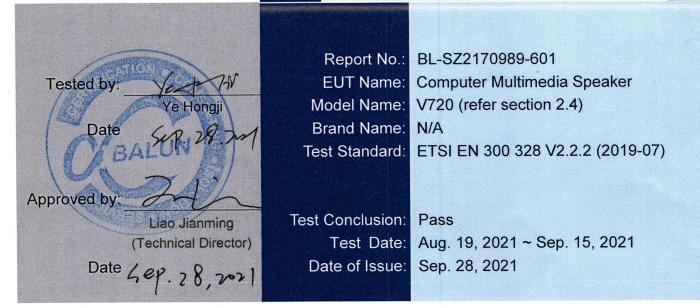
ISSUED BY Shenzhen BALUN Technology Co., Ltd.

RF

www.baluntek.com

TEST REPORT


FOR

Computer Multimedia Speaker

ISSUED TO SHENZHEN FENDA TECHNOLOGY CO., LTD.

Fenda Hi-Tech Park, Zhoushi Road, Shiyan, Baoan, Shenzhen, China 518108

NOTE: This test report of test results only related to testing samples, which can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. Any objections should be raised within thirty days from the date of issue. To validate the report, please contact us.

Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055 TEL: +86-755-66850100, FAX: +86-755-61824271 Email: qc@baluntek.com

1/56

Revision History

	Vers	ion
ī	Rev.	01

Issue Date

Revisions Content

<u>Sep. 28, 2021</u>

Initial Issue

TABLE OF CONTENTS

1 ADMI	NISTRATIVE DATA (GENERAL INFORMATION)	4
1.1	Identification of the Testing Laboratory	4
1.2	Identification of the Responsible Testing Location	4
1.3	Laboratory Condition	4
1.4	Announce	4
2 PROD	DUCT INFORMATION	5
2.1	Applicant Information	5
2.2	Manufacturer Information	5
2.3	Factory Information	5
2.4	General Description for Equipment under Test (EUT)	5
2.5	Technical Information	6
2.6	Additional Instructions	8
3 SUMN	/ARY OF TEST RESULTS	9
4 GENE	RAL TEST CONFIGURATIONS	11
4.1	Test Environments	11
4.2	Test Equipment List	11
4.3	Test Software List	11
4.4	Measurement Uncertainty	12
4.5	Description of Test Setup	12
5 Test T	ype and Test Results	15
5.1	Transmitter Parameters	15
5.2	Receiver Parameters	27
5.3	Other Parameters	32
ANNEX A	TEST RESULT	33
A.1	RF output power	33
A.2	Power spectral density	37
A.3	Duty Cycle, Tx-sequence, Tx-gap	37

A.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	38
A.5	Hopping Frequency Separation	40
A.6	Medium Utilization (MU) factor	41
A.7	Adaptivity	41
A.8	Occupied Channel Bandwidth	42
A.9	Transmitter unwanted emissions in the out-of-band domain	44
A.10	Transmitter unwanted emissions in the spurious domain	45
A.11	Receiver Spurious Emissions	50
A.12	Receiver Blocking	55
ANNEX B	TEST SETUP PHOTOS	56
ANNEX C	EUT EXTERNAL PHOTOS	56
ANNEX D	EUT INTERNAL PHOTOS	56
ANNEX E	INFORMATIVE	

1 ADMINISTRATIVE DATA (GENERAL INFORMATION)

1.1 Identification of the Testing Laboratory

Company Name	ompany Name Shenzhen BALUN Technology Co., Ltd.		
A daha a a	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi		
Address	Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China		
Phone Number	+86 755 6685 0100		

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.	
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi	
Address	Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China	
	All measurement facilities used to collect the measurement data are	
Description	located at Block B, FL 1, Baisha Science and Technology Park, Shahe	
Description	Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R.	
	China 518055	

1.3 Laboratory Condition

Ambient Temperature	20°C to 35°C
Ambient Relative Humidity	30% to 75%
Ambient Pressure	98 kPa to 102 kPa

1.4 Announce

- (1) The test report reference to the report template version v2.1.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (7) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	SHENZHEN FENDA TECHNOLOGY CO., LTD.	
Address	Fenda Hi-Tech Park, Zhoushi Road, Shiyan, Baoan, Shenzhen,	
Address	China 518108	

2.2 Manufacturer Information

Manufacturer	SHENZHEN FENDA TECHNOLOGY CO., LTD.
Address	Fenda Hi-Tech Park, Zhoushi Road, Shiyan, Baoan, Shenzhen,
Audress	China 518108

2.3 Factory Information

Factory	SHENZHEN FENDA TECHNOLOGY CO., LTD.
Address	Fenda Hi-Tech Park, Zhoushi Road, Shiyan, Baoan, Shenzhen,
Address	China 518108

2.4 General Description for Equipment under Test (EUT)

EUT Name	Computer Multimedia Speaker	
Model Name Under Test	V720	
Series Model Name	V620 Plus, V620 Pro, V720 Pro, V720 Plus, V720X, V780, V780	
Series model name	Plus, V780 Pro, V780X	
Description of Model All models are same with electrical parameters and internal circ		
name differentiation	structure, but only differ in market and customer.	
Hardware Version	N/A	
Software Version	N/A	
Dimensions (Approx.)	N/A	
Weight (Approx.)	N/A	

2.5 Technical Information

	EUT Type	Stand-alone equipment	
	Network and Wireless connectivity	Bluetooth (BR+EDR)	
The req	The requirement for the following technical information of the EUT was tested in this report:		
	Modulation Technology Bluetooth(For Classic): FHSS		
	Modulation Type	Bluetooth(For Classic): GFSK, π/4-DQPSK, 8-DPSK	
		DH5: 1 Mbps	
	Transfer Rate	2DH5: 2 Mbps	
		3DH5: 3 Mbps	
	Frequency Range	The frequency range used is 2402 MHz – 2480 MHz;	
	Trequency Mange	The frequency block is 2400 MHz to 2483.5 MHz.	
	Number of channel	Bluetooth(For Classic): 79 (at intervals of 1 MHz)	
	Tested Channel	Bluetooth(For Classic): 0 (2402 MHz), 39 (2441 MHz), 78 (2480 MHz)	
	Nominal Channel Bandwidth	1 MHz	
	Antenna Type	PCB Antenna	
	Antenna Gain	2.0 dBi (In test items related to antenna gain, the final results reflect this figure. This value is provided by the applicant.)	
	Beamforming Gain	N/A	
	Adaptive or non- adaptive	Adaptive	
	LBT Based	Yes (Load Based)	
	The Max RF Output power	Bluetooth (For Classic): 3.0 dBm	
	Receiver Category	Bluetooth (For Classic): 2	

_	Modulation Type	Transfer Rate	
Description	(BT for Classic)	(BT for Classic)	
Transmitter Parameters	· · ·	· · · ·	
	GFSK,	DH5: 1 Mbps	
RF output power	π/4-DQPSK,	2DH5: 2 Mbps	
	8-DPSK	3DH5: 3 Mbps	
Power Spectral Density			
Duty Cycle, Tx-sequence, Tx-gap	N/A	N/A	
Accumulated Transmit Time, Frequency Occupation	GFSK,	DH5: 1 Mbps	
and Hopping Sequence	8-DPSK	3DH5: 3 Mbps	
	GFSK,	DH5: 1 Mbps	
Hopping Frequency Separation	8-DPSK	3DH5: 3 Mbps	
Medium Utilization (MU) factor	N/A	N/A	
Adaptivity	N/A	N/A	
Occupied Channel Bandwidth	GFSK,	DH5: 1 Mbps	
Occupied Channel Bandwidth	8-DPSK	3DH5: 3 Mbps	
Transmitter unwanted emissions in the out-of-band	GFSK,	DH5: 1 Mbps	
domain	8-DPSK	3DH5: 3 Mbps	
Transmitter unwanted emissions in the spurious	GFSK,	DH5: 1 Mbps	
domain	8-DPSK	3DH5: 3 Mbps	
Receiver Parameters			
	GFSK,	DH5: 1 Mbps	
Receiver spurious emissions	8-DPSK	3DH5: 3 Mbps	
Receiver Blocking	GFSK	DH1: 1 Mbps	
Other Parameters			
Geo-location capability			
Note: π /4-DQPSK is the EDR 2M rate mode, 8-DPSK is the EDR 3M rate mode. The			
consistency of test results in π /4-DQPSK and 8-DPSK is very high. So that 8-DPSK is choosed			

as a typical representative to appear on the report. Another all the modes on the RF output

power test item will be shown.

2.6 Additional Instructions

Bluetooth (For Classic)

EUT Software Settings:

	Special software is used.	
Mada	The software provided by client to enable the EUT under	
Mode	transmission condition continuously at specific channel frequencies	
	individually.	

