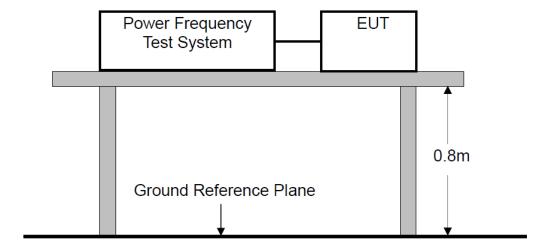

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	43.5800	41.36	-7.66	33.70	40.00	-6.30	QP		
2		159.9800	43.94	-10.44	33.50	40.00	-6.50	QP		
3		308.3900	37.79	-5.29	32.50	47.00	-14.50	QP		
4		448.0700	28.77	-2.57	26.20	47.00	-20.80	QP		
5		616.8500	25.81	0.89	26.70	47.00	-20.30	QP		
6		723.5500	26.89	2.61	29.50	47.00	-17.50	QP		

M/N: HT-350	Testing Voltage: AC 230V 50Hz		
Polarization: Vertical	Detector: QP		
Test Mode: 4	Distance: 3m		

Radiated Emission Measurement

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		40.6699	41.64	-7.84	33.80	40.00	-6.20	QP		
2	*	57.1600	43.28	-7.68	35.60	40.00	-4.40	QP		
3		154.1600	41.02	-11.52	29.50	40.00	-10.50	QP		
4		230.7900	36.03	-7.93	28.10	47.00	-18.90	QP		
5		308.3900	33.79	-6.29	27.50	47.00	-19.50	QP		
6		616.8500	29.63	-0.03	29.60	47.00	-17.40	QP		

14. Harmonic Current Emission Measurement


LIMITS

Limit of Harmonic Current Emission

Limits for	Class A equipment	Limits for Class D equipment				
Harmonics order h	Maximum permissible harmonics Current A	Harmonics order h	Maximum permissible harmonics current per watt mA/W	Maximum permissible harmonics current A		
Od	d harmonics	-	-	-		
3	2.30	3	3.4	2.30		
5	1.14	5	1.9	1.14		
7	0.77	7	1.0	0.77		
9	0.40	9	0.5	0.40		
11	0.33	11	0.35	0.33		
13	0.21	15≤h≤39	2.0E/b	0.4545/b		
15≤h≤39	0.15×15/h	(odd harmonics only)	3.85/h	0.15×15/h		
Eve	Even harmonics		-	-		
2	1.08	-	-	-		
4	0.43	-	-	-		
6	0.30	-	-	-		
8≤h≤40	0.23×8/h	-	-	-		

Note: The limits above are not specified for equipment with a rated input power of 75W or less (other than lighting equipment).

BLOCK DIAGRAM OF TEST SETUP

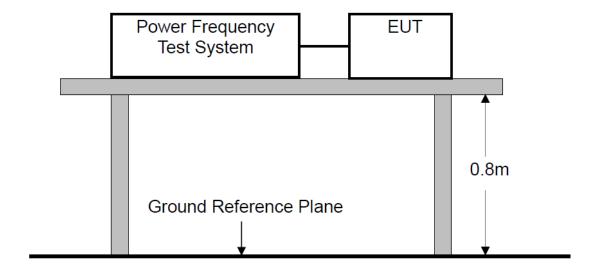
TEST PROCEDURES

- a. The EUT was placed on a wooden table 0.8m above ground.
- b. Configure the EUT and support devices as per section 3.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. Set the EUT to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- e. Classify the EUT as follows:
 - Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment ,equipment not specified in one of the three other classes.
 - Class B: Portable tools; Arc welding equipment which is not professional equipment.
 - Class C: Lighting equipment.
 - Class D: Equipment having a specified power less than or equal to 600W of the Personal computers and personal computer monitors and television receivers
- f. Set correspondent test program and measurement time of the test system to measure the current harmonics emanated from EUT, and then record the test data.

TEST RESULTS

PASS

According to clause 7 of EN IEC 61000-3-2, equipment with a rated power of 75W or less, no limits apply. It is considered to meet the requirements of the standard.



15. Voltage Fluctuations & Flicker Measurement

LIMITS

Test Item	Limit	Remarks
P _{st}	1.0	P _{st} = Short-term flicker indicator
P _{lt}	0.65	P _{It} = Long-term flicker indicator
T _{dt}	500ms	T _{dt} = Maximum accumulated time that dt with a deviation exceeding 3,3 %
d _{max} (%)	4%	d _{max} = Maximum relative voltage change
d _c (%)	3.3%	d _c = Maximum relative steady-state voltage change

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURE

- a. The EUT was placed on a wooden table 0.8m above ground.
- b. Configure the EUT and support devices as per section 3.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. Set the EUT to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- e. Set correspondent test program and measurement time of the test system to measure the most unfavorable sequence of voltage changes from EUT, and then record the test data.

TEST RESULTS

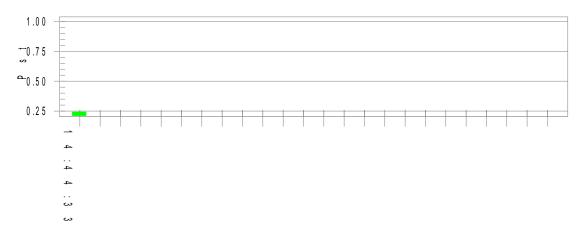
PASS

Please refer to the following page of the worst case.

