RADIO TEST REPORT-BT ETSI EN 300 328 V2.2.2 (2019-07)

Product : Computer Multimedia Speaker Trade Mark : F&D Model Name : R23BT Family Model : R20BT, R24BT Report No. : S20071700203002

Prepared for

SHENZHEN FENDA TECHNOLOGY CO., LTD. Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town,Baoan District, Shenzhen City, Guangdong, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

Page 2 of 69

TEST RESULT CERTIFICATION

Applicant's name	: SHENZHEN FENDA TECHNOLOGY CO., LTD.
Address	Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town,Baoan District,
Manufacturer's Name	Shenzhen City, Guangdong, China : SHENZHEN FENDA TECHNOLOGY CO., LTD.
Address	Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town, Baoan District, Shenzhen City, Guangdong, China
Product description	
Product name	: Computer Multimedia Speaker
Trademark	
Model Name	R23BT
Family Model	: R20BT, R24BT
Standards	ETSI EN 300 328 V2.2.2 (2019-07)
This device described above h	has been tested by NTEK, and the test results show that the

equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests17 Jul. 2020 ~ 14 Aug. 2020Date of Issue14 Aug. 2020Test ResultPass

Testing Engineer

ran

(Mary Hu)

Technical Manager

son

(Jason Chen)

Authorized Signatory :

(Alex Li)

Table of Contents	Page
1. GENERAL INFORMATION	5 57
1.1 GENERAL DESCRIPTION OF EUT	t t t
1.2 INFORMATION ABOUT THE EUT	
1.3 TEST CONDITIONS	13
1.4 TEST CONFIGURATION OF EUT	13
1.5 DESCRIPTION OF TEST CONDITIONS	14
1.6 DESCRIPTION OF SUPPORT UNITS	15
1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS	16
2 . SUMMARY OF TEST RESULTS	17
2.1 TEST FACILITY	18
3. RF OUTPUT POWER	19
3.1 LIMITS OF RF OUTPUT POWER	19
3.2 TEST PROCEDURE	19
3.3 DEVIATION FROM TEST STANDARD	
3.4 TEST SETUP	19
3.5 TEST RESULTS	20
4 . ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATIO	ON AND HOPPIN
SEQUENCE	21
4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY O	CCUPATION AND
HOPPING SEQUENCE	21
4.2 TEST PROCEDURE	21
4.3 DEVIATION FROM TEST STANDARD	21
4.4 TEST SETUP	22
4.5 TEST RESULTS	23
5 . OCCUPIED CHANNEL BANDWIDTH	24
5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	24
5.2 TEST PROCEDURE	24
5.3 DEVIATION FROM TEST STANDARD	25
5.4 TEST SETUP	25
5.5 TEST RESULTS	26
6 . TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BA	AND DOMAIN 27

Page 3 of 69

Table of Contents	Page
DOMAIN T AT AT AT AT	27
6.2 TEST PROCEDURE	27
6.3 DEVIATION FROM TEST STANDARD	28
6.4 TEST SETUP	28
6.5 TEST RESULTS	29
7 . HOPPING FREQUENCY SEPARATION	30
7.1 LIMITS OF HOPPING FREQUENCY SEPARATION	30
7.2 TEST PROCEDURE	30
7.3 DEVIATION FROM TEST STANDARD	30
7.4 TEST SETUP	31
7.5 TEST RESULTS	32
8 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOU 8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMIS	
SPURIOUS DOMAIN	5 5 33
8.2 TEST PROCEDURE	33
8.3 DEVIATION FROM TEST STANDARD	33
8.4 TEST SETUP	34
8.5 TEST RESULTS (Radiated measurement)	35
8.6 TEST RESULTS (Conducted measurement)	36
9 . RECEIVER SPURIOUS EMISSIONS	37
9.1 LIMITS OF RECEIVER SPURIOUS RADIATION	37
9.2 TEST PROCEDURE	37
9.3 DEVIATION FROM TEST STANDARD	37
9.4 TEST SETUP	38
9.5 TEST RESULTS (Radiated measurement)	39
9.6 TEST RESULTS (Conducted measurement)	40
10. RECEIVER BLOCKING	at at 41
10.1 PERFORMANCE CRITERIA	41
10.2 LIMITS OF RECEIVER BLOCKING	* * 41
10.3 TEST PROCEDURE	42
10.4 DEVIATION FROM TEST STANDARD	43
10.5 TEST SETUP	43
10.6 TEST RESULTS	44

Page 4 of 69

A.C. **NTEK北测**

with with

with with

Arriet Arriet

N.C.

wet we

west we

5

with

with

A. C.

NET

Net

A. C.

A.C.

Niet

L L

with with with

wet

×

With with with

at

west 1st

west W

writer writer writer writer

Table of Contents	Page
11. TEST RESULTS	45
11.1 Accumulated Transmit Time	45
11.2 Frequency Occupation	48
11.3 One Pulse Dwell Time	51
11.4 RF Output Power	54
11.5 Hopping Frequency Separation	55
11.6 Occupied Channel Bandwidth	58
11.7 Transmitter unwanted emissions in the spurious domain	60
11.8 Receiver spurious emissions	64
11.9 Hopping Sequence	67
11.10 Transmitter unwanted emissions in the out-of-band domain	68
12. PHOTOGRAPHS OF THE TEST CONFIGURATION	69
SPURIOUS EMISSIONS MEASUREMENT PHOTOS	69
	E 2 2
大使使使使使使使	t t
	2 2
	A 20 2
to to to to to to to to to	t t
2 2 2 2 2 2 2 2 2 2 2 2 2	4.4
	the state is
that at at at at at at at at at	t t

Aniet Aniet

with with with

at

west we

west 15

while while while

with with with

x

west 1st

Page 5 of 69

2

Ş

AND A

NICT

Artet

N. C.

5

west 1st

A.S.

A.

Page 6 of 69

Report No.: S20071700203002

Report No.	Version	Description	Issued Date	
S20071700203002	Rev.01	Initial issue of report	14 Aug. 2020	
t at at at	t t	t t t	at at a	
2 2 2	2 2	2 2 2	4 7 7	
	AT AT	A A A	A A A	
	- + +	~ ~ ~ ~ ~		
Sta Sta Sta	St St	50 50 50	Sta Sta Sta	
t at at at	to to	to to to	at at a	
2 2 2	2 2	2 2 2	2 2 2	
	A A	A A A	A A A	
t t t t		~ ~ ~ ~ ~	* * * *	
214 214 214	5 5	and and and	AN AN AN	
5 5 5 5	15 4	4 4 4	1 1 1	
4 4 4	2 2	2 2 2	4 4 4	
	1 1	A A A	A A A	
+ + + +	~ ~ ~	~ ~ ~ ~	* * * *	
21 21 24	5 5	5 5 5	2" 2" 2"	
t sidt sidt sidt	That stat	what what what	and and and	
2 2 2	2 2	2 2 2	and and are	
t stat stat stat	AND AND	with stat stat	and and and	
+ + + + +	~ ~ ~ ×	~~~~~	~ ~ ~ ~	
and and and	L' L'	Stor Stor Stor	and and and	
	A A A A	本 本 本	at at a	
2 2 2	2 2	2 2 2	And And And	
	A A	AT AT AT	E E E	
t with with with	white the the the the the the the the the t	which	N2017.06.0	
25° 25° 25°	and and	and and and	and and and	
* & & &	the the	t t t	at at a	

Report No.: S20071700203002

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	Computer Multimedia Sp	beaker				
Trade Mark	F&D K	F&D K K K K				
Model Name.	R23BT	C C C C C				
Family Model	R20BT, R24BT	A A A A				
Model Difference	the exterior and color diff					
	The EUT is Computer M					
	Operation Frequency:	2402-2480 MHz				
	Modulatin Type:	GFSK,∏/4-DQPSK				
	Modulation Technology:	FHSS				
	Adaptive/non-adaptive	Adaptive equipment				
	Receiver categories 2					
Product Description	Number Of Channel 79CH					
	Antenna Designation: PCB Antenna					
	Antenna Gain(Peak) 3 dBi					
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.					
Channel List	Refer to below Table					
Adapter	N/A					
Battery	N/A	2 2 2 2				
Rating	AC 100-240V 50/60Hz 0	.3A				
I/O Ports	N/A 🗧 🗧	2 2 2 2 2				
Hardware Version	N/A de de de de de de					

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

N2017.06.06.0614.V.1.3

Page 8 of 69

	-

79 channels are provided to BT(GFSK, ∏/4-DQPSK, 8-DPSK)

					-,			615	615
		Channel	Les Contraction	2st	25°	2°	Frequency (MHz	5	
1	×	00	×	×	X	×	2402	×	×
	X	01	N. Contraction	N.	N. N.	X	2403	N. Contraction	N.
	2	2	2	2	2	2	2	2	2
A	A	str.	A	A	x	A	mat	A	A
	N	×	K	S. C.	N	N	1	1 M	Nº N
	7	7	7	7	7	7	Z		
1	×	77	A	X	Y	X	2479	X	X
	A.C.	78	X	A. C.	N. N.	A.	2480	1	A.C.

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

- FHSS
- other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:
- In case of Adaptive Frequency Hopping Equipment: The maximum number of Hopping Frequencies: 79 The minimum number of Hopping Frequencies: 79
- The (average) Dwell Time:174.624ms Maximum

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- Adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The maximum Channel Occupancy Time implemented by the equipment:/.... ms

- \boxtimes The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - The equipment can switch dynamically between Frame Based and Load Based equipment

The CCA time implemented by the equipment:/.. µs

- The equipment has implemented a non-LBT based DAA mechanism
- The equipment can operate in more than one adaptive mode

Page 9 of 69

e) In case of non-adaptive Equipment:

- The maximum RF Output Power (e.i.r.p.):
- The maximum (corresponding) Duty Cycle:
- Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

- RF Output Power GFSK
- Power Spectral Density
 N/A
- Duty cycle, Tx-Sequence, Tx-gap N/A
- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
 ∏/4-DQPSK
- Hopping Frequency Separation (only for FHSS equipment)
 GFSK
- Medium Utilization
 N/A
- Adaptivity
 - N/A
- Receiver Blocking
 GFSK
- Nominal Channel Bandwidth
 - ∏/4-DQPSK
- Transmitter unwanted emissions in the OOB domain
 ∏/4-DQPSK
- Transmitter unwanted emissions in the spurious domain ∏/4-DQPSK
- Receiver spurious emissions

GFSK

g) The different transmit operating modes (tick all that apply):

- Operating mode 1: Single Antenna Equipment
- Equipment with only one antenna
- Equipment with two diversity antennas but only one antenna active at any moment in time
- Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only
 - one antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
- Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1

	Page 10 of 69 Report No.: S20071700203002
A D] High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
N	NOTE 1: Add more lines if more channel bandwidths are supported.
AC	Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
× [] Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
JL D] High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
	High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2 NOTE 2: Add more lines if more channel bandwidths are supported.
h) In ca	ase of Smart Antenna Systems:
	e number of Receive chains:
o Th	e number of Transmit chains:
	symmetrical power distribution
A	asymmetrical power distribution
In ca	ase of beam forming, the maximum (additional) beam forming gain: dB
	TE: The additional beam forming gain does not include the basic gain of a single antenna.
i) Oper	rating Frequency Range(s) of the equipment:
	Operating Frequency Range 1: 2402 MHz to 2480 MHz
NO	Operating Frequency Range 2: MHz to MHz TE: Add more lines if more Frequency Ranges are supported.
	ninal Channel Bandwidth(s):
	Iominal Channel Bandwidth 1: 1.201MHz
	Iominal Channel Bandwidth 2:/ MHz
	TE: Add more lines if more channel bandwidths are supported. e of Equipment (stand-alone, combined, plug-in radio device, etc.):
	Stand-alone
	Combined Equipment (Equipment where the radio part is fully integrated within another type of
	equipment)
	Plug-in radio device (Equipment intended for a variety of host systems) Other
l) The	normal and the extreme operating conditions that apply to the equipment:
Norr	mal operating conditions (if applicable):
Ope	erating temperature: 15°C~35°C
Oth	ner (please specify if applicable):
Extr	eme operating conditions:
Oth	erating temperature range: Minimum: -10°C Maximum 40°C ner (please specify if applicable): Minimum: Maximum tails provided are for the:
	stand-alone equipment
	combined (or host) equipment test jig

NIEt

what It.

west the

wet I

wet I

west 1st

white with N2017.06.06.0614.V.1.3

ret It

set The

ret IT

what when

wet It

wet Ist

- And

- And

Ash

A.S.