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power level setup in software				
Test Software Version	BT_tool			
Support Units	Description	Manufacturer	Model	
(Software installation	Notebook	Lenovo	X220	
media)	Notebook	HP	N/A	
Mode	Channel	Frequency (MHz)	Soft Set	
	CH0	2402		
DH5	CH39	2441		
	CH78	2480		
	CH0	2402	Dower peremeter Settings is	
2DH5	CH39	2441	Power parameter Settings is 6	
	CH78	2480	0	
	CH0	2402		
3DH5	CH39	2441		
	CH78	2480		

Run Software:

FCC Test 🔘	Remote	BT address		
CBT Test 🔾	555555	555555	Stor	P
F Control				
Single Tone	OFF \checkmark	Packet Ty	pe DH5	~
Hopping	on \sim	TX Freque	ncy 2480	\sim
TX Power	6 ~	RX Freque	ncy 2480	~
Scenario	PRBS Patter	rn		~
og: 测试结束	ĒLOG: 开始测	试LOG: 测试结	東LOG: 开如	计顺试

3 SUMMARY OF TEST RESULTS

The EUT has been tested according to ETSI EN 300 328 V2.2.2 (2019-07).

No.	Identity	Document Title
۲	ETSI EN 300 328	Wideband transmission systems; Data transmission equipment operating in
1	V2.2.2 (2019-07)	the 2,4 GHz band; Harmonised Standard for access to radio spectrum

Test items and the results are as follows:

Report Section	Standard Rule	Description	Channel (BT for Classic)	Test Result	Verdict	Remark
Transmitt	Transmitter Parameters					
5.1.1	4.3.1.2 4.3.2.2	RF output power	Hopping Mode	ANNEX A.1	Pass	
5.1.2	4.3.2.3	Power Spectral Density		ANNEX A.2	N/A	Note ⁴
5.1.3	4.3.1.3 4.3.2.4	Duty Cycle, Tx-sequence, Tx-gap	N/A	ANNEX A.3	N/A	Note ² , Note ⁷
5.1.4	4.3.1.4	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Hopping Mode	ANNEX A.4	Pass	Note ⁵
5.1.5	4.3.1.5	Hopping Frequency Separation	Hopping Mode	ANNEX A.5	Pass	Note ⁵
5.1.6	4.3.1.6 4.3.2.5	Medium Utilization (MU) factor	N/A	ANNEX A.6	N/A	Note ² , Note ⁷
5.1.7	4.3.1.7 4.3.2.6	Adaptivity	N/A	ANNEX A.7	N/A	Note ² , Note ³
5.1.8	4.3.1.8 4.3.2.7	Occupied Channel Bandwidth	Low/High	ANNEX A.8	Pass	
5.1.9	4.3.1.9 4.3.2.8	Transmitter unwanted emissions in the out-of-band domain	Hopping Mode	ANNEX A.9	Pass	
5.1.10	4.3.1.10 4.3.2.9	Transmitter unwanted emissions in the spurious domain	Hopping Mode	ANNEX A.10	Pass	
Receiver	Parameters					
5.2.1	4.2.3.2	Receiver categories				
5.2.2	4.3.1.11 4.3.2.10	Receiver spurious emissions	Hopping Mode	ANNEX A.11	Pass	
5.2.3	4.3.1.12 4.3.2.11	Receiver Blocking	Hopping Mode	ANNEX A.12	Pass	
Other Pa	rameters					
5.3.1	4.3.1.13 4.3.2.12	Geo-location capability			N/A	Note ⁶
Note ¹ : This requirement does not apply to adaptive equipment unless operating in a non-adaptive mode.						

Note ²: This test doesn't apply for the EUT which has the RF Output power is less than 10 dBm e.i.r.p. Note ³: This requirement does not apply to non-adaptive equipment or adaptive equipment operating in a non-adaptive mode.

Note⁴: This requirement apply to the equipment is using wide band modulations other than FHSS.

Note ⁵: This requirement apply to the equipment is using FHSS.

Note ⁶: This requirement does not apply to devices that do not support Geo-location capability.

Note ⁷: These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode.

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	30% to 75%		
Atmospheric Pressure	98 kPa to 102 kPa		
	NT (Normal Temperature)	+22°C to +25°C	
Temperature	LT (Low Temperature)	O°O	
	HT (High Temperature)	+40°C	
Working Voltage of the EUT	NV (Normal Voltage)	4 V	

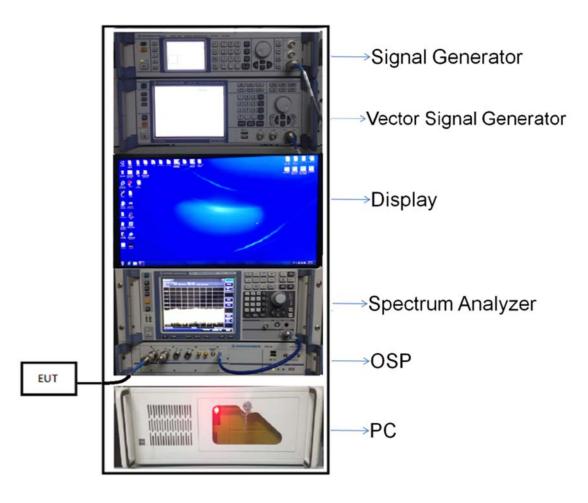
4.2 Test Equipment List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-30	103118	2021.06.01	2022.05.31
Spectrum Analyzer	KEYSIGHT	N9020A	MY56060183	2020.09.25	2021.09.24
Vector Signal Generator	ROHDE&SCHWARZ	SMBV100A	260592	2021.01.27	2022.01.26
Signal Generator	ROHDE&SCHWARZ	SMB100A	177746	2021.06.01	2022.05.31
Switch Unit with OSP- B157	ROHDE&SCHWARZ	OSP120	101270	2021.06.01	2022.05.31
Bluetooth Signaling Unit	ROHDE&SCHWARZ	CMW270	100607	2021.06.01	2022.05.31
Bluetooth Signaling Unit	ROHDE&SCHWARZ	CMW500	142028	2021.06.01	2022.05.31
Bluetooth Signaling Unit	ROHDE&SCHWARZ	CBT	101005	2021.06.01	2022.05.31
	ITECH	IT6720	60010301071	2020.09.25	2021.09.24
DC Power Supply	TECH	116720	7610007	2020.09.25	2021.09.24
Temperature Chamber	AHK	NTH64-40A	1310	2021.01.14	2022.01.03
EMI Receiver	KEYSIGHT	N9038A	MY53220118	2021.06.01	2022.05.31
Test Antenna-	SCHWARZBECK	FMZB 1519	1519-037	2019.10.29	2021.10.28
Loop(9 kHz-30 MHz)	SCHWARZBECK		1319-037	2019.10.29	2021.10.20
Test Antenna-	SCHWARZBECK	VULB 9163	9163-624	2019.07.02	2022.07.01
Bi-Log(30 MHz-3 GHz)	SCHWARZBECK	VOLB 9103	9103-024	2019.07.02	2022.07.01
Test Antenna-	SCHWARZBECK	BBHA	9120D-1917	2019.07.02	2022.07.01
Horn(1-18 GHz)	SUNWARZDEUK	9120D	91200-1917	2019.07.02	2022.07.01
Test Antenna-	A-INFO	LB-	J211060273	2021.01.05	2023.01.04
Horn (18-40 GHz)		180400KF	JZ11000273	2021.01.05	2023.01.04
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2017.02.21	2022.02.20

4.3 Test Software List

Description	Manufacturer	Software Version	Serial No.
TS8997 EMC32	ROHDE&SCHWARZ	V10.00.00	N/A