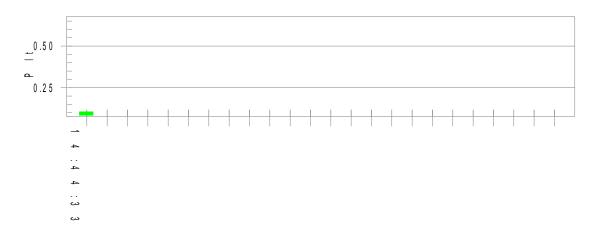
Flicker Test Summary per IEC61000-3-3:2013/AMD1:2017 (Run time)

EUT: TV soundbar
Test category: All parameters (European limits)
Test date: 2021/8/11
Start time: 14:34:12
Tested by: Loki
Test Margin: 100
End time: 14:44:39

Test duration (min): 10 Data file name: F-000010.cts_data


Comment: ON Customer: HC

M/N: HT-350(Subwoofer unit)


Test Result: Pass Status: Test Completed

Pst_i and limit line

European Limits

Plt and limit line

Parameter values recorded during the test:

Vrms at the end of test (Volt): 230.54 Highest dt (%): Test limit (%):

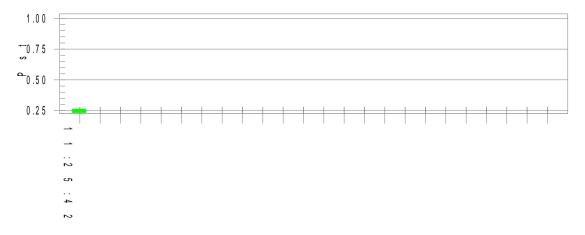
T-max (mS): 0 Test limit (mS): 500.0 **Pass** Highest dc (%): 0.00 Test limit (%): 3.30 **Pass** Highest dmax (%): 0.00 Test limit (%): 4.00 **Pass** Highest Pst (10 min. period): Highest Plt (2 hr. period): 0.242 Test limit: 1.000 **Pass** Test limit: 0.106 0.650 **Pass**

Flicker Test Summary per IEC61000-3-3:2013/AMD1:2017 (Run time)

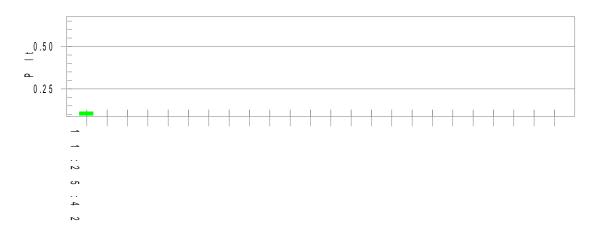
EUT: TV soundbar
Test category: All parameters (European limits)
Test date: 2021/8/11
Start time: 11:15:21
Tested by: Loki
Test Margin: 100
End time: 11:25:48

Test duration (min): 10 Data file name: F-000538.cts_data

Test duration (min): 10 Comment: USB Playing


Customer: HC

M/N: HT-350 (Soundbar unit)


Test Result: Pass Status: Test Completed

Pst_i and limit line

European Limits

Plt and limit line

Parameter values recorded during the test:

Vrms at the end of test (Volt): 230.57 Highest dt (%): Test limit (%):

T-max (mS): 0 Test limit (mS): 500.0 **Pass** Highest dc (%): 0.00 Test limit (%): 3.30 **Pass** Highest dmax (%): 0.00 Test limit (%): 4.00 **Pass** Highest Pst (10 min. period): Highest Plt (2 hr. period): 0.263 Test limit: 1.000 **Pass** Test limit: 0.115 0.650 **Pass**

16. Performance Criteria for Immunity

The performance criteria are referred to the test standard: EN 55035

Performance Criteria A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance Criteria B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

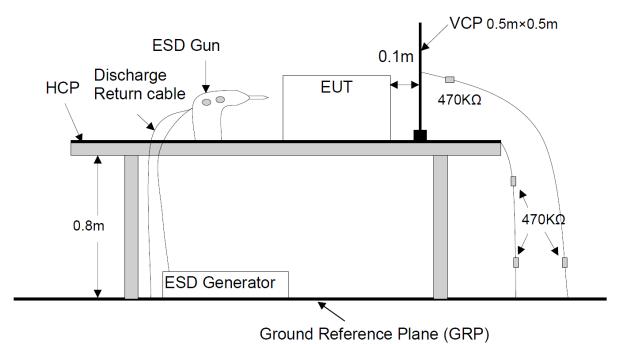
After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance Criteria C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.



17. Electrostatic Discharge Measurement

TEST LEVEL

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1	±2.0	±2.0
2	±4.0	±4.0
3	±6.0	±8.0
4	±8.0	±15.0
Х	Special	Special
Note:	"x" is an open level.	

BLOCK DIAGRAM OF TEST SETUP

(2. ...

TEST PROCEDURES

Air Discharge:

Air discharges at slots and apertures and insulating surfaces. On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

Contact Discharge:

Contact discharges to the conductive surfaces and coupling planes. The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 20 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 20 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

- a. The EUT was placed on a wooden table 0.8m height from the ground.
- b. The EUT was located 0.1m minimum from all side of the HCP (dimensions 1.6m x0.8m).
- c. Configure the EUT and support devices as per section 3.
- d. The support units were located 30cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10cm with EUT.
- e. Turn on the EUT and all support devices, and make it run stably.
- f. The time interval between two successive single discharges was at least 1 second. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- g. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.

- h. At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharges.
- i. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.
- j. Repeat the above steps in each mode and record the test result.