Page 11 of 69

- m) The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p. levels:
 - Antenna Type: PCB Antenna

Integral Antenna (information to be provided in case of conducted measurements)

Antenna Gain: 3 dBi

If applicable, additional beamforming gain (excluding basic antenna gain):/..... dB

- Temporary RF connector provided
- No temporary RF connector provided
- Dedicated Antennas (equipment with antenna connector)
- Single power level with corresponding antenna(s)
- Multiple power settings and corresponding antenna(s)
- Number of different Power Levels:
- Power Level 1: dBm

Power Level 2: dBm

Power Level 3: dBm

NOTE 1: Add more lines in case the equipment has more power levels.

NOTE 2: These power levels are conducted power levels (at antenna connector).

•For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1 6 6	3 🚫 🚫	5.04	
2 + +	t it i	t at at	at at at at
2 4 4	A A A		P. P. P. P.

NOTE 3: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 2: dBm

Number of antenna assemblies provided for this power level:

Assembly	# 1	.)	Gain (dBi)	A	e.i.r.p. (dBm)	Part num	ber or mo	odel name
1	Sil	S	S		Ly.	S	S		ST

- 2
- 3

NOTE 4: Add more rows in case more antenna assemblies are supported for this power level. **Power Level 3:** dBm

Number of antenna assemblies provided for this power level:

Assembly #		Gain (dBi)	e.i.r.p. (dBm)	Part number or model name	
	1 6 8 8		y h h	E E E	
	2				
	3 8 8 8		9 2 2	A A A	

NOTE 5: Add more rows in case more antenna assemblies are supported for this power level.

Page 12 of 69

1.1) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the
4	combined (host) equipment or test jig in case of plug-in devices:
	Details provided are for the:
	Stand-alone equipment
	Combined (or host) equipment
	Supply Voltage 🔀 AC mains State AC voltage: AC 230V/50Hz
	DC State DC voltage:
	In case of DC, indicate the type of power source
	Internal Power Supply
	External Power Supply or AC/DC adapter:
	Battery:
) Describe the test modes available which can facilitate testing:
p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], IEEE 802.15.4™ [i.4], proprietary, etc. Bluetooth®
q) If applicable, the statistical analysis referred to in clause 5.4.1 q)
	(to be provided as separate attachment)
r)) If applicable, the statistical analysis referred to in clause 5.4.1 r)
	(to be provided as separate attachment)
s) Geo-location capability supported by the equipment:
	The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or
	clause 4.3.2.12.2 is not accessible to the user
)	Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 c
	clause 4.3.2.11.3):

1.3 TEST CONDITIONS

F 7 7		
	Normal Test Conditions	Extreme Test Conditions
Temperature	15℃ - 35℃	-10°C ~ 40°C Note: (1)
Relative Humidity	20% - 75%	N/A
Supply Voltage	AC 230V/50Hz	

Note:

(1) The HT 40 $^\circ\!C$ and LT -10 $^\circ\!C$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

1.4 TEST CONFIGURATION OF EUT

Modulation Used For Conformance Testing			
Bluetooth mode	Data rate	Modulation type	
BR <	1Mbps	GFSK	
EDR -	2Mbps	∏/4-DQPSK	
EDR A	3Mbps	8-DPSK	

Test Channel Frequencies Configuration				
Test Channel EUT Channel Test Frequency (MHz)				
Lowest	CH00	2402		
Middle	CH39	2441		
Highest	CH78	2480		

Page 14 of 69 Report No.: S20071700203002

1.5 DESCRIPTION OF TEST CONDITIONS

E-1 EUT

Page 15 of 69

1.6 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	Computer Multimedia Speaker	F&D	R23BT	N/A	EUT
~ 1	N. S.	and and	5 5 5	5 5 5	N. S.
*	to st	At the	sit sit si	at set set se	- At
*	to stat	AT SAT	Stat Stat St	t set set se	- At
¥	at at	at at	A A	* * * *	
Item	Shielded Type	Ferrite Core	Length	Note	

Ite	em Sn	ieiaea iype	Ferrite Core	Length	NOTE
5	4	t st	A .		
	5	5	5 2	5 5 5	2 2 2 2 2
at	0	t at	at .	* * * *	t at at at at
	S	S.	5 5	5 5 5	5 5 5 5 5
×	1	t t	t	* * * *	t x x x x
	24		et e		

Note:

- (1)
- The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\[\]$ column. (2)

Page 16 of 69

Report No.: S20071700203002

1.7 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra ion period
EMI Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
Turn Table	EM	SC100_1	60531	N/A	N/A	N/A
Antnna Mast	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	EM S	EM-AH-10180	2011071402	2020.04.11	2021.04.10	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2019.12.10	2020.12.09	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2018.04.21	2021.04.20	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2018.04.21	2021.04.20	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2019.05.19	2021.05.18	2 year
Pre-Amplifier	EMC	EMC051835S E	980246	2019.08.06	2020.08.05	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	33-10-33	AR4010	2020.04.07	2023.04.06	3 year
Attenuator	Weinschel	24-20-34	BP4485	2020.04.07	2023.04.06	3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2020.05.11	2021.05.10	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2020.05.11	2021.05.10	1 year
PSG Analog Signal Generator	Agilent	E8257D	MY51110112	2020.05.11	2021.05.10	1 year
Power Splitter	Mini-Circuits/U	ZN2PD-63-S+	SF025101428	2020.04.07	2023.04.06	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2020.04.07	2023.04.06	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2018.08.16	2021. <mark>0</mark> 8.15	3 year
Attenuator	Agilent	8495B	MY42147029	2020.04.13	2023.4.12	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2020.05.11	2021.05.10	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2020.05.13	2021.05.12	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2020.05.13	2021.05.12	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

N2017.06.06.0614.V.1.3

Page 17 of 69

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
- A	TRANSMITTER PARAMETERS	1. 1.
4.3.1.2	RF Output Power	Pass
4.3.1.3	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Pass
4.3.1.5	Hopping Frequency Separation	Pass
4.3. <mark>1</mark> .6	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.1.7	Adaptivity	Not Applicable (See Note 1)
4.3.1.8	Occupied Channel Bandwidth	Pass
4.3.1.9	Transmitter unwanted emission in the OOB domain	Pass
4.3.1.10	Transmitter unwanted emissions in the spurious domain	Pass
1ª	N RECEIVER PARAMETERS	Nº Nº
4.3.1.11	Receiver Spurious Emissions	Pass
4.3.1.12	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode

Page 18 of 69

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

2.2 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

A	Maximum measurement unce	ertainty
No.	ltem	Uncertainty
1_	Occupied Channel Bandwidth	± 5%
2	RF output Power,conducted	💉 ±1.5dB 🔨
3	Power Spectral Density, conducted	± 3dB
4	Unwanted emissions, conducted	± 3dB
5	All emissions, radiated	± 6dB
6	Temperature	± 3°C
~ 7	Humidity	± 3%
9	Time of of	± 5%

TRANSMITTER PARAMETERS

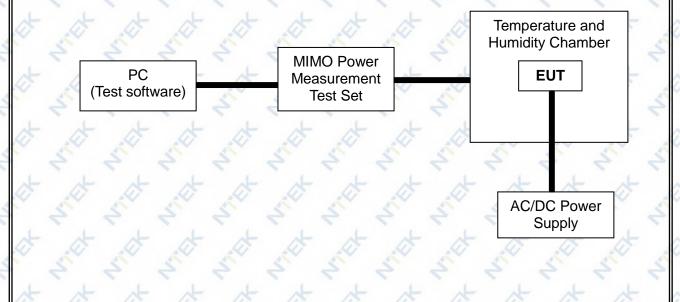
3. RF OUTPUT POWER

3.1 LIMITS OF RF OUTPUT POWER

Refer to chapter 4.3.1.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

Condition	Limit	
Non-adaptive frequency hopping systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.	
Adaptive frequency hopping systems	equal to or less than 20 dBm.	

3.2 TEST PROCEDURE


Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Measurement				
Conducted measurement	Radiated measurement			

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

N2017.06.06.0614.V.1.3

Page 20 of 69

3.5 TEST RESULTS

A.C.

-Sr

-x

N.C.

1º

Asy.

-

12

1

1

R

1 miles

EUT :	Computer Multimedia Speaker 🌑	Model Name :	R23BT 🔨 🔨
Temperature :	20°C	Relative Humidity :	55 %
Pressure :	1012 hPa	Test Voltage :	AC 230V/50Hz (Normal)
Test Mode :	BT-GFSK/∏/4-DQPSK /8-DPSK	5 5	2 2 2 2

Test data reference attachment

12

-

Real Property in the second se

Page 21 of 69

4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

4.1 LIMITS OF ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Refer to chapter 4.3.1.4.3 of ETSI EN 300 328 V2.2.2 (2019-07)

A	ccumulated Transmit Time
Condition	Limit
Non-adaptive frequency hopping systems	≤ 15 ms[15 ms * the minimum number of hopping frequencies (N)]
Adaptive frequency hopping systems	≤ 400 ms in [400 ms * the minimum number of hopping frequencies (N)]
MINIMUM	FREQUENCY OCCUPATION TIME
Condition	Limit
Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not
Adaptive frequency hopping systems	exceeding four times the product of the dwell time and the number of hopping frequencies in use.
ŀ	IOPPING SEQUENCE (S)
Condition	Limit
Non-adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum
Adaptive frequency	Operating over a minimum of 70% of the Operating in the band 2.4 GHz to 2.4835 GHz
hopping systems	≥15 hopping frequencies or 15/minimum

4.2 TEST PROCEDURE

Refer to chapter 5.4.4 of ETSI EN 300 328 V2.2.2 (2019-07)

					Me	easurem	ent				
L	\square	Conduct	ed meas	urement	T.	, J		Radiated	measure	ement	4
1	20	19	19	147	19	19	10	20	20	20	19

4.3 DEVIATION FROM TEST STANDARD

No deviation

EUT

4.4 TEST SETUP

Spectrum Analyzer

The measurements only were performed at normal test conditions. The equipment was configured to operate at its maximun Dwell time and maximum Duty Cycle. The measurement was performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 23 of 69

Report No.: S20071700203002

4.5 TEST RESULTS

A.C.

- Si

A. C.

X

J.

1

1 st

1

1

- S

R

1

EUT :	Computer Multimedia Speaker	Model Name :	R23BT
Temperature :	26°C	Relative Humidity	60 %
Pressure :	1012 hPa	Test Voltage :	AC 230V/50Hz
Test Mode :	BT-GFSK-Hopping Mode	5 5	2 2 2 2

Test data reference attachment

2

J.S.

Page 24 of 69

5. OCCUPIED CHANNEL BANDWIDTH

5.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH

Refer to chapter 4.3.1.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

	OCCUPIED CHANNEL BA	NDWIDTH	
	Condition	Limit	
All types of equipment		Shall fall completely within the band 2400 to 2483.5 MHz	
Additional	For non-adaptive using wide band modulations other than FHSS system and EIRP >10 dBm	Less than 20 MHz	
requirement	For non-adaptive frequency hopping system and EIRP >10 dBm	Less than 5 MHz	

5.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Me	easurement
	I measurement	Radiated measurement
The setting of the Spe	ctrum Analyzer	
Center Frequency	The centre frequence	cy of the channel under test
Frequency Span	2 × Nominal Channel Bandwidth	
Detector	RMS	5 5 5 5 5 5 6
RBW 🖉 🖉	~ 1 % of the span w	vithout going below 1 %
VBW	3 × RBW	2 2 2 2 2 2 2 .
Trace	Max hold	the state of states
Sweep time	1s 1 1	5 5 5 5 5 5

5.3 DEVIATION FROM TEST STANDARD

No deviation

5.4 TEST SETUP

EUT Spectrum Analyzer

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. Using software to force the EUT to hop or transmit on a single Hopping frequency. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 26 of 69

Report No.: S20071700203002

5.5 TEST RESULTS

A.C.