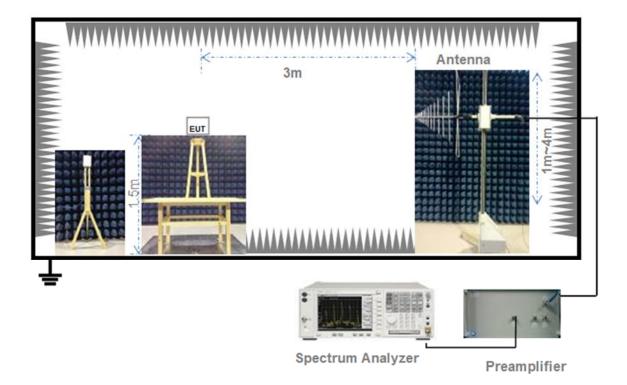
4.4 Measurement Uncertainty

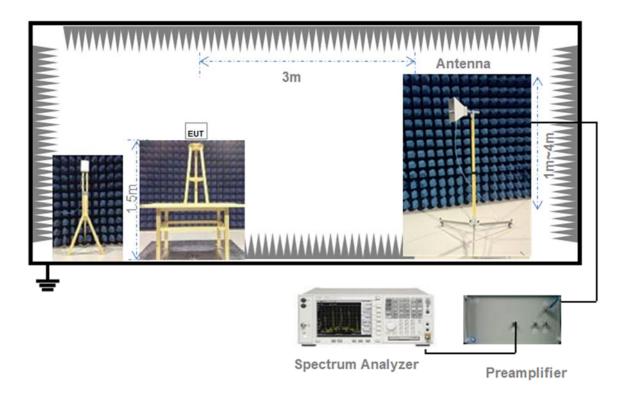

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

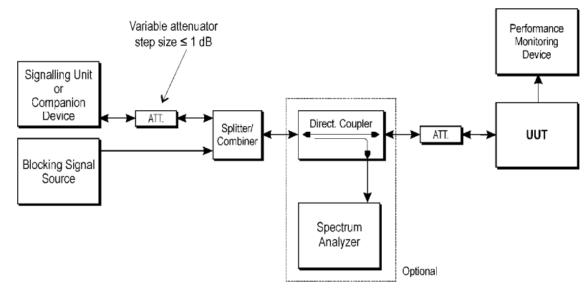
Parameters	Uncertainty
Occupied Channel Bandwidth	3.6 %
RF output power, conducted	0.66 dB
Power Spectral Density, conducted	0.90 dB
Unwanted Emissions, conducted	1.78 dB
All emissions, radiated	5.36 dB
Temperature	0.82 °C
Humidity	4.1 %

4.5 Description of Test Setup

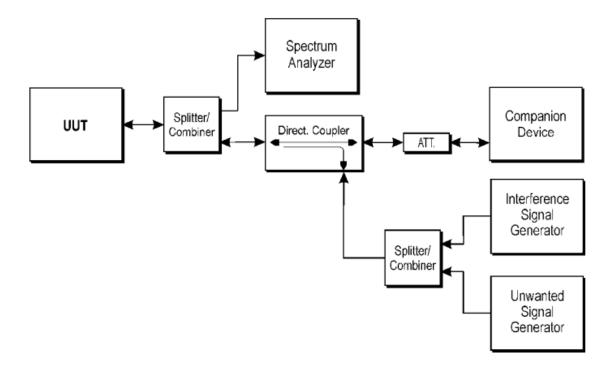

4.5.1 For Conducted Test


(Diagram 1)

4.5.2 For Radiated Test


(Diagram 2)

(Diagram 3)



4.5.3 For Receiver Blocking Test

(Diagram 4)

4.5.4 For Adaptivity Test

(Diagram 5)

5 Test Type and Test Results

5.1 Transmitter Parameters

- 5.1.1 RF output power
- 5.1.1.1 Limit

The maximum RF output power shall be equal to or less than 20 dBm.

5.1.1.2 Test Setup

The section 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.1.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.2.2.

5.1.1.4 Test Result

Please refer to ANNEX A.1.

5.1.2 Power Spectral Density

5.1.2.1 Limit

The maximum Power Spectral Density for non-FHSS equipment is 10 dBm per MHz.

5.1.2.2 Test Setup

The section 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.2.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.3.2.

5.1.2.4 Test Result

Please refer to ANNEX A.2.

5.1.3 Duty Cycle, Tx-sequence, Tx-gap

5.1.3.1 Limit

The Duty Cycle shall be equal to or less than the maximum value declared by the manufacturer.

The Tx-sequence time shall be equal to or less than 10 ms.

The minimum Tx-gap time following a Tx-sequence shall be equal to the duration of that proceeding Txsequence with a minimum of 3,5 ms.

5.1.3.2 Test Setup

The section 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.3.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.2.2.

5.1.3.4 Test Result

Please refer to ANNEX A.3.

5.1.4 Accumulated Transmit Time, Frequency Occupation and Hopping Sequence

5.1.4.1 Limit

The Accumulated Transmit Time on any hopping frequency shall not be greater than 400 ms within any observation period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.

The hopping sequence(s) shall contain at least N hopping frequencies where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

In order for the equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.

Option 2: The occupation probability for each frequency shall be between $((1 / U) \times 25 \%)$ and 77 % where U is the number of hopping frequencies in use.

5.1.4.2 Test Setup

The section 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.4.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.4.2.

5.1.4.4 Test Result

Please refer to ANNEX A.4.

5.1.5 Hopping Frequency Separation

5.1.5.1 Limit

For adaptive frequency hopping systems, the minimum Hopping Frequency Separation shall be 100 kHz.

5.1.5.2 Test Setup

The section 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.5.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.5.2.

5.1.5.4 Test Result

Please refer to ANNEX A.5.

5.1.6 Medium Utilization (MU) factor

5.1.6.1 Limit

The maximum Medium Utilization factor for non-adaptive equipment shall be 10 %.

5.1.6.2 Test Setup

The section 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.6.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.2.2.

5.1.6.4 Test Result

Please refer to ANNEX A.6.

5.1.7 Adaptivity

5.1.7.1 Limit

Adaptive Frequency Hopping

	Operation	al Mode	
Requirement	Non-LBT based Detect and Avoid	LBT based Detect and Avoid	
Minimum Clear Channel Assessment (CCA) Time	NA	18 us (see Note ¹)	
Maximum Channel Occupancy (COT) Time	40 ms	60 ms	
Minimum Idle Period	5% of COT	5% of COT	
Extended CCA check	NA	NA	
Short Control Signalling Transmissions	Maximum duty cycle of 10 % within an observation p 50 ms (see Note ²)		
Note ¹ : The CCA time used by the equipment shall be declared by the supplier.			

Note ²: Adaptive equipment may or may not have Short Control Signalling Transmissions.

Note ³: The Idle Period is considered to be equal to the CCA or Extended CCA time defined in clause 4.3.2.6.3.2.3, step 1 and step 2.

Note ⁴: The Idle Period in between transmissions is considered to be the CCA or the Extended CCA check as there are no transmissions during this period.

Interference threshold level:

Maximum transmit power (P _H)	Threshold level (TL)	
EIRP dBm	(see notes 1 and 2)	
20	-70 dBm / MHz	
Note ¹ : TL = -70 dBm/MHz + 10 × log10 (100 mW / Pout) (Pout in mW e.i.r.p.).		
Note ² : transmitter the CCA threshold level (TL) shall be equal or lower than -70 dBm/MHz at the input to the receiver (assuming a 0 dBi receive antenna).		

Unwanted Signal parameters

Wanted signal mean power from companion device	Unwanted signal frequency (MHz)	Unwanted CW signal power (dBm)	
sufficient to maintain the link	2 395 or 2 488,5	-35	
(see Note ²)	(see Note 1)	(see Note ³)	
Note ¹ : The highest frequency shall be used for testing operating channels within the range			
2400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating			
channels within the range 2 442 MHz to 2 483.5 MHz. See clause 5.4.6.1.			
Note ² : A typical value which can be used in most cases is -50 dBm/MHz.			
Note ³ : The level specified is the level in front of the UUT antenna. In case of conducted			
measurements, this level has to be corrected by the actual antenna assembly gain.			

Adaptive equipment using modulations other than FHSS

	Operational Mode				
		LBT	based Detect and	d Avoid	
Requirement	Non-LBT based Detect and Avoid	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as Note ²)	
Minimum Clear Channel Assessment (CCA) Time	NA	18 us (see Note ¹)	(see Note ²)	18 us (see Note ¹)	
Maximum Channel Occupancy (COT) Time	40 ms	1 ms to 10 ms	(see Note ²)	13 ms	
Minimum Idle Period	5% of COT	5% of COT	(see Note 2)	NA	
Extended CCA check	NA	NA	(see Note ²)	a random duration in the range between 18 μs and at least 160 μs	
Short Control Signalling	Maximum	duty cycle of 10 %	within an observat	ion period of 50 ms	
Transmissions		(Se	ee Note ³)		
Note ¹ : The CCA time used by the equipment shall be declared by the supplier. Note ² : Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect, as described in IEEE 802.11 [™] -2012 [i.3] clause 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in					
IEEE 802.15.4 [™] -2011 [i.4], clause 4, clause 5 and clause 8					
Note ³ : Adaptive equipment may or may not have Short Control Signalling Transmissions. Note ⁴ : The Idle Period is considered to be equal to the CCA or Extended CCA time defined in clause 4.3.2.6.3.2.3, step 1 and step 2.					