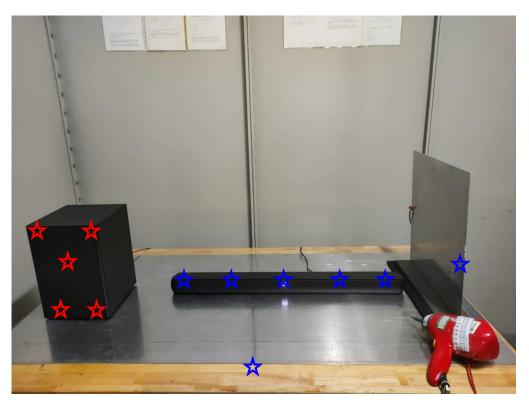
MINIMUM REQUIREMENT:

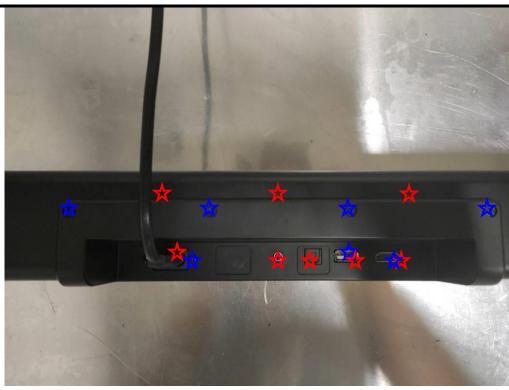
Description	Level	Performance Criterion
Contact Discharge	±4.0KV	В
Air Discharge	±8.0KV	В

TEST RESUSLT

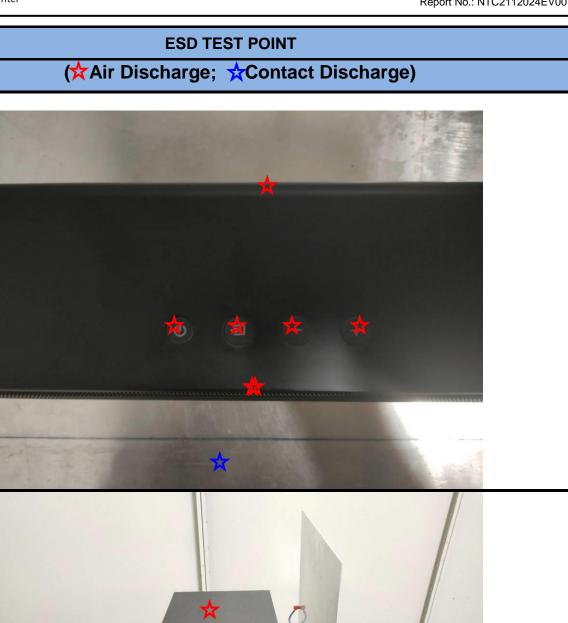
PASS

Please refer to the following pages.

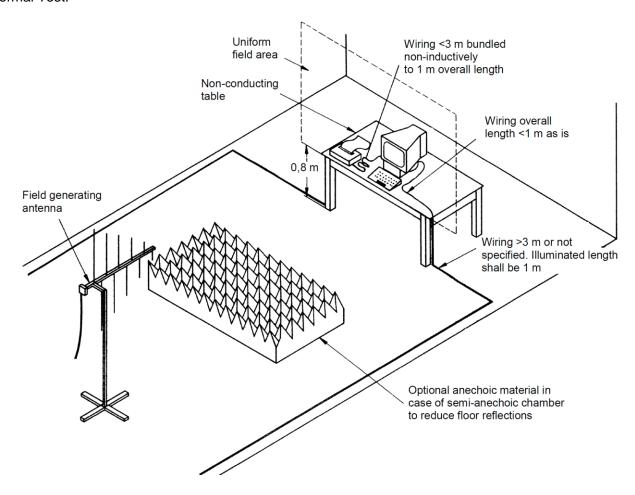

Electrostatic Discharge Test Results			
Ambient Condition:	Temp.: 22°C	R.H.: 52%	Air Pressure : 101 kPa
	Test Level:	±2, 4 KV for Contac	t Discharge
		±2, 4, 8 KV for Air D	ischarge
	Discharge Impedance:	330ohm / 150pF	
Test Specifications	NO. Of Discharges:	10 times at each test point for each polarity at least	
	Polarity:	Positive / Negative	
	Discharge Mode:	Single	
	Interval Time Of Discharges:	≥1s	
Required Performance Criterion	В		
Tested Mode	1-6		
Test Point		Kind A-Air Discharge C-Contact Discharge	Result (Performance Criterion)
Metal		С	А
(Line IN, USB, HDMI) Por	t	С	А
Optical Port, Button		А	А
Slot of EUT, AC Port		А	А
Indirect Discharge (VCP)		С	А
Indirect Discharge (HCP)		С	А
Note: During the test, the	EUT did not show any abnorm	ality.	



ESD TEST POINT



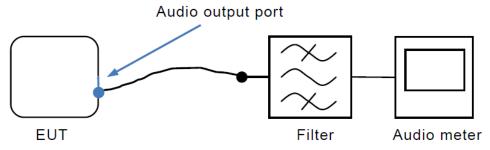
18. Continuous RF Electromagnetic Field Disturbances Measurement

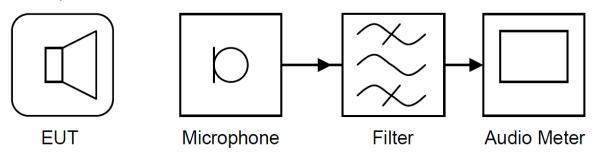

TEST LEVEL

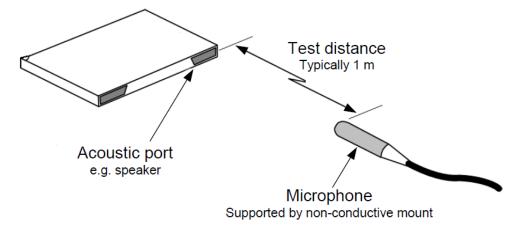
Field Strength V/m
1
3
10
Special

Note: "x" is an open test level and the associated field strength may be any value.

BLOCK DIAGRAM OF TEST SETUP


Normal Test:




Test setup for electrical measurements (direct connection to EUT):

Test setup for acoustic measurements:

Test setup for acoustic measurements on loudspeakers

- a. The testing was performed in a fully anechoic chamber.
- b. The EUT and necessary support devices were placed on a turn table which is 0.8 meter above ground.
- c. EUT was set 3 meter away from the transmitting antenna which is mounted on an antenna tower.
- d. Configure the EUT and support devices as per section 3.
- e. Turn on the EUT and all support devices, and make it run stably.
- f. Set horizontal and vertical polarization of the antenna to test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.
- g. All the scanning conditions are as follows:
- h. Repeat the above steps in each mode and record the test result.