-sr

- Si

1º

J.

1

Jest 1

1

1

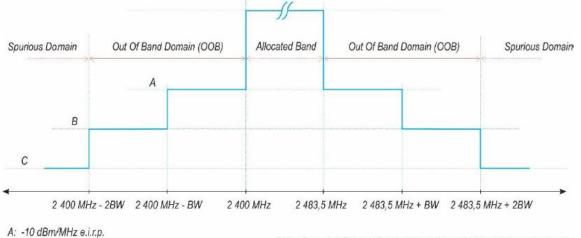
R

R

1

EUT :	Computer Multimedia Speaker 🌕	Model Name :	R23BT
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	AC 230V/50Hz
Test Mode :	BT-GFSK(CH00/CH78)	5 5	2 2 2 2

Test data reference attachment


2

J.S.

6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.1.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

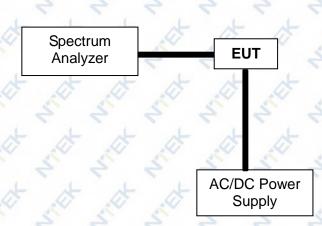
TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN			
Condition Limit			
Under all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.		

B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

Figure 1: Transmit mask

6.2 TEST PROCEDURE

Refer to chapter 5.4.8.20f ETSI EN 300 328 V2.2.2 (2019-07)


	Measure	ement
Conducted measure	ment	Radiated measurement
he setting of the Spectrum Ana	alyzer	SA SA SA SA
Span	0Hz	* * * * * *
Filter Mode 🔨 🔥	Channel Filter	
Trace Mode	Clear/Write	the state of the state
Trigger Mode	Video Trigger 🔨	
Detector	RMS	t t t t t
Sweep Point / Sweep Mode	5000 / Continuous	5 5 5 5 5
RBW / VBW	1MHz / 3MHz	

N2017.06.06.0614.V.1.3

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 TEST SETUP

According to the EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

N.C. **NTEK北**测

ANE A

ANCH A

Fret

west 1st

with the

A

work with

2

gł.

which the

Page 29 of 69

-

A.S.

1 sector

A.

6.5 TEST RESULTS

Wet

NET

A.C.

NIC

Night

ANCH -

EUT :	Computer Multimedia Speaker	Model Name :	R23BT
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	AC 230V/50Hz
Test Mode :	BT-GFSK(CH00/CH78)	at at at	at at at
2 2 2	Test data referer	nce attachment	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

AND

AND

2t

with W

Filt

2t

T

with the

N

<u>c</u>h

...et

x

what the

-Sr

2

2

Page 30 of 69

7. HOPPING FREQUENCY SEPARATION

7.1 LIMITS OF HOPPING FREQUENCY SEPARATION Refer to chapter 4.3.1.5.3 of ETSI EN 300 328 V2.2.2 (2019-07)

HOPPING FREQUEN	ICY SEPARATION
Condition	Limit
Non-adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be equal to or greater than occupide channel bandwidth of a single hop, with a minimum separation of 100 kHz.
Adaptive frequency hopping systems	The minimum Hopping Frequency Separation shall be 100 kHz.

7.2 TEST PROCEDURE

Refer to chapter 5.4.5.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Measurement
	measurement Radiated measurement
The setting of the Spe	ctrum Analyzer
Center Frequency	Centre of the two adjacent hopping frequencies
Frequency Span	Sufficient to see the complete power envelope of both hopping frequencies
Detector	Max Peak
RBW	~ 1 % of the span
VBW	3 × RBW
Trace	Max hold
Sweep Time	Auto

7.3 DEVIATION FROM TEST STANDARD

No deviation

Page 31 of 69 Report No.: S20071700203002

7.4 TEST SETUP

The measurements were performed at normal test conditions. The measurement was performed on 2 adjacent hopping frequencies. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 32 of 69

7.5 TEST RESULTS

EUT :	Computer Multimedia Speaker 🌑	Model Name :	R23BT
Temperature :	26°C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	AC 230V/50Hz
Test Mode :	BT (CH00/CH39/CH78)	5 5	2 2 2 2

Test data reference attachment Note: 1.The limitation is from OCB of a single hop and this value must greater and equal to 100kHz. 2.The device will never "hop" to its neighbour channel, therefore the "effective" channel separation becomes 2x the "normal" channel separation.

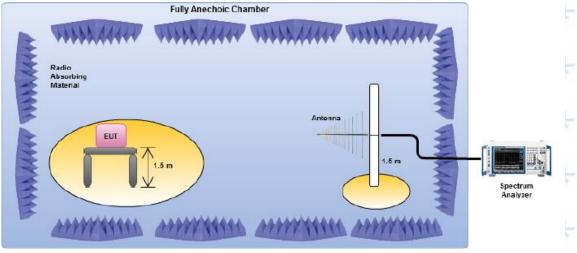
8. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

8.1 LIMITS OF TRANSMITTER TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Refer to chapter 4.3.1.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RANSMITTER UNWANTED E	MISSIONS IN THE SPURIOUS D	OMAIN	
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth	
30 MHz to 47 MHz	-36dBm	100 kHz	
47 MHz to 74 MHz	-54dBm	100 kHz	
74 MHz to 87.5 MHz	-36dBm	100 kHz	
87.5 MHz to 118 MHz	-54dBm	100 kHz	
118 MHz to 174 MHz	-36dBm	100 kHz	
174 MHz to 230 MHz	-54dBm	100 kHz	
230 MHz to 470 MHz	-36dBm	100 kHz	
470 MHz to 694 MHz	-54dBm	🔨 100 kHz 💉	
694 MHz to 1 GHz	-36dBm	100 kHz	
1 GHz ~ 12.75 GHz	-30dBm	1 MHz	

8.2 TEST PROCEDURE


Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Conducted measurement		Radiated measurement		
The setting of th	e Spectrum Analyzer	t t t t t		
RBW	100K(<1GHz) / 1M(>1	GHz)		
VBW	300K(<1GHz)/3M(>1	GHz)		

No deviation

8.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

(MHz)

32.065

112.54

225.921

277.555

480.795

42.793

117.18

212.27

338.015

602.229

(dBm)

-76.88

-67.48

-75.91

-76.29

-72.85

-70.75

-69.51

-74.59

-67.64

-70.71

Page 35 of 69

(dBm)

-36

-54

-54

-36

-54

-36

-54

-54

-36

-54

(dB)

-30.11

-2.22

-10.69

-29.10

-9.32

-24.30

-5.31

-9.76

-20.53

-5.68

peak

8.5 TEST	RES		adiated measure		SE DATA (30 M	IHz ~ 1GH	z)	t	
EUT :		Compu	ter Multimedia S	peaker	Model Name	: R23E	BT ST	2	5
Temperat	ure :	24 °C	5 5	5	Relative Humic	dity 54%	5 0	5	
Pressure	:	1010 h	Pa 🔬 🤞	5 5	Test Power :	AC 2	30V/50Hz	5	3
Test Mod	e :	BT-GFS	SK(CH00)	At .	\$ \$	A 1	* \$	- 4	
Polar	Free	quency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	Ý
(H/V)	/		(dDm)		(dDm)	(dDm)			

(dBm)

-66.11

-56.22

-64.69

-65.10

-63.32

-60.30

-59.31

-63.76

-56.53

-59.68

(dB)

10.77

11.26

11.22

11.19

9.53

10.45

10.20

10.83

11.11

11.03

H	1
Remar	k:

V

V

V

V

V

Н

Н

Н

Н

1. Absolute Level= ReadingLevel+ Factor, Margin= Limit- Absolute Level.

2. All the modes had been tested, but only the worst data recorded in the report.

Page 36 of 69

JT :	Computer Multimedia Speaker			Model Name :		R23BT			
emperati	ure :	24 °C	Relative Humidity 54%		Relative Humidity		54%		
essure : 1010 hPa			· ·		AC 230V/50Hz				
est Mode : BT-GFSK (CH00/CH39/CH78)									
, K	1	6		AT a		ST.	A 4	N.	
Polar	Fre	quency	Meter Reading	Factor	Emission Level	Limi	ts Margin	Remark	
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBn	n) (dB)		
1	-		ор	eration fre	quency:2402	1		~ (
V	22	75.22	-76.62	10.22	-66.40	-30	-36.40	peak	
V	599	98.375	-71.79	9.68	-62.11	-30	-32.11	peak	
V	218	89.706	-71.53	10.95	-60.58	-30	-30.58	peak	
V	344	40.786	-69.99	9.85	-60.14	-30	-30.14	peak	
H	298	80.135	-74.03	10.50	-63.53	-30	-33.53	peak	
н	568	87.153	-76.82	11.22	-65.60	-30	-35.60	peak	
H	284	40.793	-76.49	10.13	-66.36	-30	-36.36	peak	
H	454	45.492	-67.09	10.38	-56.71	-30	-26.71	peak	
1	1		ор	eration fre	quency:2441				
V	228	89.864	-71.71	/10.17	-61.54	-30	-31.54	peak	
V	410	64.308	-74.91	10.22	-64.69	-30	-34.69	peak	
V	249	90.534	-70.73	10.42	-60.31	-30	-30.31	peak	
V 🔿	41:	34.397	-71.07	/10.79	-60.28	-30	-30.28	peak	
H		12.787	-73.88	9.82	-64.06	-30	-34.06	peak	
H	37	15.26	-77.88	9.57	-68.31	-30	-38.31	peak	
H	210	09.836	-68.15	9.66	-58.49	-30	-28.49	peak	
H	570	06.435	-74	11.33	-62.67	-30	-32.67	peak	
7	7	7	ор	eration fre	quency:2480			7	
V		15.318	-68.4	10.13	-58.27	-30		peak	
V		51.851	-68.09	9.68	-58.41	-30	-28.41	peak	
V	28	10.265	-75.17	10.78	-64.39	-30	-34.39	peak	
V	57	19.82	-71.01	10.82	-60.19	-30	-30.19	peak	
H	22	13.017	-68.83	11.38	-57.45	-30	-27.45	peak	
Ħ	55	71.938	-71.38	10.36	-61.02	-30		peak	
HA	292	25.883	-72.19	10.60	-61.59	-30	-31.59	peak	
Н	53	79.938	-69.87	10.51	-59.36	-30	-29.36	peak	

BOVE 1 GHz WORST- CASE DATA (1

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level – Limit.
 All the modes had been tested, but only the worst data recorded in the report.

8.6 TEST RESULTS (Conducted measurement) Test data reference attachment

Page 37 of 69

9. RECEIVER SPURIOUS EMISSIONS

9.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.1.11.3 of ETSI EN 300 328 V2.2.