Note ⁵: The Idle Period in between transmissions is considered to be the CCA or the Extended CCA check as there are no transmissions during this period.

Interference threshold level:

Maximum transmit power (Рн)	Threshold level (TL)				
EIRP dBm	(see notes 1 and 2)				
20	-70 dBm / MHz				
Note 1: TL = -70 dBm/MHz + 10 × log10 (100 mW / Pout) (Pout in mW e.i.r.p.).					
Note 2: transmitter the CCA threshold level (TL) shall be equal or lower than -70 dBm/MHz at					
the input to the receiver (assuming a 0 dBi receive antenna).					

Unwanted Signal parameters

Wanted signal mean power from companion device	Unwanted signal frequency (MHz)	Unwanted CW signal power (dBm)				
sufficient to maintain the link	2 395 or 2 488,5	-35				
(see note 2)	(see note 1)	(see note 3)				
Note ¹ : The highest frequency s	Note ¹ : The highest frequency shall be used for testing operating channels within the range					
2400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating						
channels within the range 2 442 MHz to 2 483.5 MHz. See clause 5.4.6.1.						
Note ² : A typical value which can be used in most cases is -50 dBm/MHz.						
Note ³ : The level specified is the level in front of the UUT antenna. In case of conducted						
measurements, this level has to	b be corrected by the act	ual antenna assembly gain.				

5.1.7.2 Test Setup

The section 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.7.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.6.2.

5.1.7.4 Test Result

Please refer to ANNEX A.7.

5.1.8 Occupied Channel Bandwidth

5.1.8.1 Limit

The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band 2400 MHz to 2483.5 MHz.

In addition, for non-adaptive FHSS equipment with e.i.r.p. greater than 10 dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than 5 MHz.

In addition, for non-adaptive non-FHSS equipment with e.i.r.p. greater than 10 dBm, the Occupied Channel Bandwidth shall be equal to or less than 20 MHz.

5.1.8.2 Test Setup

The section 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.8.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.7.2.

5.1.8.4 Test Result

Please refer to ANNEX A.8.

5.1.9 Transmitter unwanted emissions in the out-of-band domain

5.1.9.1 Limit

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 1.

NOTE: Within the 2400 M Hz to 2483,5 MHz band, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.1.8.

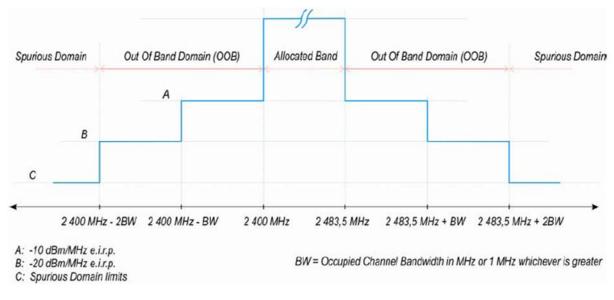


Figure 1: Transmit mask

5.1.9.2 Test Setup

The section 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.9.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.8.2.

5.1.9.4 Test Result

Please refer to ANNEX A.9.

5.1.10 Transmitter unwanted emissions in the spurious domain

5.1.10.1 Limit

The transmitter unwanted emissions in the spurious domain shall not exceed the values in following tables:

Frequency range	Maximum power (dBm)	Bandwidth
30 MHz to 47 MHz	-36	100 kHz
47 MHz to 74 MHz	-54	100 kHz
74 MHz to 87.5 MHz	-36	100 kHz
87.5 MHz to 118 MHz	-54	100 kHz
118 MHz to 174 MHz	-36	100 kHz
174 MHz to 230 MHz	-54	100 kHz
230 MHz to 470 MHz	-36	100 kHz
470 MHz to 694 MHz	-54	100 kHz
694 MHz to 1 GHz	-36	100 kHz
1 GHz to 12.75 GHz	-30	1 MHz

5.1.10.2 Test Setup

The section 4.5.1 and 4.5.2 (Diagram 1, 2, 3) for test setup description. The photo of test setup please refer to ANNEX B.

5.1.10.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.9.2.

5.1.10.4 Test Result

Please refer to ANNEX A.10.

5.2 Receiver Parameters

5.2.1 Receiver categories

There have three different receiver categories for which different receiver requirements and/or corresponding limits apply.

Receiver Category				
Receiver Category	Definition			
Catagony 1	Adaptive equipment with a maximum RF output power greater than 10			
Category 1	dBm e.i.r.p.			
	Non-adaptive equipment with a Medium Utilization (MU) factor greater			
Category 2	than 1 % and less than or equal to 10 % or adaptive equipment and non-			
	adaptive with a maximum RF output power of 10 dBm e.i.r.p.			
	Non-adaptive equipment with a maximum Medium Utilization (MU) factor			
Category 3	of 1 % or adaptive equipment and non-adaptive with a maximum RF			
	output power of 0 dBm e.i.r.p.			

27 / 56

5.2.2 Receiver Spurious Emissions

5.2.2.1 Limit

Receiver spurious emissions are emissions at any frequency when the equipment is in receive mode.

The spurious emissions of the transmitter shall not exceed the values in following tables for the EUT in this report.

Frequency range	Maximum power (dBm)	Bandwidth
30 MHz to 1 GHz	-57	100 KHz
1 GHz to 12.75 GHz	-47	1 MHz

5.2.2.2 Test Setup

The section 4.5.1 (Diagram 1) for test setup description. The photo of test setup please refer to ANNEX B.

5.2.2.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.10.2.

5.2.2.4 Test Result

Please refer to ANNEX A.11.

5.2.3 Receiver Blocking

5.2.3.1 Limit

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in next table.

Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal frequency(MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log ₁₀ (OCBW))	2 380	-34	CW
or -68 dBm whichever is less (see note 2)	2 504	-34	CW
	2 300	-34	CW
	2 330	-34	CW
(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less	2 360	-34	CW
	2 524	-34	CW
(see note 3)	2 584	-34	CW
	2 674	-34	CW

Note ¹: OCBW is in Hz.

Note ²: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. P_{min} is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

Note ³: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

Note ⁴: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Receiver Category 2 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
	2 380	-34	CW
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB) or (-74 dBm + 10 dB) whichever is less (see note 2)	2 504	-34	CW
	2 300	-34	CW
	2 584	-34	CW

NOTE ¹: OCBW is in Hz.

- NOTE ²: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.
- NOTE ³: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Receiver Category 3 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency(MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
	2 380	-34	CW
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB) or (-74 dBm + 20 dB) whichever	2 504	-34	CW
is less (see note 2)	2 300	-34	CW
	2 584	-34	CW

NOTE ¹: OCBW is in Hz.

NOTE ²: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE ³: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Categorization

Receiver category	Definition
1	Adaptive equipment with a maximum RF output power greater than 10 dBm e.i.r.p. shall
•	be considered as receiver category 1 equipment.
	Non-adaptive equipment with a Medium Utilization (MU) factor greater than 1 % and less
2	than or equal to 10 % or adaptive equipment with a maximum RF output power of 10
	dBm e.i.r.p. shall be considered as receiver category 2 equipment.
	Non-adaptive equipment with a maximum Medium Utilization (MU) factor of 1 % or
3	adaptive equipment with a maximum RF output power of 0 dBm e.i.r.p. shall be
	considered as receiver category 3 equipment

5.2.3.2 Test Setup

See the section 4.5.3 (Diagram 4) for test setup description. The photo of test setup please refer to ANNEX B.

5.2.3.3 Test Procedure

Reference to ETSI EN 300 328 V2.2.2 clause 5.4.11.2.

5.2.3.4 Test Result

Please refer to ANNEX A.12.

5.3 Other Parameters

5.3.1 Geo-location capability

5.3.1.1 Requirements

The geographical location determined by the equipment as defined in following section (5.3.1.2) shall not be accessible to the user.

5.3.1.2 Definition

Geo-location capability is a feature of the equipment to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates.

The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location.

5.3.1.3 Test Result

Note: Not applicable.