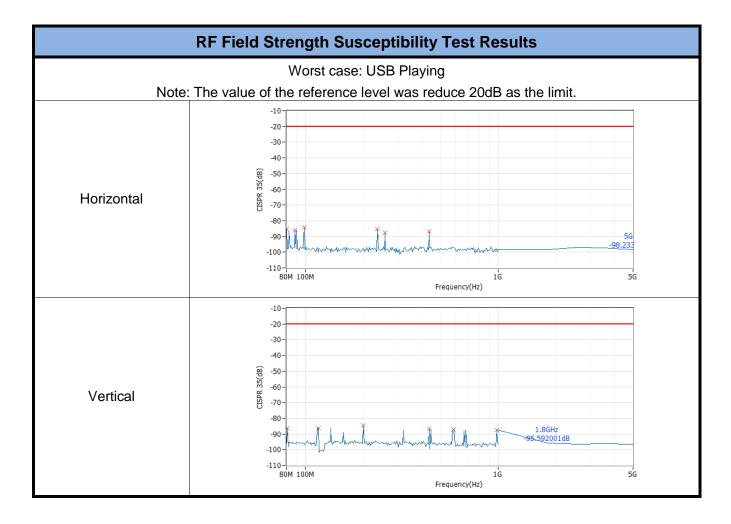
MINIMUM REQUIREMENT

Description	Level	Frequency	Performance Criterion
	3V/m	80~1000MHz	Α
	3V/m	1800MHz	А
RF Field Strength Susceptibility	3V/m	2600MHz	Α
	3V/m	3500MHz	Α
	3V/m	5000MHz	А

TEST RESULTS

PASS

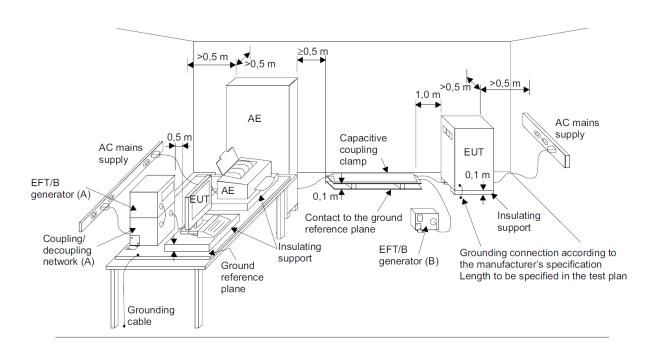
Please refer to the following pages.



RF Field Strength Susceptibility Test Results				
Ambient Condition	Temp.: 24°C		R.H.: 52%	Air Pressure: 101 kPa
	Fielded Strength:		3V/m	
	Modulation:		1kHz sine wave, 80%AM	
Test Specifications	Frequency Siz	ze:	1% of preceding frequency value	
	Dwell Time:		1s	
	Mode:		Swept test	
Required Performance Criterion	Α			
Tested Mode	1-6			
Frequency (MHz)	Level (V/m)	Antenna polarity	Side	Result (Performance Criterion)
			Front	А
		Horizontal	Left	А
90.4000		Honzoniai	Right	А
80-1000, 1800,	3		Back	А
2600, 3500, 5000	3		Front	А
5000		Vantiaal	Left	А
	Vertical	verticai	Right	А
			Back	А

Note: During the test, the EUT did not show any abnormality.

19. Electrical Fast Transient/Burst Measurement


TEST LEVEL

	Open circuit output test voltage and repetition rate of the impulses			
	On power port, Earth port (PE)		Signal and control ports	
Level	Voltage peak (KV)	Repetition rate (KHz)	Voltage peak (KV)	Repetition rate (KHz)
1	0.5	5 or 100	0.25	5 or 100
2	1	5 or 100	0.5	5 or 100
3	2	5 or 100	1	5 or 100
4	4	5 or 100	2	5 or 100
Х	Special	Special	Special	Special

Note 1. The use of 5 KHz repetition rates is traditional; however, 100 KHz is closer to reality. Product committees should determine which frequencies are relevant for specific products or product types.

- 2. With some products, there may be no clear distinction, between power ports and I/O ports, in which case it is up to product committees to make this determination for test purposes.
- 3. "X" is an open level. The level has to be specified in the dedicated equipment specification.

BLOCK DIAGRAM OF TEST SETUP

- a. The EUT was placed on the insulating support 0.8m above the reference ground plane.
- b. Configure the EUT and support devices as per section 3.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. For input and output AC power port of the EUT, the EUT was connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. The coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.
- e. For signal ports of the EUT, the EUT was connected to the power mains, and the signal line through a coupling device which couples the EUT interference signal to signal line. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.
- f. Repeat the above steps in each mode and record the test result.

MINIMUM REQUIREMENT

Description	AC Mains power ports	Analogue/digital data ports
Test Level	1.0KV	0.5KV
Repetition frequency	5kHz	5kHz
Impulse Wave-shape	5/50ns (Tr/Th)	5/50ns (Tr/Th)
Performance Criterion	В	В

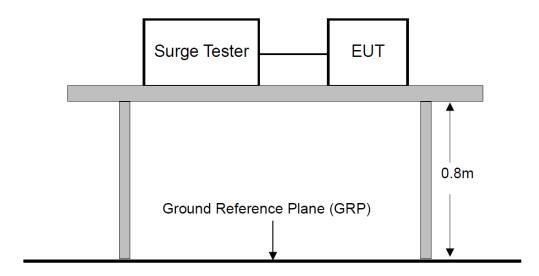
TEST RESULTS

PASS

Please refer to the following page.