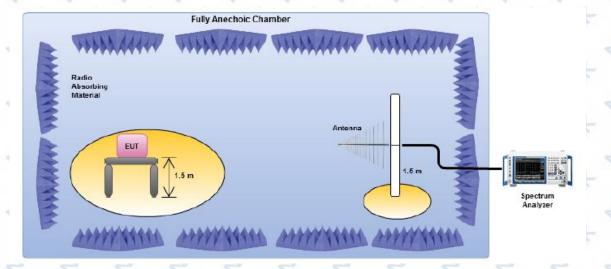
fer	to chapter 4.3.1.11.3 of ETSI EN	300 328 V2.2.2 (2019-07)	x x				
	RECEIVER SPURIOUS EMISSIONS						
	Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth				
-	30 MHz ~ 1 GHz	-57dBm	100KHz				
	1 GHz ~ 12.75 GHz	-47dBm	🔨 1MHz 💉				

9.2 TEST PROCEDURE

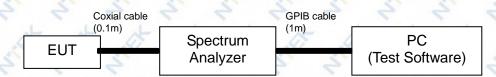
Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)

	Mea	surement					
Con	ducted measurement		Radiated	d measur	ement	A.	
The setting of th	e Spectrum Analyzer	2 2 4	24	24	24	24	5
RBW	100K(<1GHz) / 1M(>	>1GHz)	A.	AL CONTRACT	A.	No.	
VBW	300K(<1GHz) / 3M(>	>1GHz)	2	2	2	2	5

9.3 DEVIATION FROM TEST STANDARD


No deviation

NTEK」 比测


Page 38 of 69 Report No.: S20071700203002

9.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

Page 39 of 69

9.5 TEST RESULTS (Radiated measurement)

RX BELOW 1 GHz WORST- CASE DATA (30 MHz ~ 1GHz)							
EUT :	Computer Multimedia Speaker	Model Name :	R23BT				
Temperature :	24 °C	Relative Humidity	54%				
Pressure :	1010 hPa	Test Power :	AC 230V/50Hz				
Test Mode :	BT-GFSK (CH00)	t t t	t t t				

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	31.454	-80.97	12.25	-68.72	-57	-11.72	peak
V	91.158	-84.73	16.13	-68.60	-57	-11.60	peak
V	208.726	-78.97	14.05	-64.92	-57	-7.92	peak
V	368.727	-81.34	17.01	-64.33	-57	-7.33	peak
V	614.028	-84.16	15.51	-68.65	-57	-11.65	peak
H	34.281	-80.54	14.62	-65.92	-57	-8.92	peak
н	96.367	-83.47	17.87	-65.60	-57	-8.60	peak
HAS	199.743	-81.85	16.70	-65.15	-57	-8.15	peak
H	276.573	-78.55	15.79	-62.76	-57	-5.76	peak
H	632.026	-79.54	17.54	-62.00	-57	-5.00	peak

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level – Limit.
 All the modes had been tested, but only the worst data recorded in the report.

Page 40 of 69

RX ABOVE 1 GHz WORST- CASE DATA (1GHz ~ 12.75GHz)						
EUT :	Computer Multimedia Speaker	Model Name :	R23BT			
Temperature	: 24 ℃	Relative Humidity	54%			
Pressure :	1010 hPa	Test Power :	AC 230V/50Hz			
Test Mode :	BT-GFSK (CH00)	2. 2.	2 2 2 2			

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	2133.975	-84.39	10.46	-73.93	-47	-26.93	peak
V	4941.377	-80.65	10.21	-70.44	-47	-23.44	peak
V	2674.6	-77.02	10.57	-66.45	-47	-19.45	peak
V	5114.106	-78.74	16.88	-61.86	-47	-14.86	peak
н	2802.767	-84.25	10.29	-73.96	-47	-26.96	peak
H	5546.828	-82.67	11.29	-71.38	-47	-24.38	peak
H	2869.092	-79.86	6.79	-73.07	-47	-26.07	peak
H	4308.818	-83.17	15.06	-68.11	-47	-21.11	peak

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level – Limit.
 All the modes had been tested, but only the worst data recorded in the report.

9.6 TEST RESULTS (Conducted measurement) Test data reference attachment

10. RECEIVER BLOCKING

10.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

10.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking
(-133 dBm + 10 × $\log_{10}(OCBW)$) or -68 dBm whichever is less	2 380 2 504	-34	CW CW
(see note 2) (-139 dBm + 10 × log₁₀(OCBW)) or -74 dBm whichever is less	2 300 2 330 2 360	at set set	at at
(see note 3)	2524 2584 2674	the the	AT AT

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 42 of 69

Report No.: S20071700203002

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB)	2 380	-34	CW
or (-74 dBm + 10 dB) whichever is less	2 504	t t t	tt
(see note 2)	2 300	19 19 19 19 -	14 14
4 4 4 4	2 584	7 7 7	4 4

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 8: Receiver Blocking parameters re	eceiver category 3	equipment
--	--------------------	-----------

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log₁₀(OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	* * *	at at
(see note 2)	2 300	S S S	5 5 3
	2 584		LL

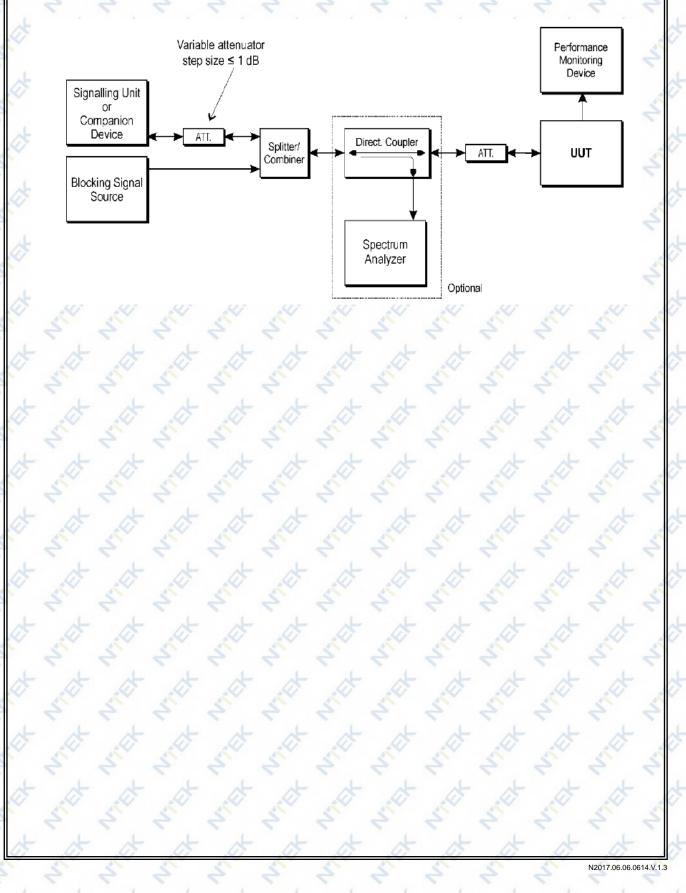
NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

10.3 TEST PROCEDURE

Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07)


Ν	Measureme	nt	
Conducted measurement	5	Radiated measurement	5

Page 43 of 69 Report No.: S20071700203002

10.4 DEVIATION FROM TEST STANDARD

No deviation

10.5 TEST SETUP

Page 44 of 69

10.6 TEST RESULTS

A

A. C.

A. C.

A. I.

Milt

A.C.

1. Ct

Nict

A.C.

white the

- Ant

x

white the

at we

west with

with W

A. C.

EUT :	Computer Multimedia Speaker	Model Name :	R23BT
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	AC 230V/50Hz
Test Mode :	BT-GFSK Hopping mode (RX)	x x x	* * *

7 7 7	e ec	eiver category 2	7 7	2 2
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER % Note(3)	PER Limit
	2 380		0.62	
2 2 2	2 504	2 2 4	0.77	≤10%
-69.64	2 300	-34	0.64	11000
2 2 2	2 584	2 2 3	0.63	≤10%

12 112	67 67 67 67	$G \cap G$	62 62 62
EUT :	Computer Multimedia Speaker	Model Name :	R23BT 💉 💉
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	AC 230V/50Hz
Test Mode :	BT-П/4-DQPSK Hopping mode (I	RX) 🛆 🛸	5 5 5 .

Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER % _{Note(3)}	PER Limit
2 2 4	2 380	2 2 4	0.70	4
t the set	2 504	t to the	0.65	≤10%
-68.20	2 300	-34	0.57	2100/
* * *	2 584	* * *	0.53	≤10%

with with with

what what

with W

writer writer writer

with with with

with with with

wat wat

west the

with with with

Arriet Willt

Frich Willt

at with

what which

what what

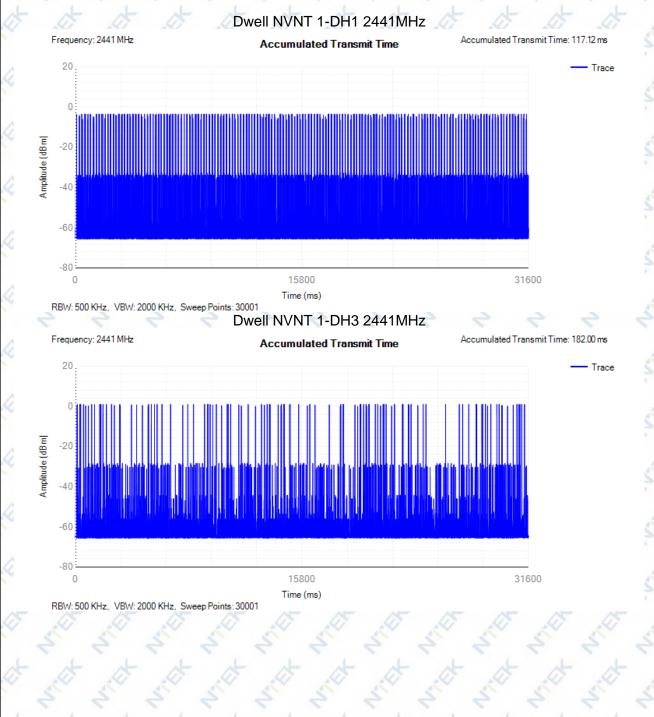
with wh

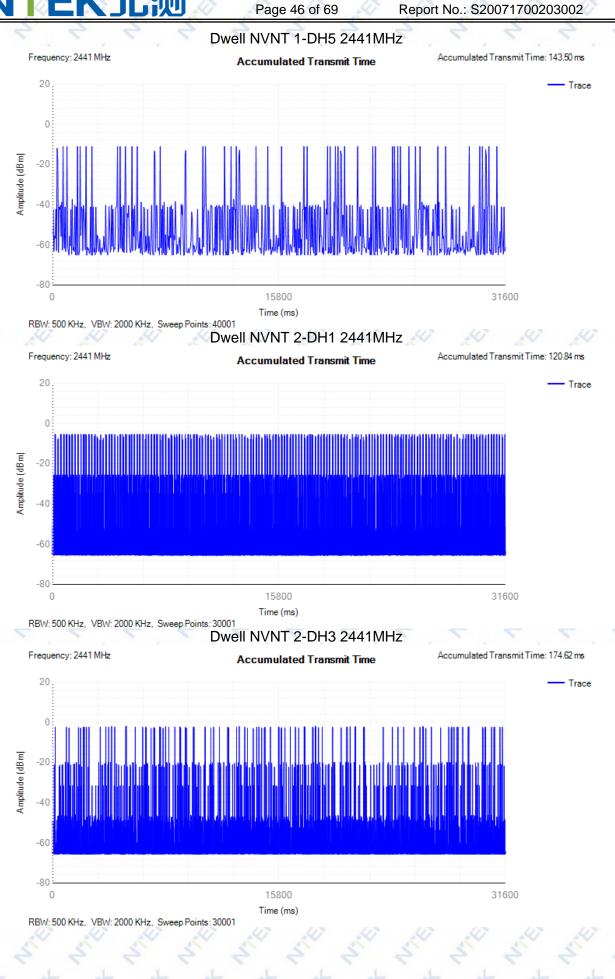
-

3

2

A.C.