ANNEX A TEST RESULT

A.1 RF output power

Test Data

Note: EIRP Power = Conducted Power + Antenna Gain

Modulation Mode			GFSK	π/4-DQPSK	8-DPSK
Limit		20 dBm			
			Test Result		
Test Method	Test Method Test Conditions		Transmitter Power	Transmitter Power	Transmitter Power
Test Method			Level (dBm)	Level (dBm)	Level (dBm)
	Voltage Temperature		EIRP	EIRP	EIRP
Radiated		NT	3.0	3.0	2.9
Conducted	NV	LT	2.9	3.0	2.6
		HT	2.6	2.6	2.5
Test Verdict		Pass			

Bursts Power List

GFSK MODE

Burst RMS	Start Time	Stop Time	Tx_on	Tx_off
Power				
dBm	ms	ms	ms	ms
0.5	0.000	2.903	2.903	0.847
3.0	3.750	6.653	2.903	0.847
0.7	7.500	10.403	2.903	0.847
2.2	11.250	14.153	2.903	0.847
1.7	15.000	17.903	2.903	0.846
2.4	18.749	21.652	2.903	0.847
1.4	22.499	25.402	2.903	0.847
2.1	26.249	29.152	2.903	0.847
0.8	29.999	32.902	2.903	0.846
2.3	33.748	36.652	2.904	0.846
1.4	37.498	40.401	2.903	0.847
2.0	41.248	44.151	2.903	0.847
1.1	44.998	47.901	2.903	0.847
2.8	48.748	51.651	2.903	0.846
1.2	52.497	55.400	2.903	0.847
1.8	56.247	59.150	2.903	0.847
2.5	59.997	62.900	2.903	0.847
1.4	63.747	66.650	2.903	0.847
0.5	67.497	70.400	2.903	0.846
0.8	71.246	74.149	2.903	0.847
2.4	74.996	77.899	2.903	0.847
1.4	78.746	81.649	2.903	0.847
0.6	82.496	85.399	2.903	0.847
1.1	86.246	89.149	2.903	0.846
2.2	89.995	92.898	2.903	0.847
1.2	93.745	96.648	2.903	0.847
1.5	97.495	100.398	2.903	0.847
2.8	101.245	104.148	2.903	0.847
1.8	104.995	107.898	2.903	0.846
0.6	108.744	111.647	2.903	0.847
1.4	112.494	115.397	2.903	0.847
2.4	116.244	119.147	2.903	0.847
1.7	119.994	122.897	2.903	0.847
0.6	123.744	126.646	2.902	0.847

π/4-DQPSK MODE

NODE				
Burst RMS	Start Time	Stop Time	Tx_on	Tx_off
Power				
dBm	ms	ms	ms	ms
0.6	0.000	2.909	2.909	0.841
3.0	3.750	6.659	2.909	0.841
0.8	7.500	10.408	2.908	0.056
2.8	11.249	14.158	2.909	0.841
1.7	14.999	17.908	2.909	0.841
2.3	18.749	21.658	2.909	0.841
2.4	22.499	25.408	2.909	0.841
1.2	26.249	29.157	2.908	0.842
1.9	29.999	32.907	2.908	0.841
1.4	33.748	36.657	2.909	0.841
2.1	37.498	40.407	2.909	0.841
2.2	41.248	44.157	2.909	0.841
0.7	44.998	47.906	2.908	0.842
1.6	48.748	51.656	2.908	0.829
1.1	52.497	55.406	2.909	0.841
0.7	56.247	59.156	2.909	0.841
1.7	59.997	62.906	2.909	0.841
1.8	63.747	66.655	2.908	0.842
0.5	67.497	70.405	2.908	0.841
0.0	71.246	74.155	2.909	0.841
0.6	74.996	77.905	2.909	0.841
1.6	78.746	81.655	2.909	0.841
1.6	82.496	85.404	2.908	0.841
2.7	86.245	89.154	2.909	0.841
0.5	89.995	92.904	2.909	0.841
1.5	93.745	96.654	2.909	0.841
0.6	97.495	100.404	2.909	0.841
0.4	101.245	104.153	2.908	0.842
0.9	104.995	107.903	2.908	0.555
1.5	108.744	111.653	2.909	0.841
1.9	112.494	115.403	2.909	0.841
2.8	116.244	119.153	2.909	0.841
1.0	119.994	122.902	2.908	0.842
0.5	123.744	126.652	2.908	0.841
0.0		0.002		5.011

8-DPSK MODE

Burst RMS Start Time Stop Time Tx_on Tx_off dBm ms ms ms ms ms 1.3 0.000 2.911 2.911 0.839 2.9 3.750 6.661 2.911 0.838 0.9 7.499 10.411 2.912 0.838 2.1 11.249 14.161 2.912 0.838 0.5 14.999 17.911 2.912 0.838 0.5 14.999 17.911 2.912 0.838 2.5 22.498 25.410 2.912 0.838 0.6 26.248 29.160 2.912 0.838 0.6 26.248 29.10 2.912 0.838 0.6 26.248 29.10 2.912 0.838 0.7 33.748 36.660 2.912 0.838 0.9 41.248 44.159 2.911 0.838 1.0 48.747 51.659 0.002 0.552	DE				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Burst RMS	Start Time	Stop Time	Tx_on	Tx_off
1.3 0.000 2.911 2.911 0.839 2.9 3.750 6.661 2.911 0.838 0.9 7.499 10.411 2.912 0.838 2.1 11.249 14.161 2.912 0.838 0.5 14.999 17.911 2.912 0.838 1.7 18.749 21.660 2.911 0.838 2.5 22.498 25.410 2.912 0.838 2.6 26.248 29.160 2.912 0.838 0.6 26.248 29.160 2.912 0.838 2.4 29.998 32.910 2.912 0.838 0.7 33.748 36.660 2.912 0.838 0.7 33.748 36.660 2.912 0.838 0.7 37.498 40.410 2.912 0.838 0.9 41.248 44.159 2.911 0.838 0.9 41.248 44.159 2.911 0.838 1.0 48.747 51.659 2.912 0.838 1.0 48.747 51.659 2.912 0.838 1.9 52.497 55.409 2.912 0.838 1.0 49.996 62.908 2.912 0.838 1.0 59.996 62.908 2.912 0.838 2.1 63.746 66.658 2.912 0.838 1.1 67.496 70.408 2.912 0.838 1.2 89.995 92.907 2.912 0.838	Power				
2.9 3.750 6.661 2.911 0.838 0.9 7.499 10.411 2.912 0.838 2.1 11.249 14.161 2.912 0.838 0.5 14.999 17.911 2.912 0.838 1.7 18.749 21.660 2.911 0.838 2.5 22.498 25.410 2.912 0.838 0.6 26.248 29.160 2.912 0.838 0.6 26.248 29.160 2.912 0.838 0.7 33.748 36.660 2.912 0.838 0.7 33.748 36.660 2.912 0.838 0.7 33.748 40.410 2.912 0.838 0.9 41.248 44.159 2.911 0.838 0.9 41.248 44.159 2.912 0.838 1.0 48.747 51.659 2.912 0.838 1.0 48.747 51.659 2.912 0.838 1.9 52.497 55.409 2.912 0.838 1.0 48.747 51.659 0.002 0.552 0.7 56.247 59.158 2.911 0.838 1.0 59.996 62.908 2.912 0.838 1.1 67.496 70.408 2.912 0.838 1.1 67.496 77.907 2.911 0.838 2.2 78.745 81.657 2.912 0.838 1.4 74.996 77.907 2.912 0.838 <td>dBm</td> <td>ms</td> <td>ms</td> <td>ms</td> <td>ms</td>	dBm	ms	ms	ms	ms
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.3	0.000	2.911	2.911	0.839
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.9	3.750	6.661	2.911	0.838
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.9	7.499	10.411	2.912	0.838
1.7 18.749 21.660 2.911 0.838 2.5 22.498 25.410 2.912 0.838 0.6 26.248 29.160 2.912 0.838 2.4 29.998 32.910 2.912 0.838 0.7 33.748 36.660 2.912 0.838 0.7 33.748 36.660 2.912 0.838 0.7 33.748 40.410 2.912 0.838 0.9 41.248 44.159 2.911 0.838 0.9 41.248 44.159 2.912 0.838 -0.1 44.997 47.909 2.912 0.838 1.0 48.747 51.659 2.912 0.838 1.9 52.497 55.409 2.912 0.284 -22.4 55.693 55.695 0.002 0.552 0.7 56.247 59.158 2.911 0.838 1.0 59.996 62.908 2.912 0.838 1.1 67.496 70.408 2.912 0.838 2.8 71.246 74.158 2.912 0.838 1.4 74.996 77.907 2.911 0.838 1.2 82.495 85.407 2.912 0.838 1.2 89.995 92.907 2.912 0.838 1.2 101.244 104.156 2.912 0.838 1.2 101.244 104.156 2.912 0.838 1.2 101.244 104.156 2.912 <t< td=""><td>2.1</td><td>11.249</td><td>14.161</td><td>2.912</td><td>0.838</td></t<>	2.1	11.249	14.161	2.912	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5	14.999	17.911	2.912	0.838
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.7	18.749	21.660	2.911	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5	22.498	25.410	2.912	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6	26.248	29.160	2.912	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.4	29.998	32.910	2.912	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7	33.748	36.660	2.912	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.6	37.498	40.410	2.912	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.9	41.248	44.159	2.911	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.1	44.997	47.909	2.912	0.838
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.0	48.747	51.659	2.912	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.9	52.497	55.409	2.912	0.284
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-22.4	55.693	55.695	0.002	0.552
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7	56.247	59.158	2.911	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0	59.996	62.908	2.912	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.1	63.746	66.658	2.912	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1	67.496	70.408	2.912	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.8	71.246	74.158	2.912	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.4	74.996	77.907	2.911	0.838
0.186.24589.1572.9120.8381.989.99592.9072.9120.8382.193.74596.6562.9110.8380.897.494100.4062.9120.8381.2101.244104.1562.9120.8380.1104.994107.9062.9120.8381.6108.744111.6562.9120.8382.7112.494115.4052.9110.8380.6116.243119.1552.9120.838	2.2	78.745	81.657	2.912	0.838
1.989.99592.9072.9120.8382.193.74596.6562.9110.8380.897.494100.4062.9120.8381.2101.244104.1562.9120.8380.1104.994107.9062.9120.8381.6108.744111.6562.9120.8382.7112.494115.4052.9110.8380.6116.243119.1552.9120.838	1.2	82.495	85.407	2.912	0.838
2.193.74596.6562.9110.8380.897.494100.4062.9120.8381.2101.244104.1562.9120.8380.1104.994107.9062.9120.8381.6108.744111.6562.9120.8382.7112.494115.4052.9110.8380.6116.243119.1552.9120.838	0.1	86.245	89.157	2.912	0.838
0.897.494100.4062.9120.8381.2101.244104.1562.9120.8380.1104.994107.9062.9120.8381.6108.744111.6562.9120.8382.7112.494115.4052.9110.8380.6116.243119.1552.9120.838	1.9	89.995	92.907	2.912	0.838
1.2101.244104.1562.9120.8380.1104.994107.9062.9120.8381.6108.744111.6562.9120.8382.7112.494115.4052.9110.8380.6116.243119.1552.9120.838	2.1	93.745	96.656	2.911	0.838
0.1104.994107.9062.9120.8381.6108.744111.6562.9120.8382.7112.494115.4052.9110.8380.6116.243119.1552.9120.838	0.8	97.494	100.406	2.912	0.838
1.6108.744111.6562.9120.8382.7112.494115.4052.9110.8380.6116.243119.1552.9120.838	1.2	101.244	104.156	2.912	0.838
2.7112.494115.4052.9110.8380.6116.243119.1552.9120.838	0.1	104.994	107.906	2.912	0.838
0.6 116.243 119.155 2.912 0.838	1.6	108.744	111.656	2.912	0.838
	2.7	112.494	115.405	2.911	0.838
0.8 119.993 122.905 2.912 0.838	0.6	116.243	119.155	2.912	0.838
	0.8	119.993	122.905	2.912	0.838