Electrical Fast Transient/Burst Test Results				
Ambient Condition	Temp.: 22°C	R.H.: 52%	Air Pressure: 101 kPa	
	Test Level:	1.0 kV for power port 0.5 kV for signal port		
	Repetition Frequency:	5kHz;		
Test Specifications	Duration:	15ms		
rest openinations	Period:	300ms		
	Impulse Wave Shape:	5/50ns (Tr/Th)		
	Test Duration:	≥1min		
Required Performance Criterion	В			
Tested Mode	1-6	1-6		
Coupling Mode And Port	 □ AC Mains □ Direct Coupling □ Signal line □ Capacitive □ DC line 		line Capacitive	
Test Line	Test Voltage		Result Ince Criterion)	
L	±1KV		В	
N	±1KV		В	
PE				
L·N	±1KV		В	
L · PE				
N · PE				
L · N · PE				
Signal port (RJ- 45)				
Signal port (Tuner)				
Note: The noise phenome after the test.	enon occurred during the te	st, but the EUT can be re	sumed to normal operation	

Page 48 of 85


20. Surge Measurement

TEST LEVEL

Level	Open-Circuit Test Voltage (kV)	
Level	Line to Line	Line to Earth
1	-	0.5
2	0.5	1
3	1	2
4	2	4
X	Special	Special

Note: "X" can be any level, above, below or in between the others. The level shall be specified in the dedicated equipment specification.

BLOCK DIAGRAM OF TEST SETUP

- a. The EUT was placed on the wooden table 0.8m above the ground.
- b. Configure the EUT and support devices as per section 3.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. The surge is applied to the EUT power supply terminals via the capacitive coupling network Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- e. For test applied to unshielded un-symmetrically operated interconnection lines of EUT, the surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- f. For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT, the surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- g. Five positive and five negative (polarity) pulses at specified phase angles with a 1min repetition rate are conducted during test.
- h. Repeat the above steps in each mode and record the test result.

MINIMUM REQUIREMENT

Description	AC Mains	s power ports	Analogue/digital data ports	
Description	Line to Line	Line to Earth	Unshielded Symmetrical	Coaxial or Shielded
Test Level	1.0kV	2.0kV	1.0 and 4.0Kv*	0.5kV
Wave-Shape	1.2/50(8/20)us	1.2/50(8/20)us	10/700 (5/320)us	1.2/50(8/20)us
Performance Criterion	В	В	С	В

Note: *: Surges are applied with primary protection fitted. Where possible, use the actual primary protector intended to be used in the installation. Where the surge coupling network for the 10/700 (5/320)µs waveform affects the functioning of high speed data ports, the test shall be carried out using a 1,2/50 (8/20)us waveform and appropriate coupling network.

TEST RESULTS

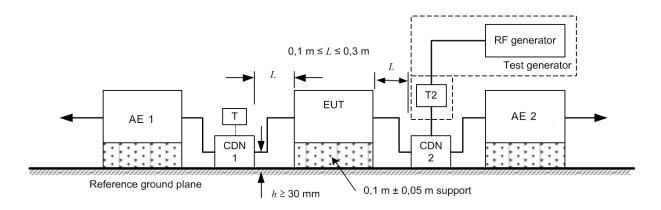
PASS

Please refer to the following page.

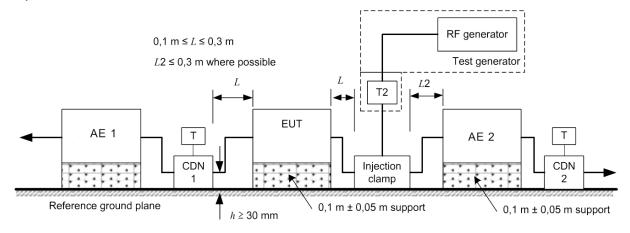
Surge Immunity Test Results			
Ambient Condition	Temp.: 22°C	R.H.: 52%	Air Pressure: 101 kPa
	Wave-Shape:	1.2/50 us (Tr/Th) / 8/20 us 10/700 us (Tr/Th) / 5/320 u	(Tr/Th) for input power port us (Tr/Th) for Signal port
	Test Level:	Test Level: ± 0.5 , 1.0kV for Line to Line ± 1.0 , 2.0kV for Line to Earth	
	Phase Angle:	90° and 270°	
Test Specifications	Polarity	Positive / Negative	
	NO. Of Pulse :	5 positive / 5 negative	
	Pulse Repetition Rate :	1 time per minute / maximi	um
	Generator Source Impedance :	2 ohm / power supply network 12 ohm / power supply network to ground 42 ohm / other lines to ground /	
Required Performance Criterion	В		
Tested Mode	1-6		
Test Line	Phase Angle	Test Voltage	Result (Performance Criterion)
LN	90°	+0.5KV, +1KV	
L-N	270°	-0.5KV, -1KV	A
l DE			
L-PE			
N-PE			
Signal port			
DC line			

Note: During the test, the EUT did not show any abnormality.

21. Continuous Induced RF Disturbances Measurement

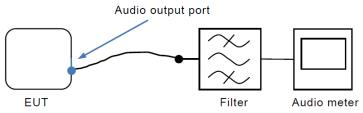

TEST LEVEL

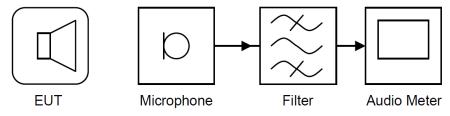
Level	Field Strength V
1	1
2	3
3	10
X	Special

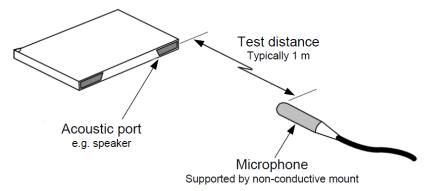

Note*: Where the amplitude of a test level varies over a given frequency range, it changes linearly with respect to the logarithm of the frequency.