with the

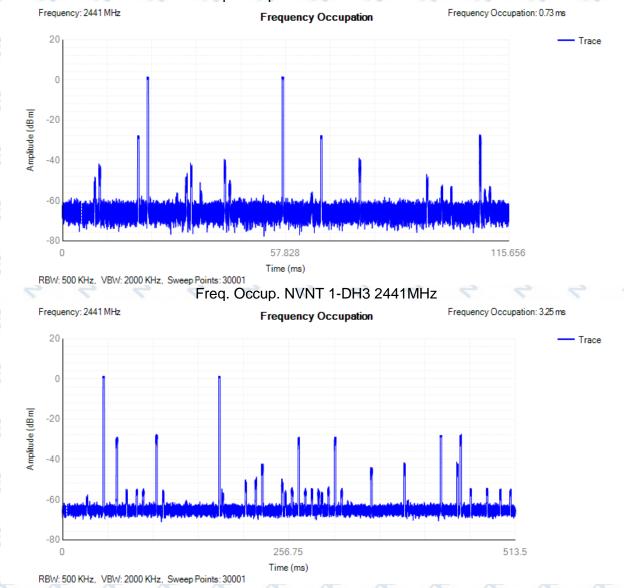

with with

11. TEST RESULTS

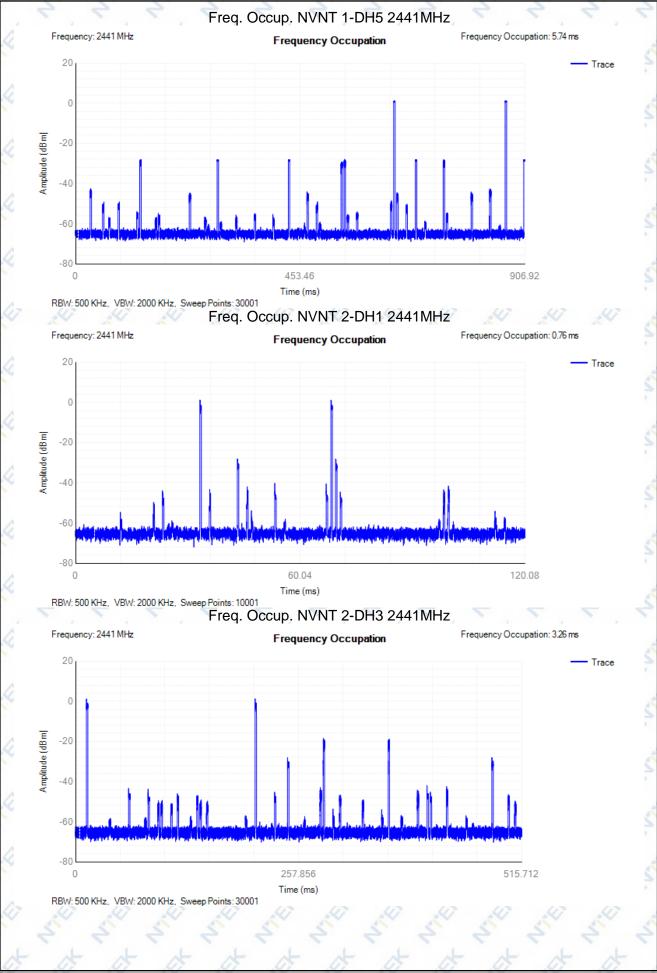
11.1 Accumulated Transmit Time

Condition	Mode	Frequency	Accumulated	Limit	Sweep	Burst	Verdict
Condition	Mode	(MHz)	Transmit Time (ms)	(ms)	Time (ms)	Number	veruici
NVNT	1-DH1	2441	117.12	400	31600	320	Pass
NVNT	1-DH3	2441	182	400	31600	112	Pass
NVNT	1-DH5	2441	143.5	400	31600	50	Pass
NVNT	2-DH1	2441	120.84	400	31600	318	Pass
NVNT	2-DH3	2441	174.624	400	31600	107	Pass
NVNT	2-DH5	2441	155.088	400	31600	54	Pass

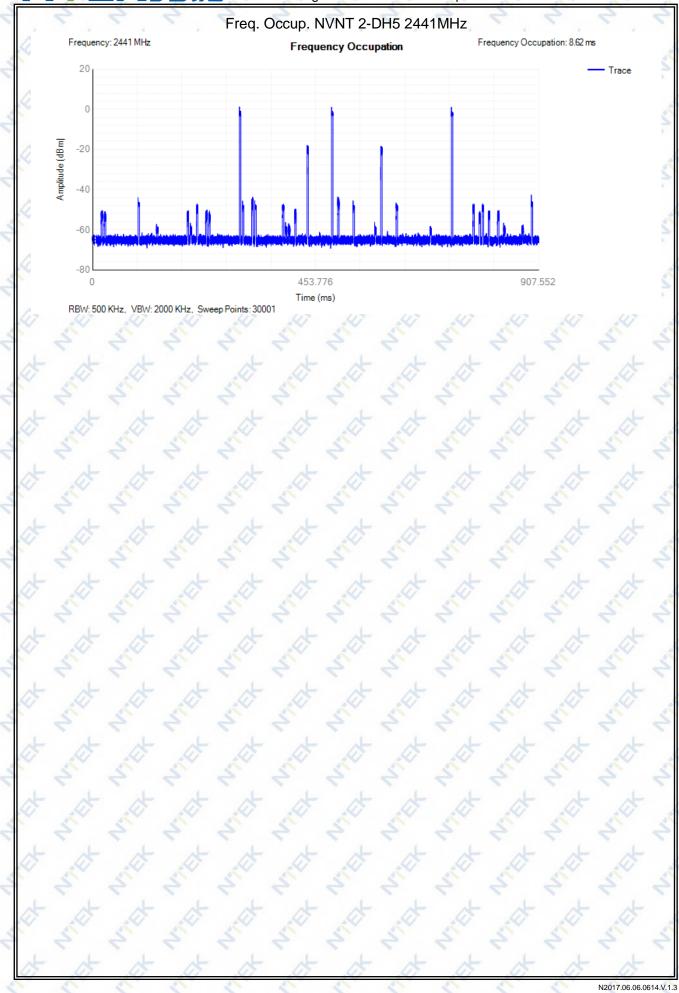
Page 47 of 69 Report No.: S20071700203002 Dwell NVNT 2-DH5 2441MHz Frequency: 2441 MHz Accumulated Transmit Time: 155.09 ms Accumulated Transmit Time 20. Trace 0 Amplitude (dBm) -20 -40 -60 -80 0 15800 31600 Time (ms) RBW: 500 KHz, VBW: 2000 KHz, Sweep Points: 30001


Page 48 of 69

Report No.: S20071700203002

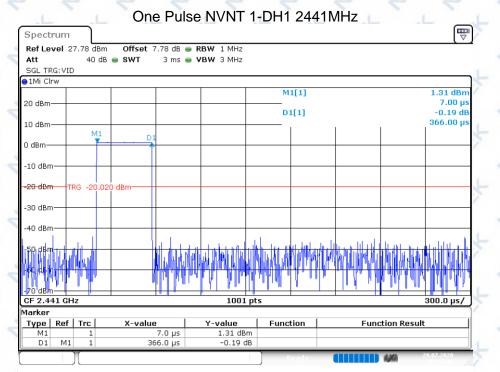

11.2 Frequency Occupation

Condition	Mode	Frequency	Frequency	Limit	Sweep	Burst	Verdict
Condition	Node	(MHz)	Occupation (ms)	(ms)	Time (ms)	Number	verdict
NVNT	1-DH1	2441	0.732	0	115.656	2	Pass
NVNT	1-DH3	2441	3.25	0	513.5	2	Pass
NVNT	1-DH5	2441	5.74	0	906.92	2 2	Pass
NVNT	2-DH1	2441	0.76	0	120.08	2	Pass
NVNT	2-DH3	2441	3.264	0	515.712	2	Pass
NVNT	2-DH5	2441	8.616	0	907.552	- 3 -	Pass


Freq. Occup. NVNT 1-DH1 2441MHz

Page 49 of 69

Page 50 of 69



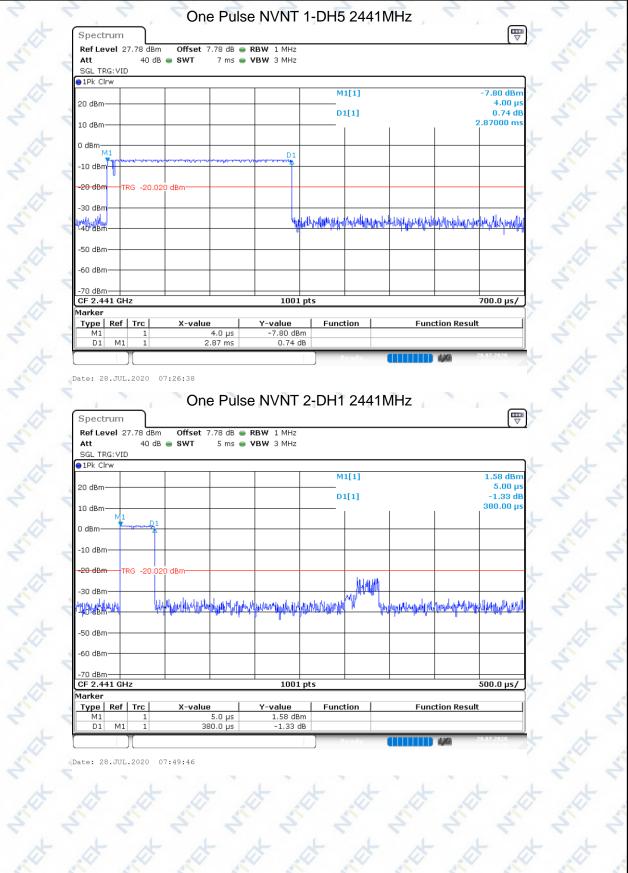
Page 51 of 69

Report No.: S20071700203002

11.3 One Pulse Dwell Time

	IIIIC			
	Condition	Mode	Frequency (MHz)	Pulse Time (ms)
	NVNT	1-DH1	2441	0.366
-	NVNT	1-DH3	2441	1.625
	NVNT	1-DH5	2441	2.87
	NVNT	2-DH1	2441	0.38
	NVNT	2-DH3	2441	1.632
	NVNT	2-DH5	2441	2.872

Date: 28.JUL.2020 07:47:41


Spectru											
Ref Leve	el 27			7.78 dB	_						
Att		40 dB	SWT	5 ms	● VB [*]	W 3 MHz					
SGL TRG											
	<u> </u>						м	1[1]		-	10.55 dBm
20 dBm—	_							-1-1			-5.00 µs
							D	l[1]			2.48 dB
10 dBm—	+									1	1.62500 ms
) dBm—	+			-	-						/
	Miller	milesen urbeneure	0 dBm	www		1					
-10 dBm	T' [®]	G -10.02									
20 dBm-											
											2
-30 dBm-	_				_						
	de la					har har may	u konala (Adda Adda	and a solution of the solution	Hhattellearna	ն ու ինել են ին	hadred is Kridhadd
40 dBm-						flar and off	of filent les and	kika o Lan wikand	<u>A COAL a dahaa</u> a	crished and south	And Line and A
50 dBm-											
-ou ubiii-											
-60 dBm-	_										
-70 dBm—											1
CF 2.441	. GH	z				1001	pts				500.0 µs/
larker	- 1										
Type F M1	tef		X-valu			<mark>'-value</mark> -10.55 dB	Func	tion	Fund	tion Result	
IVI I		1		-5.0 µs			m JB				