A.2 Power spectral density

Note: Not applicable.

A.3 Duty Cycle, Tx-sequence, Tx-gap

Note ¹: The maximum value of Duty Cycle declared by the supplier.

Test Data

Duty Cycle (%)	Limit Duty Cycle (%) ^{Note1}	Number of Bursts	Minimum Tx-On (ms)	Maximum Tx-On (ms)	Minimum Tx-Off (ms)	Maximum Tx-Off (ms)	Measurement Time (ms)	Comment

Note²: Not applicable.

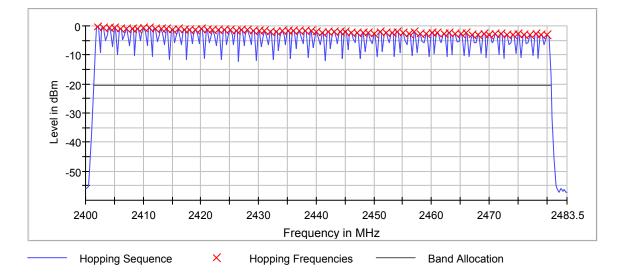
A.4 Accumulated Transmit Time, Frequency Occupation and Hopping Sequence

Test Data (Dwell Time)

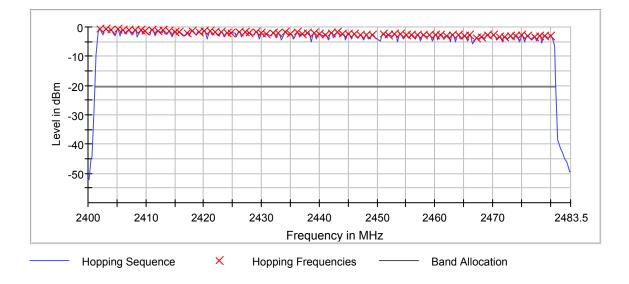
	Test Condition		Temperature NT, Voltage NV			
Test Method	Modulation Mode	Channel	Total of Dwell (ms)	Measurement Time (s)	Limit (ms)	
	GFSK	Low Channel	309.5664	31.6	400	
Radiated		High Channel	309.5664	31.6	400	
Conducted		Low Channel	310.4192	31.6	400	
	8-DPSK	High Channel	310.4192	31.6	400	
	Test Verdict			Pass		

Test Data (Minimum Frequency Occupation)

	Test Condition		Temperature NT, Voltage NV				
Test Method	Modulation Mode	Channel	Minimum Frequency Occupation (ms)	Measurement Time (ms)	Limit (ms)		
	GFSK	Low Channel	7.556	917.664	≥ 2.904		
Radiated	GFSK	High Channel	9.911	917.664	≥ 2.904		
Conducted	8-DPSK	Low Channel	11.288	920.192	≥ 2.912		
		High Channel	8.926	920.192	≥ 2.912		
	Test Verdict		Pass				
Note: The Minimum Frequency Occupation Time shall be equal to one dwell time within a period not exceeding four times the product of the dwell time per hop and the number of hopping frequencies in use. And the minimum of one dwell time have showed out at the ANNEX A.1 Test Bursts Power List.							


Test Data (Hopping Sequence)

Test Co	ondition	Temperature NT, Voltage NV					
		Number of	Limit of	Band	Limit Band		
Test Method	Test Mode	Hopping	the Min.	Allocation	Allocation	Verdict	
		Frequencies	channel	(%)	(%)		
Radiated	GFSK	79	≥ 15	95.0	≥ 70	Pass	
Conducted	8-DPSK	79	≥ 15	95.5	≥ 70	Pass	



Test plots

Hopping Sequence: GFSK

Hopping Sequence:8-DPSK

A.5 Hopping Frequency Separation

Test Data

Test Method	Test Con	ditions	Test Result				
Radiated	Temperature	Voltage	Modulation Mode	Channel Separation (MHz)	Limit (MHz)		
Conducted	NT	NV	GFSK	1.000	≧0.1		
			8-DPSK	1.000	≧0.1		
Test Verdict			Pass				

Test plots

α RL RF 50 Ω AC Marker 1 Δ 1.000000000 M	PNO: Wide Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>3000/3000	7:21:55 AM Aug 19, 2021 TRACE 1 2 3 4 5 6 TYPE M	Marker
10 dB/div Ref 15.00 dBm	IFGain:Low #Atten: 30 dB	ΔMkr	1 1.000 MHz -0.089 dB	Select Marke
5.00 5.00				Norm
-15.0	mar and a second	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Del
55 0 65 0 				Fixed
Center 2.441000 GHz #Res BW 30 kHz	#VBW 100 kHz	S Sweep 3.2	pan 3.000 MHz 00 ms (601 pts)	c
1 Δ2 1 f (Δ)	1.000 MHz (Δ) -0.089 dB 0 040 GHz -17.349 dBm			Propertie
7 8 9 10				Mo 1 o

8-DPSK

A.6 Medium Utilization (MU) factor

Medium Utilization (MU) (%)	Limit Medium Utilization (MU) (%)	Verdict
	10	

Note: Not applicable.

A.7 Adaptivity

Note: Not applicable.