BLOCK DIAGRAM OF TEST SETUP

CDN Test:


Clamp Test:




Test setup for electrical measurements (direct connection to EUT):

Test setup for acoustic measurements:

Test setup for acoustic measurements on loudspeakers

- a. The EUT was placed on the insulating support 0.1m above the ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- b. Configure the EUT and support devices as per section 3.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. The disturbance signal described below is injected to EUT through CDN.
- e. The frequency range is swept from 150 KHz to 80 MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave. The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- f. Repeat the above steps in each mode and record the test result.

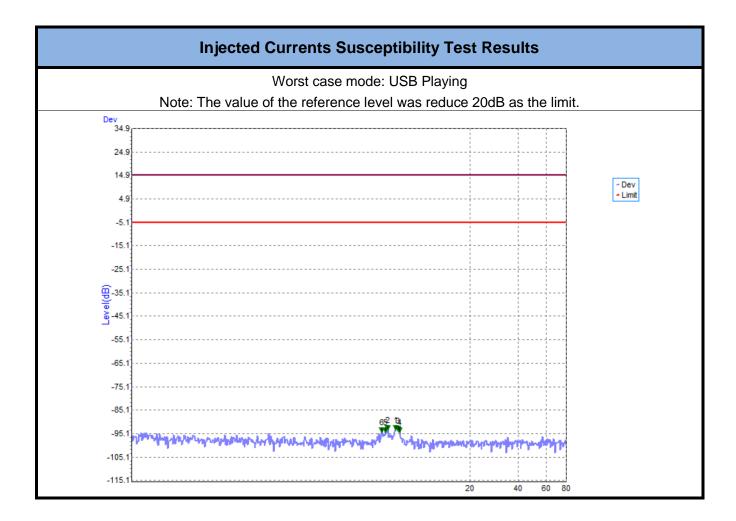
MINIMUM REQUIREMENT

	AC Mains power p	orts	Analogue/digital data ports			
Frequency ranges (MHz)	Test Level V(r.m.s)	Performance Criterion	Frequency ranges (MHz)	Test Level V(r.m.s)	Performance Criterion	
0.15 to10	3	А	0.15 to10	3	А	
10 to 30	3 to 1	А	10 to 30	3 to 1	А	
30 to 80	1	А	30 to 80	1	А	

TEST RESULTS

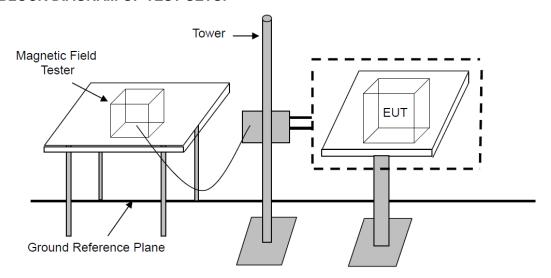
PASS

Please refer to the following pages.



	Injected Currents Sus	ceptibility Test Resul	ts	
Ambient Condition	Temp.: 24°C	R.H.:52%	Air Pressure:101 kPa	
	Test Level:	3V (r.m.s), 3 to 1V (r.m.s	s), 1V (r.m.s)	
Test Specifications	Modulation:	1kHz sine wave, 80%AM	Л	
	Step Size:	1% of preceding frequer	ncy value	
	Dwell Time:	1s		
	Mode:	Swept test		
Required Performance Criterion	A			
Tested Mode	1-6			
Test Port	Frequency (MHz)	Level(V)	Result (Performance Criterion)	
	0.15~10	3	А	
AC Mains	10~30	3 to 1	А	
	30-80	1	A	
Signal Port (RJ-45)				

Note: During the test, the EUT did not show any abnormality.


22. Power Frequency Magnetic Field Measurement

TEST LEVEL

Level	Magnetic field strength A/m
1	1
2	3
3	10
4	30
5	100
X*	Special

Note*: "x" can be any level, above, below or in-between the other levels. This level can be given in the product specification.

BLOCK DIAGRAM OF TEST SETUP

- a. The EUT was placed on the middle of an induction coil(1*1m), under which is a 0.8m-thick insulating support.
- b. Configure the EUT and support devices as per section 3.
- c. All cables of the EUT were exposed to the magnetic field for 1m of their length.
- d. X, Y and Z polarization of the induction coil are set on test, so that each side of the E.U.T. is affected by the magnetic field. If not possible as the EUT size, change the position of the EUT is permitted.
- e. Repeat the above steps in each mode and record the test result.

MINIMUM REQUIREMENT

Fielded Strength	1A/m
Frequency	50Hz or 60Hz
Performance Criterion	А

TEST RESULTS

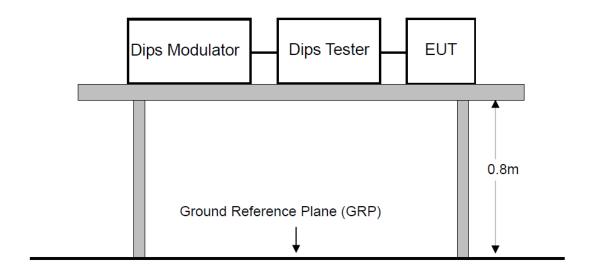
Not Applicable.

23. Voltage Dips and Interruptions Measurement

TEST LEVEL

Class	Test level and durations for voltage dips (t _s)(50Hz/60Hz)						
Class 1	Case-by-case according to the equipment requirements						
Class 2	0 % during ½ cycle	0 % during 1 cycle	70 % during 25/30 ^b cycles				
Class 3	0 % during ½ cycle	0 % during 1 cycle	40 % during 70 % during 80 % during 10/12 ^b cycles 25/30 ^b cycles 250/300 ^c cycles				
Class X ^a	X	X	X X X X				

Note: a. To be defined by product committee. For equipment connected directly or indirectly to the public network, the levels must not be less severe than Class 2.


b. "25/30 cycles" means "25 cycles for 50 Hz test" and "30 cycles for 60 Hz test".