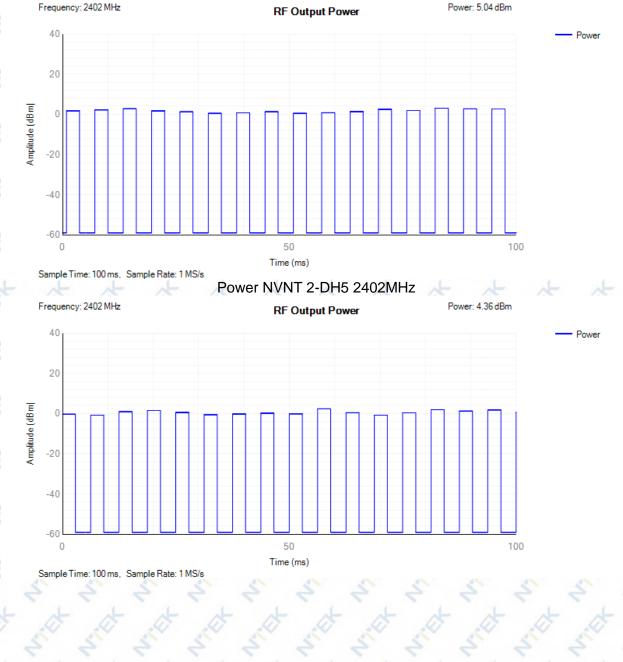
Date: 28.JUL.2020 07:48:52

t

Page 52 of 69

Report No.: S20071700203002

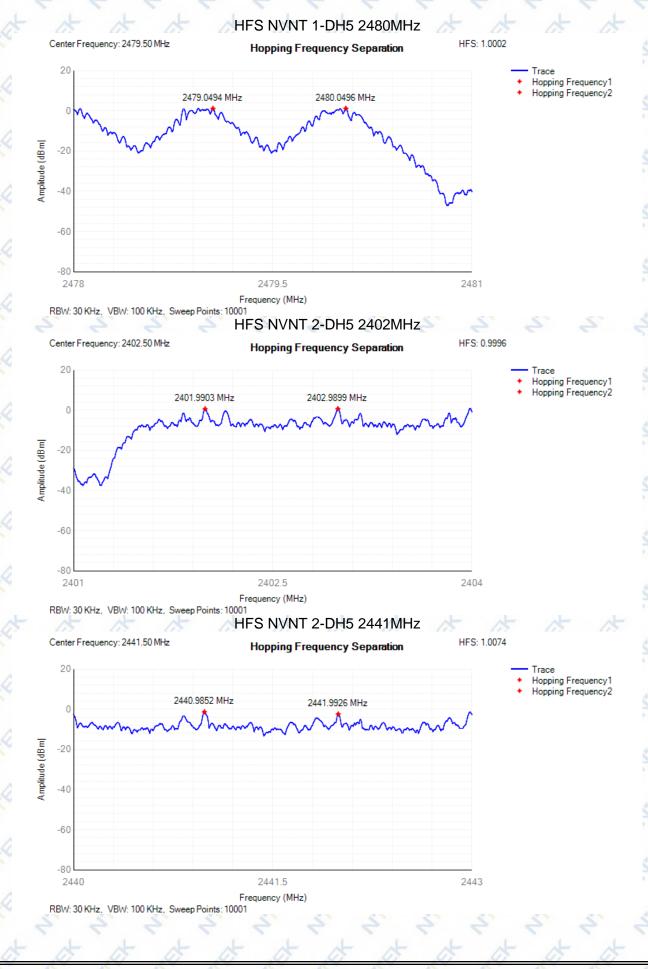
Page 53 of 69


Page 54 of 69

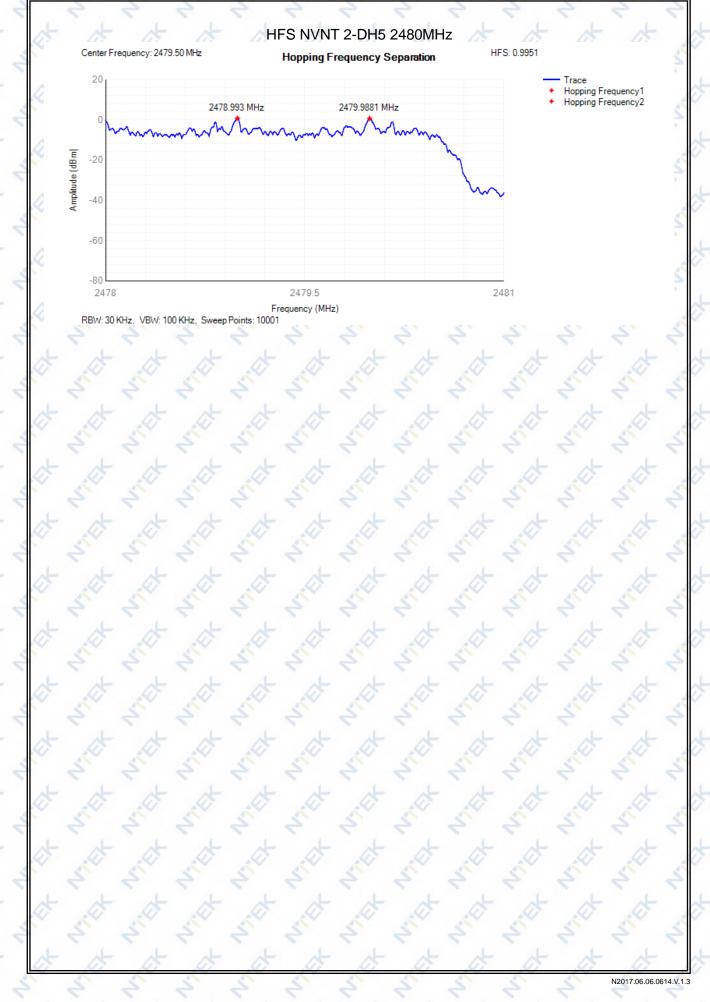
Report No.: S20071700203002

Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	hopping	2.04	- 16 -	5.04	20	Pass
NVNT 🔨	2-DH5	hopping	1.36	17	4.36	20	Pass
NVLT	1-DH5	hopping	1.36	16	4.36	20	Pass
NVLT	2-DH5	hopping	0.77	17	3.77	20	Pass
NVHT	1-DH5	hopping	1.33	16	4.33	20 <	Pass
NVHT	2-DH5	hopping	0.67	17	3.67	20	Pass