A.8 Occupied Channel Bandwidth

Measuring Parameter

Centre Frequency	The centre frequency of the channel under test
RBW	~ 1 % of the span without going below 1 %
VBW	$3 \times RBW$
Span	2 $ imes$ Nominal Channel Bandwidth
Detector mode	RMS
Trace mode	Max Hold
Sweep time	Auto
Test Method	Radiated
Test Method	⊠ Conducted

<u>Test Data</u>

Test Cor	ditions	Test	DUT Frequency	Occupied Channel Bandwidth	Lower Band Edge	Upper Band Edge	Limit	
Temperatu re	u Voltage	Mode	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	
		GFSK	2402	0.867	2401.639893	2402.506893		
NT	NV		2480	0.870	2479.643311	2480.513311	Within The Band	
		8-	8-	2402	1.200	2401.476562	2402.676562	2400 MHz to 2483.5 MHz
		DPSK	2480	1.230	2479.463379	2480.693379		
Test Verdict					Pass			

Test Plots

GFSK: Low Channel

8-DPSK: Low Channel

GFSK: High Channel

8-DPSK: High Channel

A.9 Transmitter unwanted emissions in the out-of-band domain

Test Data

SF	FSK								
	DUT Frequency	Nominal	Frequency	Level	Limit	Result			
	(MHz)	Bandwidth (MHz)	(MHz)	(dBm)	(dBm)				
	2402	1	2398.5	-35.692	-20	Pass			
	2402	1	2399.5	-33.945	-10	Pass			
	2480	1	2484.0	-35.083	-10	Pass			
	2480	1	2485.0	-35.504	-20	Pass			

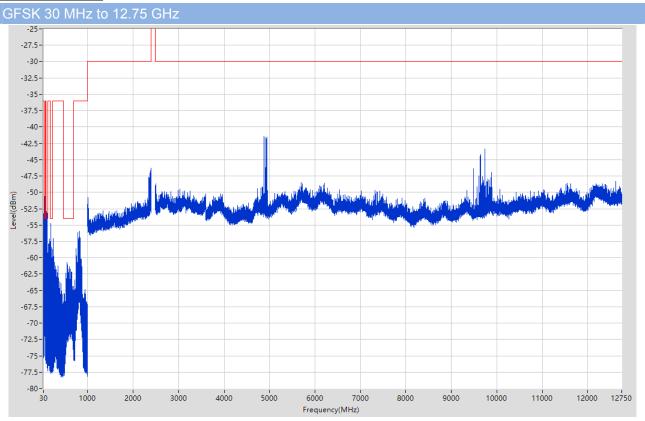
8-DPSK

-0	FON					
	DUT Frequency	Nominal	Frequency	Level	Limit	Result
	(MHz)	Bandwidth (MHz)	(MHz)	(dBm)	(dBm)	Result
	2402	1	2398.5	-35.920	-20	PASS
	2402	1	2399.5	-34.778	-10	PASS
	2480	1	2484.0	-34.342	-10	PASS
	2480	1	2485.0	-35.374	-20	PASS

A.10 Transmitter unwanted emissions in the spurious domain

Note ¹: The test method choose the conducted method. Which power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation).

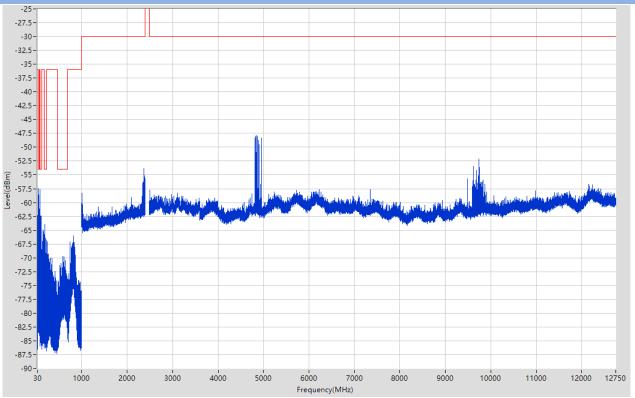
Note ²: The Frequency band was pre-scanned, the harmonic and other spurious which worst frequency are recorded in the report.


Note ³: The cabinet radiated test data is tested in the normal working mode of the product.

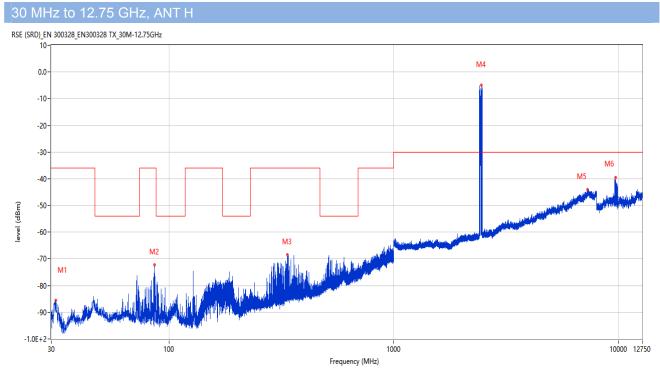
Measuring Parameter

Frequency Range						
	RBW (MHz)	100 kHz				
	VBW (MHz)	300 kHz				
30 MHz to 1 000 MHz	Sweep points	19400				
	Detector mode	Peak				
	Trace mode	Max Hold				
	RBW (MHz)	1 MHz				
	VBW (MHz)	3 MHz				
1 GHz to 12,75 GHz	Sweep points	23500				
	Detector mode	Peak				
	Trace mode	Max Hold				

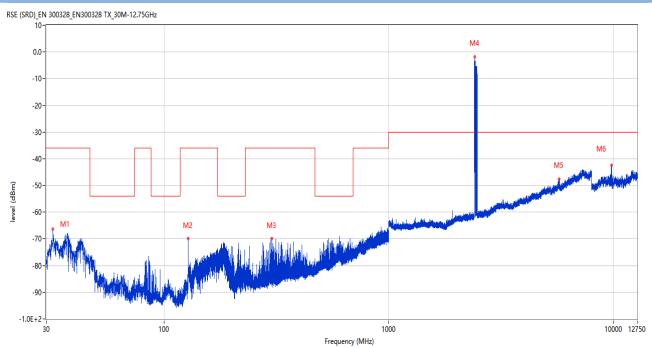
Conducted Test Data



Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
30	47	0.1	Peak	45.768	-51.18	-36	Pass	401
47	74	0.1	Peak	47.0E	-48.91	-54	N/A	541
47	74	0.1	RMS	47.95	-65.79		Pass	30000
74	87.5	0.1	Peak	78.016	-50.72	-36	Pass	401
07 E	118	0.1	Peak	96	-52.95	-54	N/A	611
87.5			RMS		-62.60		Pass	30000
118	174	0.1	Peak	156.05	-57.17	-36	Pass	1121
174	230	0.1	Peak	192	-54.73	54	N/A	1121
174	230	0.1	RMS	192	-62.64	-54	Pass	30000
230	470	0.1	Peak	240	-57.09	-36	Pass	4801
470	694	0.1	Peak	547.3	-60.71	-54	Pass	4481
694	1000	0.1	Peak	827.2	-55.9	-36	Pass	6121
1000	2398	1	Peak	2394.5	-46.33	-30	Pass	2797
2485.5	12750	1	Peak	4878.5	-41.47	-30	Pass	20530


8-DPSK 30 MHz to 12.75 GHz

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
30	47	0.1	Peak	45.173	-58.32	-36	Pass	401
47	74	0.1	Peak	48	-57.44	-54	Pass	541
74	87.5	0.1	Peak	77.983	-57.61	-36	Pass	401
87.5	118	0.1	Peak	104	-62.39	-54	Pass	611
118	174	0.1	Peak	144	-64.98	-36	Pass	1121
174	230	0.1	Peak	192	-64	-54	Pass	1121
230	470	0.1	Peak	234	-66.74	-36	Pass	4801
470	694	0.1	Peak	587.05	-69.74	-54	Pass	4481
694	1000	0.1	Peak	826.35	-66.06	-36	Pass	6121
1000	2398	1	Peak	2368.5	-53.91	-30	Pass	2797
2485.5	12750	1	Peak	4850	-47.87	-30	Pass	20530


Cabinet Radiated Test Data

Fraguanay	Result	Factor	PK Limit	Over Limit	Table (o)	ANT	EUT	Verdict
Frequency	Result	Factor	PKLIIIII	Over Limit	Table (0)	ANT	EUT	verdict
(MHz)	(dBm)	(dB)	(dBm)	(dB)				
31.455	-85.49	-21.50	-36.0	-49.49	271.00	Horizontal	Horizontal	Pass
86.163	-72.37	-21.39	-36.0	-36.37	212.00	Horizontal	Horizontal	Pass
336.132	-68.50	-11.35	-36.0	-32.50	41.00	Horizontal	Horizontal	Pass
2452.000	-4.95	2.02	-30.0	25.05	244.00	Horizontal	Horizontal	N/A
7303.250	-44.05	18.03	-30.0	-14.05	285.00	Horizontal	Horizontal	Pass
9704.300	-39.66	14.95	-30.0	-9.66	333.00	Horizontal	Horizontal	Pass