Class	Test level and durations for short interruptions (t _s) (50 Hz/60 Hz)						
Class 1	(Case-by-case according to the equipment requirements					
Class 2		0 % during 250/300b cycles					
Class 3		0 % during 250/300b cycles					
Class X ^a	Х	Х	Х	Х	Х		

Note: a. To be defined by product committee. For equipment connected directly or indirectly to the public network, the levels must not be less severe than Class 2.

b. "250/300 cycles" means "250 cycles for 50 Hz test" and "300 cycles for 60 Hz test".

BLOCK DIAGRAM OF TEST SETUP

- a. The EUT was placed on the wooded table 0.8m above the ground.
- b. Configure the EUT and support devices as per section 3.
- c. Setting the parameter of tests and then perform the test software of test simulator.
- d. Conditions changes to occur at 0 and 180 degree crossover point of the voltage waveform.
- e. Repeat the above steps in each mode and record the test result.

MINIMUM REQUIREMENT

Description	Level	Cycle	Performance Criterion
Voltage Dips	Residual voltage <5%	0.5	В
Voltage Dips	Residual voltage 70%	25 for 50Hz	В
Voltage Dips	Residual voltage 70%	30 for 60Hz	В
Voltage Interruptions	Residual voltage <5%	250 for 50Hz	С
Voltage Interruptions	Residual voltage <5%	300 for 60Hz	С

TEST RESULTS

PASS

Please refer to the following page.

Voltage Dips and Interruptions Test Results					
Ambient Condition:	Temp.: 22°C	R.H.: 52%	Air Pressure: 101 kPa		
	Residual Voltage:	0%, 70%			
		⊠ 0.5			
	Duration (periods):	☑ 25 for 50Hz			
Test Specifications:		⊠ 250 for 50Hz	⊠ 300 for 60Hz		
	Phase Angle:	0°			
	Interval Between Tests:	10s			
	NO. Of Tests:	3 times			
Required Performance Criterion	B for voltage dips C for voltage interruptions				
Tested Mode	1-6				
Test Level (Residual voltage)	Duration	(periods)	Result		
(Residual Voltage) %	50Hz	60Hz	(Performance Criterion)		
0	0.5P	0.5P	А		
70	25P	30P	А		
0	250P	300P	С		

Note: Criterion A: During the test, the EUT did not show any abnormality. Criterion C: The EUT powered off during the test, but it can be recovered by user after test.

24. Measuring Devices and Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2021	1 Year
2.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2021	1 Year
3.	L.I.S.N	Rohde & Schwarz	ESH2-Z5	893606/014	Mar. 13, 2021	1 Year
4.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 13, 2021	1 Year
5.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

☐ For Conducted Emission Measurement (Asymmetric Mode, Wired Network Port)

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2021	1 Year
2.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2021	1 Year
3.	AAN	Schwarzbeck	NTFM 8158	CAT5-8158- 0006	Mar. 13, 2021	1 Year
4.	AAN	Schwarzbeck	NTFM 8158	CAT6-8158- 0009	Mar. 13, 2021	1 Year
5.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 13, 2021	1 Year
6.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

☐ For Conducted Emission Measurement (Asymmetric Mode, Antenna Port)

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2021	1 Year
2.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2021	1 Year
3.	Current probe	Schwarzbeck	SW9605	9605-221	Mar. 13, 2021	1 Year
4.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 13, 2021	1 Year
5.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

☐ For Conducted Differential Voltage Emissions Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2021	1 Year
2.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2021	1 Year
3.	Matching and Combining network	Inrnet	6007	N/A	Mar. 13, 2021	1 Year
4.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 13, 2021	1 Year
2.	Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	Mar. 13, 2021	1 Year
3.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 23, 2021	1 Year
4.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 23, 2021	1 Year
5.	Horn Antenna	COM-Power	AH-118	071078	Mar. 23, 2021	1 Year
6.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 13, 2021	1 Year
7.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 13, 2021	1 Year
8.	Chamber	SAEMC	9*7*7m	N/A	Apr. 21, 2021	2 Year
9.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

□ For Harmonic / Flicker Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Power Frequency Analyzer	California Instruments	PACS-1	72846	Mar. 13, 2021	1 Year
2.	5KVA AC Power Source	California Instruments	5001iX	60137	Mar. 13, 2021	1 Year
3.	Software	California Instruments	CTS 4.2.5	N/A	N/A	N/A

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	ESD Tester	TESEQ	NSG 437	432	Mar. 23, 2021	1 Year

$\ oxtimes$ For RF Electromagnetic Field Immunity Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Signal Generator	Agilent	N5181A	MY4707016 0	Mar. 13, 2021	1 Year
2.	RF Switch	SKET	N/A	N/A	N/A	N/A
3.	Power Amplifier	SKET	HAP801000M _250W	201804008	N/A	N/A
4.	Power Amplifier	SKET	HAP0103G_7 5W	201804009	N/A	N/A
5.	Power Amplifier	SKET	HAP0306G_5 0W	201804010	N/A	N/A
6.	Power Meter	Agilent	E4419B	GB40201469	Mar. 13, 2021	1 Year
7.	Power Sensor	Agilent	E9304A	MY4149891 9	Mar. 13, 2021	1 Year
8.	Power Sensor	Agilent	E9300A	US39211259	Mar. 13, 2021	1 Year
9.	E-Field Probe	Narda	EP-601	N/A	Mar. 23, 2021	1 Year
10.	Antenna	Schwarzbeck	STLP 9129	9129071	N/A	N/A
11.	Audio Analyzer	Rohde & Schwarz	UPV	100894	Mar. 13, 2021	1 Year
12.	Chamber	Chengyu	7*5*3.5m	N/A	Apr. 25, 2021	3 Year
13.	Test Software	SKET	SKET_RS	N/A	N/A	N/A