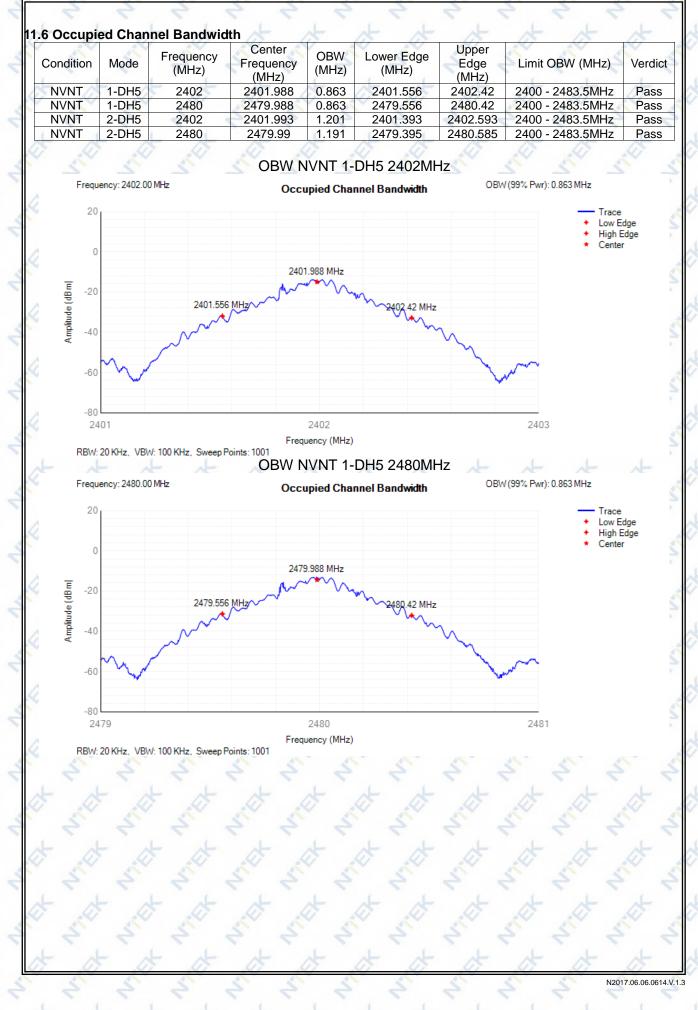
Power NVNT 1-DH5 2402MHz

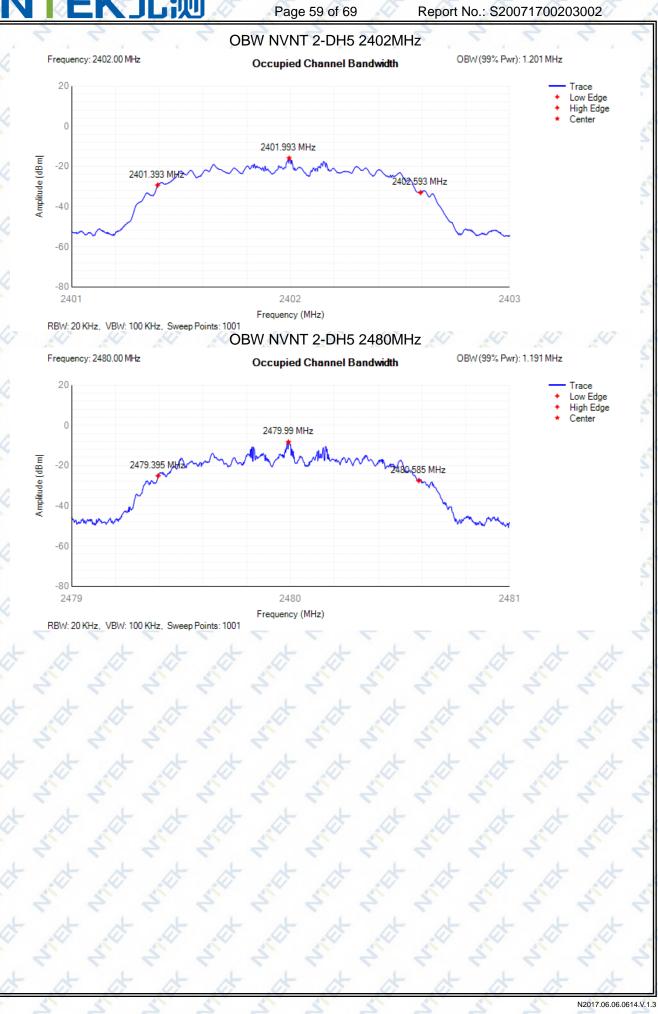

0 0 0

Page 55 of 69


Report No.: S20071700203002

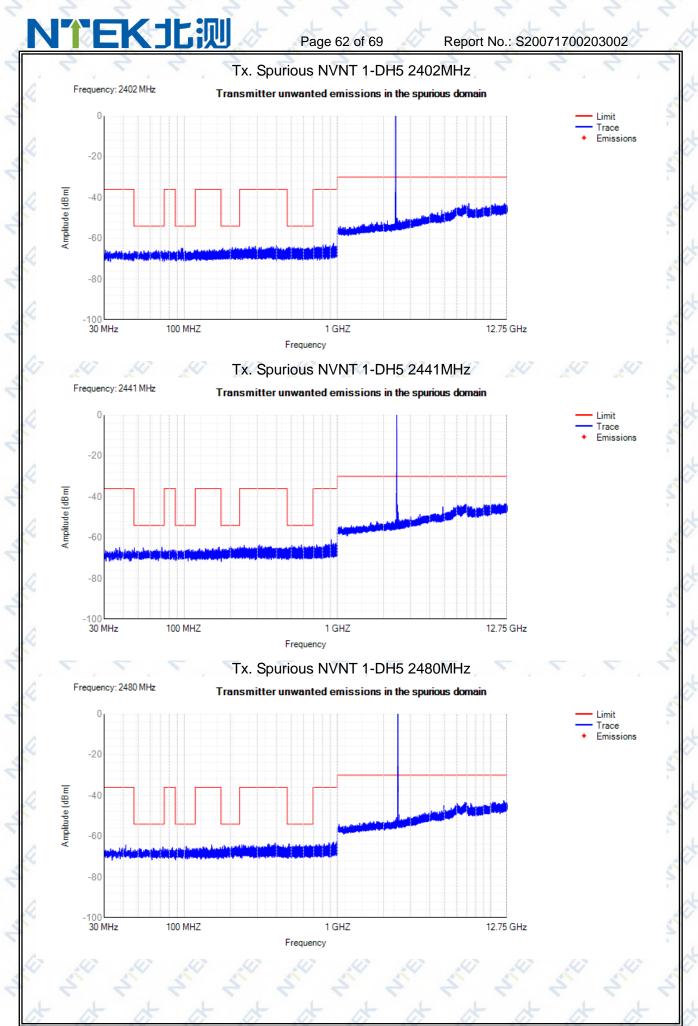
Condit		Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdic
			(MHz)	(MHz)	(MHz)	(MHz)	
NVN		1-DH5	2401.99	2402.9401	0.9501	0.1	Pass
NVN		1-DH5	2440.9864	2442.0493	1.0629	0.1	Pass
NVN		1-DH5	2479.0494	2480.0496	1.0002	0.1	Pass
NVN		2-DH5	2401.9903	2402.9899	0.9996	0.1	Pass
NVN		2-DH5	2440.9852	2441.9926	1.0074	0.1	Pass
NVN	Т	2-DH5	2478.993	2479.9881	0.9951	0.1	Pass
Amplitude (dB m)	0 -20 -40 -60	ww	2401.99 MHz	2402.9401 MHz	m	 Hopping Free Hopping Free 	
R	-80 2401 BW: 301	KHz, VBW: 100	2402 Frequenc; KHz, Sweep Points:10001		2404		
2	2401 BW: 30 P	KHz, VBW: 100 equency: 2441.5	Frequenc KHz, Sweep Points: 10001 HFS N		Hz	Trace + Hopping Free + Hopping Free	
2	2401 BW: 30 P Center Fro	5 .	Frequenc: KHz, Sweep Points: 10001 HFS N 0 MHz Hopp	y (MHz) IVNT 1-DH5 2441M Ding Frequency Separation	Hz	 Trace Hopping Free 	
c	2401 BW: 30 P Center Fro 20 0	5 .	Frequenc: KHz, Sweep Points: 10001 HFS N 0 MHz Hopp	y (MHz) IVNT 1-DH5 2441M Ding Frequency Separation	Hz	 Trace Hopping Free 	
C	2401 BW: 30 P	5 .	Frequenc: KHz, Sweep Points: 10001 HFS N 0 MHz Hopp	y (MHz) IVNT 1-DH5 2441M Ding Frequency Separation	Hz	 Trace Hopping Free 	
Amplitude (dB m)	2401 BW: 30 P Center Fro 20 0 -20	5 .	Frequenc: KHz, Sweep Points: 10001 HFS N 0 MHz Hopp	y (MHz) IVNT 1-DH5 2441M Ding Frequency Separation	Hz	 Trace Hopping Free 	
Amplitude (dB m)	2401 BW: 30 P center Fro 20 -20 -40	5 .	Frequenc: KHz, Sweep Points: 10001 HFS N 0 MHz Hopp	y (MHz) IVNT 1-DH5 2441MI bing Frequency Separation	Hz	 Trace Hopping Free 	


Page 56 of 69

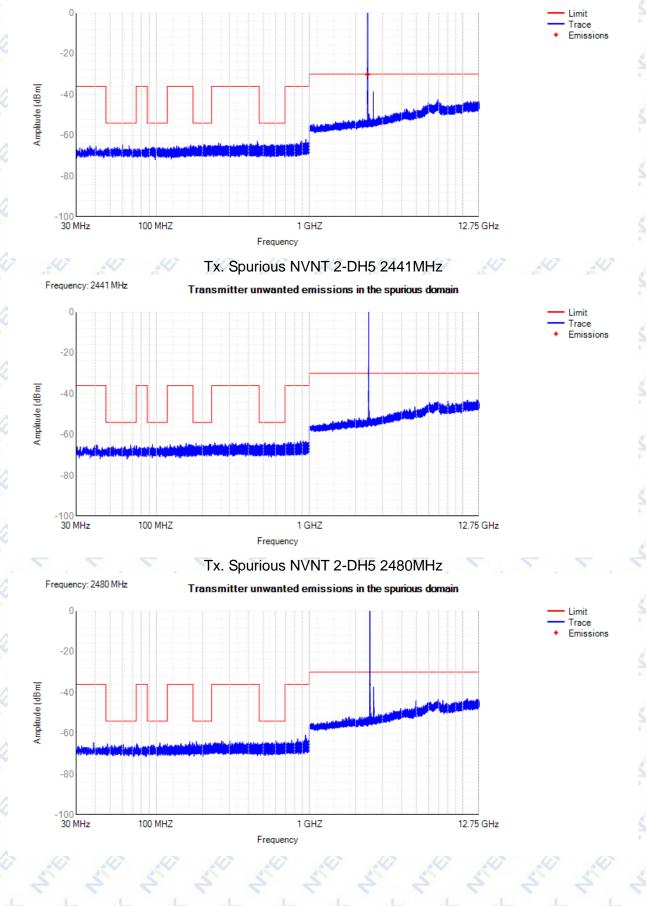


Page 57 of 69

Page 58 of 69



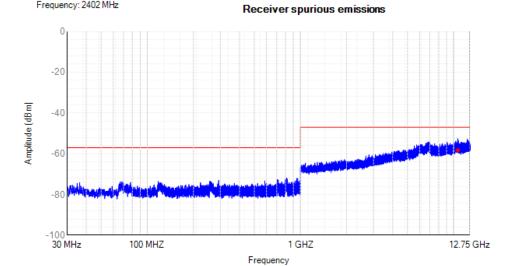
Page 60 of 69


Report No.: S20071700203002

Condition	Mode	Frequency (MHz)	Range	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdic
NVNT	1-DH5	2402	30 MHz -47 MHz	30.65	-65.73	NA	-36	Pass
NVNT	1-DH5	2402	47 MHz -74 MHz	65.5	-65.84	<u>NA</u>	-54	Pass
NVNT	1-DH5	2402	74 MHz -87.5 MHz	- 74.7	-65.94	NA	-36	Pass
NVNT	1-DH5	2402	87.5 MHz -118 MHz	95.9	-64.79	<u>NA</u>	-54	Pass
NVNT	1-DH5	2402	118 MHz -174 MHz	145.65	-65.46	NA	-36	Pass
NVNT	1-DH5	2402	174 MHz -230 MHz	206	-64.51	<u>ANA</u>	-54	Pass
NVNT	1-DH5	2402	230 MHz -470 MHz	398.45	-63.48	NA	-36	Pass
NVNT	1-DH5	2402	470 MHz -694 MHz	483.45	-64.22	ANA A	-54	Pass
NVNT	1-DH5	2402	694 MHz -1000 MHz	945.85	-62.36	NA	-36	Pass
NVNT	1-DH5	2402	1000 MHz -2398 MHz	2394	-37.47	ANA A	-30	Pass
NVNT	1-DH5	2402	2485.5 MHz -12750 MHz	7205.5	-42.84	NA	-30	Pass
NVNT	1-DH5	2441	30 MHz -47 MHz	37.8	-64.85	-NA -	-36	Pass
NVNT	1-DH5	2441	47 MHz -74 MHz	71.55	-64.77	NA	-54	Pass
NVNT	1-DH5	2441	74 MHz -87.5 MHz	85.75	-66	<na <<="" td=""><td>-36</td><td>Pass</td></na>	-36	Pass
NVNT	1-DH5	2441	87.5 MHz -118 MHz	107.55	-65.64	NA	-54	Pass
NVNT	1-DH5	2441	118 MHz -174 MHz	169.2	-64.57	NA	-36	Pass
NVNT	1-DH5	2441	174 MHz -230 MHz	200.45	-64.4	NA	-54	Pass
NVNT	1-DH5	2441	230 MHz -470 MHz	310.15	-63.61	<pre>NA </pre>	-36	Pass
NVNT	1-DH5	2441	470 MHz -694 MHz	580.85	-63.59	NA	-54	Pass
NVNT	1-DH5	2441	694 MHz -1000 MHz	910.25	-61	<pre>NA</pre>	-36	Pass
NVNT	1-DH5	2441	1000 MHz -2398 MHz	2393	-51.28	NA	-30	Pass
NVNT	1-DH5	2441	2485.5 MHz -12750 MHz	12410.5	-43.4	NA	-30	Pass
NVNT	1-DH5	2480	30 MHz -47	41.55	-64.22	NA	-36	Pass
NVNT	1-DH5	2480	47 MHz -74 MHz	72.55	-65.2	NA	-54	Pass
NVNT	1-DH5	2480	74 MHz -87.5 MHz	83.8	-65.5	NA	-36	Pass
NVNT	1-DH5	2480	87.5 MHz -118 MHz	103.05	-64.89	NA	-54	Pass
NVNT	1-DH5	2480	118 MHz -174 MHz	150.85	-64.19	NA	-36	Pass
NVNT	1-DH5	2480	174 MHz -230 MHz	229.15	-64.29	NA	-54	Pass
NVNT	1-DH5	2480	230 MHz -470 MHz	391.65	-63.32	NA	-36	Pass
NVNT	1-DH5	2480	470 MHz -694 MHz	482.85	-63.68	NA	-54	Pass
NVNT	1-DH5	2480	694 MHz -1000 MHz	986 <mark>.</mark> 3	-62.61	NA	-36	Pass
NVNT	1-DH5	2480	1000 MHz -2398 MHz	2389	-51.88	NA	-30	Pass