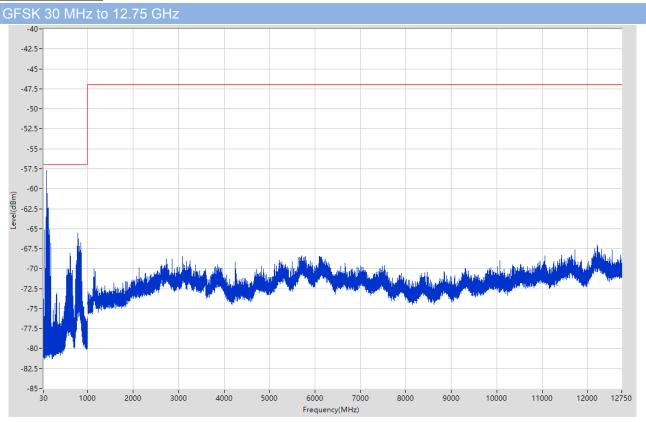
30 MHz to 12.75 GHz, ANT V

Frequency	Result	Factor	PK Limit	Over Limit	Table (o)	ANT	EUT	Verdict
(MHz)	(dBm)	(dB)	(dBm)	(dB)				
32.085	-66.34	-22.31	-36.0	-30.34	170.00	Vertical	Vertical	Pass
128.406	-69.99	-22.32	-36.0	-33.99	87.00	Vertical	Vertical	Pass
302.328	-69.85	-12.94	-36.0	-33.85	216.00	Vertical	Vertical	Pass
2416.100	-1.96	0.85	-30.0	28.04	235.00	Vertical	Vertical	N/A
5738.250	-47.54	13.16	-30.0	-17.54	197.00	Vertical	Vertical	Pass
9788.375	-42.49	16.33	-30.0	-12.49	57.00	Vertical	Vertical	Pass

A.11 Receiver Spurious Emissions

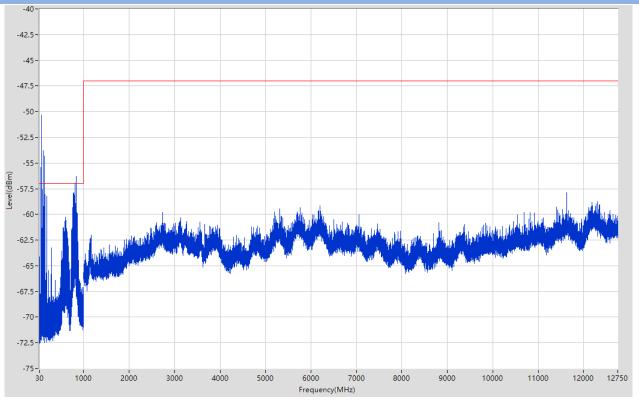
Note ¹: The test method choose the conducted method. Which power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation).

Note ²: The Frequency band was pre-scanned, the harmonic and other spurious which worst frequency are recorded in the report.

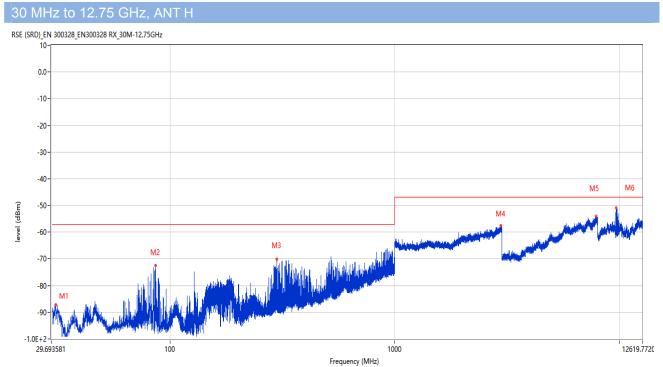

Note ³: The cabinet radiated test data is tested in the normal working mode of the product.

Measuring Parameter

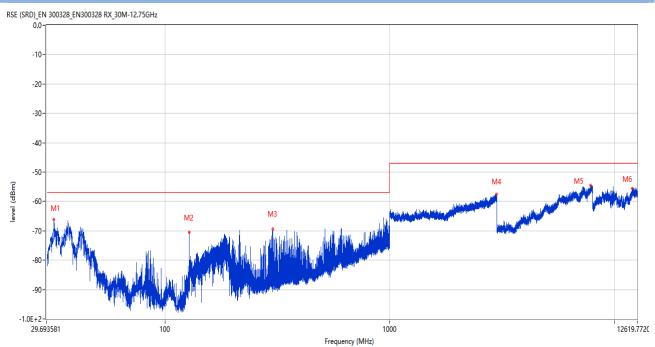
Frequency Range		
	RBW (MHz)	100 kHz
	VBW (MHz)	300 kHz
30 MHz to 1 000 MHz	Sweep points	19400
	Detector mode	Peak
	Trace mode	Max Hold
	RBW (MHz)	1 MHz
	VBW (MHz)	3 MHz
1 GHz to 12,75 GHz	Sweep points	23500
	Detector mode	Peak
	Trace mode	Max Hold


Conducted Test Data

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
30	1000	0.1	Peak	06.05	-57.71	-57	N/A	19401
	1000	0.1	RMS	96.05	-63.58	-57	Pass	30000
1000	12750	1	Peak	12207.5	-67.04	-47	Pass	23501


8-DPSK 30 MHz to 12.75 GHz

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
30	1000	0.1	Peak	71.95	-50.35	-57	N/A	19401
	1000	0.1	RMS	71.95	-70.29	-57	Pass	30000
1000	12750	1	Peak	11633.5	-57.88	-47	Pass	23501


Cabinet Radiated Test Data

Frequency	Result	Factor	PK Limit	Over Limit	Table (o)	ANT	EUT	Verdict
(MHz)	(dBm)	(dB)	(dBm)	(dB)				
31.116	-87.29	-21.06	-57.0	-30.29	314.00	Horizontal	Horizontal	Pass
86.163	-72.54	-21.39	-57.0	-15.54	359.00	Horizontal	Horizontal	Pass
299.272	-70.18	-12.92	-57.0	-13.18	190.00	Horizontal	Horizontal	Pass
2968.600	-57.64	5.36	-47.0	-10.64	218.00	Horizontal	Horizontal	Pass
7856.000	-54.06	8.88	-47.0	-7.06	51.00	Horizontal	Horizontal	Pass
9672.237	-51.04	3.72	-47.0	-4.04	258.00	Horizontal	Horizontal	Pass

30 MHz to 12.75 GHz, ANT V

F	Desult	E a ata a	DKLindt	Quere Lineit	T -1-1- (-)		EUT) (a walk a t
Frequency	Result	Factor	PK Limit	Over Limit	Table (o)	ANT	EUT	Verdict
(MHz)	(dBm)	(dB)	(dBm)	(dB)				
32.134	-66.11	-22.37	-57.0	-9.11	260.00	Vertical	Vertical	Pass
128.455	-70.48	-22.32	-57.0	-13.48	92.00	Vertical	Vertical	Pass
301.552	-69.30	-12.93	-57.0	-12.30	245.00	Vertical	Vertical	Pass
2986.300	-57.54	4.94	-47.0	-10.54	17.00	Vertical	Vertical	Pass
7830.750	-54.43	8.17	-47.0	-7.43	97.00	Vertical	Vertical	Pass
11977.175	-55.64	6.42	-47.0	-8.64	360.00	Vertical	Vertical	Pass

A.12 Receiver Blocking

For Bluetooth (For Classic)

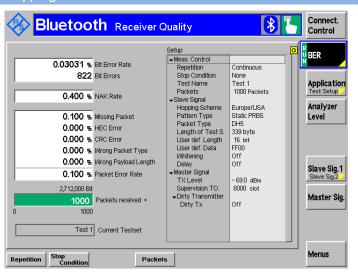
Note 1: Blocking signal levels specified are levels in front of the UUT antenna. In case of conducted

measurements, the levels corrected by the actual antenna assembly gain.

Note 2: During the Blocking test, the number of packets sent by the system is 1000.

Test Data:

Receiver Category 2 equipment


Wanted signal mean power from	Blocking signal Frequency	Blocking signal power	PER Result	Limit	Verdict
companion device (dBm)	(MHz)	(dBm)	Hopping channel		Verdict
	2 380	-34	0.00%		
-139 dBm + 10 × log ₁₀ (OCBW) +	2 504	-34	0.00%	<100/	Dees
10 dB	2 300	-34	0.10%	≦10%	Pass
	2 584	-34	0.00%		

Test Plot (PER)

Note: All the configuration were tested, but only the worst PER Plot were reported in this report.

For Bluetooth (For Classic)

Hopping Mode

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SZ2170989-AR.pdf".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ2170989-AW.pdf".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-SZ2170989-Al.pdf".

ANNEX E INFORMATIVE

Application form for testing please refer to the document "BL-SZ2170989-AM.pdf".

--END OF REPORT--