☑ For Electrical Fast Transient /Burst Immunity Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Burst Tester	EM TEST	UCS 500N7	V110410868 3	Mar. 13, 2021	1 Year
2.	Coupling Clamp	EM TEST	HFK	0311-94	Mar. 13, 2021	1 Year
3.	Test Soft	EM TEST	lec. control	N/A	N/A	N/A

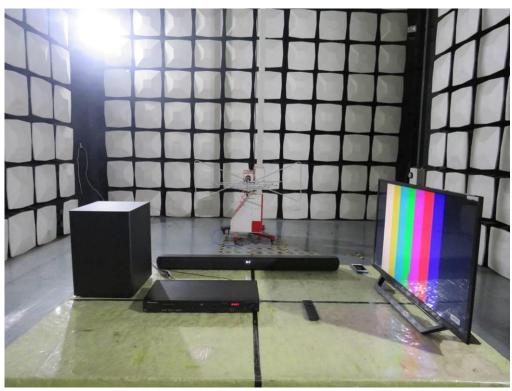
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Surge Tester	EM TEST	UCS 500N7	V1104108683	Mar. 13, 2021	1 Year
2.	Test Soft	EM TEST	lec. control	N/A	N/A	N/A

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Signal generator	IFR	2023A	2023051280	Mar. 13, 2021	1 Year
2.	Power Amplifier	SCHAFFNER	CBA9425	1022	Mar. 13, 2021	1 Year
3.	6dB 50Watt Attenuator	SCHAFFNER	ATN6025	N/A	Mar. 13, 2021	1 Year
4.	CDN	Lioncel	CDN-M3-16	0170703	Mar. 13, 2021	1 Year
5.	CDN	Lioncel	CDN-M2-16	0170708	Mar. 13, 2021	1 Year
6.	CDN	CDSI	ADN-M5/AF5	8105001	Mar. 13, 2021	1 Year
7.	EM Clamp	CDSI	EMCL-22	8192007	Mar. 13, 2021	1 Year
8.	Directional Coupler	SCHAFFNER	255	19184	Mar. 13, 2021	1 Year
9.	Audio Analyzer	Rohde & Schwarz	UPV	100894	Mar. 13, 2021	1 Year
10.	Test Software	EZ	EZ_CS	N/A	N/A	N/A

☐ For Power Frequency magnetic field immunity Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Signal Generator	EVERFINE	EMS61000-8K _V200	N/A	Mar. 13, 2021	1 Year
2.	Adjustable Magnetic field Coil	EVERFINE	MFC-4	N/A	Mar. 13, 2021	1 Year
3.	Test Software	EVERFINE	MS	N/A	N/A	N/A

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Dips Tester	EM TEST	UCS500N	V1104108683	Mar. 13, 2021	1 Year
2.	Dips Modulator	EM TEST	V4780S2	0111-11	Mar. 13, 2021	1 Year
3.	Test Soft	EM TEST	lec.control	N/A	N/A	N/A



25. Photographs of Test Configuration

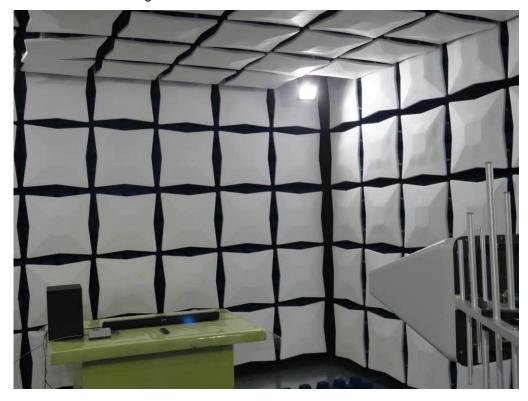
Photo of Conducted Emission Measurement

Photo of Radiated Emission Measurement

Photo of Harmonic/Flicker Measurement

Photo of Electrostatic Discharge Measurement

Photo of Continuous RF Electromagnetic Field Disturbances Measurement



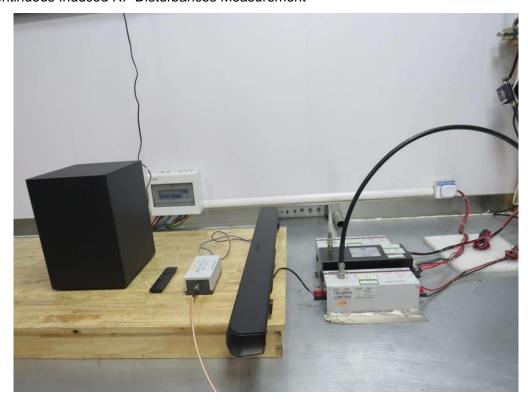
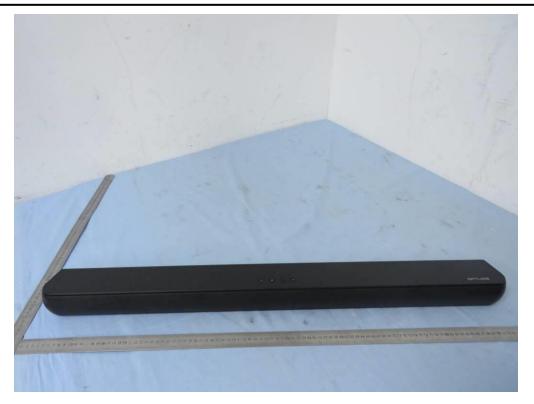

Photo of Electrical Fast Transients / Burst /Surge / Voltage Dips and Interruptions Measurement

Photo of Continuous Induced RF Disturbances Measurement


26. Photographs of the EUT