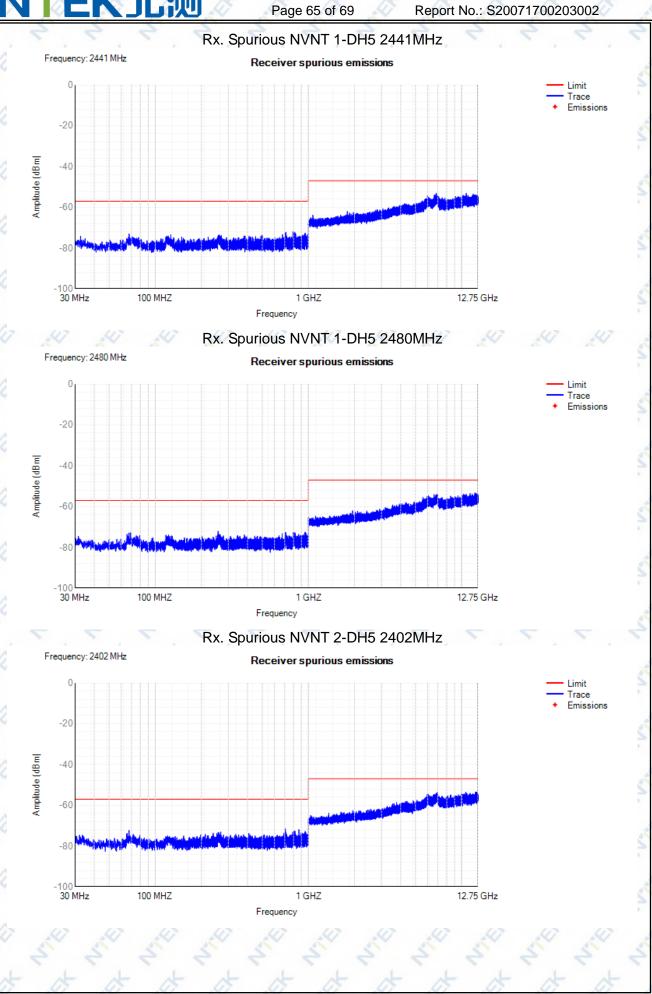
	-	-		2485.5 MHz	Page 61 of 69		rt No.: S200717	1	
N	VNT	1-DH5	2480	-12750 MHz 30 MHz -47	12169.5	-42.41	NA	-30	Pass
N	VNT	2-DH5	2402	🔨 MHz 🚫	36.85	-65.17	NA	-36	Pass
N	VNT	2-DH5	2402	47 MHz -74 MHz	60.45	-64.5	NA	-54	Pass
N	VNT	2-DH5	2402	74 MHz -87.5 MHz	84.75	-65.86	NA	-36	Pass
N	VNT	2-DH5	2402	87.5 MHz -118 MHz	96.05	-65.84	NA	-54	Pass
N	VNT	2-DH5	2402	118 MHz -174 MHz	167.8	-64.73	<u>NA</u>	-36	Pass
N	VNT	2-DH5	2402	174 MHz -230 MHz	205.7	-64.62	NA	-54	Pass
N	VNT	2-DH5	2402	230 MHz -470 MHz	457.35	-62.84	<u>NA</u>	-36	Pass
N	VNT	2-DH5	2402	470 MHz -694 MHz	653.5	-64.45	NA	-54	Pass
N	VNT	2-DH5	2402	694 MHz -1000 MHz	948.35	-61.99	<u>NA</u>	-36	Pass
N	VNT	2-DH5	2402	1000 MHz -2398 MHz	2397.5	-27.22	-30.09	-30	Pass
N	VNT	2-DH5	2402	2485.5 MHz -12750 MHz	2616	-38.58	<u></u> NA <u></u>	-30	Pass
N	VNT	2-DH5	2441	30 MHz -47 MHz	40.75	-65.01	NA	-36	Pass
N	VNT	2-DH5	2441	47 MHz -74 MHz	68.05	-65.06	<u>NA</u>	-54	Pass
N	VNT	2-DH5	2441	74 MHz -87.5 MHz	74.3	-65.51	NA	-36	Pass
N	VNT	2-DH5	2441	87.5 MHz -118 MHz	94.4	-64.85	INA I	-54	Pass
N		2-DH5	2441	118 MHz -174 MHz	156.95	-64.32	NA	-36	Pass
N	VNT	2-DH5	2441	174 MHz -230 MHz	182	-64.23	NA 4	-54	Pass
N		2-DH5	2441	230 MHz -470 MHz	241.5	-64.08	NA	-36	Pass
N	VNT	2-DH5	2441	470 MHz -694 MHz	513.55	-63.99	-NA -	-54	Pass
N		2-DH5	2441	694 MHz -1000 MHz	907.65	-63.04	NA	-36	Pass
N	VNT	2-DH5	2441	1000 MHz -2398 MHz	2393.5	-51.77	NA C	-30	Pass
N		2-DH5	2441	2485.5 MHz	12399	-42.85	NA	-30	Pass
N	VNT	2-DH5	2480	-12750 MHz 30 MHz -47	39.05	-64.53	NA C	-36	Pass
N		2-DH5	2480	MHz 47 MHz -74	48	-65.16	NA	-54	Pass
	VNT	2-DH5	2480	MHz 74 MHz	74.55	-65.1	NA	-36	Pass
1	VNT	2-DH5	2480	-87.5 MHz 87.5 MHz	105.6	-64.67	NA	-54	Pass
-	VNT	2-DH5	2480	-118 MHz	165.35	-64.08	NA	-36	Pass
+	VNT	2-DH5	2480	-174 MHz 174 MHz	183.1	-64.03	NA	-54	Pass
	VNT	2-DH5	2480	-230 MHz	267.8	-63.72	NA	-36	Pass
t		2-DH5	2480	-470 MHz 470 MHz	599.75	-63.45	NA	-54	Pass
	VNT	2-DH5	2480	-694 MHz 694 MHz	943.4	-60.8	NA	-36	Pass
A		2-DH5	2480	-1000 MHz 1000 MHz	1813.5	-51.94	NA	-30	Pass
	5		5	-2398 MHz 2485.5 MHz	- S	2 2	5 3	1	-
N	VNT	2-DH5	2480	-12750 MHz	2621	-37.28	NA	-30	Pass

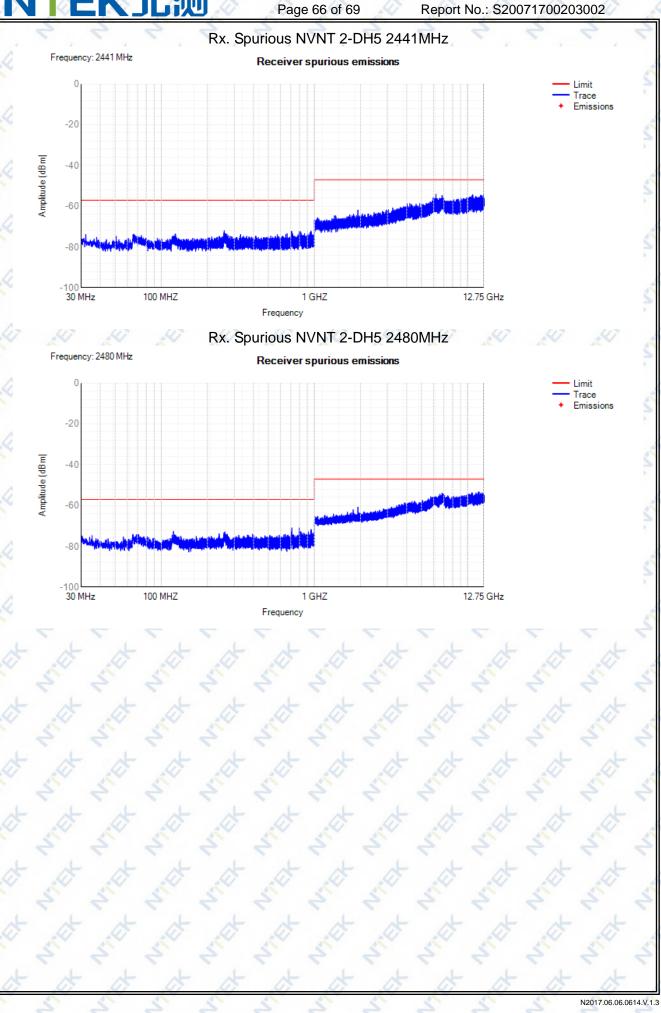
Page 63 of 69 Report No.: S20071700203002 Tx. Spurious NVNT 2-DH5 2402MHz Frequency: 2402 MHz Transmitter unwanted emissions in the spurious domain

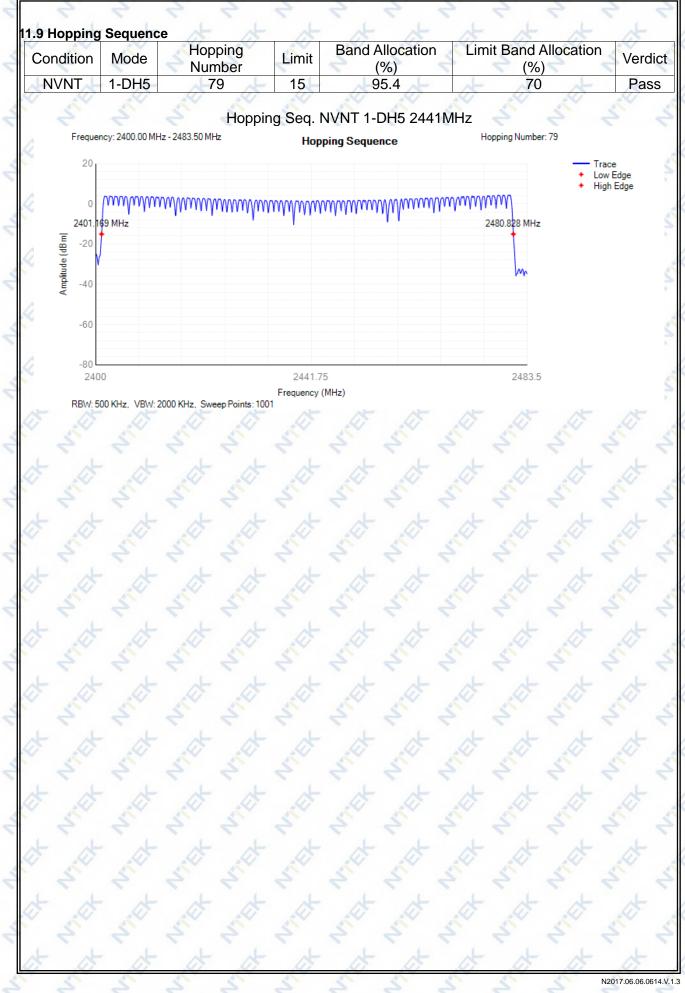

Page 64 of 69

Report No.: S20071700203002

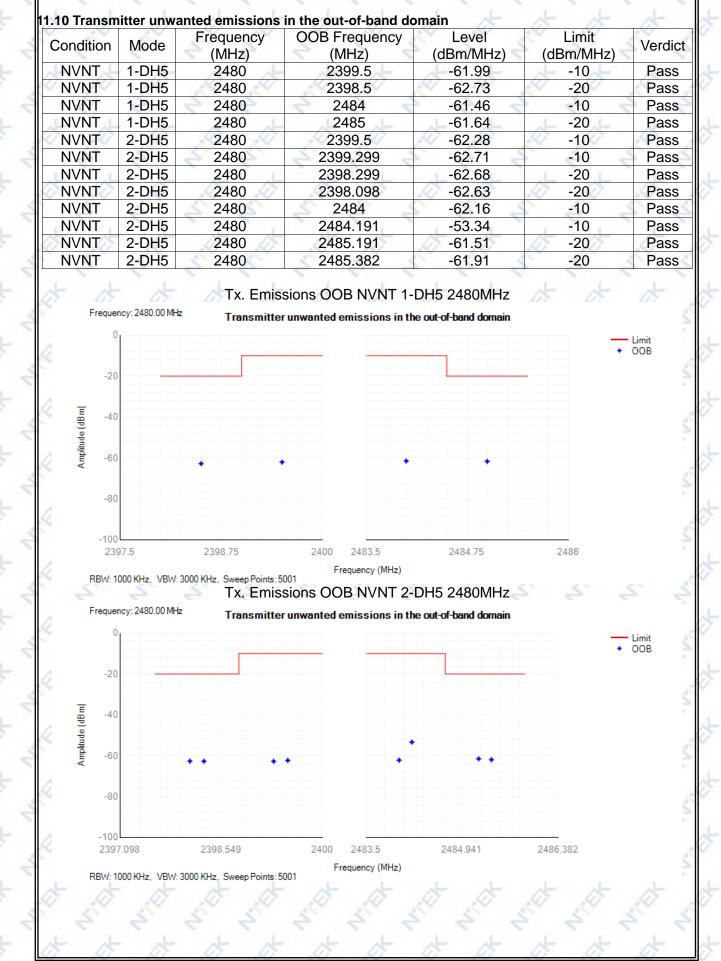
Condition	Mode	Frequency (MHz)	🔷 Range 📏	Spur Freq (MHz)	Spur Level Peak(dBm)	Spur Level RMS(dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	30 MHz -1000 MHz	810.7	-71.87	NA	-57	Pass
NVNT	1-DH5	2402	1000 MHz -12750 MHz	10639.5	-52.58	-58.31	-47	Pass
NVNT	1-DH5	2441	30 MHz -1000 MHz	792.65	-71.88	NA	-57	Pass
NVNT	1-DH5	2441	1000 MHz -12750 MHz	10721.5	-53.07	NAL	-47	Pass
NVNT	1-DH5	2480	30 MHz -1000 MHz	257.2	-72.09	<u>NA</u>	-57	Pass
NVNT	1-DH5	2480	1000 MHz -12750 MHz	12218	-53.28	NA	-47	Pass
NVNT	2-DH5	2402	30 MHz -1000 MHz	706.85	-71.63	NA	-57	Pass
NVNT	2-DH5	2402	1000 MHz -12750 MHz	12379.5	-53.47	NA	-47	Pass
NVNT	2-DH5	2441	30 MHz -1000 MHz	257.8	-71.93	NA	-57	Pass
NVNT	2-DH5	2441	1000 MHz -12750 MHz	6215	-54.07	NA	-47	Pass
NVNT	2-DH5	2480	30 MHz -1000 MHz	796.3	-70.88	NA	-57	Pass
NVNT	2-DH5	2480	1000 MHz -12750 MHz	11899.5	-53.31	NA	-47	Pass


Rx. Spurious NVNT 1-DH5 2402MHz


Frequency: 2402 MHz


N2017.06.06.0614.V.1.3

Limit Trace Emissions



Page 67 of 69 Report No.: S20071700203002

Page 68 of 69

Report No.: S20071700203002

Page 69 of 69

Report No.: S20071700203002

12. PHOTOGRAPHS OF THE TEST CONFIGURATION

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT